]> git.proxmox.com Git - mirror_qemu.git/blobdiff - target/arm/kvm.c
target/arm: Move GTimer definitions to new 'gtimer.h' header
[mirror_qemu.git] / target / arm / kvm.c
index 9553488ecd13d2a09ff02b2d86b9b54b32fa5472..81813030a5a0dae3270b249d1a7f5892eea36e1c 100644 (file)
@@ -2,6 +2,8 @@
  * ARM implementation of KVM hooks
  *
  * Copyright Christoffer Dall 2009-2010
+ * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
+ * Copyright Alex BennĂ©e 2014, Linaro
  *
  * This work is licensed under the terms of the GNU GPL, version 2 or later.
  * See the COPYING file in the top-level directory.
@@ -19,6 +21,7 @@
 #include "qom/object.h"
 #include "qapi/error.h"
 #include "sysemu/sysemu.h"
+#include "sysemu/runstate.h"
 #include "sysemu/kvm.h"
 #include "sysemu/kvm_int.h"
 #include "kvm_arm.h"
 #include "hw/pci/pci.h"
 #include "exec/memattrs.h"
 #include "exec/address-spaces.h"
+#include "exec/gdbstub.h"
 #include "hw/boards.h"
 #include "hw/irq.h"
+#include "qapi/visitor.h"
 #include "qemu/log.h"
-#include "migration/blocker.h"
+#include "hw/acpi/acpi.h"
+#include "hw/acpi/ghes.h"
+#include "target/arm/gtimer.h"
 
 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
     KVM_CAP_LAST_INFO
@@ -41,28 +48,54 @@ static bool cap_has_mp_state;
 static bool cap_has_inject_serror_esr;
 static bool cap_has_inject_ext_dabt;
 
+/**
+ * ARMHostCPUFeatures: information about the host CPU (identified
+ * by asking the host kernel)
+ */
+typedef struct ARMHostCPUFeatures {
+    ARMISARegisters isar;
+    uint64_t features;
+    uint32_t target;
+    const char *dtb_compatible;
+} ARMHostCPUFeatures;
+
 static ARMHostCPUFeatures arm_host_cpu_features;
 
-int kvm_arm_vcpu_init(CPUState *cs)
+/**
+ * kvm_arm_vcpu_init:
+ * @cpu: ARMCPU
+ *
+ * Initialize (or reinitialize) the VCPU by invoking the
+ * KVM_ARM_VCPU_INIT ioctl with the CPU type and feature
+ * bitmask specified in the CPUState.
+ *
+ * Returns: 0 if success else < 0 error code
+ */
+static int kvm_arm_vcpu_init(ARMCPU *cpu)
 {
-    ARMCPU *cpu = ARM_CPU(cs);
     struct kvm_vcpu_init init;
 
     init.target = cpu->kvm_target;
     memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
 
-    return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
+    return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_INIT, &init);
 }
 
-int kvm_arm_vcpu_finalize(CPUState *cs, int feature)
-{
-    return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature);
-}
-
-void kvm_arm_init_serror_injection(CPUState *cs)
+/**
+ * kvm_arm_vcpu_finalize:
+ * @cpu: ARMCPU
+ * @feature: feature to finalize
+ *
+ * Finalizes the configuration of the specified VCPU feature by
+ * invoking the KVM_ARM_VCPU_FINALIZE ioctl. Features requiring
+ * this are documented in the "KVM_ARM_VCPU_FINALIZE" section of
+ * KVM's API documentation.
+ *
+ * Returns: 0 if success else < 0 error code
+ */
+static int kvm_arm_vcpu_finalize(ARMCPU *cpu, int feature)
 {
-    cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
-                                    KVM_CAP_ARM_INJECT_SERROR_ESR);
+    return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_FINALIZE, &feature);
 }
 
 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
@@ -167,6 +200,260 @@ void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
     }
 }
 
+static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
+{
+    uint64_t ret;
+    struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
+    int err;
+
+    assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
+    err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
+    if (err < 0) {
+        return -1;
+    }
+    *pret = ret;
+    return 0;
+}
+
+static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
+{
+    struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
+
+    assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
+    return ioctl(fd, KVM_GET_ONE_REG, &idreg);
+}
+
+static bool kvm_arm_pauth_supported(void)
+{
+    return (kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_ADDRESS) &&
+            kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_GENERIC));
+}
+
+static bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
+{
+    /* Identify the feature bits corresponding to the host CPU, and
+     * fill out the ARMHostCPUClass fields accordingly. To do this
+     * we have to create a scratch VM, create a single CPU inside it,
+     * and then query that CPU for the relevant ID registers.
+     */
+    int fdarray[3];
+    bool sve_supported;
+    bool pmu_supported = false;
+    uint64_t features = 0;
+    int err;
+
+    /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
+     * we know these will only support creating one kind of guest CPU,
+     * which is its preferred CPU type. Fortunately these old kernels
+     * support only a very limited number of CPUs.
+     */
+    static const uint32_t cpus_to_try[] = {
+        KVM_ARM_TARGET_AEM_V8,
+        KVM_ARM_TARGET_FOUNDATION_V8,
+        KVM_ARM_TARGET_CORTEX_A57,
+        QEMU_KVM_ARM_TARGET_NONE
+    };
+    /*
+     * target = -1 informs kvm_arm_create_scratch_host_vcpu()
+     * to use the preferred target
+     */
+    struct kvm_vcpu_init init = { .target = -1, };
+
+    /*
+     * Ask for SVE if supported, so that we can query ID_AA64ZFR0,
+     * which is otherwise RAZ.
+     */
+    sve_supported = kvm_arm_sve_supported();
+    if (sve_supported) {
+        init.features[0] |= 1 << KVM_ARM_VCPU_SVE;
+    }
+
+    /*
+     * Ask for Pointer Authentication if supported, so that we get
+     * the unsanitized field values for AA64ISAR1_EL1.
+     */
+    if (kvm_arm_pauth_supported()) {
+        init.features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
+                             1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
+    }
+
+    if (kvm_arm_pmu_supported()) {
+        init.features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
+        pmu_supported = true;
+    }
+
+    if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
+        return false;
+    }
+
+    ahcf->target = init.target;
+    ahcf->dtb_compatible = "arm,arm-v8";
+
+    err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
+                         ARM64_SYS_REG(3, 0, 0, 4, 0));
+    if (unlikely(err < 0)) {
+        /*
+         * Before v4.15, the kernel only exposed a limited number of system
+         * registers, not including any of the interesting AArch64 ID regs.
+         * For the most part we could leave these fields as zero with minimal
+         * effect, since this does not affect the values seen by the guest.
+         *
+         * However, it could cause problems down the line for QEMU,
+         * so provide a minimal v8.0 default.
+         *
+         * ??? Could read MIDR and use knowledge from cpu64.c.
+         * ??? Could map a page of memory into our temp guest and
+         *     run the tiniest of hand-crafted kernels to extract
+         *     the values seen by the guest.
+         * ??? Either of these sounds like too much effort just
+         *     to work around running a modern host kernel.
+         */
+        ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
+        err = 0;
+    } else {
+        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
+                              ARM64_SYS_REG(3, 0, 0, 4, 1));
+        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64smfr0,
+                              ARM64_SYS_REG(3, 0, 0, 4, 5));
+        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0,
+                              ARM64_SYS_REG(3, 0, 0, 5, 0));
+        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1,
+                              ARM64_SYS_REG(3, 0, 0, 5, 1));
+        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
+                              ARM64_SYS_REG(3, 0, 0, 6, 0));
+        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
+                              ARM64_SYS_REG(3, 0, 0, 6, 1));
+        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar2,
+                              ARM64_SYS_REG(3, 0, 0, 6, 2));
+        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
+                              ARM64_SYS_REG(3, 0, 0, 7, 0));
+        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
+                              ARM64_SYS_REG(3, 0, 0, 7, 1));
+        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2,
+                              ARM64_SYS_REG(3, 0, 0, 7, 2));
+
+        /*
+         * Note that if AArch32 support is not present in the host,
+         * the AArch32 sysregs are present to be read, but will
+         * return UNKNOWN values.  This is neither better nor worse
+         * than skipping the reads and leaving 0, as we must avoid
+         * considering the values in every case.
+         */
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr0,
+                              ARM64_SYS_REG(3, 0, 0, 1, 0));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr1,
+                              ARM64_SYS_REG(3, 0, 0, 1, 1));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0,
+                              ARM64_SYS_REG(3, 0, 0, 1, 2));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0,
+                              ARM64_SYS_REG(3, 0, 0, 1, 4));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1,
+                              ARM64_SYS_REG(3, 0, 0, 1, 5));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2,
+                              ARM64_SYS_REG(3, 0, 0, 1, 6));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3,
+                              ARM64_SYS_REG(3, 0, 0, 1, 7));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
+                              ARM64_SYS_REG(3, 0, 0, 2, 0));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
+                              ARM64_SYS_REG(3, 0, 0, 2, 1));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
+                              ARM64_SYS_REG(3, 0, 0, 2, 2));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
+                              ARM64_SYS_REG(3, 0, 0, 2, 3));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
+                              ARM64_SYS_REG(3, 0, 0, 2, 4));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
+                              ARM64_SYS_REG(3, 0, 0, 2, 5));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4,
+                              ARM64_SYS_REG(3, 0, 0, 2, 6));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
+                              ARM64_SYS_REG(3, 0, 0, 2, 7));
+
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
+                              ARM64_SYS_REG(3, 0, 0, 3, 0));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
+                              ARM64_SYS_REG(3, 0, 0, 3, 1));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
+                              ARM64_SYS_REG(3, 0, 0, 3, 2));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr2,
+                              ARM64_SYS_REG(3, 0, 0, 3, 4));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr1,
+                              ARM64_SYS_REG(3, 0, 0, 3, 5));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr5,
+                              ARM64_SYS_REG(3, 0, 0, 3, 6));
+
+        /*
+         * DBGDIDR is a bit complicated because the kernel doesn't
+         * provide an accessor for it in 64-bit mode, which is what this
+         * scratch VM is in, and there's no architected "64-bit sysreg
+         * which reads the same as the 32-bit register" the way there is
+         * for other ID registers. Instead we synthesize a value from the
+         * AArch64 ID_AA64DFR0, the same way the kernel code in
+         * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
+         * We only do this if the CPU supports AArch32 at EL1.
+         */
+        if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) {
+            int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS);
+            int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS);
+            int ctx_cmps =
+                FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS);
+            int version = 6; /* ARMv8 debug architecture */
+            bool has_el3 =
+                !!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3);
+            uint32_t dbgdidr = 0;
+
+            dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps);
+            dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps);
+            dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps);
+            dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version);
+            dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3);
+            dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3);
+            dbgdidr |= (1 << 15); /* RES1 bit */
+            ahcf->isar.dbgdidr = dbgdidr;
+        }
+
+        if (pmu_supported) {
+            /* PMCR_EL0 is only accessible if the vCPU has feature PMU_V3 */
+            err |= read_sys_reg64(fdarray[2], &ahcf->isar.reset_pmcr_el0,
+                                  ARM64_SYS_REG(3, 3, 9, 12, 0));
+        }
+
+        if (sve_supported) {
+            /*
+             * There is a range of kernels between kernel commit 73433762fcae
+             * and f81cb2c3ad41 which have a bug where the kernel doesn't
+             * expose SYS_ID_AA64ZFR0_EL1 via the ONE_REG API unless the VM has
+             * enabled SVE support, which resulted in an error rather than RAZ.
+             * So only read the register if we set KVM_ARM_VCPU_SVE above.
+             */
+            err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64zfr0,
+                                  ARM64_SYS_REG(3, 0, 0, 4, 4));
+        }
+    }
+
+    kvm_arm_destroy_scratch_host_vcpu(fdarray);
+
+    if (err < 0) {
+        return false;
+    }
+
+    /*
+     * We can assume any KVM supporting CPU is at least a v8
+     * with VFPv4+Neon; this in turn implies most of the other
+     * feature bits.
+     */
+    features |= 1ULL << ARM_FEATURE_V8;
+    features |= 1ULL << ARM_FEATURE_NEON;
+    features |= 1ULL << ARM_FEATURE_AARCH64;
+    features |= 1ULL << ARM_FEATURE_PMU;
+    features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;
+
+    ahcf->features = features;
+
+    return true;
+}
+
 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
 {
     CPUARMState *env = &cpu->env;
@@ -210,10 +497,10 @@ static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
 }
 
 /* KVM VCPU properties should be prefixed with "kvm-". */
-void kvm_arm_add_vcpu_properties(Object *obj)
+void kvm_arm_add_vcpu_properties(ARMCPU *cpu)
 {
-    ARMCPU *cpu = ARM_CPU(obj);
     CPUARMState *env = &cpu->env;
+    Object *obj = OBJECT(cpu);
 
     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
         cpu->kvm_adjvtime = true;
@@ -248,6 +535,13 @@ int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
     return ret > 0 ? ret : 40;
 }
 
+int kvm_arch_get_default_type(MachineState *ms)
+{
+    bool fixed_ipa;
+    int size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
+    return fixed_ipa ? 0 : size;
+}
+
 int kvm_arch_init(MachineState *ms, KVMState *s)
 {
     int ret = 0;
@@ -264,6 +558,10 @@ int kvm_arch_init(MachineState *ms, KVMState *s)
 
     cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
 
+    /* Check whether user space can specify guest syndrome value */
+    cap_has_inject_serror_esr =
+        kvm_check_extension(s, KVM_CAP_ARM_INJECT_SERROR_ESR);
+
     if (ms->smp.cpus > 256 &&
         !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
         error_report("Using more than 256 vcpus requires a host kernel "
@@ -281,7 +579,33 @@ int kvm_arch_init(MachineState *ms, KVMState *s)
         }
     }
 
-    kvm_arm_init_debug(s);
+    if (s->kvm_eager_split_size) {
+        uint32_t sizes;
+
+        sizes = kvm_vm_check_extension(s, KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES);
+        if (!sizes) {
+            s->kvm_eager_split_size = 0;
+            warn_report("Eager Page Split support not available");
+        } else if (!(s->kvm_eager_split_size & sizes)) {
+            error_report("Eager Page Split requested chunk size not valid");
+            ret = -EINVAL;
+        } else {
+            ret = kvm_vm_enable_cap(s, KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE, 0,
+                                    s->kvm_eager_split_size);
+            if (ret < 0) {
+                error_report("Enabling of Eager Page Split failed: %s",
+                             strerror(-ret));
+            }
+        }
+    }
+
+    max_hw_wps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_WPS);
+    hw_watchpoints = g_array_sized_new(true, true,
+                                       sizeof(HWWatchpoint), max_hw_wps);
+
+    max_hw_bps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_BPS);
+    hw_breakpoints = g_array_sized_new(true, true,
+                                       sizeof(HWBreakpoint), max_hw_bps);
 
     return ret;
 }
@@ -342,6 +666,7 @@ static MemoryListener devlistener = {
     .name = "kvm-arm",
     .region_add = kvm_arm_devlistener_add,
     .region_del = kvm_arm_devlistener_del,
+    .priority = MEMORY_LISTENER_PRIORITY_MIN,
 };
 
 static void kvm_arm_set_device_addr(KVMDevice *kd)
@@ -441,11 +766,36 @@ static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
     return &cpu->cpreg_values[res - cpu->cpreg_indexes];
 }
 
-/* Initialize the ARMCPU cpreg list according to the kernel's
+/**
+ * kvm_arm_reg_syncs_via_cpreg_list:
+ * @regidx: KVM register index
+ *
+ * Return true if this KVM register should be synchronized via the
+ * cpreg list of arbitrary system registers, false if it is synchronized
+ * by hand using code in kvm_arch_get/put_registers().
+ */
+static bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
+{
+    switch (regidx & KVM_REG_ARM_COPROC_MASK) {
+    case KVM_REG_ARM_CORE:
+    case KVM_REG_ARM64_SVE:
+        return false;
+    default:
+        return true;
+    }
+}
+
+/**
+ * kvm_arm_init_cpreg_list:
+ * @cpu: ARMCPU
+ *
+ * Initialize the ARMCPU cpreg list according to the kernel's
  * definition of what CPU registers it knows about (and throw away
  * the previous TCG-created cpreg list).
+ *
+ * Returns: 0 if success, else < 0 error code
  */
-int kvm_arm_init_cpreg_list(ARMCPU *cpu)
+static int kvm_arm_init_cpreg_list(ARMCPU *cpu)
 {
     struct kvm_reg_list rl;
     struct kvm_reg_list *rlp;
@@ -518,6 +868,28 @@ out:
     return ret;
 }
 
+/**
+ * kvm_arm_cpreg_level:
+ * @regidx: KVM register index
+ *
+ * Return the level of this coprocessor/system register.  Return value is
+ * either KVM_PUT_RUNTIME_STATE, KVM_PUT_RESET_STATE, or KVM_PUT_FULL_STATE.
+ */
+static int kvm_arm_cpreg_level(uint64_t regidx)
+{
+    /*
+     * All system registers are assumed to be level KVM_PUT_RUNTIME_STATE.
+     * If a register should be written less often, you must add it here
+     * with a state of either KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
+     */
+    switch (regidx) {
+    case KVM_REG_ARM_TIMER_CNT:
+    case KVM_REG_ARM_PTIMER_CNT:
+        return KVM_PUT_FULL_STATE;
+    }
+    return KVM_PUT_RUNTIME_STATE;
+}
+
 bool write_kvmstate_to_list(ARMCPU *cpu)
 {
     CPUState *cs = CPU(cpu);
@@ -525,24 +897,19 @@ bool write_kvmstate_to_list(ARMCPU *cpu)
     bool ok = true;
 
     for (i = 0; i < cpu->cpreg_array_len; i++) {
-        struct kvm_one_reg r;
         uint64_t regidx = cpu->cpreg_indexes[i];
         uint32_t v32;
         int ret;
 
-        r.id = regidx;
-
         switch (regidx & KVM_REG_SIZE_MASK) {
         case KVM_REG_SIZE_U32:
-            r.addr = (uintptr_t)&v32;
-            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
+            ret = kvm_get_one_reg(cs, regidx, &v32);
             if (!ret) {
                 cpu->cpreg_values[i] = v32;
             }
             break;
         case KVM_REG_SIZE_U64:
-            r.addr = (uintptr_t)(cpu->cpreg_values + i);
-            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
+            ret = kvm_get_one_reg(cs, regidx, cpu->cpreg_values + i);
             break;
         default:
             g_assert_not_reached();
@@ -561,7 +928,6 @@ bool write_list_to_kvmstate(ARMCPU *cpu, int level)
     bool ok = true;
 
     for (i = 0; i < cpu->cpreg_array_len; i++) {
-        struct kvm_one_reg r;
         uint64_t regidx = cpu->cpreg_indexes[i];
         uint32_t v32;
         int ret;
@@ -570,19 +936,17 @@ bool write_list_to_kvmstate(ARMCPU *cpu, int level)
             continue;
         }
 
-        r.id = regidx;
         switch (regidx & KVM_REG_SIZE_MASK) {
         case KVM_REG_SIZE_U32:
             v32 = cpu->cpreg_values[i];
-            r.addr = (uintptr_t)&v32;
+            ret = kvm_set_one_reg(cs, regidx, &v32);
             break;
         case KVM_REG_SIZE_U64:
-            r.addr = (uintptr_t)(cpu->cpreg_values + i);
+            ret = kvm_set_one_reg(cs, regidx, cpu->cpreg_values + i);
             break;
         default:
             g_assert_not_reached();
         }
-        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
         if (ret) {
             /* We might fail for "unknown register" and also for
              * "you tried to set a register which is constant with
@@ -618,7 +982,7 @@ void kvm_arm_reset_vcpu(ARMCPU *cpu)
     /* Re-init VCPU so that all registers are set to
      * their respective reset values.
      */
-    ret = kvm_arm_vcpu_init(CPU(cpu));
+    ret = kvm_arm_vcpu_init(cpu);
     if (ret < 0) {
         fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
         abort();
@@ -640,58 +1004,50 @@ void kvm_arm_reset_vcpu(ARMCPU *cpu)
 /*
  * Update KVM's MP_STATE based on what QEMU thinks it is
  */
-int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
+static int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
 {
     if (cap_has_mp_state) {
         struct kvm_mp_state mp_state = {
             .mp_state = (cpu->power_state == PSCI_OFF) ?
             KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
         };
-        int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
-        if (ret) {
-            fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
-                    __func__, ret, strerror(-ret));
-            return -1;
-        }
+        return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
     }
-
     return 0;
 }
 
 /*
  * Sync the KVM MP_STATE into QEMU
  */
-int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
+static int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
 {
     if (cap_has_mp_state) {
         struct kvm_mp_state mp_state;
         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
         if (ret) {
-            fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
-                    __func__, ret, strerror(-ret));
-            abort();
+            return ret;
         }
         cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
             PSCI_OFF : PSCI_ON;
     }
-
     return 0;
 }
 
-void kvm_arm_get_virtual_time(CPUState *cs)
+/**
+ * kvm_arm_get_virtual_time:
+ * @cpu: ARMCPU
+ *
+ * Gets the VCPU's virtual counter and stores it in the KVM CPU state.
+ */
+static void kvm_arm_get_virtual_time(ARMCPU *cpu)
 {
-    ARMCPU *cpu = ARM_CPU(cs);
-    struct kvm_one_reg reg = {
-        .id = KVM_REG_ARM_TIMER_CNT,
-        .addr = (uintptr_t)&cpu->kvm_vtime,
-    };
     int ret;
 
     if (cpu->kvm_vtime_dirty) {
         return;
     }
 
-    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+    ret = kvm_get_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
     if (ret) {
         error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
         abort();
@@ -700,20 +1056,21 @@ void kvm_arm_get_virtual_time(CPUState *cs)
     cpu->kvm_vtime_dirty = true;
 }
 
-void kvm_arm_put_virtual_time(CPUState *cs)
+/**
+ * kvm_arm_put_virtual_time:
+ * @cpu: ARMCPU
+ *
+ * Sets the VCPU's virtual counter to the value stored in the KVM CPU state.
+ */
+static void kvm_arm_put_virtual_time(ARMCPU *cpu)
 {
-    ARMCPU *cpu = ARM_CPU(cs);
-    struct kvm_one_reg reg = {
-        .id = KVM_REG_ARM_TIMER_CNT,
-        .addr = (uintptr_t)&cpu->kvm_vtime,
-    };
     int ret;
 
     if (!cpu->kvm_vtime_dirty) {
         return;
     }
 
-    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+    ret = kvm_set_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
     if (ret) {
         error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
         abort();
@@ -722,7 +1079,15 @@ void kvm_arm_put_virtual_time(CPUState *cs)
     cpu->kvm_vtime_dirty = false;
 }
 
-int kvm_put_vcpu_events(ARMCPU *cpu)
+/**
+ * kvm_put_vcpu_events:
+ * @cpu: ARMCPU
+ *
+ * Put VCPU related state to kvm.
+ *
+ * Returns: 0 if success else < 0 error code
+ */
+static int kvm_put_vcpu_events(ARMCPU *cpu)
 {
     CPUARMState *env = &cpu->env;
     struct kvm_vcpu_events events;
@@ -751,7 +1116,15 @@ int kvm_put_vcpu_events(ARMCPU *cpu)
     return ret;
 }
 
-int kvm_get_vcpu_events(ARMCPU *cpu)
+/**
+ * kvm_get_vcpu_events:
+ * @cpu: ARMCPU
+ *
+ * Get VCPU related state from kvm.
+ *
+ * Returns: 0 if success else < 0 error code
+ */
+static int kvm_get_vcpu_events(ARMCPU *cpu)
 {
     CPUARMState *env = &cpu->env;
     struct kvm_vcpu_events events;
@@ -775,6 +1148,63 @@ int kvm_get_vcpu_events(ARMCPU *cpu)
     return 0;
 }
 
+#define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
+#define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
+
+/*
+ * ESR_EL1
+ * ISS encoding
+ * AARCH64: DFSC,   bits [5:0]
+ * AARCH32:
+ *      TTBCR.EAE == 0
+ *          FS[4]   - DFSR[10]
+ *          FS[3:0] - DFSR[3:0]
+ *      TTBCR.EAE == 1
+ *          FS, bits [5:0]
+ */
+#define ESR_DFSC(aarch64, lpae, v)        \
+    ((aarch64 || (lpae)) ? ((v) & 0x3F)   \
+               : (((v) >> 6) | ((v) & 0x1F)))
+
+#define ESR_DFSC_EXTABT(aarch64, lpae) \
+    ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
+
+/**
+ * kvm_arm_verify_ext_dabt_pending:
+ * @cpu: ARMCPU
+ *
+ * Verify the fault status code wrt the Ext DABT injection
+ *
+ * Returns: true if the fault status code is as expected, false otherwise
+ */
+static bool kvm_arm_verify_ext_dabt_pending(ARMCPU *cpu)
+{
+    CPUState *cs = CPU(cpu);
+    uint64_t dfsr_val;
+
+    if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) {
+        CPUARMState *env = &cpu->env;
+        int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64);
+        int lpae = 0;
+
+        if (!aarch64_mode) {
+            uint64_t ttbcr;
+
+            if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) {
+                lpae = arm_feature(env, ARM_FEATURE_LPAE)
+                        && (ttbcr & TTBCR_EAE);
+            }
+        }
+        /*
+         * The verification here is based on the DFSC bits
+         * of the ESR_EL1 reg only
+         */
+         return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) ==
+                ESR_DFSC_EXTABT(aarch64_mode, lpae));
+    }
+    return false;
+}
+
 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
 {
     ARMCPU *cpu = ARM_CPU(cs);
@@ -789,7 +1219,7 @@ void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
          * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
          */
         if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
-            unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) {
+            unlikely(!kvm_arm_verify_ext_dabt_pending(cpu))) {
 
             error_report("Data abort exception with no valid ISS generated by "
                    "guest memory access. KVM unable to emulate faulting "
@@ -821,7 +1251,7 @@ MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
     if (run->s.regs.device_irq_level != cpu->device_irq_level) {
         switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
 
-        qemu_mutex_lock_iothread();
+        bql_lock();
 
         if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
@@ -850,41 +1280,39 @@ MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
 
         /* We also mark unknown levels as processed to not waste cycles */
         cpu->device_irq_level = run->s.regs.device_irq_level;
-        qemu_mutex_unlock_iothread();
+        bql_unlock();
     }
 
     return MEMTXATTRS_UNSPECIFIED;
 }
 
-void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
+static void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
 {
-    CPUState *cs = opaque;
-    ARMCPU *cpu = ARM_CPU(cs);
+    ARMCPU *cpu = opaque;
 
     if (running) {
         if (cpu->kvm_adjvtime) {
-            kvm_arm_put_virtual_time(cs);
+            kvm_arm_put_virtual_time(cpu);
         }
     } else {
         if (cpu->kvm_adjvtime) {
-            kvm_arm_get_virtual_time(cs);
+            kvm_arm_get_virtual_time(cpu);
         }
     }
 }
 
 /**
  * kvm_arm_handle_dabt_nisv:
- * @cs: CPUState
+ * @cpu: ARMCPU
  * @esr_iss: ISS encoding (limited) for the exception from Data Abort
  *           ISV bit set to '0b0' -> no valid instruction syndrome
  * @fault_ipa: faulting address for the synchronous data abort
  *
  * Returns: 0 if the exception has been handled, < 0 otherwise
  */
-static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
+static int kvm_arm_handle_dabt_nisv(ARMCPU *cpu, uint64_t esr_iss,
                                     uint64_t fault_ipa)
 {
-    ARMCPU *cpu = ARM_CPU(cs);
     CPUARMState *env = &cpu->env;
     /*
      * Request KVM to inject the external data abort into the guest
@@ -900,7 +1328,7 @@ static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
          */
         events.exception.ext_dabt_pending = 1;
         /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
-        if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) {
+        if (!kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events)) {
             env->ext_dabt_raised = 1;
             return 0;
         }
@@ -913,19 +1341,97 @@ static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
     return -1;
 }
 
+/**
+ * kvm_arm_handle_debug:
+ * @cpu: ARMCPU
+ * @debug_exit: debug part of the KVM exit structure
+ *
+ * Returns: TRUE if the debug exception was handled.
+ *
+ * See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
+ *
+ * To minimise translating between kernel and user-space the kernel
+ * ABI just provides user-space with the full exception syndrome
+ * register value to be decoded in QEMU.
+ */
+static bool kvm_arm_handle_debug(ARMCPU *cpu,
+                                 struct kvm_debug_exit_arch *debug_exit)
+{
+    int hsr_ec = syn_get_ec(debug_exit->hsr);
+    CPUState *cs = CPU(cpu);
+    CPUARMState *env = &cpu->env;
+
+    /* Ensure PC is synchronised */
+    kvm_cpu_synchronize_state(cs);
+
+    switch (hsr_ec) {
+    case EC_SOFTWARESTEP:
+        if (cs->singlestep_enabled) {
+            return true;
+        } else {
+            /*
+             * The kernel should have suppressed the guest's ability to
+             * single step at this point so something has gone wrong.
+             */
+            error_report("%s: guest single-step while debugging unsupported"
+                         " (%"PRIx64", %"PRIx32")",
+                         __func__, env->pc, debug_exit->hsr);
+            return false;
+        }
+        break;
+    case EC_AA64_BKPT:
+        if (kvm_find_sw_breakpoint(cs, env->pc)) {
+            return true;
+        }
+        break;
+    case EC_BREAKPOINT:
+        if (find_hw_breakpoint(cs, env->pc)) {
+            return true;
+        }
+        break;
+    case EC_WATCHPOINT:
+    {
+        CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
+        if (wp) {
+            cs->watchpoint_hit = wp;
+            return true;
+        }
+        break;
+    }
+    default:
+        error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
+                     __func__, debug_exit->hsr, env->pc);
+    }
+
+    /* If we are not handling the debug exception it must belong to
+     * the guest. Let's re-use the existing TCG interrupt code to set
+     * everything up properly.
+     */
+    cs->exception_index = EXCP_BKPT;
+    env->exception.syndrome = debug_exit->hsr;
+    env->exception.vaddress = debug_exit->far;
+    env->exception.target_el = 1;
+    bql_lock();
+    arm_cpu_do_interrupt(cs);
+    bql_unlock();
+
+    return false;
+}
+
 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
 {
+    ARMCPU *cpu = ARM_CPU(cs);
     int ret = 0;
 
     switch (run->exit_reason) {
     case KVM_EXIT_DEBUG:
-        if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
+        if (kvm_arm_handle_debug(cpu, &run->debug.arch)) {
             ret = EXCP_DEBUG;
         } /* otherwise return to guest */
         break;
     case KVM_EXIT_ARM_NISV:
         /* External DABT with no valid iss to decode */
-        ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss,
+        ret = kvm_arm_handle_dabt_nisv(cpu, run->arm_nisv.esr_iss,
                                        run->arm_nisv.fault_ipa);
         break;
     default:
@@ -946,12 +1452,47 @@ int kvm_arch_process_async_events(CPUState *cs)
     return 0;
 }
 
+/**
+ * kvm_arm_hw_debug_active:
+ * @cpu: ARMCPU
+ *
+ * Return: TRUE if any hardware breakpoints in use.
+ */
+static bool kvm_arm_hw_debug_active(ARMCPU *cpu)
+{
+    return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
+}
+
+/**
+ * kvm_arm_copy_hw_debug_data:
+ * @ptr: kvm_guest_debug_arch structure
+ *
+ * Copy the architecture specific debug registers into the
+ * kvm_guest_debug ioctl structure.
+ */
+static void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
+{
+    int i;
+    memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
+
+    for (i = 0; i < max_hw_wps; i++) {
+        HWWatchpoint *wp = get_hw_wp(i);
+        ptr->dbg_wcr[i] = wp->wcr;
+        ptr->dbg_wvr[i] = wp->wvr;
+    }
+    for (i = 0; i < max_hw_bps; i++) {
+        HWBreakpoint *bp = get_hw_bp(i);
+        ptr->dbg_bcr[i] = bp->bcr;
+        ptr->dbg_bvr[i] = bp->bvr;
+    }
+}
+
 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
 {
     if (kvm_sw_breakpoints_active(cs)) {
         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
     }
-    if (kvm_arm_hw_debug_active(cs)) {
+    if (kvm_arm_hw_debug_active(ARM_CPU(cs))) {
         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
         kvm_arm_copy_hw_debug_data(&dbg->arch);
     }
@@ -1062,40 +1603,825 @@ bool kvm_arch_cpu_check_are_resettable(void)
     return true;
 }
 
+static void kvm_arch_get_eager_split_size(Object *obj, Visitor *v,
+                                          const char *name, void *opaque,
+                                          Error **errp)
+{
+    KVMState *s = KVM_STATE(obj);
+    uint64_t value = s->kvm_eager_split_size;
+
+    visit_type_size(v, name, &value, errp);
+}
+
+static void kvm_arch_set_eager_split_size(Object *obj, Visitor *v,
+                                          const char *name, void *opaque,
+                                          Error **errp)
+{
+    KVMState *s = KVM_STATE(obj);
+    uint64_t value;
+
+    if (s->fd != -1) {
+        error_setg(errp, "Unable to set early-split-size after KVM has been initialized");
+        return;
+    }
+
+    if (!visit_type_size(v, name, &value, errp)) {
+        return;
+    }
+
+    if (value && !is_power_of_2(value)) {
+        error_setg(errp, "early-split-size must be a power of two");
+        return;
+    }
+
+    s->kvm_eager_split_size = value;
+}
+
 void kvm_arch_accel_class_init(ObjectClass *oc)
 {
+    object_class_property_add(oc, "eager-split-size", "size",
+                              kvm_arch_get_eager_split_size,
+                              kvm_arch_set_eager_split_size, NULL, NULL);
+
+    object_class_property_set_description(oc, "eager-split-size",
+        "Eager Page Split chunk size for hugepages. (default: 0, disabled)");
 }
 
-void kvm_arm_enable_mte(Object *cpuobj, Error **errp)
+int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
 {
-    static bool tried_to_enable;
-    static bool succeeded_to_enable;
-    Error *mte_migration_blocker = NULL;
-    int ret;
+    switch (type) {
+    case GDB_BREAKPOINT_HW:
+        return insert_hw_breakpoint(addr);
+        break;
+    case GDB_WATCHPOINT_READ:
+    case GDB_WATCHPOINT_WRITE:
+    case GDB_WATCHPOINT_ACCESS:
+        return insert_hw_watchpoint(addr, len, type);
+    default:
+        return -ENOSYS;
+    }
+}
 
-    if (!tried_to_enable) {
-        /*
-         * MTE on KVM is enabled on a per-VM basis (and retrying doesn't make
-         * sense), and we only want a single migration blocker as well.
-         */
-        tried_to_enable = true;
+int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
+{
+    switch (type) {
+    case GDB_BREAKPOINT_HW:
+        return delete_hw_breakpoint(addr);
+    case GDB_WATCHPOINT_READ:
+    case GDB_WATCHPOINT_WRITE:
+    case GDB_WATCHPOINT_ACCESS:
+        return delete_hw_watchpoint(addr, len, type);
+    default:
+        return -ENOSYS;
+    }
+}
 
-        ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_ARM_MTE, 0);
-        if (ret) {
-            error_setg_errno(errp, -ret, "Failed to enable KVM_CAP_ARM_MTE");
-            return;
-        }
+void kvm_arch_remove_all_hw_breakpoints(void)
+{
+    if (cur_hw_wps > 0) {
+        g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
+    }
+    if (cur_hw_bps > 0) {
+        g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
+    }
+}
 
-        /* TODO: add proper migration support with MTE enabled */
-        error_setg(&mte_migration_blocker,
-                   "Live migration disabled due to MTE enabled");
-        if (migrate_add_blocker(mte_migration_blocker, errp)) {
-            error_free(mte_migration_blocker);
-            return;
-        }
-        succeeded_to_enable = true;
+static bool kvm_arm_set_device_attr(ARMCPU *cpu, struct kvm_device_attr *attr,
+                                    const char *name)
+{
+    int err;
+
+    err = kvm_vcpu_ioctl(CPU(cpu), KVM_HAS_DEVICE_ATTR, attr);
+    if (err != 0) {
+        error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
+        return false;
+    }
+
+    err = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEVICE_ATTR, attr);
+    if (err != 0) {
+        error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
+        return false;
+    }
+
+    return true;
+}
+
+void kvm_arm_pmu_init(ARMCPU *cpu)
+{
+    struct kvm_device_attr attr = {
+        .group = KVM_ARM_VCPU_PMU_V3_CTRL,
+        .attr = KVM_ARM_VCPU_PMU_V3_INIT,
+    };
+
+    if (!cpu->has_pmu) {
+        return;
     }
-    if (succeeded_to_enable) {
-        object_property_set_bool(cpuobj, "has_mte", true, NULL);
+    if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
+        error_report("failed to init PMU");
+        abort();
     }
 }
+
+void kvm_arm_pmu_set_irq(ARMCPU *cpu, int irq)
+{
+    struct kvm_device_attr attr = {
+        .group = KVM_ARM_VCPU_PMU_V3_CTRL,
+        .addr = (intptr_t)&irq,
+        .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
+    };
+
+    if (!cpu->has_pmu) {
+        return;
+    }
+    if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
+        error_report("failed to set irq for PMU");
+        abort();
+    }
+}
+
+void kvm_arm_pvtime_init(ARMCPU *cpu, uint64_t ipa)
+{
+    struct kvm_device_attr attr = {
+        .group = KVM_ARM_VCPU_PVTIME_CTRL,
+        .attr = KVM_ARM_VCPU_PVTIME_IPA,
+        .addr = (uint64_t)&ipa,
+    };
+
+    if (cpu->kvm_steal_time == ON_OFF_AUTO_OFF) {
+        return;
+    }
+    if (!kvm_arm_set_device_attr(cpu, &attr, "PVTIME IPA")) {
+        error_report("failed to init PVTIME IPA");
+        abort();
+    }
+}
+
+void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
+{
+    bool has_steal_time = kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
+
+    if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
+        if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+            cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
+        } else {
+            cpu->kvm_steal_time = ON_OFF_AUTO_ON;
+        }
+    } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
+        if (!has_steal_time) {
+            error_setg(errp, "'kvm-steal-time' cannot be enabled "
+                             "on this host");
+            return;
+        } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+            /*
+             * DEN0057A chapter 2 says "This specification only covers
+             * systems in which the Execution state of the hypervisor
+             * as well as EL1 of virtual machines is AArch64.". And,
+             * to ensure that, the smc/hvc calls are only specified as
+             * smc64/hvc64.
+             */
+            error_setg(errp, "'kvm-steal-time' cannot be enabled "
+                             "for AArch32 guests");
+            return;
+        }
+    }
+}
+
+bool kvm_arm_aarch32_supported(void)
+{
+    return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
+}
+
+bool kvm_arm_sve_supported(void)
+{
+    return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
+}
+
+QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
+
+uint32_t kvm_arm_sve_get_vls(ARMCPU *cpu)
+{
+    /* Only call this function if kvm_arm_sve_supported() returns true. */
+    static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
+    static bool probed;
+    uint32_t vq = 0;
+    int i;
+
+    /*
+     * KVM ensures all host CPUs support the same set of vector lengths.
+     * So we only need to create the scratch VCPUs once and then cache
+     * the results.
+     */
+    if (!probed) {
+        struct kvm_vcpu_init init = {
+            .target = -1,
+            .features[0] = (1 << KVM_ARM_VCPU_SVE),
+        };
+        struct kvm_one_reg reg = {
+            .id = KVM_REG_ARM64_SVE_VLS,
+            .addr = (uint64_t)&vls[0],
+        };
+        int fdarray[3], ret;
+
+        probed = true;
+
+        if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
+            error_report("failed to create scratch VCPU with SVE enabled");
+            abort();
+        }
+        ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
+        kvm_arm_destroy_scratch_host_vcpu(fdarray);
+        if (ret) {
+            error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
+                         strerror(errno));
+            abort();
+        }
+
+        for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
+            if (vls[i]) {
+                vq = 64 - clz64(vls[i]) + i * 64;
+                break;
+            }
+        }
+        if (vq > ARM_MAX_VQ) {
+            warn_report("KVM supports vector lengths larger than "
+                        "QEMU can enable");
+            vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ);
+        }
+    }
+
+    return vls[0];
+}
+
+static int kvm_arm_sve_set_vls(ARMCPU *cpu)
+{
+    uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map };
+
+    assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
+
+    return kvm_set_one_reg(CPU(cpu), KVM_REG_ARM64_SVE_VLS, &vls[0]);
+}
+
+#define ARM_CPU_ID_MPIDR       3, 0, 0, 0, 5
+
+int kvm_arch_init_vcpu(CPUState *cs)
+{
+    int ret;
+    uint64_t mpidr;
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+    uint64_t psciver;
+
+    if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
+        !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
+        error_report("KVM is not supported for this guest CPU type");
+        return -EINVAL;
+    }
+
+    qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cpu);
+
+    /* Determine init features for this CPU */
+    memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
+    if (cs->start_powered_off) {
+        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
+    }
+    if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
+        cpu->psci_version = QEMU_PSCI_VERSION_0_2;
+        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
+    }
+    if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
+    }
+    if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
+        cpu->has_pmu = false;
+    }
+    if (cpu->has_pmu) {
+        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
+    } else {
+        env->features &= ~(1ULL << ARM_FEATURE_PMU);
+    }
+    if (cpu_isar_feature(aa64_sve, cpu)) {
+        assert(kvm_arm_sve_supported());
+        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
+    }
+    if (cpu_isar_feature(aa64_pauth, cpu)) {
+        cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
+                                      1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
+    }
+
+    /* Do KVM_ARM_VCPU_INIT ioctl */
+    ret = kvm_arm_vcpu_init(cpu);
+    if (ret) {
+        return ret;
+    }
+
+    if (cpu_isar_feature(aa64_sve, cpu)) {
+        ret = kvm_arm_sve_set_vls(cpu);
+        if (ret) {
+            return ret;
+        }
+        ret = kvm_arm_vcpu_finalize(cpu, KVM_ARM_VCPU_SVE);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    /*
+     * KVM reports the exact PSCI version it is implementing via a
+     * special sysreg. If it is present, use its contents to determine
+     * what to report to the guest in the dtb (it is the PSCI version,
+     * in the same 15-bits major 16-bits minor format that PSCI_VERSION
+     * returns).
+     */
+    if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) {
+        cpu->psci_version = psciver;
+    }
+
+    /*
+     * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
+     * Currently KVM has its own idea about MPIDR assignment, so we
+     * override our defaults with what we get from KVM.
+     */
+    ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
+    if (ret) {
+        return ret;
+    }
+    cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
+
+    return kvm_arm_init_cpreg_list(cpu);
+}
+
+int kvm_arch_destroy_vcpu(CPUState *cs)
+{
+    return 0;
+}
+
+/* Callers must hold the iothread mutex lock */
+static void kvm_inject_arm_sea(CPUState *c)
+{
+    ARMCPU *cpu = ARM_CPU(c);
+    CPUARMState *env = &cpu->env;
+    uint32_t esr;
+    bool same_el;
+
+    c->exception_index = EXCP_DATA_ABORT;
+    env->exception.target_el = 1;
+
+    /*
+     * Set the DFSC to synchronous external abort and set FnV to not valid,
+     * this will tell guest the FAR_ELx is UNKNOWN for this abort.
+     */
+    same_el = arm_current_el(env) == env->exception.target_el;
+    esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
+
+    env->exception.syndrome = esr;
+
+    arm_cpu_do_interrupt(c);
+}
+
+#define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
+                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
+
+#define AARCH64_SIMD_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
+                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
+
+#define AARCH64_SIMD_CTRL_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
+                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
+
+static int kvm_arch_put_fpsimd(CPUState *cs)
+{
+    CPUARMState *env = &ARM_CPU(cs)->env;
+    int i, ret;
+
+    for (i = 0; i < 32; i++) {
+        uint64_t *q = aa64_vfp_qreg(env, i);
+#if HOST_BIG_ENDIAN
+        uint64_t fp_val[2] = { q[1], q[0] };
+        ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]),
+                                                        fp_val);
+#else
+        ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
+#endif
+        if (ret) {
+            return ret;
+        }
+    }
+
+    return 0;
+}
+
+/*
+ * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
+ * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
+ * code the slice index to zero for now as it's unlikely we'll need more than
+ * one slice for quite some time.
+ */
+static int kvm_arch_put_sve(CPUState *cs)
+{
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+    uint64_t tmp[ARM_MAX_VQ * 2];
+    uint64_t *r;
+    int n, ret;
+
+    for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
+        r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
+        ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
+        r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
+                        DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+        ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
+                    DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+    ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
+    if (ret) {
+        return ret;
+    }
+
+    return 0;
+}
+
+int kvm_arch_put_registers(CPUState *cs, int level)
+{
+    uint64_t val;
+    uint32_t fpr;
+    int i, ret;
+    unsigned int el;
+
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+
+    /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
+     * AArch64 registers before pushing them out to 64-bit KVM.
+     */
+    if (!is_a64(env)) {
+        aarch64_sync_32_to_64(env);
+    }
+
+    for (i = 0; i < 31; i++) {
+        ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
+                              &env->xregs[i]);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
+     * QEMU side we keep the current SP in xregs[31] as well.
+     */
+    aarch64_save_sp(env, 1);
+
+    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
+    if (ret) {
+        return ret;
+    }
+
+    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
+    if (ret) {
+        return ret;
+    }
+
+    /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
+    if (is_a64(env)) {
+        val = pstate_read(env);
+    } else {
+        val = cpsr_read(env);
+    }
+    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
+    if (ret) {
+        return ret;
+    }
+
+    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
+    if (ret) {
+        return ret;
+    }
+
+    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
+    if (ret) {
+        return ret;
+    }
+
+    /* Saved Program State Registers
+     *
+     * Before we restore from the banked_spsr[] array we need to
+     * ensure that any modifications to env->spsr are correctly
+     * reflected in the banks.
+     */
+    el = arm_current_el(env);
+    if (el > 0 && !is_a64(env)) {
+        i = bank_number(env->uncached_cpsr & CPSR_M);
+        env->banked_spsr[i] = env->spsr;
+    }
+
+    /* KVM 0-4 map to QEMU banks 1-5 */
+    for (i = 0; i < KVM_NR_SPSR; i++) {
+        ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
+                              &env->banked_spsr[i + 1]);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    if (cpu_isar_feature(aa64_sve, cpu)) {
+        ret = kvm_arch_put_sve(cs);
+    } else {
+        ret = kvm_arch_put_fpsimd(cs);
+    }
+    if (ret) {
+        return ret;
+    }
+
+    fpr = vfp_get_fpsr(env);
+    ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
+    if (ret) {
+        return ret;
+    }
+
+    fpr = vfp_get_fpcr(env);
+    ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
+    if (ret) {
+        return ret;
+    }
+
+    write_cpustate_to_list(cpu, true);
+
+    if (!write_list_to_kvmstate(cpu, level)) {
+        return -EINVAL;
+    }
+
+   /*
+    * Setting VCPU events should be triggered after syncing the registers
+    * to avoid overwriting potential changes made by KVM upon calling
+    * KVM_SET_VCPU_EVENTS ioctl
+    */
+    ret = kvm_put_vcpu_events(cpu);
+    if (ret) {
+        return ret;
+    }
+
+    return kvm_arm_sync_mpstate_to_kvm(cpu);
+}
+
+static int kvm_arch_get_fpsimd(CPUState *cs)
+{
+    CPUARMState *env = &ARM_CPU(cs)->env;
+    int i, ret;
+
+    for (i = 0; i < 32; i++) {
+        uint64_t *q = aa64_vfp_qreg(env, i);
+        ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
+        if (ret) {
+            return ret;
+        } else {
+#if HOST_BIG_ENDIAN
+            uint64_t t;
+            t = q[0], q[0] = q[1], q[1] = t;
+#endif
+        }
+    }
+
+    return 0;
+}
+
+/*
+ * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
+ * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
+ * code the slice index to zero for now as it's unlikely we'll need more than
+ * one slice for quite some time.
+ */
+static int kvm_arch_get_sve(CPUState *cs)
+{
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+    uint64_t *r;
+    int n, ret;
+
+    for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
+        r = &env->vfp.zregs[n].d[0];
+        ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
+        if (ret) {
+            return ret;
+        }
+        sve_bswap64(r, r, cpu->sve_max_vq * 2);
+    }
+
+    for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
+        r = &env->vfp.pregs[n].p[0];
+        ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
+        if (ret) {
+            return ret;
+        }
+        sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+    }
+
+    r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
+    ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
+    if (ret) {
+        return ret;
+    }
+    sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+
+    return 0;
+}
+
+int kvm_arch_get_registers(CPUState *cs)
+{
+    uint64_t val;
+    unsigned int el;
+    uint32_t fpr;
+    int i, ret;
+
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+
+    for (i = 0; i < 31; i++) {
+        ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
+                              &env->xregs[i]);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
+    if (ret) {
+        return ret;
+    }
+
+    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
+    if (ret) {
+        return ret;
+    }
+
+    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
+    if (ret) {
+        return ret;
+    }
+
+    env->aarch64 = ((val & PSTATE_nRW) == 0);
+    if (is_a64(env)) {
+        pstate_write(env, val);
+    } else {
+        cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
+    }
+
+    /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
+     * QEMU side we keep the current SP in xregs[31] as well.
+     */
+    aarch64_restore_sp(env, 1);
+
+    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
+    if (ret) {
+        return ret;
+    }
+
+    /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
+     * incoming AArch64 regs received from 64-bit KVM.
+     * We must perform this after all of the registers have been acquired from
+     * the kernel.
+     */
+    if (!is_a64(env)) {
+        aarch64_sync_64_to_32(env);
+    }
+
+    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
+    if (ret) {
+        return ret;
+    }
+
+    /* Fetch the SPSR registers
+     *
+     * KVM SPSRs 0-4 map to QEMU banks 1-5
+     */
+    for (i = 0; i < KVM_NR_SPSR; i++) {
+        ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
+                              &env->banked_spsr[i + 1]);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    el = arm_current_el(env);
+    if (el > 0 && !is_a64(env)) {
+        i = bank_number(env->uncached_cpsr & CPSR_M);
+        env->spsr = env->banked_spsr[i];
+    }
+
+    if (cpu_isar_feature(aa64_sve, cpu)) {
+        ret = kvm_arch_get_sve(cs);
+    } else {
+        ret = kvm_arch_get_fpsimd(cs);
+    }
+    if (ret) {
+        return ret;
+    }
+
+    ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
+    if (ret) {
+        return ret;
+    }
+    vfp_set_fpsr(env, fpr);
+
+    ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
+    if (ret) {
+        return ret;
+    }
+    vfp_set_fpcr(env, fpr);
+
+    ret = kvm_get_vcpu_events(cpu);
+    if (ret) {
+        return ret;
+    }
+
+    if (!write_kvmstate_to_list(cpu)) {
+        return -EINVAL;
+    }
+    /* Note that it's OK to have registers which aren't in CPUState,
+     * so we can ignore a failure return here.
+     */
+    write_list_to_cpustate(cpu);
+
+    ret = kvm_arm_sync_mpstate_to_qemu(cpu);
+
+    /* TODO: other registers */
+    return ret;
+}
+
+void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
+{
+    ram_addr_t ram_addr;
+    hwaddr paddr;
+
+    assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
+
+    if (acpi_ghes_present() && addr) {
+        ram_addr = qemu_ram_addr_from_host(addr);
+        if (ram_addr != RAM_ADDR_INVALID &&
+            kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
+            kvm_hwpoison_page_add(ram_addr);
+            /*
+             * If this is a BUS_MCEERR_AR, we know we have been called
+             * synchronously from the vCPU thread, so we can easily
+             * synchronize the state and inject an error.
+             *
+             * TODO: we currently don't tell the guest at all about
+             * BUS_MCEERR_AO. In that case we might either be being
+             * called synchronously from the vCPU thread, or a bit
+             * later from the main thread, so doing the injection of
+             * the error would be more complicated.
+             */
+            if (code == BUS_MCEERR_AR) {
+                kvm_cpu_synchronize_state(c);
+                if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
+                    kvm_inject_arm_sea(c);
+                } else {
+                    error_report("failed to record the error");
+                    abort();
+                }
+            }
+            return;
+        }
+        if (code == BUS_MCEERR_AO) {
+            error_report("Hardware memory error at addr %p for memory used by "
+                "QEMU itself instead of guest system!", addr);
+        }
+    }
+
+    if (code == BUS_MCEERR_AR) {
+        error_report("Hardware memory error!");
+        exit(1);
+    }
+}
+
+/* C6.6.29 BRK instruction */
+static const uint32_t brk_insn = 0xd4200000;
+
+int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
+{
+    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
+        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
+        return -EINVAL;
+    }
+    return 0;
+}
+
+int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
+{
+    static uint32_t brk;
+
+    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
+        brk != brk_insn ||
+        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
+        return -EINVAL;
+    }
+    return 0;
+}