]> git.proxmox.com Git - mirror_qemu.git/blobdiff - target/arm/kvm.c
target/arm: Move GTimer definitions to new 'gtimer.h' header
[mirror_qemu.git] / target / arm / kvm.c
index dadc3fd7552a77db1c3a02d471f39965273c99f9..81813030a5a0dae3270b249d1a7f5892eea36e1c 100644 (file)
@@ -2,6 +2,8 @@
  * ARM implementation of KVM hooks
  *
  * Copyright Christoffer Dall 2009-2010
+ * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
+ * Copyright Alex BennĂ©e 2014, Linaro
  *
  * This work is licensed under the terms of the GNU GPL, version 2 or later.
  * See the COPYING file in the top-level directory.
@@ -19,6 +21,7 @@
 #include "qom/object.h"
 #include "qapi/error.h"
 #include "sysemu/sysemu.h"
+#include "sysemu/runstate.h"
 #include "sysemu/kvm.h"
 #include "sysemu/kvm_int.h"
 #include "kvm_arm.h"
 #include "hw/pci/pci.h"
 #include "exec/memattrs.h"
 #include "exec/address-spaces.h"
+#include "exec/gdbstub.h"
 #include "hw/boards.h"
 #include "hw/irq.h"
 #include "qapi/visitor.h"
 #include "qemu/log.h"
+#include "hw/acpi/acpi.h"
+#include "hw/acpi/ghes.h"
+#include "target/arm/gtimer.h"
 
 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
     KVM_CAP_LAST_INFO
@@ -54,26 +61,41 @@ typedef struct ARMHostCPUFeatures {
 
 static ARMHostCPUFeatures arm_host_cpu_features;
 
-int kvm_arm_vcpu_init(CPUState *cs)
+/**
+ * kvm_arm_vcpu_init:
+ * @cpu: ARMCPU
+ *
+ * Initialize (or reinitialize) the VCPU by invoking the
+ * KVM_ARM_VCPU_INIT ioctl with the CPU type and feature
+ * bitmask specified in the CPUState.
+ *
+ * Returns: 0 if success else < 0 error code
+ */
+static int kvm_arm_vcpu_init(ARMCPU *cpu)
 {
-    ARMCPU *cpu = ARM_CPU(cs);
     struct kvm_vcpu_init init;
 
     init.target = cpu->kvm_target;
     memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
 
-    return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
-}
-
-int kvm_arm_vcpu_finalize(CPUState *cs, int feature)
-{
-    return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature);
+    return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_INIT, &init);
 }
 
-void kvm_arm_init_serror_injection(CPUState *cs)
+/**
+ * kvm_arm_vcpu_finalize:
+ * @cpu: ARMCPU
+ * @feature: feature to finalize
+ *
+ * Finalizes the configuration of the specified VCPU feature by
+ * invoking the KVM_ARM_VCPU_FINALIZE ioctl. Features requiring
+ * this are documented in the "KVM_ARM_VCPU_FINALIZE" section of
+ * KVM's API documentation.
+ *
+ * Returns: 0 if success else < 0 error code
+ */
+static int kvm_arm_vcpu_finalize(ARMCPU *cpu, int feature)
 {
-    cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
-                                    KVM_CAP_ARM_INJECT_SERROR_ESR);
+    return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_FINALIZE, &feature);
 }
 
 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
@@ -475,10 +497,10 @@ static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
 }
 
 /* KVM VCPU properties should be prefixed with "kvm-". */
-void kvm_arm_add_vcpu_properties(Object *obj)
+void kvm_arm_add_vcpu_properties(ARMCPU *cpu)
 {
-    ARMCPU *cpu = ARM_CPU(obj);
     CPUARMState *env = &cpu->env;
+    Object *obj = OBJECT(cpu);
 
     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
         cpu->kvm_adjvtime = true;
@@ -536,6 +558,10 @@ int kvm_arch_init(MachineState *ms, KVMState *s)
 
     cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
 
+    /* Check whether user space can specify guest syndrome value */
+    cap_has_inject_serror_esr =
+        kvm_check_extension(s, KVM_CAP_ARM_INJECT_SERROR_ESR);
+
     if (ms->smp.cpus > 256 &&
         !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
         error_report("Using more than 256 vcpus requires a host kernel "
@@ -740,11 +766,36 @@ static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
     return &cpu->cpreg_values[res - cpu->cpreg_indexes];
 }
 
-/* Initialize the ARMCPU cpreg list according to the kernel's
+/**
+ * kvm_arm_reg_syncs_via_cpreg_list:
+ * @regidx: KVM register index
+ *
+ * Return true if this KVM register should be synchronized via the
+ * cpreg list of arbitrary system registers, false if it is synchronized
+ * by hand using code in kvm_arch_get/put_registers().
+ */
+static bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
+{
+    switch (regidx & KVM_REG_ARM_COPROC_MASK) {
+    case KVM_REG_ARM_CORE:
+    case KVM_REG_ARM64_SVE:
+        return false;
+    default:
+        return true;
+    }
+}
+
+/**
+ * kvm_arm_init_cpreg_list:
+ * @cpu: ARMCPU
+ *
+ * Initialize the ARMCPU cpreg list according to the kernel's
  * definition of what CPU registers it knows about (and throw away
  * the previous TCG-created cpreg list).
+ *
+ * Returns: 0 if success, else < 0 error code
  */
-int kvm_arm_init_cpreg_list(ARMCPU *cpu)
+static int kvm_arm_init_cpreg_list(ARMCPU *cpu)
 {
     struct kvm_reg_list rl;
     struct kvm_reg_list *rlp;
@@ -931,7 +982,7 @@ void kvm_arm_reset_vcpu(ARMCPU *cpu)
     /* Re-init VCPU so that all registers are set to
      * their respective reset values.
      */
-    ret = kvm_arm_vcpu_init(CPU(cpu));
+    ret = kvm_arm_vcpu_init(cpu);
     if (ret < 0) {
         fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
         abort();
@@ -953,60 +1004,50 @@ void kvm_arm_reset_vcpu(ARMCPU *cpu)
 /*
  * Update KVM's MP_STATE based on what QEMU thinks it is
  */
-int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
+static int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
 {
     if (cap_has_mp_state) {
         struct kvm_mp_state mp_state = {
             .mp_state = (cpu->power_state == PSCI_OFF) ?
             KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
         };
-        int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
-        if (ret) {
-            fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
-                    __func__, ret, strerror(-ret));
-            return -1;
-        }
+        return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
     }
-
     return 0;
 }
 
 /*
  * Sync the KVM MP_STATE into QEMU
  */
-int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
+static int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
 {
     if (cap_has_mp_state) {
         struct kvm_mp_state mp_state;
         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
         if (ret) {
-            fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
-                    __func__, ret, strerror(-ret));
-            abort();
+            return ret;
         }
         cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
             PSCI_OFF : PSCI_ON;
     }
-
     return 0;
 }
 
 /**
  * kvm_arm_get_virtual_time:
- * @cs: CPUState
+ * @cpu: ARMCPU
  *
  * Gets the VCPU's virtual counter and stores it in the KVM CPU state.
  */
-static void kvm_arm_get_virtual_time(CPUState *cs)
+static void kvm_arm_get_virtual_time(ARMCPU *cpu)
 {
-    ARMCPU *cpu = ARM_CPU(cs);
     int ret;
 
     if (cpu->kvm_vtime_dirty) {
         return;
     }
 
-    ret = kvm_get_one_reg(cs, KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
+    ret = kvm_get_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
     if (ret) {
         error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
         abort();
@@ -1017,20 +1058,19 @@ static void kvm_arm_get_virtual_time(CPUState *cs)
 
 /**
  * kvm_arm_put_virtual_time:
- * @cs: CPUState
+ * @cpu: ARMCPU
  *
  * Sets the VCPU's virtual counter to the value stored in the KVM CPU state.
  */
-static void kvm_arm_put_virtual_time(CPUState *cs)
+static void kvm_arm_put_virtual_time(ARMCPU *cpu)
 {
-    ARMCPU *cpu = ARM_CPU(cs);
     int ret;
 
     if (!cpu->kvm_vtime_dirty) {
         return;
     }
 
-    ret = kvm_set_one_reg(cs, KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
+    ret = kvm_set_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
     if (ret) {
         error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
         abort();
@@ -1039,7 +1079,15 @@ static void kvm_arm_put_virtual_time(CPUState *cs)
     cpu->kvm_vtime_dirty = false;
 }
 
-int kvm_put_vcpu_events(ARMCPU *cpu)
+/**
+ * kvm_put_vcpu_events:
+ * @cpu: ARMCPU
+ *
+ * Put VCPU related state to kvm.
+ *
+ * Returns: 0 if success else < 0 error code
+ */
+static int kvm_put_vcpu_events(ARMCPU *cpu)
 {
     CPUARMState *env = &cpu->env;
     struct kvm_vcpu_events events;
@@ -1068,7 +1116,15 @@ int kvm_put_vcpu_events(ARMCPU *cpu)
     return ret;
 }
 
-int kvm_get_vcpu_events(ARMCPU *cpu)
+/**
+ * kvm_get_vcpu_events:
+ * @cpu: ARMCPU
+ *
+ * Get VCPU related state from kvm.
+ *
+ * Returns: 0 if success else < 0 error code
+ */
+static int kvm_get_vcpu_events(ARMCPU *cpu)
 {
     CPUARMState *env = &cpu->env;
     struct kvm_vcpu_events events;
@@ -1115,18 +1171,18 @@ int kvm_get_vcpu_events(ARMCPU *cpu)
 
 /**
  * kvm_arm_verify_ext_dabt_pending:
- * @cs: CPUState
+ * @cpu: ARMCPU
  *
  * Verify the fault status code wrt the Ext DABT injection
  *
  * Returns: true if the fault status code is as expected, false otherwise
  */
-static bool kvm_arm_verify_ext_dabt_pending(CPUState *cs)
+static bool kvm_arm_verify_ext_dabt_pending(ARMCPU *cpu)
 {
+    CPUState *cs = CPU(cpu);
     uint64_t dfsr_val;
 
     if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) {
-        ARMCPU *cpu = ARM_CPU(cs);
         CPUARMState *env = &cpu->env;
         int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64);
         int lpae = 0;
@@ -1163,7 +1219,7 @@ void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
          * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
          */
         if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
-            unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) {
+            unlikely(!kvm_arm_verify_ext_dabt_pending(cpu))) {
 
             error_report("Data abort exception with no valid ISS generated by "
                    "guest memory access. KVM unable to emulate faulting "
@@ -1195,7 +1251,7 @@ MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
     if (run->s.regs.device_irq_level != cpu->device_irq_level) {
         switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
 
-        qemu_mutex_lock_iothread();
+        bql_lock();
 
         if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
@@ -1224,41 +1280,39 @@ MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
 
         /* We also mark unknown levels as processed to not waste cycles */
         cpu->device_irq_level = run->s.regs.device_irq_level;
-        qemu_mutex_unlock_iothread();
+        bql_unlock();
     }
 
     return MEMTXATTRS_UNSPECIFIED;
 }
 
-void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
+static void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
 {
-    CPUState *cs = opaque;
-    ARMCPU *cpu = ARM_CPU(cs);
+    ARMCPU *cpu = opaque;
 
     if (running) {
         if (cpu->kvm_adjvtime) {
-            kvm_arm_put_virtual_time(cs);
+            kvm_arm_put_virtual_time(cpu);
         }
     } else {
         if (cpu->kvm_adjvtime) {
-            kvm_arm_get_virtual_time(cs);
+            kvm_arm_get_virtual_time(cpu);
         }
     }
 }
 
 /**
  * kvm_arm_handle_dabt_nisv:
- * @cs: CPUState
+ * @cpu: ARMCPU
  * @esr_iss: ISS encoding (limited) for the exception from Data Abort
  *           ISV bit set to '0b0' -> no valid instruction syndrome
  * @fault_ipa: faulting address for the synchronous data abort
  *
  * Returns: 0 if the exception has been handled, < 0 otherwise
  */
-static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
+static int kvm_arm_handle_dabt_nisv(ARMCPU *cpu, uint64_t esr_iss,
                                     uint64_t fault_ipa)
 {
-    ARMCPU *cpu = ARM_CPU(cs);
     CPUARMState *env = &cpu->env;
     /*
      * Request KVM to inject the external data abort into the guest
@@ -1274,7 +1328,7 @@ static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
          */
         events.exception.ext_dabt_pending = 1;
         /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
-        if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) {
+        if (!kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events)) {
             env->ext_dabt_raised = 1;
             return 0;
         }
@@ -1289,7 +1343,7 @@ static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
 
 /**
  * kvm_arm_handle_debug:
- * @cs: CPUState
+ * @cpu: ARMCPU
  * @debug_exit: debug part of the KVM exit structure
  *
  * Returns: TRUE if the debug exception was handled.
@@ -1300,11 +1354,11 @@ static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
  * ABI just provides user-space with the full exception syndrome
  * register value to be decoded in QEMU.
  */
-static bool kvm_arm_handle_debug(CPUState *cs,
+static bool kvm_arm_handle_debug(ARMCPU *cpu,
                                  struct kvm_debug_exit_arch *debug_exit)
 {
     int hsr_ec = syn_get_ec(debug_exit->hsr);
-    ARMCPU *cpu = ARM_CPU(cs);
+    CPUState *cs = CPU(cpu);
     CPUARMState *env = &cpu->env;
 
     /* Ensure PC is synchronised */
@@ -1357,26 +1411,27 @@ static bool kvm_arm_handle_debug(CPUState *cs,
     env->exception.syndrome = debug_exit->hsr;
     env->exception.vaddress = debug_exit->far;
     env->exception.target_el = 1;
-    qemu_mutex_lock_iothread();
+    bql_lock();
     arm_cpu_do_interrupt(cs);
-    qemu_mutex_unlock_iothread();
+    bql_unlock();
 
     return false;
 }
 
 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
 {
+    ARMCPU *cpu = ARM_CPU(cs);
     int ret = 0;
 
     switch (run->exit_reason) {
     case KVM_EXIT_DEBUG:
-        if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
+        if (kvm_arm_handle_debug(cpu, &run->debug.arch)) {
             ret = EXCP_DEBUG;
         } /* otherwise return to guest */
         break;
     case KVM_EXIT_ARM_NISV:
         /* External DABT with no valid iss to decode */
-        ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss,
+        ret = kvm_arm_handle_dabt_nisv(cpu, run->arm_nisv.esr_iss,
                                        run->arm_nisv.fault_ipa);
         break;
     default:
@@ -1399,11 +1454,11 @@ int kvm_arch_process_async_events(CPUState *cs)
 
 /**
  * kvm_arm_hw_debug_active:
- * @cs: CPU State
+ * @cpu: ARMCPU
  *
  * Return: TRUE if any hardware breakpoints in use.
  */
-static bool kvm_arm_hw_debug_active(CPUState *cs)
+static bool kvm_arm_hw_debug_active(ARMCPU *cpu)
 {
     return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
 }
@@ -1437,7 +1492,7 @@ void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
     if (kvm_sw_breakpoints_active(cs)) {
         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
     }
-    if (kvm_arm_hw_debug_active(cs)) {
+    if (kvm_arm_hw_debug_active(ARM_CPU(cs))) {
         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
         kvm_arm_copy_hw_debug_data(&dbg->arch);
     }
@@ -1591,3 +1646,782 @@ void kvm_arch_accel_class_init(ObjectClass *oc)
     object_class_property_set_description(oc, "eager-split-size",
         "Eager Page Split chunk size for hugepages. (default: 0, disabled)");
 }
+
+int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
+{
+    switch (type) {
+    case GDB_BREAKPOINT_HW:
+        return insert_hw_breakpoint(addr);
+        break;
+    case GDB_WATCHPOINT_READ:
+    case GDB_WATCHPOINT_WRITE:
+    case GDB_WATCHPOINT_ACCESS:
+        return insert_hw_watchpoint(addr, len, type);
+    default:
+        return -ENOSYS;
+    }
+}
+
+int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
+{
+    switch (type) {
+    case GDB_BREAKPOINT_HW:
+        return delete_hw_breakpoint(addr);
+    case GDB_WATCHPOINT_READ:
+    case GDB_WATCHPOINT_WRITE:
+    case GDB_WATCHPOINT_ACCESS:
+        return delete_hw_watchpoint(addr, len, type);
+    default:
+        return -ENOSYS;
+    }
+}
+
+void kvm_arch_remove_all_hw_breakpoints(void)
+{
+    if (cur_hw_wps > 0) {
+        g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
+    }
+    if (cur_hw_bps > 0) {
+        g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
+    }
+}
+
+static bool kvm_arm_set_device_attr(ARMCPU *cpu, struct kvm_device_attr *attr,
+                                    const char *name)
+{
+    int err;
+
+    err = kvm_vcpu_ioctl(CPU(cpu), KVM_HAS_DEVICE_ATTR, attr);
+    if (err != 0) {
+        error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
+        return false;
+    }
+
+    err = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEVICE_ATTR, attr);
+    if (err != 0) {
+        error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
+        return false;
+    }
+
+    return true;
+}
+
+void kvm_arm_pmu_init(ARMCPU *cpu)
+{
+    struct kvm_device_attr attr = {
+        .group = KVM_ARM_VCPU_PMU_V3_CTRL,
+        .attr = KVM_ARM_VCPU_PMU_V3_INIT,
+    };
+
+    if (!cpu->has_pmu) {
+        return;
+    }
+    if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
+        error_report("failed to init PMU");
+        abort();
+    }
+}
+
+void kvm_arm_pmu_set_irq(ARMCPU *cpu, int irq)
+{
+    struct kvm_device_attr attr = {
+        .group = KVM_ARM_VCPU_PMU_V3_CTRL,
+        .addr = (intptr_t)&irq,
+        .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
+    };
+
+    if (!cpu->has_pmu) {
+        return;
+    }
+    if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
+        error_report("failed to set irq for PMU");
+        abort();
+    }
+}
+
+void kvm_arm_pvtime_init(ARMCPU *cpu, uint64_t ipa)
+{
+    struct kvm_device_attr attr = {
+        .group = KVM_ARM_VCPU_PVTIME_CTRL,
+        .attr = KVM_ARM_VCPU_PVTIME_IPA,
+        .addr = (uint64_t)&ipa,
+    };
+
+    if (cpu->kvm_steal_time == ON_OFF_AUTO_OFF) {
+        return;
+    }
+    if (!kvm_arm_set_device_attr(cpu, &attr, "PVTIME IPA")) {
+        error_report("failed to init PVTIME IPA");
+        abort();
+    }
+}
+
+void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
+{
+    bool has_steal_time = kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
+
+    if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
+        if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+            cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
+        } else {
+            cpu->kvm_steal_time = ON_OFF_AUTO_ON;
+        }
+    } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
+        if (!has_steal_time) {
+            error_setg(errp, "'kvm-steal-time' cannot be enabled "
+                             "on this host");
+            return;
+        } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+            /*
+             * DEN0057A chapter 2 says "This specification only covers
+             * systems in which the Execution state of the hypervisor
+             * as well as EL1 of virtual machines is AArch64.". And,
+             * to ensure that, the smc/hvc calls are only specified as
+             * smc64/hvc64.
+             */
+            error_setg(errp, "'kvm-steal-time' cannot be enabled "
+                             "for AArch32 guests");
+            return;
+        }
+    }
+}
+
+bool kvm_arm_aarch32_supported(void)
+{
+    return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
+}
+
+bool kvm_arm_sve_supported(void)
+{
+    return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
+}
+
+QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
+
+uint32_t kvm_arm_sve_get_vls(ARMCPU *cpu)
+{
+    /* Only call this function if kvm_arm_sve_supported() returns true. */
+    static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
+    static bool probed;
+    uint32_t vq = 0;
+    int i;
+
+    /*
+     * KVM ensures all host CPUs support the same set of vector lengths.
+     * So we only need to create the scratch VCPUs once and then cache
+     * the results.
+     */
+    if (!probed) {
+        struct kvm_vcpu_init init = {
+            .target = -1,
+            .features[0] = (1 << KVM_ARM_VCPU_SVE),
+        };
+        struct kvm_one_reg reg = {
+            .id = KVM_REG_ARM64_SVE_VLS,
+            .addr = (uint64_t)&vls[0],
+        };
+        int fdarray[3], ret;
+
+        probed = true;
+
+        if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
+            error_report("failed to create scratch VCPU with SVE enabled");
+            abort();
+        }
+        ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
+        kvm_arm_destroy_scratch_host_vcpu(fdarray);
+        if (ret) {
+            error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
+                         strerror(errno));
+            abort();
+        }
+
+        for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
+            if (vls[i]) {
+                vq = 64 - clz64(vls[i]) + i * 64;
+                break;
+            }
+        }
+        if (vq > ARM_MAX_VQ) {
+            warn_report("KVM supports vector lengths larger than "
+                        "QEMU can enable");
+            vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ);
+        }
+    }
+
+    return vls[0];
+}
+
+static int kvm_arm_sve_set_vls(ARMCPU *cpu)
+{
+    uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map };
+
+    assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
+
+    return kvm_set_one_reg(CPU(cpu), KVM_REG_ARM64_SVE_VLS, &vls[0]);
+}
+
+#define ARM_CPU_ID_MPIDR       3, 0, 0, 0, 5
+
+int kvm_arch_init_vcpu(CPUState *cs)
+{
+    int ret;
+    uint64_t mpidr;
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+    uint64_t psciver;
+
+    if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
+        !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
+        error_report("KVM is not supported for this guest CPU type");
+        return -EINVAL;
+    }
+
+    qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cpu);
+
+    /* Determine init features for this CPU */
+    memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
+    if (cs->start_powered_off) {
+        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
+    }
+    if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
+        cpu->psci_version = QEMU_PSCI_VERSION_0_2;
+        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
+    }
+    if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
+    }
+    if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
+        cpu->has_pmu = false;
+    }
+    if (cpu->has_pmu) {
+        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
+    } else {
+        env->features &= ~(1ULL << ARM_FEATURE_PMU);
+    }
+    if (cpu_isar_feature(aa64_sve, cpu)) {
+        assert(kvm_arm_sve_supported());
+        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
+    }
+    if (cpu_isar_feature(aa64_pauth, cpu)) {
+        cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
+                                      1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
+    }
+
+    /* Do KVM_ARM_VCPU_INIT ioctl */
+    ret = kvm_arm_vcpu_init(cpu);
+    if (ret) {
+        return ret;
+    }
+
+    if (cpu_isar_feature(aa64_sve, cpu)) {
+        ret = kvm_arm_sve_set_vls(cpu);
+        if (ret) {
+            return ret;
+        }
+        ret = kvm_arm_vcpu_finalize(cpu, KVM_ARM_VCPU_SVE);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    /*
+     * KVM reports the exact PSCI version it is implementing via a
+     * special sysreg. If it is present, use its contents to determine
+     * what to report to the guest in the dtb (it is the PSCI version,
+     * in the same 15-bits major 16-bits minor format that PSCI_VERSION
+     * returns).
+     */
+    if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) {
+        cpu->psci_version = psciver;
+    }
+
+    /*
+     * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
+     * Currently KVM has its own idea about MPIDR assignment, so we
+     * override our defaults with what we get from KVM.
+     */
+    ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
+    if (ret) {
+        return ret;
+    }
+    cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
+
+    return kvm_arm_init_cpreg_list(cpu);
+}
+
+int kvm_arch_destroy_vcpu(CPUState *cs)
+{
+    return 0;
+}
+
+/* Callers must hold the iothread mutex lock */
+static void kvm_inject_arm_sea(CPUState *c)
+{
+    ARMCPU *cpu = ARM_CPU(c);
+    CPUARMState *env = &cpu->env;
+    uint32_t esr;
+    bool same_el;
+
+    c->exception_index = EXCP_DATA_ABORT;
+    env->exception.target_el = 1;
+
+    /*
+     * Set the DFSC to synchronous external abort and set FnV to not valid,
+     * this will tell guest the FAR_ELx is UNKNOWN for this abort.
+     */
+    same_el = arm_current_el(env) == env->exception.target_el;
+    esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
+
+    env->exception.syndrome = esr;
+
+    arm_cpu_do_interrupt(c);
+}
+
+#define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
+                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
+
+#define AARCH64_SIMD_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
+                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
+
+#define AARCH64_SIMD_CTRL_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
+                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
+
+static int kvm_arch_put_fpsimd(CPUState *cs)
+{
+    CPUARMState *env = &ARM_CPU(cs)->env;
+    int i, ret;
+
+    for (i = 0; i < 32; i++) {
+        uint64_t *q = aa64_vfp_qreg(env, i);
+#if HOST_BIG_ENDIAN
+        uint64_t fp_val[2] = { q[1], q[0] };
+        ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]),
+                                                        fp_val);
+#else
+        ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
+#endif
+        if (ret) {
+            return ret;
+        }
+    }
+
+    return 0;
+}
+
+/*
+ * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
+ * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
+ * code the slice index to zero for now as it's unlikely we'll need more than
+ * one slice for quite some time.
+ */
+static int kvm_arch_put_sve(CPUState *cs)
+{
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+    uint64_t tmp[ARM_MAX_VQ * 2];
+    uint64_t *r;
+    int n, ret;
+
+    for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
+        r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
+        ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
+        r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
+                        DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+        ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
+                    DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+    ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
+    if (ret) {
+        return ret;
+    }
+
+    return 0;
+}
+
+int kvm_arch_put_registers(CPUState *cs, int level)
+{
+    uint64_t val;
+    uint32_t fpr;
+    int i, ret;
+    unsigned int el;
+
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+
+    /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
+     * AArch64 registers before pushing them out to 64-bit KVM.
+     */
+    if (!is_a64(env)) {
+        aarch64_sync_32_to_64(env);
+    }
+
+    for (i = 0; i < 31; i++) {
+        ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
+                              &env->xregs[i]);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
+     * QEMU side we keep the current SP in xregs[31] as well.
+     */
+    aarch64_save_sp(env, 1);
+
+    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
+    if (ret) {
+        return ret;
+    }
+
+    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
+    if (ret) {
+        return ret;
+    }
+
+    /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
+    if (is_a64(env)) {
+        val = pstate_read(env);
+    } else {
+        val = cpsr_read(env);
+    }
+    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
+    if (ret) {
+        return ret;
+    }
+
+    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
+    if (ret) {
+        return ret;
+    }
+
+    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
+    if (ret) {
+        return ret;
+    }
+
+    /* Saved Program State Registers
+     *
+     * Before we restore from the banked_spsr[] array we need to
+     * ensure that any modifications to env->spsr are correctly
+     * reflected in the banks.
+     */
+    el = arm_current_el(env);
+    if (el > 0 && !is_a64(env)) {
+        i = bank_number(env->uncached_cpsr & CPSR_M);
+        env->banked_spsr[i] = env->spsr;
+    }
+
+    /* KVM 0-4 map to QEMU banks 1-5 */
+    for (i = 0; i < KVM_NR_SPSR; i++) {
+        ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
+                              &env->banked_spsr[i + 1]);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    if (cpu_isar_feature(aa64_sve, cpu)) {
+        ret = kvm_arch_put_sve(cs);
+    } else {
+        ret = kvm_arch_put_fpsimd(cs);
+    }
+    if (ret) {
+        return ret;
+    }
+
+    fpr = vfp_get_fpsr(env);
+    ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
+    if (ret) {
+        return ret;
+    }
+
+    fpr = vfp_get_fpcr(env);
+    ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
+    if (ret) {
+        return ret;
+    }
+
+    write_cpustate_to_list(cpu, true);
+
+    if (!write_list_to_kvmstate(cpu, level)) {
+        return -EINVAL;
+    }
+
+   /*
+    * Setting VCPU events should be triggered after syncing the registers
+    * to avoid overwriting potential changes made by KVM upon calling
+    * KVM_SET_VCPU_EVENTS ioctl
+    */
+    ret = kvm_put_vcpu_events(cpu);
+    if (ret) {
+        return ret;
+    }
+
+    return kvm_arm_sync_mpstate_to_kvm(cpu);
+}
+
+static int kvm_arch_get_fpsimd(CPUState *cs)
+{
+    CPUARMState *env = &ARM_CPU(cs)->env;
+    int i, ret;
+
+    for (i = 0; i < 32; i++) {
+        uint64_t *q = aa64_vfp_qreg(env, i);
+        ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
+        if (ret) {
+            return ret;
+        } else {
+#if HOST_BIG_ENDIAN
+            uint64_t t;
+            t = q[0], q[0] = q[1], q[1] = t;
+#endif
+        }
+    }
+
+    return 0;
+}
+
+/*
+ * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
+ * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
+ * code the slice index to zero for now as it's unlikely we'll need more than
+ * one slice for quite some time.
+ */
+static int kvm_arch_get_sve(CPUState *cs)
+{
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+    uint64_t *r;
+    int n, ret;
+
+    for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
+        r = &env->vfp.zregs[n].d[0];
+        ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
+        if (ret) {
+            return ret;
+        }
+        sve_bswap64(r, r, cpu->sve_max_vq * 2);
+    }
+
+    for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
+        r = &env->vfp.pregs[n].p[0];
+        ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
+        if (ret) {
+            return ret;
+        }
+        sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+    }
+
+    r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
+    ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
+    if (ret) {
+        return ret;
+    }
+    sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+
+    return 0;
+}
+
+int kvm_arch_get_registers(CPUState *cs)
+{
+    uint64_t val;
+    unsigned int el;
+    uint32_t fpr;
+    int i, ret;
+
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+
+    for (i = 0; i < 31; i++) {
+        ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
+                              &env->xregs[i]);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
+    if (ret) {
+        return ret;
+    }
+
+    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
+    if (ret) {
+        return ret;
+    }
+
+    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
+    if (ret) {
+        return ret;
+    }
+
+    env->aarch64 = ((val & PSTATE_nRW) == 0);
+    if (is_a64(env)) {
+        pstate_write(env, val);
+    } else {
+        cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
+    }
+
+    /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
+     * QEMU side we keep the current SP in xregs[31] as well.
+     */
+    aarch64_restore_sp(env, 1);
+
+    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
+    if (ret) {
+        return ret;
+    }
+
+    /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
+     * incoming AArch64 regs received from 64-bit KVM.
+     * We must perform this after all of the registers have been acquired from
+     * the kernel.
+     */
+    if (!is_a64(env)) {
+        aarch64_sync_64_to_32(env);
+    }
+
+    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
+    if (ret) {
+        return ret;
+    }
+
+    /* Fetch the SPSR registers
+     *
+     * KVM SPSRs 0-4 map to QEMU banks 1-5
+     */
+    for (i = 0; i < KVM_NR_SPSR; i++) {
+        ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
+                              &env->banked_spsr[i + 1]);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    el = arm_current_el(env);
+    if (el > 0 && !is_a64(env)) {
+        i = bank_number(env->uncached_cpsr & CPSR_M);
+        env->spsr = env->banked_spsr[i];
+    }
+
+    if (cpu_isar_feature(aa64_sve, cpu)) {
+        ret = kvm_arch_get_sve(cs);
+    } else {
+        ret = kvm_arch_get_fpsimd(cs);
+    }
+    if (ret) {
+        return ret;
+    }
+
+    ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
+    if (ret) {
+        return ret;
+    }
+    vfp_set_fpsr(env, fpr);
+
+    ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
+    if (ret) {
+        return ret;
+    }
+    vfp_set_fpcr(env, fpr);
+
+    ret = kvm_get_vcpu_events(cpu);
+    if (ret) {
+        return ret;
+    }
+
+    if (!write_kvmstate_to_list(cpu)) {
+        return -EINVAL;
+    }
+    /* Note that it's OK to have registers which aren't in CPUState,
+     * so we can ignore a failure return here.
+     */
+    write_list_to_cpustate(cpu);
+
+    ret = kvm_arm_sync_mpstate_to_qemu(cpu);
+
+    /* TODO: other registers */
+    return ret;
+}
+
+void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
+{
+    ram_addr_t ram_addr;
+    hwaddr paddr;
+
+    assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
+
+    if (acpi_ghes_present() && addr) {
+        ram_addr = qemu_ram_addr_from_host(addr);
+        if (ram_addr != RAM_ADDR_INVALID &&
+            kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
+            kvm_hwpoison_page_add(ram_addr);
+            /*
+             * If this is a BUS_MCEERR_AR, we know we have been called
+             * synchronously from the vCPU thread, so we can easily
+             * synchronize the state and inject an error.
+             *
+             * TODO: we currently don't tell the guest at all about
+             * BUS_MCEERR_AO. In that case we might either be being
+             * called synchronously from the vCPU thread, or a bit
+             * later from the main thread, so doing the injection of
+             * the error would be more complicated.
+             */
+            if (code == BUS_MCEERR_AR) {
+                kvm_cpu_synchronize_state(c);
+                if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
+                    kvm_inject_arm_sea(c);
+                } else {
+                    error_report("failed to record the error");
+                    abort();
+                }
+            }
+            return;
+        }
+        if (code == BUS_MCEERR_AO) {
+            error_report("Hardware memory error at addr %p for memory used by "
+                "QEMU itself instead of guest system!", addr);
+        }
+    }
+
+    if (code == BUS_MCEERR_AR) {
+        error_report("Hardware memory error!");
+        exit(1);
+    }
+}
+
+/* C6.6.29 BRK instruction */
+static const uint32_t brk_insn = 0xd4200000;
+
+int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
+{
+    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
+        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
+        return -EINVAL;
+    }
+    return 0;
+}
+
+int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
+{
+    static uint32_t brk;
+
+    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
+        brk != brk_insn ||
+        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
+        return -EINVAL;
+    }
+    return 0;
+}