]> git.proxmox.com Git - qemu.git/blobdiff - tcg/README
Merge remote-tracking branch 'agraf/tags/signed-ppc-for-upstream-1.7' into staging
[qemu.git] / tcg / README
index 466e3303686ef80909e1dea65c2144251fc8fb33..f1782123b753538359f89ed2cf8188844de46534 100644 (file)
@@ -14,16 +14,24 @@ the emulated architecture. As TCG started as a generic C backend used
 for cross compiling, it is assumed that the TCG target is different
 from the host, although it is never the case for QEMU.
 
+In this document, we use "guest" to specify what architecture we are
+emulating; "target" always means the TCG target, the machine on which
+we are running QEMU.
+
 A TCG "function" corresponds to a QEMU Translated Block (TB).
 
-A TCG "temporary" is a variable only live in a given
-function. Temporaries are allocated explicitly in each function.
+A TCG "temporary" is a variable only live in a basic
+block. Temporaries are allocated explicitly in each function.
+
+A TCG "local temporary" is a variable only live in a function. Local
+temporaries are allocated explicitly in each function.
 
-A TCG "global" is a variable which is live in all the functions. They
-are defined before the functions defined. A TCG global can be a memory
-location (e.g. a QEMU CPU register), a fixed host register (e.g. the
-QEMU CPU state pointer) or a memory location which is stored in a
-register outside QEMU TBs (not implemented yet).
+A TCG "global" is a variable which is live in all the functions
+(equivalent of a C global variable). They are defined before the
+functions defined. A TCG global can be a memory location (e.g. a QEMU
+CPU register), a fixed host register (e.g. the QEMU CPU state pointer)
+or a memory location which is stored in a register outside QEMU TBs
+(not implemented yet).
 
 A TCG "basic block" corresponds to a list of instructions terminated
 by a branch instruction. 
@@ -32,11 +40,11 @@ by a branch instruction.
 
 3.1) Introduction
 
-TCG instructions operate on variables which are temporaries or
-globals. TCG instructions and variables are strongly typed. Two types
-are supported: 32 bit integers and 64 bit integers. Pointers are
-defined as an alias to 32 bit or 64 bit integers depending on the TCG
-target word size.
+TCG instructions operate on variables which are temporaries, local
+temporaries or globals. TCG instructions and variables are strongly
+typed. Two types are supported: 32 bit integers and 64 bit
+integers. Pointers are defined as an alias to 32 bit or 64 bit
+integers depending on the TCG target word size.
 
 Each instruction has a fixed number of output variable operands, input
 variable operands and always constant operands.
@@ -44,27 +52,23 @@ variable operands and always constant operands.
 The notable exception is the call instruction which has a variable
 number of outputs and inputs.
 
-In the textual form, output operands come first, followed by input
-operands, followed by constant operands. The output type is included
-in the instruction name. Constants are prefixed with a '$'.
+In the textual form, output operands usually come first, followed by
+input operands, followed by constant operands. The output type is
+included in the instruction name. Constants are prefixed with a '$'.
 
 add_i32 t0, t1, t2  (t0 <- t1 + t2)
 
-sub_i64 t2, t3, $4  (t2 <- t3 - 4)
-
 3.2) Assumptions
 
 * Basic blocks
 
 - Basic blocks end after branches (e.g. brcond_i32 instruction),
   goto_tb and exit_tb instructions.
-- Basic blocks end before legacy dyngen operations.
-- Basic blocks start after the end of a previous basic block, at a
-  set_label instruction or after a legacy dyngen operation.
+- Basic blocks start after the end of a previous basic block, or at a
+  set_label instruction.
 
-After the end of a basic block, temporaries at destroyed and globals
-are stored at their initial storage (register or memory place
-depending on their declarations).
+After the end of a basic block, the content of temporaries is
+destroyed, but local temporaries and globals are preserved.
 
 * Floating point types are not supported yet
 
@@ -75,18 +79,29 @@ depending on their declarations).
 * Helpers:
 
 Using the tcg_gen_helper_x_y it is possible to call any function
-taking i32, i64 or pointer types types. Before calling an helper, all
-globals are stored at their canonical location and it is assumed that
-the function can modify them. In the future, function modifiers will
-be allowed to tell that the helper does not read or write some globals.
+taking i32, i64 or pointer types. By default, before calling a helper,
+all globals are stored at their canonical location and it is assumed
+that the function can modify them. By default, the helper is allowed to
+modify the CPU state or raise an exception.
+
+This can be overridden using the following function modifiers:
+- TCG_CALL_NO_READ_GLOBALS means that the helper does not read globals,
+  either directly or via an exception. They will not be saved to their
+  canonical locations before calling the helper.
+- TCG_CALL_NO_WRITE_GLOBALS means that the helper does not modify any globals.
+  They will only be saved to their canonical location before calling helpers,
+  but they won't be reloaded afterwise.
+- TCG_CALL_NO_SIDE_EFFECTS means that the call to the function is removed if
+  the return value is not used.
+
+Note that TCG_CALL_NO_READ_GLOBALS implies TCG_CALL_NO_WRITE_GLOBALS.
 
 On some TCG targets (e.g. x86), several calling conventions are
 supported.
 
 * Branches:
 
-Use the instruction 'br' to jump to a label. Use 'jmp' to jump to an
-explicit address. Conditional branches can only jump to labels.
+Use the instruction 'br' to jump to a label.
 
 3.3) Code Optimizations
 
@@ -100,7 +115,7 @@ optimizations:
   is suppressed.
 
 - A liveness analysis is done at the basic block level. The
-  information is used to suppress moves from a dead temporary to
+  information is used to suppress moves from a dead variable to
   another one. It is also used to remove instructions which compute
   dead results. The later is especially useful for condition code
   optimization in QEMU.
@@ -113,47 +128,6 @@ optimizations:
 
   only the last instruction is kept.
 
-- A macro system is supported (may get closer to function inlining
-  some day). It is useful if the liveness analysis is likely to prove
-  that some results of a computation are indeed not useful. With the
-  macro system, the user can provide several alternative
-  implementations which are used depending on the used results. It is
-  especially useful for condition code optimization in QEMU.
-
-  Here is an example:
-
-  macro_2 t0, t1, $1
-  mov_i32 t0, $0x1234
-
-  The macro identified by the ID "$1" normally returns the values t0
-  and t1. Suppose its implementation is:
-
-  macro_start
-  brcond_i32  t2, $0, $TCG_COND_EQ, $1
-  mov_i32 t0, $2
-  br $2
-  set_label $1
-  mov_i32 t0, $3
-  set_label $2
-  add_i32 t1, t3, t4
-  macro_end
-  
-  If t0 is not used after the macro, the user can provide a simpler
-  implementation:
-
-  macro_start
-  add_i32 t1, t2, t4
-  macro_end
-
-  TCG automatically chooses the right implementation depending on
-  which macro outputs are used after it.
-
-  Note that if TCG did more expensive optimizations, macros would be
-  less useful. In the previous example a macro is useful because the
-  liveness analysis is done on each basic block separately. Hence TCG
-  cannot remove the code computing 't0' even if it is not used after
-  the first macro implementation.
-
 3.4) Instruction Reference
 
 ********* Function call
@@ -167,10 +141,6 @@ call function 'ptr' (pointer type)
 
 ********* Jumps/Labels
 
-* jmp t0
-
-Absolute jump to address t0 (pointer type).
-
 * set_label $label
 
 Define label 'label' at the current program point.
@@ -179,7 +149,7 @@ Define label 'label' at the current program point.
 
 Jump to label.
 
-* brcond_i32/i64 cond, t0, t1, label
+* brcond_i32/i64 t0, t1, cond, label
 
 Conditional jump if t0 cond t1 is true. cond can be:
     TCG_COND_EQ
@@ -203,6 +173,10 @@ t0=t1+t2
 
 t0=t1-t2
 
+* neg_i32/i64 t0, t1
+
+t0=-t1 (two's complement)
+
 * mul_i32/i64 t0, t1, t2
 
 t0=t1*t2
@@ -223,10 +197,10 @@ t0=t1%t2 (signed). Undefined behavior if division by zero or overflow.
 
 t0=t1%t2 (unsigned). Undefined behavior if division by zero.
 
-* and_i32/i64 t0, t1, t2
-
 ********* Logical
 
+* and_i32/i64 t0, t1, t2
+
 t0=t1&t2
 
 * or_i32/i64 t0, t1, t2
@@ -237,9 +211,31 @@ t0=t1|t2
 
 t0=t1^t2
 
-* shl_i32/i64 t0, t1, t2
+* not_i32/i64 t0, t1
+
+t0=~t1
+
+* andc_i32/i64 t0, t1, t2
+
+t0=t1&~t2
 
-********* Shifts
+* eqv_i32/i64 t0, t1, t2
+
+t0=~(t1^t2), or equivalently, t0=t1^~t2
+
+* nand_i32/i64 t0, t1, t2
+
+t0=~(t1&t2)
+
+* nor_i32/i64 t0, t1, t2
+
+t0=~(t1|t2)
+
+* orc_i32/i64 t0, t1, t2
+
+t0=t1|~t2
+
+********* Shifts/Rotates
 
 * shl_i32/i64 t0, t1, t2
 
@@ -253,6 +249,14 @@ t0=t1 >> t2 (unsigned). Undefined behavior if t2 < 0 or t2 >= 32 (resp 64)
 
 t0=t1 >> t2 (signed). Undefined behavior if t2 < 0 or t2 >= 32 (resp 64)
 
+* rotl_i32/i64 t0, t1, t2
+
+Rotation of t2 bits to the left. Undefined behavior if t2 < 0 or t2 >= 32 (resp 64)
+
+* rotr_i32/i64 t0, t1, t2
+
+Rotation of t2 bits to the right. Undefined behavior if t2 < 0 or t2 >= 32 (resp 64)
+
 ********* Misc
 
 * mov_i32/i64 t0, t1
@@ -262,24 +266,61 @@ t0 = t1
 Move t1 to t0 (both operands must have the same type).
 
 * ext8s_i32/i64 t0, t1
+ext8u_i32/i64 t0, t1
 ext16s_i32/i64 t0, t1
+ext16u_i32/i64 t0, t1
 ext32s_i64 t0, t1
+ext32u_i64 t0, t1
 
-8, 16 or 32 bit sign extension (both operands must have the same type)
+8, 16 or 32 bit sign/zero extension (both operands must have the same type)
 
-* bswap16_i32 t0, t1
+* bswap16_i32/i64 t0, t1
 
-16 bit byte swap on a 32 bit value. The two high order bytes must be set
-to zero.
+16 bit byte swap on a 32/64 bit value. It assumes that the two/six high order
+bytes are set to zero.
 
-* bswap_i32 t0, t1
+* bswap32_i32/i64 t0, t1
 
-32 bit byte swap
+32 bit byte swap on a 32/64 bit value. With a 64 bit value, it assumes that
+the four high order bytes are set to zero.
 
-* bswap_i64 t0, t1
+* bswap64_i64 t0, t1
 
 64 bit byte swap
 
+* discard_i32/i64 t0
+
+Indicate that the value of t0 won't be used later. It is useful to
+force dead code elimination.
+
+* deposit_i32/i64 dest, t1, t2, pos, len
+
+Deposit T2 as a bitfield into T1, placing the result in DEST.
+The bitfield is described by POS/LEN, which are immediate values:
+
+  LEN - the length of the bitfield
+  POS - the position of the first bit, counting from the LSB
+
+For example, pos=8, len=4 indicates a 4-bit field at bit 8.
+This operation would be equivalent to
+
+  dest = (t1 & ~0x0f00) | ((t2 << 8) & 0x0f00)
+
+
+********* Conditional moves
+
+* setcond_i32/i64 dest, t1, t2, cond
+
+dest = (t1 cond t2)
+
+Set DEST to 1 if (T1 cond T2) is true, otherwise set to 0.
+
+* movcond_i32/i64 dest, c1, c2, v1, v2, cond
+
+dest = (c1 cond c2 ? v1 : v2)
+
+Set DEST to V1 if (C1 cond C2) is true, otherwise set to V2.
+
 ********* Type conversions
 
 * ext_i32_i64 t0, t1
@@ -291,6 +332,14 @@ Convert t1 (32 bit) to t0 (64 bit) and does zero extension
 * trunc_i64_i32 t0, t1
 Truncate t1 (64 bit) to t0 (32 bit)
 
+* concat_i32_i64 t0, t1, t2
+Construct t0 (64-bit) taking the low half from t1 (32 bit) and the high half
+from t2 (32 bit).
+
+* concat32_i64 t0, t1, t2
+Construct t0 (64-bit) taking the low half from t1 (64 bit) and the high half
+from t2 (64 bit).
+
 ********* Load/Store
 
 * ld_i32/i64 t0, t1, offset
@@ -313,9 +362,46 @@ st32_i64 t0, t1, offset
 write(t0, t1 + offset)
 Write 8, 16, 32 or 64 bits to host memory.
 
+All this opcodes assume that the pointed host memory doesn't correspond
+to a global. In the latter case the behaviour is unpredictable.
+
+********* Multiword arithmetic support
+
+* add2_i32/i64 t0_low, t0_high, t1_low, t1_high, t2_low, t2_high
+* sub2_i32/i64 t0_low, t0_high, t1_low, t1_high, t2_low, t2_high
+
+Similar to add/sub, except that the double-word inputs T1 and T2 are
+formed from two single-word arguments, and the double-word output T0
+is returned in two single-word outputs.
+
+* mulu2_i32/i64 t0_low, t0_high, t1, t2
+
+Similar to mul, except two unsigned inputs T1 and T2 yielding the full
+double-word product T0.  The later is returned in two single-word outputs.
+
+* muls2_i32/i64 t0_low, t0_high, t1, t2
+
+Similar to mulu2, except the two inputs T1 and T2 are signed.
+
+********* 64-bit guest on 32-bit host support
+
+The following opcodes are internal to TCG.  Thus they are to be implemented by
+32-bit host code generators, but are not to be emitted by guest translators.
+They are emitted as needed by inline functions within "tcg-op.h".
+
+* brcond2_i32 t0_low, t0_high, t1_low, t1_high, cond, label
+
+Similar to brcond, except that the 64-bit values T0 and T1
+are formed from two 32-bit arguments.
+
+* setcond2_i32 dest, t1_low, t1_high, t2_low, t2_high, cond
+
+Similar to setcond, except that the 64-bit values T1 and T2 are
+formed from two 32-bit arguments.  The result is a 32-bit value.
+
 ********* QEMU specific operations
 
-* tb_exit t0
+* exit_tb t0
 
 Exit the current TB and return the value t0 (word type).
 
@@ -323,28 +409,28 @@ Exit the current TB and return the value t0 (word type).
 
 Exit the current TB and jump to the TB index 'index' (constant) if the
 current TB was linked to this TB. Otherwise execute the next
-instructions.
+instructions. Only indices 0 and 1 are valid and tcg_gen_goto_tb may be issued
+at most once with each slot index per TB.
+
+* qemu_ld_i32/i64 t0, t1, flags, memidx
+* qemu_st_i32/i64 t0, t1, flags, memidx
 
-* qemu_ld_i32/i64 t0, t1, flags
-qemu_ld8u_i32/i64 t0, t1, flags
-qemu_ld8s_i32/i64 t0, t1, flags
-qemu_ld16u_i32/i64 t0, t1, flags
-qemu_ld16s_i32/i64 t0, t1, flags
-qemu_ld32u_i64 t0, t1, flags
-qemu_ld32s_i64 t0, t1, flags
+Load data at the guest address t1 into t0, or store data in t0 at guest
+address t1.  The _i32/_i64 size applies to the size of the input/output
+register t0 only.  The address t1 is always sized according to the guest,
+and the width of the memory operation is controlled by flags.
 
-Load data at the QEMU CPU address t1 into t0. t1 has the QEMU CPU
-address type. 'flags' contains the QEMU memory index (selects user or
-kernel access) for example.
+Both t0 and t1 may be split into little-endian ordered pairs of registers
+if dealing with 64-bit quantities on a 32-bit host.
 
-* qemu_st_i32/i64 t0, t1, flags
-qemu_st8_i32/i64 t0, t1, flags
-qemu_st16_i32/i64 t0, t1, flags
-qemu_st32_i64 t0, t1, flags
+The memidx selects the qemu tlb index to use (e.g. user or kernel access).
+The flags are the TCGMemOp bits, selecting the sign, width, and endianness
+of the memory access.
 
-Store the data t0 at the QEMU CPU Address t1. t1 has the QEMU CPU
-address type. 'flags' contains the QEMU memory index (selects user or
-kernel access) for example.
+For a 32-bit host, qemu_ld/st_i64 is guaranteed to only be used with a
+64-bit memory access specified in flags.
+
+*********
 
 Note 1: Some shortcuts are defined when the last operand is known to be
 a constant (e.g. addi for add, movi for mov).
@@ -380,6 +466,11 @@ GCC like constraints are used to define the constraints of every
 instruction. Memory constraints are not supported in this
 version. Aliases are specified in the input operands as for GCC.
 
+The same register may be used for both an input and an output, even when
+they are not explicitly aliased.  If an op expands to multiple target
+instructions then care must be taken to avoid clobbering input values.
+GCC style "early clobber" outputs are not currently supported.
+
 A target can define specific register or constant constraints. If an
 operation uses a constant input constraint which does not allow all
 constants, it must also accept registers in order to have a fallback.
@@ -408,13 +499,40 @@ register.
   target, functions must be able to return 2 values in registers for
   64 bit return type.
 
-5) Migration from dyngen to TCG
-
-TCG is backward compatible with QEMU "dyngen" operations. It means
-that TCG instructions can be freely mixed with dyngen operations. It
-is expected that QEMU targets will be progressively fully converted to
-TCG. Once a target is fully converted to TCG, it will be possible
-to apply more optimizations because more registers will be free for
-the generated code.
-
-The exception model is the same as the dyngen one.
+5) Recommended coding rules for best performance
+
+- Use globals to represent the parts of the QEMU CPU state which are
+  often modified, e.g. the integer registers and the condition
+  codes. TCG will be able to use host registers to store them.
+
+- Avoid globals stored in fixed registers. They must be used only to
+  store the pointer to the CPU state and possibly to store a pointer
+  to a register window.
+
+- Use temporaries. Use local temporaries only when really needed,
+  e.g. when you need to use a value after a jump. Local temporaries
+  introduce a performance hit in the current TCG implementation: their
+  content is saved to memory at end of each basic block.
+
+- Free temporaries and local temporaries when they are no longer used
+  (tcg_temp_free). Since tcg_const_x() also creates a temporary, you
+  should free it after it is used. Freeing temporaries does not yield
+  a better generated code, but it reduces the memory usage of TCG and
+  the speed of the translation.
+
+- Don't hesitate to use helpers for complicated or seldom used guest
+  instructions. There is little performance advantage in using TCG to
+  implement guest instructions taking more than about twenty TCG
+  instructions. Note that this rule of thumb is more applicable to
+  helpers doing complex logic or arithmetic, where the C compiler has
+  scope to do a good job of optimisation; it is less relevant where
+  the instruction is mostly doing loads and stores, and in those cases
+  inline TCG may still be faster for longer sequences.
+
+- The hard limit on the number of TCG instructions you can generate
+  per guest instruction is set by MAX_OP_PER_INSTR in exec-all.h --
+  you cannot exceed this without risking a buffer overrun.
+
+- Use the 'discard' instruction if you know that TCG won't be able to
+  prove that a given global is "dead" at a given program point. The
+  x86 guest uses it to improve the condition codes optimisation.