]> git.proxmox.com Git - ceph.git/blame - ceph/src/boost/boost/geometry/formulas/differential_quantities.hpp
import new upstream nautilus stable release 14.2.8
[ceph.git] / ceph / src / boost / boost / geometry / formulas / differential_quantities.hpp
CommitLineData
b32b8144
FG
1// Boost.Geometry
2
92f5a8d4 3// Copyright (c) 2016-2019 Oracle and/or its affiliates.
b32b8144
FG
4
5// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
6
7// Use, modification and distribution is subject to the Boost Software License,
8// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
9// http://www.boost.org/LICENSE_1_0.txt)
10
11#ifndef BOOST_GEOMETRY_FORMULAS_INVERSE_DIFFERENTIAL_QUANTITIES_HPP
12#define BOOST_GEOMETRY_FORMULAS_INVERSE_DIFFERENTIAL_QUANTITIES_HPP
13
92f5a8d4 14#include <boost/geometry/core/assert.hpp>
b32b8144
FG
15
16#include <boost/geometry/util/condition.hpp>
17#include <boost/geometry/util/math.hpp>
18
19
20namespace boost { namespace geometry { namespace formula
21{
22
23/*!
24\brief The solution of a part of the inverse problem - differential quantities.
25\author See
26- Charles F.F Karney, Algorithms for geodesics, 2011
27https://arxiv.org/pdf/1109.4448.pdf
28*/
29template <
30 typename CT,
31 bool EnableReducedLength,
32 bool EnableGeodesicScale,
33 unsigned int Order = 2,
34 bool ApproxF = true
35>
36class differential_quantities
37{
38public:
39 static inline void apply(CT const& lon1, CT const& lat1,
40 CT const& lon2, CT const& lat2,
41 CT const& azimuth, CT const& reverse_azimuth,
42 CT const& b, CT const& f,
43 CT & reduced_length, CT & geodesic_scale)
44 {
45 CT const dlon = lon2 - lon1;
46 CT const sin_lat1 = sin(lat1);
47 CT const cos_lat1 = cos(lat1);
48 CT const sin_lat2 = sin(lat2);
49 CT const cos_lat2 = cos(lat2);
50
51 apply(dlon, sin_lat1, cos_lat1, sin_lat2, cos_lat2,
52 azimuth, reverse_azimuth,
53 b, f,
54 reduced_length, geodesic_scale);
55 }
56
57 static inline void apply(CT const& dlon,
58 CT const& sin_lat1, CT const& cos_lat1,
59 CT const& sin_lat2, CT const& cos_lat2,
60 CT const& azimuth, CT const& reverse_azimuth,
61 CT const& b, CT const& f,
62 CT & reduced_length, CT & geodesic_scale)
63 {
64 CT const c0 = 0;
65 CT const c1 = 1;
66 CT const one_minus_f = c1 - f;
67
68 CT sin_bet1 = one_minus_f * sin_lat1;
69 CT sin_bet2 = one_minus_f * sin_lat2;
70
71 // equator
72 if (math::equals(sin_bet1, c0) && math::equals(sin_bet2, c0))
73 {
92f5a8d4 74 CT const sig_12 = dlon / one_minus_f;
b32b8144
FG
75 if (BOOST_GEOMETRY_CONDITION(EnableReducedLength))
76 {
92f5a8d4
TL
77 BOOST_GEOMETRY_ASSERT((-math::pi<CT>() <= azimuth && azimuth <= math::pi<CT>()));
78
79 int azi_sign = math::sign(azimuth) >= 0 ? 1 : -1; // for antipodal
80 CT m12 = azi_sign * sin(sig_12) * b;
b32b8144
FG
81 reduced_length = m12;
82 }
83
84 if (BOOST_GEOMETRY_CONDITION(EnableGeodesicScale))
85 {
86 CT M12 = cos(sig_12);
87 geodesic_scale = M12;
88 }
89 }
90 else
91 {
92 CT const c2 = 2;
93 CT const e2 = f * (c2 - f);
94 CT const ep2 = e2 / math::sqr(one_minus_f);
95
96 CT const sin_alp1 = sin(azimuth);
97 CT const cos_alp1 = cos(azimuth);
98 //CT const sin_alp2 = sin(reverse_azimuth);
99 CT const cos_alp2 = cos(reverse_azimuth);
100
101 CT cos_bet1 = cos_lat1;
102 CT cos_bet2 = cos_lat2;
103
104 normalize(sin_bet1, cos_bet1);
105 normalize(sin_bet2, cos_bet2);
106
107 CT sin_sig1 = sin_bet1;
108 CT cos_sig1 = cos_alp1 * cos_bet1;
109 CT sin_sig2 = sin_bet2;
110 CT cos_sig2 = cos_alp2 * cos_bet2;
111
112 normalize(sin_sig1, cos_sig1);
113 normalize(sin_sig2, cos_sig2);
114
115 CT const sin_alp0 = sin_alp1 * cos_bet1;
116 CT const cos_alp0_sqr = c1 - math::sqr(sin_alp0);
117
118 CT const J12 = BOOST_GEOMETRY_CONDITION(ApproxF) ?
119 J12_f(sin_sig1, cos_sig1, sin_sig2, cos_sig2, cos_alp0_sqr, f) :
120 J12_ep_sqr(sin_sig1, cos_sig1, sin_sig2, cos_sig2, cos_alp0_sqr, ep2) ;
121
122 CT const dn1 = math::sqrt(c1 + ep2 * math::sqr(sin_bet1));
123 CT const dn2 = math::sqrt(c1 + ep2 * math::sqr(sin_bet2));
124
125 if (BOOST_GEOMETRY_CONDITION(EnableReducedLength))
126 {
127 CT const m12_b = dn2 * (cos_sig1 * sin_sig2)
128 - dn1 * (sin_sig1 * cos_sig2)
129 - cos_sig1 * cos_sig2 * J12;
130 CT const m12 = m12_b * b;
131
132 reduced_length = m12;
133 }
134
135 if (BOOST_GEOMETRY_CONDITION(EnableGeodesicScale))
136 {
137 CT const cos_sig12 = cos_sig1 * cos_sig2 + sin_sig1 * sin_sig2;
138 CT const t = ep2 * (cos_bet1 - cos_bet2) * (cos_bet1 + cos_bet2) / (dn1 + dn2);
139 CT const M12 = cos_sig12 + (t * sin_sig2 - cos_sig2 * J12) * sin_sig1 / dn1;
140
141 geodesic_scale = M12;
142 }
143 }
144 }
145
146private:
147 /*! Approximation of J12, expanded into taylor series in f
148 Maxima script:
149 ep2: f * (2-f) / ((1-f)^2);
150 k2: ca02 * ep2;
151 assume(f < 1);
152 assume(sig > 0);
153 I1(sig):= integrate(sqrt(1 + k2 * sin(s)^2), s, 0, sig);
154 I2(sig):= integrate(1/sqrt(1 + k2 * sin(s)^2), s, 0, sig);
155 J(sig):= I1(sig) - I2(sig);
156 S: taylor(J(sig), f, 0, 3);
157 S1: factor( 2*integrate(sin(s)^2,s,0,sig)*ca02*f );
158 S2: factor( ((integrate(-6*ca02^2*sin(s)^4+6*ca02*sin(s)^2,s,0,sig)+integrate(-2*ca02^2*sin(s)^4+6*ca02*sin(s)^2,s,0,sig))*f^2)/4 );
159 S3: factor( ((integrate(30*ca02^3*sin(s)^6-54*ca02^2*sin(s)^4+24*ca02*sin(s)^2,s,0,sig)+integrate(6*ca02^3*sin(s)^6-18*ca02^2*sin(s)^4+24*ca02*sin(s)^2,s,0,sig))*f^3)/12 );
160 */
161 static inline CT J12_f(CT const& sin_sig1, CT const& cos_sig1,
162 CT const& sin_sig2, CT const& cos_sig2,
163 CT const& cos_alp0_sqr, CT const& f)
164 {
165 if (Order == 0)
166 {
167 return 0;
168 }
169
170 CT const c2 = 2;
171
172 CT const sig_12 = atan2(cos_sig1 * sin_sig2 - sin_sig1 * cos_sig2,
173 cos_sig1 * cos_sig2 + sin_sig1 * sin_sig2);
174 CT const sin_2sig1 = c2 * cos_sig1 * sin_sig1; // sin(2sig1)
175 CT const sin_2sig2 = c2 * cos_sig2 * sin_sig2; // sin(2sig2)
176 CT const sin_2sig_12 = sin_2sig2 - sin_2sig1;
177 CT const L1 = sig_12 - sin_2sig_12 / c2;
178
179 if (Order == 1)
180 {
181 return cos_alp0_sqr * f * L1;
182 }
183
184 CT const sin_4sig1 = c2 * sin_2sig1 * (math::sqr(cos_sig1) - math::sqr(sin_sig1)); // sin(4sig1)
185 CT const sin_4sig2 = c2 * sin_2sig2 * (math::sqr(cos_sig2) - math::sqr(sin_sig2)); // sin(4sig2)
186 CT const sin_4sig_12 = sin_4sig2 - sin_4sig1;
187
188 CT const c8 = 8;
189 CT const c12 = 12;
190 CT const c16 = 16;
191 CT const c24 = 24;
192
193 CT const L2 = -( cos_alp0_sqr * sin_4sig_12
194 + (-c8 * cos_alp0_sqr + c12) * sin_2sig_12
195 + (c12 * cos_alp0_sqr - c24) * sig_12)
196 / c16;
197
198 if (Order == 2)
199 {
200 return cos_alp0_sqr * f * (L1 + f * L2);
201 }
202
203 CT const c4 = 4;
204 CT const c9 = 9;
205 CT const c48 = 48;
206 CT const c60 = 60;
207 CT const c64 = 64;
208 CT const c96 = 96;
209 CT const c128 = 128;
210 CT const c144 = 144;
211
212 CT const cos_alp0_quad = math::sqr(cos_alp0_sqr);
213 CT const sin3_2sig1 = math::sqr(sin_2sig1) * sin_2sig1;
214 CT const sin3_2sig2 = math::sqr(sin_2sig2) * sin_2sig2;
215 CT const sin3_2sig_12 = sin3_2sig2 - sin3_2sig1;
216
217 CT const A = (c9 * cos_alp0_quad - c12 * cos_alp0_sqr) * sin_4sig_12;
218 CT const B = c4 * cos_alp0_quad * sin3_2sig_12;
219 CT const C = (-c48 * cos_alp0_quad + c96 * cos_alp0_sqr - c64) * sin_2sig_12;
220 CT const D = (c60 * cos_alp0_quad - c144 * cos_alp0_sqr + c128) * sig_12;
221
222 CT const L3 = (A + B + C + D) / c64;
223
224 // Order 3 and higher
225 return cos_alp0_sqr * f * (L1 + f * (L2 + f * L3));
226 }
227
228 /*! Approximation of J12, expanded into taylor series in e'^2
229 Maxima script:
230 k2: ca02 * ep2;
231 assume(sig > 0);
232 I1(sig):= integrate(sqrt(1 + k2 * sin(s)^2), s, 0, sig);
233 I2(sig):= integrate(1/sqrt(1 + k2 * sin(s)^2), s, 0, sig);
234 J(sig):= I1(sig) - I2(sig);
235 S: taylor(J(sig), ep2, 0, 3);
236 S1: factor( integrate(sin(s)^2,s,0,sig)*ca02*ep2 );
237 S2: factor( (integrate(sin(s)^4,s,0,sig)*ca02^2*ep2^2)/2 );
238 S3: factor( (3*integrate(sin(s)^6,s,0,sig)*ca02^3*ep2^3)/8 );
239 */
240 static inline CT J12_ep_sqr(CT const& sin_sig1, CT const& cos_sig1,
241 CT const& sin_sig2, CT const& cos_sig2,
242 CT const& cos_alp0_sqr, CT const& ep_sqr)
243 {
244 if (Order == 0)
245 {
246 return 0;
247 }
248
249 CT const c2 = 2;
250 CT const c4 = 4;
251
252 CT const c2a0ep2 = cos_alp0_sqr * ep_sqr;
253
254 CT const sig_12 = atan2(cos_sig1 * sin_sig2 - sin_sig1 * cos_sig2,
255 cos_sig1 * cos_sig2 + sin_sig1 * sin_sig2); // sig2 - sig1
256 CT const sin_2sig1 = c2 * cos_sig1 * sin_sig1; // sin(2sig1)
257 CT const sin_2sig2 = c2 * cos_sig2 * sin_sig2; // sin(2sig2)
258 CT const sin_2sig_12 = sin_2sig2 - sin_2sig1;
259
260 CT const L1 = (c2 * sig_12 - sin_2sig_12) / c4;
261
262 if (Order == 1)
263 {
264 return c2a0ep2 * L1;
265 }
266
267 CT const c8 = 8;
268 CT const c64 = 64;
269
270 CT const sin_4sig1 = c2 * sin_2sig1 * (math::sqr(cos_sig1) - math::sqr(sin_sig1)); // sin(4sig1)
271 CT const sin_4sig2 = c2 * sin_2sig2 * (math::sqr(cos_sig2) - math::sqr(sin_sig2)); // sin(4sig2)
272 CT const sin_4sig_12 = sin_4sig2 - sin_4sig1;
273
274 CT const L2 = (sin_4sig_12 - c8 * sin_2sig_12 + 12 * sig_12) / c64;
275
276 if (Order == 2)
277 {
278 return c2a0ep2 * (L1 + c2a0ep2 * L2);
279 }
280
281 CT const sin3_2sig1 = math::sqr(sin_2sig1) * sin_2sig1;
282 CT const sin3_2sig2 = math::sqr(sin_2sig2) * sin_2sig2;
283 CT const sin3_2sig_12 = sin3_2sig2 - sin3_2sig1;
284
285 CT const c9 = 9;
286 CT const c48 = 48;
287 CT const c60 = 60;
288 CT const c512 = 512;
289
290 CT const L3 = (c9 * sin_4sig_12 + c4 * sin3_2sig_12 - c48 * sin_2sig_12 + c60 * sig_12) / c512;
291
292 // Order 3 and higher
293 return c2a0ep2 * (L1 + c2a0ep2 * (L2 + c2a0ep2 * L3));
294 }
295
296 static inline void normalize(CT & x, CT & y)
297 {
298 CT const len = math::sqrt(math::sqr(x) + math::sqr(y));
299 x /= len;
300 y /= len;
301 }
302};
303
304}}} // namespace boost::geometry::formula
305
306
307#endif // BOOST_GEOMETRY_FORMULAS_INVERSE_DIFFERENTIAL_QUANTITIES_HPP