]> git.proxmox.com Git - ceph.git/blame - ceph/src/boost/boost/geometry/formulas/elliptic_arc_length.hpp
Add patch for failing prerm scripts
[ceph.git] / ceph / src / boost / boost / geometry / formulas / elliptic_arc_length.hpp
CommitLineData
b32b8144
FG
1// Boost.Geometry
2
3// Copyright (c) 2017 Oracle and/or its affiliates.
4
5// Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle
6
7// Use, modification and distribution is subject to the Boost Software License,
8// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
9// http://www.boost.org/LICENSE_1_0.txt)
10
11#ifndef BOOST_GEOMETRY_FORMULAS_ELLIPTIC_ARC_LENGTH_HPP
12#define BOOST_GEOMETRY_FORMULAS_ELLIPTIC_ARC_LENGTH_HPP
13
14#include <boost/math/constants/constants.hpp>
15
16#include <boost/geometry/core/radius.hpp>
b32b8144
FG
17
18#include <boost/geometry/util/condition.hpp>
19#include <boost/geometry/util/math.hpp>
20#include <boost/geometry/util/normalize_spheroidal_coordinates.hpp>
21
22#include <boost/geometry/formulas/flattening.hpp>
23
24namespace boost { namespace geometry { namespace formula
25{
26
27/*!
28\brief Compute the arc length of an ellipse.
29*/
30
31template <typename CT, unsigned int Order = 1>
32class elliptic_arc_length
33{
34
35public :
36
37 struct result
38 {
39 result()
40 : distance(0)
41 , meridian(false)
42 {}
43
44 CT distance;
45 bool meridian;
46 };
47
11fdf7f2
TL
48 template <typename T>
49 static bool meridian_not_crossing_pole(T lat1, T lat2, CT diff)
50 {
51 CT half_pi = math::pi<CT>()/CT(2);
52 return math::equals(diff, CT(0)) ||
53 (math::equals(lat2, half_pi) && math::equals(lat1, -half_pi));
54 }
55
56 static bool meridian_crossing_pole(CT diff)
57 {
58 return math::equals(math::abs(diff), math::pi<CT>());
59 }
60
61
62 template <typename T, typename Spheroid>
63 static CT meridian_not_crossing_pole_dist(T lat1, T lat2, Spheroid const& spheroid)
64 {
65 return math::abs(apply(lat2, spheroid) - apply(lat1, spheroid));
66 }
67
68 template <typename T, typename Spheroid>
69 static CT meridian_crossing_pole_dist(T lat1, T lat2, Spheroid const& spheroid)
70 {
71 CT c0 = 0;
72 CT half_pi = math::pi<CT>()/CT(2);
73 CT lat_sign = 1;
74 if (lat1+lat2 < c0)
75 {
76 lat_sign = CT(-1);
77 }
78 return math::abs(lat_sign * CT(2) * apply(half_pi, spheroid)
79 - apply(lat1, spheroid) - apply(lat2, spheroid));
80 }
81
b32b8144
FG
82 template <typename T, typename Spheroid>
83 static result apply(T lon1, T lat1, T lon2, T lat2, Spheroid const& spheroid)
84 {
85 result res;
86
b32b8144
FG
87 CT diff = geometry::math::longitude_distance_signed<geometry::radian>(lon1, lon2);
88
89 if (lat1 > lat2)
90 {
91 std::swap(lat1, lat2);
92 }
93
11fdf7f2 94 if ( meridian_not_crossing_pole(lat1, lat2, diff) )
b32b8144 95 {
11fdf7f2 96 res.distance = meridian_not_crossing_pole_dist(lat1, lat2, spheroid);
b32b8144
FG
97 res.meridian = true;
98 }
11fdf7f2 99 else if ( meridian_crossing_pole(diff) )
b32b8144 100 {
11fdf7f2 101 res.distance = meridian_crossing_pole_dist(lat1, lat2, spheroid);
b32b8144
FG
102 res.meridian = true;
103 }
104 return res;
105 }
106
107 // Distance computation on meridians using series approximations
108 // to elliptic integrals. Formula to compute distance from lattitude 0 to lat
109 // https://en.wikipedia.org/wiki/Meridian_arc
110 // latitudes are assumed to be in radians and in [-pi/2,pi/2]
111 template <typename T, typename Spheroid>
112 static CT apply(T lat, Spheroid const& spheroid)
113 {
114 CT const a = get_radius<0>(spheroid);
115 CT const f = formula::flattening<CT>(spheroid);
116 CT n = f / (CT(2) - f);
117 CT M = a/(1+n);
118 CT C0 = 1;
119
120 if (Order == 0)
121 {
122 return M * C0 * lat;
123 }
124
125 CT C2 = -1.5 * n;
126
127 if (Order == 1)
128 {
129 return M * (C0 * lat + C2 * sin(2*lat));
130 }
131
132 CT n2 = n * n;
133 C0 += .25 * n2;
134 CT C4 = 0.9375 * n2;
135
136 if (Order == 2)
137 {
138 return M * (C0 * lat + C2 * sin(2*lat) + C4 * sin(4*lat));
139 }
140
141 CT n3 = n2 * n;
142 C2 += 0.1875 * n3;
143 CT C6 = -0.729166667 * n3;
144
145 if (Order == 3)
146 {
147 return M * (C0 * lat + C2 * sin(2*lat) + C4 * sin(4*lat)
148 + C6 * sin(6*lat));
149 }
150
151 CT n4 = n2 * n2;
152 C4 -= 0.234375 * n4;
153 CT C8 = 0.615234375 * n4;
154
155 if (Order == 4)
156 {
157 return M * (C0 * lat + C2 * sin(2*lat) + C4 * sin(4*lat)
158 + C6 * sin(6*lat) + C8 * sin(8*lat));
159 }
160
161 CT n5 = n4 * n;
162 C6 += 0.227864583 * n5;
163 CT C10 = -0.54140625 * n5;
164
165 // Order 5 or higher
166 return M * (C0 * lat + C2 * sin(2*lat) + C4 * sin(4*lat)
167 + C6 * sin(6*lat) + C8 * sin(8*lat) + C10 * sin(10*lat));
168
169 }
170
171 // Iterative method to elliptic arc length based on
172 // http://www.codeguru.com/cpp/cpp/algorithms/article.php/c5115/
173 // Geographic-Distance-and-Azimuth-Calculations.htm
174 // latitudes are assumed to be in radians and in [-pi/2,pi/2]
175 template <typename T1, typename T2, typename Spheroid>
176 CT interative_method(T1 lat1,
177 T2 lat2,
178 Spheroid const& spheroid)
179 {
180 CT result = 0;
181 CT const zero = 0;
182 CT const one = 1;
183 CT const c1 = 2;
184 CT const c2 = 0.5;
185 CT const c3 = 4000;
186
187 CT const a = get_radius<0>(spheroid);
188 CT const f = formula::flattening<CT>(spheroid);
189
190 // how many steps to use
191
192 CT lat1_deg = lat1 * geometry::math::r2d<CT>();
193 CT lat2_deg = lat2 * geometry::math::r2d<CT>();
194
195 int steps = c1 + (c2 + (lat2_deg > lat1_deg) ? CT(lat2_deg - lat1_deg)
196 : CT(lat1_deg - lat2_deg));
197 steps = (steps > c3) ? c3 : steps;
198
199 //std::cout << "Steps=" << steps << std::endl;
200
201 CT snLat1 = sin(lat1);
202 CT snLat2 = sin(lat2);
203 CT twoF = 2 * f - f * f;
204
205 // limits of integration
206 CT x1 = a * cos(lat1) /
207 sqrt(1 - twoF * snLat1 * snLat1);
208 CT x2 = a * cos(lat2) /
209 sqrt(1 - twoF * snLat2 * snLat2);
210
211 CT dx = (x2 - x1) / (steps - one);
212 CT x, y1, y2, dy, dydx;
213 CT adx = (dx < zero) ? -dx : dx; // absolute value of dx
214
215 CT a2 = a * a;
216 CT oneF = 1 - f;
217
218 // now loop through each step adding up all the little
219 // hypotenuses
220 for (int i = 0; i < (steps - 1); i++){
221 x = x1 + dx * i;
222 dydx = ((a * oneF * sqrt((one - ((x+dx)*(x+dx))/a2))) -
223 (a * oneF * sqrt((one - (x*x)/a2)))) / dx;
224 result += adx * sqrt(one + dydx*dydx);
225 }
226
227 return result;
228 }
229};
230
231}}} // namespace boost::geometry::formula
232
233
234#endif // BOOST_GEOMETRY_FORMULAS_ELLIPTIC_ARC_LENGTH_HPP