]> git.proxmox.com Git - ceph.git/blame - ceph/src/boost/boost/geometry/strategies/geographic/intersection.hpp
import new upstream nautilus stable release 14.2.8
[ceph.git] / ceph / src / boost / boost / geometry / strategies / geographic / intersection.hpp
CommitLineData
b32b8144
FG
1// Boost.Geometry
2
11fdf7f2
TL
3// Copyright (c) 2017 Adam Wulkiewicz, Lodz, Poland.
4
92f5a8d4 5// Copyright (c) 2016-2019, Oracle and/or its affiliates.
b32b8144
FG
6// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
7
8// Use, modification and distribution is subject to the Boost Software License,
9// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
10// http://www.boost.org/LICENSE_1_0.txt)
11
12#ifndef BOOST_GEOMETRY_STRATEGIES_GEOGRAPHIC_INTERSECTION_HPP
13#define BOOST_GEOMETRY_STRATEGIES_GEOGRAPHIC_INTERSECTION_HPP
14
15#include <algorithm>
16
17#include <boost/geometry/core/cs.hpp>
18#include <boost/geometry/core/access.hpp>
19#include <boost/geometry/core/radian_access.hpp>
b32b8144
FG
20#include <boost/geometry/core/tags.hpp>
21
22#include <boost/geometry/algorithms/detail/assign_values.hpp>
23#include <boost/geometry/algorithms/detail/assign_indexed_point.hpp>
24#include <boost/geometry/algorithms/detail/equals/point_point.hpp>
25#include <boost/geometry/algorithms/detail/recalculate.hpp>
26
27#include <boost/geometry/formulas/andoyer_inverse.hpp>
28#include <boost/geometry/formulas/sjoberg_intersection.hpp>
29#include <boost/geometry/formulas/spherical.hpp>
30#include <boost/geometry/formulas/unit_spheroid.hpp>
31
32#include <boost/geometry/geometries/concepts/point_concept.hpp>
33#include <boost/geometry/geometries/concepts/segment_concept.hpp>
34
35#include <boost/geometry/policies/robustness/segment_ratio.hpp>
36
11fdf7f2
TL
37#include <boost/geometry/srs/spheroid.hpp>
38
b32b8144 39#include <boost/geometry/strategies/geographic/area.hpp>
92f5a8d4 40#include <boost/geometry/strategies/geographic/disjoint_segment_box.hpp>
b32b8144 41#include <boost/geometry/strategies/geographic/distance.hpp>
92f5a8d4 42#include <boost/geometry/strategies/geographic/envelope.hpp>
b32b8144
FG
43#include <boost/geometry/strategies/geographic/parameters.hpp>
44#include <boost/geometry/strategies/geographic/point_in_poly_winding.hpp>
45#include <boost/geometry/strategies/geographic/side.hpp>
92f5a8d4
TL
46#include <boost/geometry/strategies/spherical/expand_box.hpp>
47#include <boost/geometry/strategies/spherical/disjoint_box_box.hpp>
48#include <boost/geometry/strategies/spherical/point_in_point.hpp>
b32b8144
FG
49#include <boost/geometry/strategies/intersection.hpp>
50#include <boost/geometry/strategies/intersection_result.hpp>
51#include <boost/geometry/strategies/side_info.hpp>
52
53#include <boost/geometry/util/math.hpp>
54#include <boost/geometry/util/select_calculation_type.hpp>
55
56
57namespace boost { namespace geometry
58{
59
60namespace strategy { namespace intersection
61{
62
63// CONSIDER: Improvement of the robustness/accuracy/repeatability by
64// moving all segments to 0 longitude
65// picking latitudes closer to 0
66// etc.
67
68template
69<
70 typename FormulaPolicy = strategy::andoyer,
71 unsigned int Order = strategy::default_order<FormulaPolicy>::value,
72 typename Spheroid = srs::spheroid<double>,
73 typename CalculationType = void
74>
75struct geographic_segments
76{
92f5a8d4
TL
77 typedef geographic_tag cs_tag;
78
b32b8144
FG
79 typedef side::geographic
80 <
81 FormulaPolicy, Spheroid, CalculationType
82 > side_strategy_type;
83
84 inline side_strategy_type get_side_strategy() const
85 {
86 return side_strategy_type(m_spheroid);
87 }
88
89 template <typename Geometry1, typename Geometry2>
90 struct point_in_geometry_strategy
91 {
92 typedef strategy::within::geographic_winding
93 <
94 typename point_type<Geometry1>::type,
95 typename point_type<Geometry2>::type,
96 FormulaPolicy,
97 Spheroid,
98 CalculationType
99 > type;
100 };
101
102 template <typename Geometry1, typename Geometry2>
103 inline typename point_in_geometry_strategy<Geometry1, Geometry2>::type
104 get_point_in_geometry_strategy() const
105 {
106 typedef typename point_in_geometry_strategy
107 <
108 Geometry1, Geometry2
109 >::type strategy_type;
110 return strategy_type(m_spheroid);
111 }
112
113 template <typename Geometry>
114 struct area_strategy
115 {
116 typedef area::geographic
117 <
b32b8144
FG
118 FormulaPolicy,
119 Order,
120 Spheroid,
121 CalculationType
122 > type;
123 };
124
125 template <typename Geometry>
126 inline typename area_strategy<Geometry>::type get_area_strategy() const
127 {
128 typedef typename area_strategy<Geometry>::type strategy_type;
129 return strategy_type(m_spheroid);
130 }
131
132 template <typename Geometry>
133 struct distance_strategy
134 {
135 typedef distance::geographic
136 <
137 FormulaPolicy,
138 Spheroid,
139 CalculationType
140 > type;
141 };
142
143 template <typename Geometry>
144 inline typename distance_strategy<Geometry>::type get_distance_strategy() const
145 {
146 typedef typename distance_strategy<Geometry>::type strategy_type;
147 return strategy_type(m_spheroid);
148 }
149
92f5a8d4 150 typedef envelope::geographic<FormulaPolicy, Spheroid, CalculationType>
b32b8144
FG
151 envelope_strategy_type;
152
153 inline envelope_strategy_type get_envelope_strategy() const
154 {
155 return envelope_strategy_type(m_spheroid);
156 }
157
92f5a8d4
TL
158 typedef expand::geographic_segment<FormulaPolicy, Spheroid, CalculationType>
159 expand_strategy_type;
160
161 inline expand_strategy_type get_expand_strategy() const
162 {
163 return expand_strategy_type(m_spheroid);
164 }
165
166 typedef within::spherical_point_point point_in_point_strategy_type;
167
168 static inline point_in_point_strategy_type get_point_in_point_strategy()
169 {
170 return point_in_point_strategy_type();
171 }
172
173 typedef within::spherical_point_point equals_point_point_strategy_type;
174
175 static inline equals_point_point_strategy_type get_equals_point_point_strategy()
176 {
177 return equals_point_point_strategy_type();
178 }
179
180 typedef disjoint::spherical_box_box disjoint_box_box_strategy_type;
181
182 static inline disjoint_box_box_strategy_type get_disjoint_box_box_strategy()
183 {
184 return disjoint_box_box_strategy_type();
185 }
186
187 typedef disjoint::segment_box_geographic
188 <
189 FormulaPolicy, Spheroid, CalculationType
190 > disjoint_segment_box_strategy_type;
191
192 inline disjoint_segment_box_strategy_type get_disjoint_segment_box_strategy() const
193 {
194 return disjoint_segment_box_strategy_type(m_spheroid);
195 }
196
197 typedef covered_by::spherical_point_box disjoint_point_box_strategy_type;
198 typedef covered_by::spherical_point_box covered_by_point_box_strategy_type;
199 typedef within::spherical_point_box within_point_box_strategy_type;
200 typedef envelope::spherical_box envelope_box_strategy_type;
201 typedef expand::spherical_box expand_box_strategy_type;
202
b32b8144
FG
203 enum intersection_point_flag { ipi_inters = 0, ipi_at_a1, ipi_at_a2, ipi_at_b1, ipi_at_b2 };
204
205 template <typename CoordinateType, typename SegmentRatio>
206 struct segment_intersection_info
207 {
b32b8144 208 template <typename Point, typename Segment1, typename Segment2>
11fdf7f2 209 void calculate(Point& point, Segment1 const& a, Segment2 const& b) const
b32b8144
FG
210 {
211 if (ip_flag == ipi_inters)
212 {
213 // TODO: assign the rest of coordinates
214 set_from_radian<0>(point, lon);
215 set_from_radian<1>(point, lat);
216 }
217 else if (ip_flag == ipi_at_a1)
218 {
219 detail::assign_point_from_index<0>(a, point);
220 }
221 else if (ip_flag == ipi_at_a2)
222 {
223 detail::assign_point_from_index<1>(a, point);
224 }
225 else if (ip_flag == ipi_at_b1)
226 {
227 detail::assign_point_from_index<0>(b, point);
228 }
229 else // ip_flag == ipi_at_b2
230 {
231 detail::assign_point_from_index<1>(b, point);
232 }
233 }
234
235 CoordinateType lon;
236 CoordinateType lat;
237 SegmentRatio robust_ra;
238 SegmentRatio robust_rb;
239 intersection_point_flag ip_flag;
240 };
241
242 explicit geographic_segments(Spheroid const& spheroid = Spheroid())
243 : m_spheroid(spheroid)
244 {}
245
246 // Relate segments a and b
247 template
248 <
92f5a8d4
TL
249 typename UniqueSubRange1,
250 typename UniqueSubRange2,
251 typename Policy
b32b8144 252 >
92f5a8d4
TL
253 inline typename Policy::return_type apply(UniqueSubRange1 const& range_p,
254 UniqueSubRange2 const& range_q,
255 Policy const&) const
b32b8144 256 {
92f5a8d4
TL
257 typedef typename UniqueSubRange1::point_type point1_type;
258 typedef typename UniqueSubRange2::point_type point2_type;
259 typedef model::referring_segment<point1_type const> segment_type1;
260 typedef model::referring_segment<point2_type const> segment_type2;
261
262 BOOST_CONCEPT_ASSERT( (concepts::ConstPoint<point1_type>) );
263 BOOST_CONCEPT_ASSERT( (concepts::ConstPoint<point2_type>) );
264
265 /*
266 typename coordinate_type<Point1>::type
267 const a1_lon = get<0>(a1),
268 const a2_lon = get<0>(a2);
269 typename coordinate_type<Point2>::type
270 const b1_lon = get<0>(b1),
271 const b2_lon = get<0>(b2);
272 bool is_a_reversed = a1_lon > a2_lon || a1_lon == a2_lon && get<1>(a1) > get<1>(a2);
273 bool is_b_reversed = b1_lon > b2_lon || b1_lon == b2_lon && get<1>(b1) > get<1>(b2);
274 */
275
276 bool const is_p_reversed = get<1>(range_p.at(0)) > get<1>(range_p.at(1));
277 bool const is_q_reversed = get<1>(range_q.at(0)) > get<1>(range_q.at(1));
278
279 // Call apply with original segments and ordered points
280 return apply<Policy>(segment_type1(range_p.at(0), range_p.at(1)),
281 segment_type2(range_q.at(0), range_q.at(1)),
282 range_p.at(is_p_reversed ? 1 : 0),
283 range_p.at(is_p_reversed ? 0 : 1),
284 range_q.at(is_q_reversed ? 1 : 0),
285 range_q.at(is_q_reversed ? 0 : 1),
286 is_p_reversed, is_q_reversed);
b32b8144
FG
287 }
288
289private:
290 // Relate segments a and b
291 template
292 <
293 typename Policy,
294 typename Segment1,
295 typename Segment2,
296 typename Point1,
297 typename Point2
298 >
299 inline typename Policy::return_type apply(Segment1 const& a, Segment2 const& b,
300 Point1 const& a1, Point1 const& a2,
301 Point2 const& b1, Point2 const& b2,
302 bool is_a_reversed, bool is_b_reversed) const
303 {
304 BOOST_CONCEPT_ASSERT( (concepts::ConstSegment<Segment1>) );
305 BOOST_CONCEPT_ASSERT( (concepts::ConstSegment<Segment2>) );
306
307 typedef typename select_calculation_type
308 <Segment1, Segment2, CalculationType>::type calc_t;
309
310 typedef srs::spheroid<calc_t> spheroid_type;
311
312 static const calc_t c0 = 0;
313
314 // normalized spheroid
315 spheroid_type spheroid = formula::unit_spheroid<spheroid_type>(m_spheroid);
316
317 // TODO: check only 2 first coordinates here?
b32b8144
FG
318 bool a_is_point = equals_point_point(a1, a2);
319 bool b_is_point = equals_point_point(b1, b2);
320
321 if(a_is_point && b_is_point)
322 {
323 return equals_point_point(a1, b2)
324 ? Policy::degenerate(a, true)
325 : Policy::disjoint()
326 ;
327 }
328
329 calc_t const a1_lon = get_as_radian<0>(a1);
330 calc_t const a1_lat = get_as_radian<1>(a1);
331 calc_t const a2_lon = get_as_radian<0>(a2);
332 calc_t const a2_lat = get_as_radian<1>(a2);
333 calc_t const b1_lon = get_as_radian<0>(b1);
334 calc_t const b1_lat = get_as_radian<1>(b1);
335 calc_t const b2_lon = get_as_radian<0>(b2);
336 calc_t const b2_lat = get_as_radian<1>(b2);
337
338 side_info sides;
339
340 // NOTE: potential optimization, don't calculate distance at this point
341 // this would require to reimplement inverse strategy to allow
342 // calculation of distance if needed, probably also storing intermediate
343 // results somehow inside an object.
344 typedef typename FormulaPolicy::template inverse<calc_t, true, true, false, false, false> inverse_dist_azi;
345 typedef typename inverse_dist_azi::result_type inverse_result;
346
347 // TODO: no need to call inverse formula if we know that the points are equal
348 // distance can be set to 0 in this case and azimuth may be not calculated
349 bool is_equal_a1_b1 = equals_point_point(a1, b1);
350 bool is_equal_a2_b1 = equals_point_point(a2, b1);
351 bool degen_neq_coords = false;
352
353 inverse_result res_b1_b2, res_b1_a1, res_b1_a2;
354 if (! b_is_point)
355 {
356 res_b1_b2 = inverse_dist_azi::apply(b1_lon, b1_lat, b2_lon, b2_lat, spheroid);
357 if (math::equals(res_b1_b2.distance, c0))
358 {
359 b_is_point = true;
360 degen_neq_coords = true;
361 }
362 else
363 {
364 res_b1_a1 = inverse_dist_azi::apply(b1_lon, b1_lat, a1_lon, a1_lat, spheroid);
365 if (math::equals(res_b1_a1.distance, c0))
366 {
367 is_equal_a1_b1 = true;
368 }
369 res_b1_a2 = inverse_dist_azi::apply(b1_lon, b1_lat, a2_lon, a2_lat, spheroid);
370 if (math::equals(res_b1_a2.distance, c0))
371 {
372 is_equal_a2_b1 = true;
373 }
374 sides.set<0>(is_equal_a1_b1 ? 0 : formula::azimuth_side_value(res_b1_a1.azimuth, res_b1_b2.azimuth),
375 is_equal_a2_b1 ? 0 : formula::azimuth_side_value(res_b1_a2.azimuth, res_b1_b2.azimuth));
376 if (sides.same<0>())
377 {
378 // Both points are at the same side of other segment, we can leave
379 return Policy::disjoint();
380 }
381 }
382 }
383
384 bool is_equal_a1_b2 = equals_point_point(a1, b2);
385
386 inverse_result res_a1_a2, res_a1_b1, res_a1_b2;
387 if (! a_is_point)
388 {
389 res_a1_a2 = inverse_dist_azi::apply(a1_lon, a1_lat, a2_lon, a2_lat, spheroid);
390 if (math::equals(res_a1_a2.distance, c0))
391 {
392 a_is_point = true;
393 degen_neq_coords = true;
394 }
395 else
396 {
397 res_a1_b1 = inverse_dist_azi::apply(a1_lon, a1_lat, b1_lon, b1_lat, spheroid);
398 if (math::equals(res_a1_b1.distance, c0))
399 {
400 is_equal_a1_b1 = true;
401 }
402 res_a1_b2 = inverse_dist_azi::apply(a1_lon, a1_lat, b2_lon, b2_lat, spheroid);
403 if (math::equals(res_a1_b2.distance, c0))
404 {
405 is_equal_a1_b2 = true;
406 }
407 sides.set<1>(is_equal_a1_b1 ? 0 : formula::azimuth_side_value(res_a1_b1.azimuth, res_a1_a2.azimuth),
408 is_equal_a1_b2 ? 0 : formula::azimuth_side_value(res_a1_b2.azimuth, res_a1_a2.azimuth));
409 if (sides.same<1>())
410 {
411 // Both points are at the same side of other segment, we can leave
412 return Policy::disjoint();
413 }
414 }
415 }
416
417 if(a_is_point && b_is_point)
418 {
419 return is_equal_a1_b2
420 ? Policy::degenerate(a, true)
421 : Policy::disjoint()
422 ;
423 }
424
425 // NOTE: at this point the segments may still be disjoint
426 // NOTE: at this point one of the segments may be degenerated
427
428 bool collinear = sides.collinear();
429
430 if (! collinear)
431 {
432 // WARNING: the side strategy doesn't have the info about the other
433 // segment so it may return results inconsistent with this intersection
434 // strategy, as it checks both segments for consistency
435
436 if (sides.get<0, 0>() == 0 && sides.get<0, 1>() == 0)
437 {
438 collinear = true;
439 sides.set<1>(0, 0);
440 }
441 else if (sides.get<1, 0>() == 0 && sides.get<1, 1>() == 0)
442 {
443 collinear = true;
444 sides.set<0>(0, 0);
445 }
446 }
447
448 if (collinear)
449 {
450 if (a_is_point)
451 {
452 return collinear_one_degenerated<Policy, calc_t>(a, true, b1, b2, a1, a2, res_b1_b2, res_b1_a1, res_b1_a2, is_b_reversed, degen_neq_coords);
453 }
454 else if (b_is_point)
455 {
456 return collinear_one_degenerated<Policy, calc_t>(b, false, a1, a2, b1, b2, res_a1_a2, res_a1_b1, res_a1_b2, is_a_reversed, degen_neq_coords);
457 }
458 else
459 {
460 calc_t dist_a1_a2, dist_a1_b1, dist_a1_b2;
461 calc_t dist_b1_b2, dist_b1_a1, dist_b1_a2;
462 // use shorter segment
463 if (res_a1_a2.distance <= res_b1_b2.distance)
464 {
465 calculate_collinear_data(a1, a2, b1, b2, res_a1_a2, res_a1_b1, res_a1_b2, dist_a1_a2, dist_a1_b1);
92f5a8d4 466 calculate_collinear_data(a1, a2, b2, b1, res_a1_a2, res_a1_b2, res_a1_b1, dist_a1_a2, dist_a1_b2);
b32b8144
FG
467 dist_b1_b2 = dist_a1_b2 - dist_a1_b1;
468 dist_b1_a1 = -dist_a1_b1;
469 dist_b1_a2 = dist_a1_a2 - dist_a1_b1;
470 }
471 else
472 {
473 calculate_collinear_data(b1, b2, a1, a2, res_b1_b2, res_b1_a1, res_b1_a2, dist_b1_b2, dist_b1_a1);
92f5a8d4 474 calculate_collinear_data(b1, b2, a2, a1, res_b1_b2, res_b1_a2, res_b1_a1, dist_b1_b2, dist_b1_a2);
b32b8144
FG
475 dist_a1_a2 = dist_b1_a2 - dist_b1_a1;
476 dist_a1_b1 = -dist_b1_a1;
477 dist_a1_b2 = dist_b1_b2 - dist_b1_a1;
478 }
479
480 // NOTE: this is probably not needed
b32b8144
FG
481 int a1_on_b = position_value(c0, dist_a1_b1, dist_a1_b2);
482 int a2_on_b = position_value(dist_a1_a2, dist_a1_b1, dist_a1_b2);
483 int b1_on_a = position_value(c0, dist_b1_a1, dist_b1_a2);
484 int b2_on_a = position_value(dist_b1_b2, dist_b1_a1, dist_b1_a2);
485
486 if ((a1_on_b < 1 && a2_on_b < 1) || (a1_on_b > 3 && a2_on_b > 3))
487 {
488 return Policy::disjoint();
489 }
490
491 if (a1_on_b == 1)
492 {
493 dist_b1_a1 = 0;
494 dist_a1_b1 = 0;
495 }
496 else if (a1_on_b == 3)
497 {
498 dist_b1_a1 = dist_b1_b2;
499 dist_a1_b2 = 0;
500 }
501
502 if (a2_on_b == 1)
503 {
504 dist_b1_a2 = 0;
505 dist_a1_b1 = dist_a1_a2;
506 }
507 else if (a2_on_b == 3)
508 {
509 dist_b1_a2 = dist_b1_b2;
510 dist_a1_b2 = dist_a1_a2;
511 }
512
513 bool opposite = ! same_direction(res_a1_a2.azimuth, res_b1_b2.azimuth);
514
515 // NOTE: If segment was reversed opposite, positions and segment ratios has to be altered
516 if (is_a_reversed)
517 {
518 // opposite
519 opposite = ! opposite;
520 // positions
521 std::swap(a1_on_b, a2_on_b);
522 b1_on_a = 4 - b1_on_a;
523 b2_on_a = 4 - b2_on_a;
524 // distances for ratios
525 std::swap(dist_b1_a1, dist_b1_a2);
526 dist_a1_b1 = dist_a1_a2 - dist_a1_b1;
527 dist_a1_b2 = dist_a1_a2 - dist_a1_b2;
528 }
529 if (is_b_reversed)
530 {
531 // opposite
532 opposite = ! opposite;
533 // positions
534 a1_on_b = 4 - a1_on_b;
535 a2_on_b = 4 - a2_on_b;
536 std::swap(b1_on_a, b2_on_a);
537 // distances for ratios
538 dist_b1_a1 = dist_b1_b2 - dist_b1_a1;
539 dist_b1_a2 = dist_b1_b2 - dist_b1_a2;
540 std::swap(dist_a1_b1, dist_a1_b2);
541 }
542
543 segment_ratio<calc_t> ra_from(dist_b1_a1, dist_b1_b2);
544 segment_ratio<calc_t> ra_to(dist_b1_a2, dist_b1_b2);
545 segment_ratio<calc_t> rb_from(dist_a1_b1, dist_a1_a2);
546 segment_ratio<calc_t> rb_to(dist_a1_b2, dist_a1_a2);
547
548 return Policy::segments_collinear(a, b, opposite,
549 a1_on_b, a2_on_b, b1_on_a, b2_on_a,
550 ra_from, ra_to, rb_from, rb_to);
551 }
552 }
553 else // crossing or touching
554 {
555 if (a_is_point || b_is_point)
556 {
557 return Policy::disjoint();
558 }
559
560 calc_t lon = 0, lat = 0;
561 intersection_point_flag ip_flag;
562 calc_t dist_a1_a2, dist_a1_i1, dist_b1_b2, dist_b1_i1;
563 if (calculate_ip_data(a1, a2, b1, b2,
564 a1_lon, a1_lat, a2_lon, a2_lat,
565 b1_lon, b1_lat, b2_lon, b2_lat,
566 res_a1_a2, res_a1_b1, res_a1_b2,
567 res_b1_b2, res_b1_a1, res_b1_a2,
568 sides, spheroid,
569 lon, lat,
570 dist_a1_a2, dist_a1_i1, dist_b1_b2, dist_b1_i1,
571 ip_flag))
572 {
573 // NOTE: If segment was reversed sides and segment ratios has to be altered
574 if (is_a_reversed)
575 {
576 // sides
577 sides_reverse_segment<0>(sides);
578 // distance for ratio
579 dist_a1_i1 = dist_a1_a2 - dist_a1_i1;
580 // ip flag
581 ip_flag_reverse_segment(ip_flag, ipi_at_a1, ipi_at_a2);
582 }
583 if (is_b_reversed)
584 {
585 // sides
586 sides_reverse_segment<1>(sides);
587 // distance for ratio
588 dist_b1_i1 = dist_b1_b2 - dist_b1_i1;
589 // ip flag
590 ip_flag_reverse_segment(ip_flag, ipi_at_b1, ipi_at_b2);
591 }
592
593 // intersects
594 segment_intersection_info
595 <
596 calc_t,
597 segment_ratio<calc_t>
598 > sinfo;
599
600 sinfo.lon = lon;
601 sinfo.lat = lat;
602 sinfo.robust_ra.assign(dist_a1_i1, dist_a1_a2);
603 sinfo.robust_rb.assign(dist_b1_i1, dist_b1_b2);
604 sinfo.ip_flag = ip_flag;
605
606 return Policy::segments_crosses(sides, sinfo, a, b);
607 }
608 else
609 {
610 return Policy::disjoint();
611 }
612 }
613 }
614
615 template <typename Policy, typename CalcT, typename Segment, typename Point1, typename Point2, typename ResultInverse>
616 static inline typename Policy::return_type
617 collinear_one_degenerated(Segment const& segment, bool degenerated_a,
618 Point1 const& a1, Point1 const& a2,
619 Point2 const& b1, Point2 const& b2,
620 ResultInverse const& res_a1_a2,
621 ResultInverse const& res_a1_b1,
622 ResultInverse const& res_a1_b2,
623 bool is_other_reversed,
624 bool degen_neq_coords)
625 {
626 CalcT dist_1_2, dist_1_o;
627 if (! calculate_collinear_data(a1, a2, b1, b2, res_a1_a2, res_a1_b1, res_a1_b2, dist_1_2, dist_1_o, degen_neq_coords))
628 {
629 return Policy::disjoint();
630 }
631
632 // NOTE: If segment was reversed segment ratio has to be altered
633 if (is_other_reversed)
634 {
635 // distance for ratio
636 dist_1_o = dist_1_2 - dist_1_o;
637 }
638
639 return Policy::one_degenerate(segment, segment_ratio<CalcT>(dist_1_o, dist_1_2), degenerated_a);
640 }
641
642 // TODO: instead of checks below test bi against a1 and a2 here?
643 // in order to make this independent from is_near()
644 template <typename Point1, typename Point2, typename ResultInverse, typename CalcT>
645 static inline bool calculate_collinear_data(Point1 const& a1, Point1 const& a2, // in
92f5a8d4 646 Point2 const& b1, Point2 const& /*b2*/, // in
b32b8144
FG
647 ResultInverse const& res_a1_a2, // in
648 ResultInverse const& res_a1_b1, // in
649 ResultInverse const& res_a1_b2, // in
650 CalcT& dist_a1_a2, // out
92f5a8d4 651 CalcT& dist_a1_b1, // out
b32b8144
FG
652 bool degen_neq_coords = false) // in
653 {
654 dist_a1_a2 = res_a1_a2.distance;
655
92f5a8d4 656 dist_a1_b1 = res_a1_b1.distance;
b32b8144
FG
657 if (! same_direction(res_a1_b1.azimuth, res_a1_a2.azimuth))
658 {
92f5a8d4 659 dist_a1_b1 = -dist_a1_b1;
b32b8144
FG
660 }
661
92f5a8d4
TL
662 // if b1 is close a1
663 if (is_endpoint_equal(dist_a1_b1, a1, b1))
b32b8144 664 {
92f5a8d4 665 dist_a1_b1 = 0;
b32b8144
FG
666 return true;
667 }
92f5a8d4
TL
668 // if b1 is close a2
669 else if (is_endpoint_equal(dist_a1_a2 - dist_a1_b1, a2, b1))
b32b8144 670 {
92f5a8d4 671 dist_a1_b1 = dist_a1_a2;
b32b8144
FG
672 return true;
673 }
674
92f5a8d4 675 // check the other endpoint of degenerated segment near a pole
b32b8144
FG
676 if (degen_neq_coords)
677 {
678 static CalcT const c0 = 0;
679 if (math::equals(res_a1_b2.distance, c0))
680 {
92f5a8d4 681 dist_a1_b1 = 0;
b32b8144
FG
682 return true;
683 }
684 else if (math::equals(dist_a1_a2 - res_a1_b2.distance, c0))
685 {
92f5a8d4 686 dist_a1_b1 = dist_a1_a2;
b32b8144
FG
687 return true;
688 }
689 }
690
691 // or i1 is on b
92f5a8d4 692 return segment_ratio<CalcT>(dist_a1_b1, dist_a1_a2).on_segment();
b32b8144
FG
693 }
694
695 template <typename Point1, typename Point2, typename CalcT, typename ResultInverse, typename Spheroid_>
696 static inline bool calculate_ip_data(Point1 const& a1, Point1 const& a2, // in
697 Point2 const& b1, Point2 const& b2, // in
698 CalcT const& a1_lon, CalcT const& a1_lat, // in
699 CalcT const& a2_lon, CalcT const& a2_lat, // in
700 CalcT const& b1_lon, CalcT const& b1_lat, // in
701 CalcT const& b2_lon, CalcT const& b2_lat, // in
702 ResultInverse const& res_a1_a2, // in
703 ResultInverse const& res_a1_b1, // in
704 ResultInverse const& res_a1_b2, // in
705 ResultInverse const& res_b1_b2, // in
706 ResultInverse const& res_b1_a1, // in
707 ResultInverse const& res_b1_a2, // in
708 side_info const& sides, // in
709 Spheroid_ const& spheroid, // in
710 CalcT & lon, CalcT & lat, // out
711 CalcT& dist_a1_a2, CalcT& dist_a1_ip, // out
712 CalcT& dist_b1_b2, CalcT& dist_b1_ip, // out
713 intersection_point_flag& ip_flag) // out
714 {
715 dist_a1_a2 = res_a1_a2.distance;
716 dist_b1_b2 = res_b1_b2.distance;
717
718 // assign the IP if some endpoints overlap
b32b8144
FG
719 if (equals_point_point(a1, b1))
720 {
721 lon = a1_lon;
722 lat = a1_lat;
723 dist_a1_ip = 0;
724 dist_b1_ip = 0;
725 ip_flag = ipi_at_a1;
726 return true;
727 }
728 else if (equals_point_point(a1, b2))
729 {
730 lon = a1_lon;
731 lat = a1_lat;
732 dist_a1_ip = 0;
733 dist_b1_ip = dist_b1_b2;
734 ip_flag = ipi_at_a1;
735 return true;
736 }
737 else if (equals_point_point(a2, b1))
738 {
739 lon = a2_lon;
740 lat = a2_lat;
741 dist_a1_ip = dist_a1_a2;
742 dist_b1_ip = 0;
743 ip_flag = ipi_at_a2;
744 return true;
745 }
746 else if (equals_point_point(a2, b2))
747 {
748 lon = a2_lon;
749 lat = a2_lat;
750 dist_a1_ip = dist_a1_a2;
751 dist_b1_ip = dist_b1_b2;
752 ip_flag = ipi_at_a2;
753 return true;
754 }
755
756 // at this point we know that the endpoints doesn't overlap
757 // check cases when an endpoint lies on the other geodesic
758 if (sides.template get<0, 0>() == 0) // a1 wrt b
759 {
760 if (res_b1_a1.distance <= res_b1_b2.distance
761 && same_direction(res_b1_a1.azimuth, res_b1_b2.azimuth))
762 {
763 lon = a1_lon;
764 lat = a1_lat;
765 dist_a1_ip = 0;
766 dist_b1_ip = res_b1_a1.distance;
767 ip_flag = ipi_at_a1;
768 return true;
769 }
770 else
771 {
772 return false;
773 }
774 }
775 else if (sides.template get<0, 1>() == 0) // a2 wrt b
776 {
777 if (res_b1_a2.distance <= res_b1_b2.distance
778 && same_direction(res_b1_a2.azimuth, res_b1_b2.azimuth))
779 {
780 lon = a2_lon;
781 lat = a2_lat;
782 dist_a1_ip = res_a1_a2.distance;
783 dist_b1_ip = res_b1_a2.distance;
784 ip_flag = ipi_at_a2;
785 return true;
786 }
787 else
788 {
789 return false;
790 }
791 }
792 else if (sides.template get<1, 0>() == 0) // b1 wrt a
793 {
794 if (res_a1_b1.distance <= res_a1_a2.distance
795 && same_direction(res_a1_b1.azimuth, res_a1_a2.azimuth))
796 {
797 lon = b1_lon;
798 lat = b1_lat;
799 dist_a1_ip = res_a1_b1.distance;
800 dist_b1_ip = 0;
801 ip_flag = ipi_at_b1;
802 return true;
803 }
804 else
805 {
806 return false;
807 }
808 }
809 else if (sides.template get<1, 1>() == 0) // b2 wrt a
810 {
811 if (res_a1_b2.distance <= res_a1_a2.distance
812 && same_direction(res_a1_b2.azimuth, res_a1_a2.azimuth))
813 {
814 lon = b2_lon;
815 lat = b2_lat;
816 dist_a1_ip = res_a1_b2.distance;
817 dist_b1_ip = res_b1_b2.distance;
818 ip_flag = ipi_at_b2;
819 return true;
820 }
821 else
822 {
823 return false;
824 }
825 }
826
827 // At this point neither the endpoints overlaps
828 // nor any andpoint lies on the other geodesic
829 // So the endpoints should lie on the opposite sides of both geodesics
830
831 bool const ok = formula::sjoberg_intersection<CalcT, FormulaPolicy::template inverse, Order>
832 ::apply(a1_lon, a1_lat, a2_lon, a2_lat, res_a1_a2.azimuth,
833 b1_lon, b1_lat, b2_lon, b2_lat, res_b1_b2.azimuth,
834 lon, lat, spheroid);
835
836 if (! ok)
837 {
838 return false;
839 }
840
841 typedef typename FormulaPolicy::template inverse<CalcT, true, true, false, false, false> inverse_dist_azi;
842 typedef typename inverse_dist_azi::result_type inverse_result;
843
844 inverse_result const res_a1_ip = inverse_dist_azi::apply(a1_lon, a1_lat, lon, lat, spheroid);
845 dist_a1_ip = res_a1_ip.distance;
846 if (! same_direction(res_a1_ip.azimuth, res_a1_a2.azimuth))
847 {
848 dist_a1_ip = -dist_a1_ip;
849 }
850
851 bool is_on_a = segment_ratio<CalcT>(dist_a1_ip, dist_a1_a2).on_segment();
852 // NOTE: not fully consistent with equals_point_point() since radians are always used.
853 bool is_on_a1 = math::equals(lon, a1_lon) && math::equals(lat, a1_lat);
854 bool is_on_a2 = math::equals(lon, a2_lon) && math::equals(lat, a2_lat);
855
856 if (! (is_on_a || is_on_a1 || is_on_a2))
857 {
858 return false;
859 }
860
861 inverse_result const res_b1_ip = inverse_dist_azi::apply(b1_lon, b1_lat, lon, lat, spheroid);
862 dist_b1_ip = res_b1_ip.distance;
863 if (! same_direction(res_b1_ip.azimuth, res_b1_b2.azimuth))
864 {
865 dist_b1_ip = -dist_b1_ip;
866 }
867
868 bool is_on_b = segment_ratio<CalcT>(dist_b1_ip, dist_b1_b2).on_segment();
869 // NOTE: not fully consistent with equals_point_point() since radians are always used.
870 bool is_on_b1 = math::equals(lon, b1_lon) && math::equals(lat, b1_lat);
871 bool is_on_b2 = math::equals(lon, b2_lon) && math::equals(lat, b2_lat);
872
873 if (! (is_on_b || is_on_b1 || is_on_b2))
874 {
875 return false;
876 }
877
92f5a8d4
TL
878 typedef typename FormulaPolicy::template inverse<CalcT, true, false, false, false, false> inverse_dist;
879
b32b8144
FG
880 ip_flag = ipi_inters;
881
882 if (is_on_b1)
883 {
884 lon = b1_lon;
885 lat = b1_lat;
92f5a8d4 886 dist_a1_ip = inverse_dist::apply(a1_lon, a1_lat, lon, lat, spheroid).distance; // for consistency
b32b8144
FG
887 dist_b1_ip = 0;
888 ip_flag = ipi_at_b1;
889 }
890 else if (is_on_b2)
891 {
892 lon = b2_lon;
893 lat = b2_lat;
92f5a8d4 894 dist_a1_ip = inverse_dist::apply(a1_lon, a1_lat, lon, lat, spheroid).distance; // for consistency
b32b8144
FG
895 dist_b1_ip = res_b1_b2.distance;
896 ip_flag = ipi_at_b2;
897 }
898
899 if (is_on_a1)
900 {
901 lon = a1_lon;
902 lat = a1_lat;
903 dist_a1_ip = 0;
92f5a8d4 904 dist_b1_ip = inverse_dist::apply(b1_lon, b1_lat, lon, lat, spheroid).distance; // for consistency
b32b8144
FG
905 ip_flag = ipi_at_a1;
906 }
907 else if (is_on_a2)
908 {
909 lon = a2_lon;
910 lat = a2_lat;
911 dist_a1_ip = res_a1_a2.distance;
92f5a8d4 912 dist_b1_ip = inverse_dist::apply(b1_lon, b1_lat, lon, lat, spheroid).distance; // for consistency
b32b8144
FG
913 ip_flag = ipi_at_a2;
914 }
915
916 return true;
917 }
918
919 template <typename CalcT, typename P1, typename P2>
920 static inline bool is_endpoint_equal(CalcT const& dist,
92f5a8d4 921 P1 const& ai, P2 const& b1)
b32b8144
FG
922 {
923 static CalcT const c0 = 0;
92f5a8d4 924 return is_near(dist) && (math::equals(dist, c0) || equals_point_point(ai, b1));
b32b8144
FG
925 }
926
927 template <typename CalcT>
928 static inline bool is_near(CalcT const& dist)
929 {
930 // NOTE: This strongly depends on the Inverse method
931 CalcT const small_number = CalcT(boost::is_same<CalcT, float>::value ? 0.0001 : 0.00000001);
932 return math::abs(dist) <= small_number;
933 }
934
935 template <typename ProjCoord1, typename ProjCoord2>
936 static inline int position_value(ProjCoord1 const& ca1,
937 ProjCoord2 const& cb1,
938 ProjCoord2 const& cb2)
939 {
940 // S1x 0 1 2 3 4
941 // S2 |---------->
942 return math::equals(ca1, cb1) ? 1
943 : math::equals(ca1, cb2) ? 3
944 : cb1 < cb2 ?
945 ( ca1 < cb1 ? 0
946 : ca1 > cb2 ? 4
947 : 2 )
948 : ( ca1 > cb1 ? 0
949 : ca1 < cb2 ? 4
950 : 2 );
951 }
952
953 template <typename CalcT>
954 static inline bool same_direction(CalcT const& azimuth1, CalcT const& azimuth2)
955 {
956 // distance between two angles normalized to (-180, 180]
957 CalcT const angle_diff = math::longitude_distance_signed<radian>(azimuth1, azimuth2);
958 return math::abs(angle_diff) <= math::half_pi<CalcT>();
959 }
960
961 template <int Which>
962 static inline void sides_reverse_segment(side_info & sides)
963 {
964 // names assuming segment A is reversed (Which == 0)
965 int a1_wrt_b = sides.template get<Which, 0>();
966 int a2_wrt_b = sides.template get<Which, 1>();
967 std::swap(a1_wrt_b, a2_wrt_b);
968 sides.template set<Which>(a1_wrt_b, a2_wrt_b);
969 int b1_wrt_a = sides.template get<1 - Which, 0>();
970 int b2_wrt_a = sides.template get<1 - Which, 1>();
971 sides.template set<1 - Which>(-b1_wrt_a, -b2_wrt_a);
972 }
973
974 static inline void ip_flag_reverse_segment(intersection_point_flag & ip_flag,
975 intersection_point_flag const& ipi_at_p1,
976 intersection_point_flag const& ipi_at_p2)
977 {
978 ip_flag = ip_flag == ipi_at_p1 ? ipi_at_p2 :
979 ip_flag == ipi_at_p2 ? ipi_at_p1 :
980 ip_flag;
981 }
982
92f5a8d4
TL
983 template <typename Point1, typename Point2>
984 static inline bool equals_point_point(Point1 const& point1, Point2 const& point2)
985 {
986 return detail::equals::equals_point_point(point1, point2,
987 point_in_point_strategy_type());
988 }
989
b32b8144
FG
990private:
991 Spheroid m_spheroid;
992};
993
994
995}} // namespace strategy::intersection
996
997}} // namespace boost::geometry
998
999
1000#endif // BOOST_GEOMETRY_STRATEGIES_GEOGRAPHIC_INTERSECTION_HPP