]> git.proxmox.com Git - ceph.git/blame - ceph/src/boost/boost/geometry/strategies/spherical/intersection.hpp
import new upstream nautilus stable release 14.2.8
[ceph.git] / ceph / src / boost / boost / geometry / strategies / spherical / intersection.hpp
CommitLineData
b32b8144
FG
1// Boost.Geometry
2
11fdf7f2
TL
3// Copyright (c) 2017 Adam Wulkiewicz, Lodz, Poland.
4
92f5a8d4 5// Copyright (c) 2016-2019, Oracle and/or its affiliates.
b32b8144
FG
6// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
7
8// Use, modification and distribution is subject to the Boost Software License,
9// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
10// http://www.boost.org/LICENSE_1_0.txt)
11
12#ifndef BOOST_GEOMETRY_STRATEGIES_SPHERICAL_INTERSECTION_HPP
13#define BOOST_GEOMETRY_STRATEGIES_SPHERICAL_INTERSECTION_HPP
14
15#include <algorithm>
16
17#include <boost/geometry/core/cs.hpp>
18#include <boost/geometry/core/access.hpp>
19#include <boost/geometry/core/radian_access.hpp>
20#include <boost/geometry/core/tags.hpp>
21
22#include <boost/geometry/algorithms/detail/assign_values.hpp>
23#include <boost/geometry/algorithms/detail/assign_indexed_point.hpp>
24#include <boost/geometry/algorithms/detail/equals/point_point.hpp>
25#include <boost/geometry/algorithms/detail/recalculate.hpp>
26
27#include <boost/geometry/arithmetic/arithmetic.hpp>
28#include <boost/geometry/arithmetic/cross_product.hpp>
29#include <boost/geometry/arithmetic/dot_product.hpp>
30#include <boost/geometry/arithmetic/normalize.hpp>
31#include <boost/geometry/formulas/spherical.hpp>
32
33#include <boost/geometry/geometries/concepts/point_concept.hpp>
34#include <boost/geometry/geometries/concepts/segment_concept.hpp>
35
36#include <boost/geometry/policies/robustness/segment_ratio.hpp>
37
38#include <boost/geometry/strategies/covered_by.hpp>
39#include <boost/geometry/strategies/intersection.hpp>
40#include <boost/geometry/strategies/intersection_result.hpp>
41#include <boost/geometry/strategies/side.hpp>
42#include <boost/geometry/strategies/side_info.hpp>
43#include <boost/geometry/strategies/spherical/area.hpp>
92f5a8d4
TL
44#include <boost/geometry/strategies/spherical/disjoint_box_box.hpp>
45#include <boost/geometry/strategies/spherical/disjoint_segment_box.hpp>
b32b8144 46#include <boost/geometry/strategies/spherical/distance_haversine.hpp>
92f5a8d4
TL
47#include <boost/geometry/strategies/spherical/envelope.hpp>
48#include <boost/geometry/strategies/spherical/expand_box.hpp>
49#include <boost/geometry/strategies/spherical/point_in_point.hpp>
b32b8144
FG
50#include <boost/geometry/strategies/spherical/point_in_poly_winding.hpp>
51#include <boost/geometry/strategies/spherical/ssf.hpp>
52#include <boost/geometry/strategies/within.hpp>
53
54#include <boost/geometry/util/math.hpp>
55#include <boost/geometry/util/select_calculation_type.hpp>
56
57
58namespace boost { namespace geometry
59{
60
61namespace strategy { namespace intersection
62{
63
64// NOTE:
65// The coordinates of crossing IP may be calculated with small precision in some cases.
66// For double, near the equator noticed error ~1e-9 so far greater than
67// machine epsilon which is ~1e-16. This error is ~0.04m.
68// E.g. consider two cases, one near the origin and the second one rotated by 90 deg around Z or SN axis.
69// After the conversion from spherical degrees to cartesian 3d the following coordinates
70// are calculated:
71// for sph (-1 -1, 1 1) deg cart3d ys are -0.017449748351250485 and 0.017449748351250485
72// for sph (89 -1, 91 1) deg cart3d xs are 0.017449748351250571 and -0.017449748351250450
73// During the conversion degrees must first be converted to radians and then radians
74// are passed into trigonometric functions. The error may have several causes:
75// 1. Radians cannot represent exactly the same angles as degrees.
76// 2. Different longitudes are passed into sin() for x, corresponding to cos() for y,
77// and for different angle the error of the result may be different.
78// 3. These non-corresponding cartesian coordinates are used in calculation,
79// e.g. multiplied several times in cross and dot products.
80// If it was a problem this strategy could e.g. "normalize" longitudes before the conversion using the source units
81// by rotating the globe around Z axis, so moving longitudes always the same way towards the origin,
82// assuming this could help which is not clear.
83// For now, intersection points near the endpoints are checked explicitly if needed (if the IP is near the endpoint)
84// to generate precise result for them. Only the crossing (i) case may suffer from lower precision.
85
86template
87<
88 typename CalcPolicy,
89 typename CalculationType = void
90>
91struct ecef_segments
92{
92f5a8d4
TL
93 typedef spherical_tag cs_tag;
94
b32b8144
FG
95 typedef side::spherical_side_formula<CalculationType> side_strategy_type;
96
97 static inline side_strategy_type get_side_strategy()
98 {
99 return side_strategy_type();
100 }
101
102 template <typename Geometry1, typename Geometry2>
103 struct point_in_geometry_strategy
104 {
105 typedef strategy::within::spherical_winding
106 <
107 typename point_type<Geometry1>::type,
108 typename point_type<Geometry2>::type,
109 CalculationType
110 > type;
111 };
112
113 template <typename Geometry1, typename Geometry2>
114 static inline typename point_in_geometry_strategy<Geometry1, Geometry2>::type
115 get_point_in_geometry_strategy()
116 {
117 typedef typename point_in_geometry_strategy
118 <
119 Geometry1, Geometry2
120 >::type strategy_type;
121 return strategy_type();
122 }
123
124 template <typename Geometry>
125 struct area_strategy
126 {
127 typedef area::spherical
128 <
11fdf7f2 129 typename coordinate_type<Geometry>::type,
b32b8144
FG
130 CalculationType
131 > type;
132 };
133
134 template <typename Geometry>
135 static inline typename area_strategy<Geometry>::type get_area_strategy()
136 {
137 typedef typename area_strategy<Geometry>::type strategy_type;
138 return strategy_type();
139 }
140
141 template <typename Geometry>
142 struct distance_strategy
143 {
144 typedef distance::haversine
145 <
146 typename coordinate_type<Geometry>::type,
147 CalculationType
148 > type;
149 };
150
151 template <typename Geometry>
152 static inline typename distance_strategy<Geometry>::type get_distance_strategy()
153 {
154 typedef typename distance_strategy<Geometry>::type strategy_type;
155 return strategy_type();
156 }
157
92f5a8d4 158 typedef envelope::spherical<CalculationType>
b32b8144
FG
159 envelope_strategy_type;
160
161 static inline envelope_strategy_type get_envelope_strategy()
162 {
163 return envelope_strategy_type();
164 }
165
92f5a8d4
TL
166 typedef expand::spherical_segment<CalculationType>
167 expand_strategy_type;
168
169 static inline expand_strategy_type get_expand_strategy()
170 {
171 return expand_strategy_type();
172 }
173
174 typedef within::spherical_point_point point_in_point_strategy_type;
175
176 static inline point_in_point_strategy_type get_point_in_point_strategy()
177 {
178 return point_in_point_strategy_type();
179 }
180
181 typedef within::spherical_point_point equals_point_point_strategy_type;
182
183 static inline equals_point_point_strategy_type get_equals_point_point_strategy()
184 {
185 return equals_point_point_strategy_type();
186 }
187
188 typedef disjoint::spherical_box_box disjoint_box_box_strategy_type;
189
190 static inline disjoint_box_box_strategy_type get_disjoint_box_box_strategy()
191 {
192 return disjoint_box_box_strategy_type();
193 }
194
195 typedef disjoint::segment_box_spherical disjoint_segment_box_strategy_type;
196
197 static inline disjoint_segment_box_strategy_type get_disjoint_segment_box_strategy()
198 {
199 return disjoint_segment_box_strategy_type();
200 }
201
202 typedef covered_by::spherical_point_box disjoint_point_box_strategy_type;
203 typedef covered_by::spherical_point_box covered_by_point_box_strategy_type;
204 typedef within::spherical_point_box within_point_box_strategy_type;
205 typedef envelope::spherical_box envelope_box_strategy_type;
206 typedef expand::spherical_box expand_box_strategy_type;
207
b32b8144
FG
208 enum intersection_point_flag { ipi_inters = 0, ipi_at_a1, ipi_at_a2, ipi_at_b1, ipi_at_b2 };
209
210 // segment_intersection_info cannot outlive relate_ecef_segments
211 template <typename CoordinateType, typename SegmentRatio, typename Vector3d>
212 struct segment_intersection_info
213 {
b32b8144
FG
214 segment_intersection_info(CalcPolicy const& calc)
215 : calc_policy(calc)
216 {}
217
b32b8144 218 template <typename Point, typename Segment1, typename Segment2>
11fdf7f2 219 void calculate(Point& point, Segment1 const& a, Segment2 const& b) const
b32b8144
FG
220 {
221 if (ip_flag == ipi_inters)
222 {
223 // TODO: assign the rest of coordinates
224 point = calc_policy.template from_cart3d<Point>(intersection_point);
225 }
226 else if (ip_flag == ipi_at_a1)
227 {
228 detail::assign_point_from_index<0>(a, point);
229 }
230 else if (ip_flag == ipi_at_a2)
231 {
232 detail::assign_point_from_index<1>(a, point);
233 }
234 else if (ip_flag == ipi_at_b1)
235 {
236 detail::assign_point_from_index<0>(b, point);
237 }
238 else // ip_flag == ipi_at_b2
239 {
240 detail::assign_point_from_index<1>(b, point);
241 }
242 }
243
244 Vector3d intersection_point;
245 SegmentRatio robust_ra;
246 SegmentRatio robust_rb;
247 intersection_point_flag ip_flag;
248
249 CalcPolicy const& calc_policy;
250 };
251
252 // Relate segments a and b
253 template
254 <
92f5a8d4
TL
255 typename UniqueSubRange1,
256 typename UniqueSubRange2,
257 typename Policy
b32b8144
FG
258 >
259 static inline typename Policy::return_type
92f5a8d4
TL
260 apply(UniqueSubRange1 const& range_p, UniqueSubRange2 const& range_q,
261 Policy const&)
b32b8144
FG
262 {
263 // For now create it using default constructor. In the future it could
264 // be stored in strategy. However then apply() wouldn't be static and
265 // all relops and setops would have to take the strategy or model.
266 // Initialize explicitly to prevent compiler errors in case of PoD type
267 CalcPolicy const calc_policy = CalcPolicy();
268
92f5a8d4
TL
269 typedef typename UniqueSubRange1::point_type point1_type;
270 typedef typename UniqueSubRange2::point_type point2_type;
271
272 BOOST_CONCEPT_ASSERT( (concepts::ConstPoint<point1_type>) );
273 BOOST_CONCEPT_ASSERT( (concepts::ConstPoint<point2_type>) );
274
275 point1_type const& a1 = range_p.at(0);
276 point1_type const& a2 = range_p.at(1);
277 point2_type const& b1 = range_q.at(0);
278 point2_type const& b2 = range_q.at(1);
279
280 typedef model::referring_segment<point1_type const> segment1_type;
281 typedef model::referring_segment<point2_type const> segment2_type;
282 segment1_type const a(a1, a2);
283 segment2_type const b(b1, b2);
b32b8144
FG
284
285 // TODO: check only 2 first coordinates here?
b32b8144
FG
286 bool a_is_point = equals_point_point(a1, a2);
287 bool b_is_point = equals_point_point(b1, b2);
288
289 if(a_is_point && b_is_point)
290 {
291 return equals_point_point(a1, b2)
292 ? Policy::degenerate(a, true)
293 : Policy::disjoint()
294 ;
295 }
296
297 typedef typename select_calculation_type
92f5a8d4 298 <segment1_type, segment2_type, CalculationType>::type calc_t;
b32b8144
FG
299
300 calc_t const c0 = 0;
301 calc_t const c1 = 1;
302
303 typedef model::point<calc_t, 3, cs::cartesian> vec3d_t;
304
305 vec3d_t const a1v = calc_policy.template to_cart3d<vec3d_t>(a1);
306 vec3d_t const a2v = calc_policy.template to_cart3d<vec3d_t>(a2);
307 vec3d_t const b1v = calc_policy.template to_cart3d<vec3d_t>(b1);
308 vec3d_t const b2v = calc_policy.template to_cart3d<vec3d_t>(b2);
309
310 bool degen_neq_coords = false;
311 side_info sides;
312
313 typename CalcPolicy::template plane<vec3d_t>
314 plane2 = calc_policy.get_plane(b1v, b2v);
315
316 calc_t dist_b1_b2 = 0;
317 if (! b_is_point)
318 {
319 calculate_dist(b1v, b2v, plane2, dist_b1_b2);
320 if (math::equals(dist_b1_b2, c0))
321 {
322 degen_neq_coords = true;
323 b_is_point = true;
324 dist_b1_b2 = 0;
325 }
326 else
327 {
328 // not normalized normals, the same as in side strategy
329 sides.set<0>(plane2.side_value(a1v), plane2.side_value(a2v));
330 if (sides.same<0>())
331 {
332 // Both points are at same side of other segment, we can leave
333 return Policy::disjoint();
334 }
335 }
336 }
337
338 typename CalcPolicy::template plane<vec3d_t>
339 plane1 = calc_policy.get_plane(a1v, a2v);
340
341 calc_t dist_a1_a2 = 0;
342 if (! a_is_point)
343 {
344 calculate_dist(a1v, a2v, plane1, dist_a1_a2);
345 if (math::equals(dist_a1_a2, c0))
346 {
347 degen_neq_coords = true;
348 a_is_point = true;
349 dist_a1_a2 = 0;
350 }
351 else
352 {
353 // not normalized normals, the same as in side strategy
354 sides.set<1>(plane1.side_value(b1v), plane1.side_value(b2v));
355 if (sides.same<1>())
356 {
357 // Both points are at same side of other segment, we can leave
358 return Policy::disjoint();
359 }
360 }
361 }
362
363 // NOTE: at this point the segments may still be disjoint
364
365 calc_t len1 = 0;
366 // point or opposite sides of a sphere/spheroid, assume point
367 if (! a_is_point && ! detail::vec_normalize(plane1.normal, len1))
368 {
369 a_is_point = true;
370 if (sides.get<0, 0>() == 0 || sides.get<0, 1>() == 0)
371 {
372 sides.set<0>(0, 0);
373 }
374 }
375
376 calc_t len2 = 0;
377 if (! b_is_point && ! detail::vec_normalize(plane2.normal, len2))
378 {
379 b_is_point = true;
380 if (sides.get<1, 0>() == 0 || sides.get<1, 1>() == 0)
381 {
382 sides.set<1>(0, 0);
383 }
384 }
385
386 // check both degenerated once more
387 if (a_is_point && b_is_point)
388 {
389 return equals_point_point(a1, b2)
390 ? Policy::degenerate(a, true)
391 : Policy::disjoint()
392 ;
393 }
394
395 // NOTE: at this point the segments may still be disjoint
396 // NOTE: at this point one of the segments may be degenerated
397
398 bool collinear = sides.collinear();
399
400 if (! collinear)
401 {
402 // NOTE: for some approximations it's possible that both points may lie
403 // on the same geodesic but still some of the sides may be != 0.
404 // This is e.g. true for long segments represented as elliptic arcs
405 // with origin different than the center of the coordinate system.
406 // So make the sides consistent
407
408 // WARNING: the side strategy doesn't have the info about the other
409 // segment so it may return results inconsistent with this intersection
410 // strategy, as it checks both segments for consistency
411
412 if (sides.get<0, 0>() == 0 && sides.get<0, 1>() == 0)
413 {
414 collinear = true;
415 sides.set<1>(0, 0);
416 }
417 else if (sides.get<1, 0>() == 0 && sides.get<1, 1>() == 0)
418 {
419 collinear = true;
420 sides.set<0>(0, 0);
421 }
422 }
423
424 calc_t dot_n1n2 = dot_product(plane1.normal, plane2.normal);
425
426 // NOTE: this is technically not needed since theoretically above sides
427 // are calculated, but just in case check the normals.
428 // Have in mind that SSF side strategy doesn't check this.
429 // collinear if normals are equal or opposite: cos(a) in {-1, 1}
430 if (! collinear && math::equals(math::abs(dot_n1n2), c1))
431 {
432 collinear = true;
433 sides.set<0>(0, 0);
434 sides.set<1>(0, 0);
435 }
436
437 if (collinear)
438 {
439 if (a_is_point)
440 {
441 return collinear_one_degenerated<Policy, calc_t>(a, true, b1, b2, a1, a2, b1v, b2v,
442 plane2, a1v, a2v, dist_b1_b2, degen_neq_coords);
443 }
444 else if (b_is_point)
445 {
446 // b2 used to be consistent with (degenerated) checks above (is it needed?)
447 return collinear_one_degenerated<Policy, calc_t>(b, false, a1, a2, b1, b2, a1v, a2v,
448 plane1, b1v, b2v, dist_a1_a2, degen_neq_coords);
449 }
450 else
451 {
452 calc_t dist_a1_b1, dist_a1_b2;
453 calc_t dist_b1_a1, dist_b1_a2;
92f5a8d4
TL
454 calculate_collinear_data(a1, a2, b1, b2, a1v, a2v, plane1, b1v, b2v, dist_a1_a2, dist_a1_b1);
455 calculate_collinear_data(a1, a2, b2, b1, a1v, a2v, plane1, b2v, b1v, dist_a1_a2, dist_a1_b2);
456 calculate_collinear_data(b1, b2, a1, a2, b1v, b2v, plane2, a1v, a2v, dist_b1_b2, dist_b1_a1);
457 calculate_collinear_data(b1, b2, a2, a1, b1v, b2v, plane2, a2v, a1v, dist_b1_b2, dist_b1_a2);
458 // NOTE: The following optimization causes problems with consitency
459 // It may either be caused by numerical issues or the way how distance is coded:
460 // as cosine of angle scaled and translated, see: calculate_dist()
461 /*dist_b1_b2 = dist_a1_b2 - dist_a1_b1;
462 dist_b1_a1 = -dist_a1_b1;
463 dist_b1_a2 = dist_a1_a2 - dist_a1_b1;
464 dist_a1_a2 = dist_b1_a2 - dist_b1_a1;
465 dist_a1_b1 = -dist_b1_a1;
466 dist_a1_b2 = dist_b1_b2 - dist_b1_a1;*/
b32b8144
FG
467
468 segment_ratio<calc_t> ra_from(dist_b1_a1, dist_b1_b2);
469 segment_ratio<calc_t> ra_to(dist_b1_a2, dist_b1_b2);
470 segment_ratio<calc_t> rb_from(dist_a1_b1, dist_a1_a2);
471 segment_ratio<calc_t> rb_to(dist_a1_b2, dist_a1_a2);
472
473 // NOTE: this is probably not needed
474 int const a1_wrt_b = position_value(c0, dist_a1_b1, dist_a1_b2);
475 int const a2_wrt_b = position_value(dist_a1_a2, dist_a1_b1, dist_a1_b2);
476 int const b1_wrt_a = position_value(c0, dist_b1_a1, dist_b1_a2);
477 int const b2_wrt_a = position_value(dist_b1_b2, dist_b1_a1, dist_b1_a2);
478
479 if (a1_wrt_b == 1)
480 {
481 ra_from.assign(0, dist_b1_b2);
482 rb_from.assign(0, dist_a1_a2);
483 }
484 else if (a1_wrt_b == 3)
485 {
486 ra_from.assign(dist_b1_b2, dist_b1_b2);
487 rb_to.assign(0, dist_a1_a2);
488 }
489
490 if (a2_wrt_b == 1)
491 {
492 ra_to.assign(0, dist_b1_b2);
493 rb_from.assign(dist_a1_a2, dist_a1_a2);
494 }
495 else if (a2_wrt_b == 3)
496 {
497 ra_to.assign(dist_b1_b2, dist_b1_b2);
498 rb_to.assign(dist_a1_a2, dist_a1_a2);
499 }
500
501 if ((a1_wrt_b < 1 && a2_wrt_b < 1) || (a1_wrt_b > 3 && a2_wrt_b > 3))
502 {
503 return Policy::disjoint();
504 }
505
506 bool const opposite = dot_n1n2 < c0;
507
508 return Policy::segments_collinear(a, b, opposite,
509 a1_wrt_b, a2_wrt_b, b1_wrt_a, b2_wrt_a,
510 ra_from, ra_to, rb_from, rb_to);
511 }
512 }
513 else // crossing
514 {
515 if (a_is_point || b_is_point)
516 {
517 return Policy::disjoint();
518 }
519
520 vec3d_t i1;
521 intersection_point_flag ip_flag;
522 calc_t dist_a1_i1, dist_b1_i1;
523 if (calculate_ip_data(a1, a2, b1, b2, a1v, a2v, b1v, b2v,
524 plane1, plane2, calc_policy,
525 sides, dist_a1_a2, dist_b1_b2,
526 i1, dist_a1_i1, dist_b1_i1, ip_flag))
527 {
528 // intersects
529 segment_intersection_info
530 <
531 calc_t,
532 segment_ratio<calc_t>,
533 vec3d_t
534 > sinfo(calc_policy);
535
536 sinfo.robust_ra.assign(dist_a1_i1, dist_a1_a2);
537 sinfo.robust_rb.assign(dist_b1_i1, dist_b1_b2);
538 sinfo.intersection_point = i1;
539 sinfo.ip_flag = ip_flag;
540
541 return Policy::segments_crosses(sides, sinfo, a, b);
542 }
543 else
544 {
545 return Policy::disjoint();
546 }
547 }
548 }
549
550private:
551 template <typename Policy, typename CalcT, typename Segment, typename Point1, typename Point2, typename Vec3d, typename Plane>
552 static inline typename Policy::return_type
553 collinear_one_degenerated(Segment const& segment, bool degenerated_a,
554 Point1 const& a1, Point1 const& a2,
555 Point2 const& b1, Point2 const& b2,
556 Vec3d const& a1v, Vec3d const& a2v,
557 Plane const& plane,
558 Vec3d const& b1v, Vec3d const& b2v,
559 CalcT const& dist_1_2,
560 bool degen_neq_coords)
561 {
562 CalcT dist_1_o;
563 return ! calculate_collinear_data(a1, a2, b1, b2, a1v, a2v, plane, b1v, b2v, dist_1_2, dist_1_o, degen_neq_coords)
564 ? Policy::disjoint()
565 : Policy::one_degenerate(segment, segment_ratio<CalcT>(dist_1_o, dist_1_2), degenerated_a);
566 }
567
568 template <typename Point1, typename Point2, typename Vec3d, typename Plane, typename CalcT>
569 static inline bool calculate_collinear_data(Point1 const& a1, Point1 const& a2, // in
92f5a8d4 570 Point2 const& b1, Point2 const& /*b2*/, // in
b32b8144
FG
571 Vec3d const& a1v, // in
572 Vec3d const& a2v, // in
573 Plane const& plane1, // in
574 Vec3d const& b1v, // in
575 Vec3d const& b2v, // in
576 CalcT const& dist_a1_a2, // in
92f5a8d4 577 CalcT& dist_a1_b1, // out
b32b8144
FG
578 bool degen_neq_coords = false) // in
579 {
92f5a8d4
TL
580 // calculate dist_a1_b1
581 calculate_dist(a1v, a2v, plane1, b1v, dist_a1_b1);
b32b8144 582
92f5a8d4
TL
583 // if b1 is equal to a1
584 if (is_endpoint_equal(dist_a1_b1, a1, b1))
b32b8144 585 {
92f5a8d4 586 dist_a1_b1 = 0;
b32b8144
FG
587 return true;
588 }
92f5a8d4
TL
589 // or b1 is equal to a2
590 else if (is_endpoint_equal(dist_a1_a2 - dist_a1_b1, a2, b1))
b32b8144 591 {
92f5a8d4 592 dist_a1_b1 = dist_a1_a2;
b32b8144
FG
593 return true;
594 }
595
92f5a8d4 596 // check the other endpoint of degenerated segment near a pole
b32b8144
FG
597 if (degen_neq_coords)
598 {
599 static CalcT const c0 = 0;
600
92f5a8d4
TL
601 CalcT dist_a1_b2 = 0;
602 calculate_dist(a1v, a2v, plane1, b2v, dist_a1_b2);
b32b8144 603
92f5a8d4 604 if (math::equals(dist_a1_b2, c0))
b32b8144 605 {
92f5a8d4 606 dist_a1_b1 = 0;
b32b8144
FG
607 return true;
608 }
92f5a8d4 609 else if (math::equals(dist_a1_a2 - dist_a1_b2, c0))
b32b8144 610 {
92f5a8d4 611 dist_a1_b1 = dist_a1_a2;
b32b8144
FG
612 return true;
613 }
614 }
615
616 // or i1 is on b
92f5a8d4 617 return segment_ratio<CalcT>(dist_a1_b1, dist_a1_a2).on_segment();
b32b8144
FG
618 }
619
620 template <typename Point1, typename Point2, typename Vec3d, typename Plane, typename CalcT>
621 static inline bool calculate_ip_data(Point1 const& a1, Point1 const& a2, // in
622 Point2 const& b1, Point2 const& b2, // in
623 Vec3d const& a1v, Vec3d const& a2v, // in
624 Vec3d const& b1v, Vec3d const& b2v, // in
625 Plane const& plane1, // in
626 Plane const& plane2, // in
627 CalcPolicy const& calc_policy, // in
628 side_info const& sides, // in
629 CalcT const& dist_a1_a2, // in
630 CalcT const& dist_b1_b2, // in
631 Vec3d & ip, // out
632 CalcT& dist_a1_ip, // out
633 CalcT& dist_b1_ip, // out
634 intersection_point_flag& ip_flag) // out
635 {
636 Vec3d ip1, ip2;
637 calc_policy.intersection_points(plane1, plane2, ip1, ip2);
638
639 calculate_dist(a1v, a2v, plane1, ip1, dist_a1_ip);
640 ip = ip1;
641
642 // choose the opposite side of the globe if the distance is shorter
643 {
644 CalcT const d = abs_distance(dist_a1_a2, dist_a1_ip);
645 if (d > CalcT(0))
646 {
647 // TODO: this should be ok not only for sphere
648 // but requires more investigation
649 CalcT const dist_a1_i2 = dist_of_i2(dist_a1_ip);
650 CalcT const d2 = abs_distance(dist_a1_a2, dist_a1_i2);
651 if (d2 < d)
652 {
653 dist_a1_ip = dist_a1_i2;
654 ip = ip2;
655 }
656 }
657 }
658
659 bool is_on_a = false, is_near_a1 = false, is_near_a2 = false;
660 if (! is_potentially_crossing(dist_a1_a2, dist_a1_ip, is_on_a, is_near_a1, is_near_a2))
661 {
662 return false;
663 }
664
665 calculate_dist(b1v, b2v, plane2, ip, dist_b1_ip);
666
667 bool is_on_b = false, is_near_b1 = false, is_near_b2 = false;
668 if (! is_potentially_crossing(dist_b1_b2, dist_b1_ip, is_on_b, is_near_b1, is_near_b2))
669 {
670 return false;
671 }
672
673 // reassign the IP if some endpoints overlap
b32b8144
FG
674 if (is_near_a1)
675 {
676 if (is_near_b1 && equals_point_point(a1, b1))
677 {
678 dist_a1_ip = 0;
679 dist_b1_ip = 0;
680 //i1 = a1v;
681 ip_flag = ipi_at_a1;
682 return true;
683 }
684
685 if (is_near_b2 && equals_point_point(a1, b2))
686 {
687 dist_a1_ip = 0;
688 dist_b1_ip = dist_b1_b2;
689 //i1 = a1v;
690 ip_flag = ipi_at_a1;
691 return true;
692 }
693 }
694
695 if (is_near_a2)
696 {
697 if (is_near_b1 && equals_point_point(a2, b1))
698 {
699 dist_a1_ip = dist_a1_a2;
700 dist_b1_ip = 0;
701 //i1 = a2v;
702 ip_flag = ipi_at_a2;
703 return true;
704 }
705
706 if (is_near_b2 && equals_point_point(a2, b2))
707 {
708 dist_a1_ip = dist_a1_a2;
709 dist_b1_ip = dist_b1_b2;
710 //i1 = a2v;
711 ip_flag = ipi_at_a2;
712 return true;
713 }
714 }
715
716 // at this point we know that the endpoints doesn't overlap
717 // reassign IP and distance if the IP is on a segment and one of
718 // the endpoints of the other segment lies on the former segment
719 if (is_on_a)
720 {
721 if (is_near_b1 && sides.template get<1, 0>() == 0) // b1 wrt a
722 {
92f5a8d4 723 calculate_dist(a1v, a2v, plane1, b1v, dist_a1_ip); // for consistency
b32b8144
FG
724 dist_b1_ip = 0;
725 //i1 = b1v;
726 ip_flag = ipi_at_b1;
727 return true;
728 }
729
730 if (is_near_b2 && sides.template get<1, 1>() == 0) // b2 wrt a
731 {
92f5a8d4 732 calculate_dist(a1v, a2v, plane1, b2v, dist_a1_ip); // for consistency
b32b8144
FG
733 dist_b1_ip = dist_b1_b2;
734 //i1 = b2v;
735 ip_flag = ipi_at_b2;
736 return true;
737 }
738 }
739
740 if (is_on_b)
741 {
742 if (is_near_a1 && sides.template get<0, 0>() == 0) // a1 wrt b
743 {
744 dist_a1_ip = 0;
92f5a8d4 745 calculate_dist(b1v, b2v, plane2, a1v, dist_b1_ip); // for consistency
b32b8144
FG
746 //i1 = a1v;
747 ip_flag = ipi_at_a1;
748 return true;
749 }
750
751 if (is_near_a2 && sides.template get<0, 1>() == 0) // a2 wrt b
752 {
753 dist_a1_ip = dist_a1_a2;
92f5a8d4 754 calculate_dist(b1v, b2v, plane2, a2v, dist_b1_ip); // for consistency
b32b8144
FG
755 //i1 = a2v;
756 ip_flag = ipi_at_a2;
757 return true;
758 }
759 }
760
761 ip_flag = ipi_inters;
762
763 return is_on_a && is_on_b;
764 }
765
766 template <typename Vec3d, typename Plane, typename CalcT>
767 static inline void calculate_dist(Vec3d const& a1v, // in
768 Vec3d const& a2v, // in
769 Plane const& plane1, // in
770 CalcT& dist_a1_a2) // out
771 {
772 static CalcT const c1 = 1;
773 CalcT const cos_a1_a2 = plane1.cos_angle_between(a1v, a2v);
774 dist_a1_a2 = -cos_a1_a2 + c1; // [1, -1] -> [0, 2] representing [0, pi]
775 }
776
777 template <typename Vec3d, typename Plane, typename CalcT>
778 static inline void calculate_dist(Vec3d const& a1v, // in
779 Vec3d const& /*a2v*/, // in
780 Plane const& plane1, // in
781 Vec3d const& i1, // in
782 CalcT& dist_a1_i1) // out
783 {
784 static CalcT const c1 = 1;
785 static CalcT const c2 = 2;
786 static CalcT const c4 = 4;
787
788 bool is_forward = true;
789 CalcT cos_a1_i1 = plane1.cos_angle_between(a1v, i1, is_forward);
790 dist_a1_i1 = -cos_a1_i1 + c1; // [0, 2] representing [0, pi]
791 if (! is_forward) // left or right of a1 on a
792 {
793 dist_a1_i1 = -dist_a1_i1; // [0, 2] -> [0, -2] representing [0, -pi]
794 }
795 if (dist_a1_i1 <= -c2) // <= -pi
796 {
797 dist_a1_i1 += c4; // += 2pi
798 }
799 }
800 /*
801 template <typename Vec3d, typename Plane, typename CalcT>
802 static inline void calculate_dists(Vec3d const& a1v, // in
803 Vec3d const& a2v, // in
804 Plane const& plane1, // in
805 Vec3d const& i1, // in
806 CalcT& dist_a1_a2, // out
807 CalcT& dist_a1_i1) // out
808 {
809 calculate_dist(a1v, a2v, plane1, dist_a1_a2);
810 calculate_dist(a1v, a2v, plane1, i1, dist_a1_i1);
811 }
812 */
813 // the dist of the ip on the other side of the sphere
814 template <typename CalcT>
815 static inline CalcT dist_of_i2(CalcT const& dist_a1_i1)
816 {
817 CalcT const c2 = 2;
818 CalcT const c4 = 4;
819
820 CalcT dist_a1_i2 = dist_a1_i1 - c2; // dist_a1_i2 = dist_a1_i1 - pi;
821 if (dist_a1_i2 <= -c2) // <= -pi
822 {
823 dist_a1_i2 += c4; // += 2pi;
824 }
825 return dist_a1_i2;
826 }
827
828 template <typename CalcT>
829 static inline CalcT abs_distance(CalcT const& dist_a1_a2, CalcT const& dist_a1_i1)
830 {
831 if (dist_a1_i1 < CalcT(0))
832 return -dist_a1_i1;
833 else if (dist_a1_i1 > dist_a1_a2)
834 return dist_a1_i1 - dist_a1_a2;
835 else
836 return CalcT(0);
837 }
838
839 template <typename CalcT>
840 static inline bool is_potentially_crossing(CalcT const& dist_a1_a2, CalcT const& dist_a1_i1, // in
841 bool& is_on_a, bool& is_near_a1, bool& is_near_a2) // out
842 {
843 is_on_a = segment_ratio<CalcT>(dist_a1_i1, dist_a1_a2).on_segment();
844 is_near_a1 = is_near(dist_a1_i1);
845 is_near_a2 = is_near(dist_a1_a2 - dist_a1_i1);
846 return is_on_a || is_near_a1 || is_near_a2;
847 }
848
849 template <typename CalcT, typename P1, typename P2>
850 static inline bool is_endpoint_equal(CalcT const& dist,
92f5a8d4 851 P1 const& ai, P2 const& b1)
b32b8144
FG
852 {
853 static CalcT const c0 = 0;
92f5a8d4 854 return is_near(dist) && (math::equals(dist, c0) || equals_point_point(ai, b1));
b32b8144
FG
855 }
856
857 template <typename CalcT>
858 static inline bool is_near(CalcT const& dist)
859 {
860 CalcT const small_number = CalcT(boost::is_same<CalcT, float>::value ? 0.0001 : 0.00000001);
861 return math::abs(dist) <= small_number;
862 }
863
864 template <typename ProjCoord1, typename ProjCoord2>
865 static inline int position_value(ProjCoord1 const& ca1,
866 ProjCoord2 const& cb1,
867 ProjCoord2 const& cb2)
868 {
869 // S1x 0 1 2 3 4
870 // S2 |---------->
871 return math::equals(ca1, cb1) ? 1
872 : math::equals(ca1, cb2) ? 3
873 : cb1 < cb2 ?
874 ( ca1 < cb1 ? 0
875 : ca1 > cb2 ? 4
876 : 2 )
877 : ( ca1 > cb1 ? 0
878 : ca1 < cb2 ? 4
879 : 2 );
880 }
92f5a8d4
TL
881
882 template <typename Point1, typename Point2>
883 static inline bool equals_point_point(Point1 const& point1, Point2 const& point2)
884 {
885 return detail::equals::equals_point_point(point1, point2,
886 point_in_point_strategy_type());
887 }
b32b8144
FG
888};
889
890struct spherical_segments_calc_policy
891{
892 template <typename Point, typename Point3d>
893 static Point from_cart3d(Point3d const& point_3d)
894 {
895 return formula::cart3d_to_sph<Point>(point_3d);
896 }
897
898 template <typename Point3d, typename Point>
899 static Point3d to_cart3d(Point const& point)
900 {
901 return formula::sph_to_cart3d<Point3d>(point);
902 }
903
904 template <typename Point3d>
905 struct plane
906 {
907 typedef typename coordinate_type<Point3d>::type coord_t;
908
909 // not normalized
910 plane(Point3d const& p1, Point3d const& p2)
911 : normal(cross_product(p1, p2))
912 {}
913
914 int side_value(Point3d const& pt) const
915 {
916 return formula::sph_side_value(normal, pt);
917 }
918
919 static coord_t cos_angle_between(Point3d const& p1, Point3d const& p2)
920 {
921 return dot_product(p1, p2);
922 }
923
924 coord_t cos_angle_between(Point3d const& p1, Point3d const& p2, bool & is_forward) const
925 {
926 coord_t const c0 = 0;
927 is_forward = dot_product(normal, cross_product(p1, p2)) >= c0;
928 return dot_product(p1, p2);
929 }
930
931 Point3d normal;
932 };
933
934 template <typename Point3d>
935 static plane<Point3d> get_plane(Point3d const& p1, Point3d const& p2)
936 {
937 return plane<Point3d>(p1, p2);
938 }
939
940 template <typename Point3d>
941 static bool intersection_points(plane<Point3d> const& plane1,
942 plane<Point3d> const& plane2,
943 Point3d & ip1, Point3d & ip2)
944 {
945 typedef typename coordinate_type<Point3d>::type coord_t;
946
947 ip1 = cross_product(plane1.normal, plane2.normal);
948 // NOTE: the length should be greater than 0 at this point
949 // if the normals were not normalized and their dot product
950 // not checked before this function is called the length
951 // should be checked here (math::equals(len, c0))
952 coord_t const len = math::sqrt(dot_product(ip1, ip1));
953 divide_value(ip1, len); // normalize i1
954
955 ip2 = ip1;
956 multiply_value(ip2, coord_t(-1));
957
958 return true;
92f5a8d4 959 }
b32b8144
FG
960};
961
962
963template
964<
965 typename CalculationType = void
966>
967struct spherical_segments
968 : ecef_segments
969 <
970 spherical_segments_calc_policy,
971 CalculationType
972 >
973{};
974
975
976#ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
977namespace services
978{
979
980/*template <typename CalculationType>
981struct default_strategy<spherical_polar_tag, CalculationType>
982{
983 typedef spherical_segments<CalculationType> type;
984};*/
985
986template <typename CalculationType>
987struct default_strategy<spherical_equatorial_tag, CalculationType>
988{
989 typedef spherical_segments<CalculationType> type;
990};
991
992template <typename CalculationType>
993struct default_strategy<geographic_tag, CalculationType>
994{
995 // NOTE: Spherical strategy returns the same result as the geographic one
996 // representing segments as great elliptic arcs. If the elliptic arcs are
997 // not great elliptic arcs (the origin not in the center of the coordinate
998 // system) then there may be problems with consistency of the side and
999 // intersection strategies.
1000 typedef spherical_segments<CalculationType> type;
1001};
1002
1003} // namespace services
1004#endif // DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
1005
1006
1007}} // namespace strategy::intersection
1008
1009
1010namespace strategy
1011{
1012
1013namespace within { namespace services
1014{
1015
1016template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
1017struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, linear_tag, linear_tag, spherical_tag, spherical_tag>
1018{
1019 typedef strategy::intersection::spherical_segments<> type;
1020};
1021
1022template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
1023struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, linear_tag, polygonal_tag, spherical_tag, spherical_tag>
1024{
1025 typedef strategy::intersection::spherical_segments<> type;
1026};
1027
1028template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
1029struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, polygonal_tag, linear_tag, spherical_tag, spherical_tag>
1030{
1031 typedef strategy::intersection::spherical_segments<> type;
1032};
1033
1034template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
1035struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, polygonal_tag, polygonal_tag, spherical_tag, spherical_tag>
1036{
1037 typedef strategy::intersection::spherical_segments<> type;
1038};
1039
1040}} // within::services
1041
1042namespace covered_by { namespace services
1043{
1044
1045template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
1046struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, linear_tag, linear_tag, spherical_tag, spherical_tag>
1047{
1048 typedef strategy::intersection::spherical_segments<> type;
1049};
1050
1051template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
1052struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, linear_tag, polygonal_tag, spherical_tag, spherical_tag>
1053{
1054 typedef strategy::intersection::spherical_segments<> type;
1055};
1056
1057template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
1058struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, polygonal_tag, linear_tag, spherical_tag, spherical_tag>
1059{
1060 typedef strategy::intersection::spherical_segments<> type;
1061};
1062
1063template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
1064struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, polygonal_tag, polygonal_tag, spherical_tag, spherical_tag>
1065{
1066 typedef strategy::intersection::spherical_segments<> type;
1067};
1068
1069}} // within::services
1070
1071} // strategy
1072
1073
1074}} // namespace boost::geometry
1075
1076
1077#endif // BOOST_GEOMETRY_STRATEGIES_SPHERICAL_INTERSECTION_HPP