]> git.proxmox.com Git - ceph.git/blame - ceph/src/boost/libs/asio/example/cpp11/operations/composed_8.cpp
update ceph source to reef 18.1.2
[ceph.git] / ceph / src / boost / libs / asio / example / cpp11 / operations / composed_8.cpp
CommitLineData
92f5a8d4
TL
1//
2// composed_8.cpp
3// ~~~~~~~~~~~~~~
4//
1e59de90 5// Copyright (c) 2003-2022 Christopher M. Kohlhoff (chris at kohlhoff dot com)
92f5a8d4
TL
6//
7// Distributed under the Boost Software License, Version 1.0. (See accompanying
8// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
9//
10
11#include <boost/asio/compose.hpp>
12#include <boost/asio/io_context.hpp>
13#include <boost/asio/ip/tcp.hpp>
14#include <boost/asio/steady_timer.hpp>
15#include <boost/asio/use_future.hpp>
16#include <boost/asio/write.hpp>
17#include <functional>
18#include <iostream>
19#include <memory>
20#include <sstream>
21#include <string>
22#include <type_traits>
23#include <utility>
24
25using boost::asio::ip::tcp;
26
27// NOTE: This example requires the new boost::asio::async_compose function. For
28// an example that works with the Networking TS style of completion tokens,
29// please see an older version of asio.
30
31//------------------------------------------------------------------------------
32
33// This composed operation shows composition of multiple underlying operations,
34// using asio's stackless coroutines support to express the flow of control. It
35// automatically serialises a message, using its I/O streams insertion
36// operator, before sending it N times on the socket. To do this, it must
37// allocate a buffer for the encoded message and ensure this buffer's validity
38// until all underlying async_write operation complete. A one second delay is
39// inserted prior to each write operation, using a steady_timer.
40
41#include <boost/asio/yield.hpp>
42
43// In this example, the composed operation's logic is implemented as a state
44// machine within a hand-crafted function object.
45struct async_write_messages_implementation
46{
47 // The implementation holds a reference to the socket as it is used for
48 // multiple async_write operations.
49 tcp::socket& socket_;
50
51 // The allocated buffer for the encoded message. The std::unique_ptr smart
52 // pointer is move-only, and as a consequence our implementation is also
53 // move-only.
54 std::unique_ptr<std::string> encoded_message_;
55
56 // The repeat count remaining.
57 std::size_t repeat_count_;
58
59 // A steady timer used for introducing a delay.
60 std::unique_ptr<boost::asio::steady_timer> delay_timer_;
61
62 // The coroutine state.
63 boost::asio::coroutine coro_;
64
65 // The first argument to our function object's call operator is a reference
66 // to the enclosing intermediate completion handler. This intermediate
67 // completion handler is provided for us by the boost::asio::async_compose
68 // function, and takes care of all the details required to implement a
69 // conforming asynchronous operation. When calling an underlying asynchronous
70 // operation, we pass it this enclosing intermediate completion handler
71 // as the completion token.
72 //
73 // All arguments after the first must be defaulted to allow the state machine
74 // to be started, as well as to allow the completion handler to match the
75 // completion signature of both the async_write and steady_timer::async_wait
76 // operations.
77 template <typename Self>
78 void operator()(Self& self,
79 const boost::system::error_code& error = boost::system::error_code(),
80 std::size_t = 0)
81 {
82 reenter (coro_)
83 {
84 while (repeat_count_ > 0)
85 {
86 --repeat_count_;
87
88 delay_timer_->expires_after(std::chrono::seconds(1));
89 yield delay_timer_->async_wait(std::move(self));
90 if (error)
91 break;
92
93 yield boost::asio::async_write(socket_,
94 boost::asio::buffer(*encoded_message_), std::move(self));
95 if (error)
96 break;
97 }
98
99 // Deallocate the encoded message and delay timer before calling the
100 // user-supplied completion handler.
101 encoded_message_.reset();
102 delay_timer_.reset();
103
104 // Call the user-supplied handler with the result of the operation.
105 self.complete(error);
106 }
107 }
108};
109
110#include <boost/asio/unyield.hpp>
111
112template <typename T, typename CompletionToken>
113auto async_write_messages(tcp::socket& socket,
114 const T& message, std::size_t repeat_count,
115 CompletionToken&& token)
116 // The return type of the initiating function is deduced from the combination
117 // of CompletionToken type and the completion handler's signature. When the
118 // completion token is a simple callback, the return type is always void.
119 // In this example, when the completion token is boost::asio::yield_context
120 // (used for stackful coroutines) the return type would be also be void, as
121 // there is no non-error argument to the completion handler. When the
122 // completion token is boost::asio::use_future it would be std::future<void>.
123 -> typename boost::asio::async_result<
124 typename std::decay<CompletionToken>::type,
125 void(boost::system::error_code)>::return_type
126{
127 // Encode the message and copy it into an allocated buffer. The buffer will
128 // be maintained for the lifetime of the composed asynchronous operation.
129 std::ostringstream os;
130 os << message;
131 std::unique_ptr<std::string> encoded_message(new std::string(os.str()));
132
133 // Create a steady_timer to be used for the delay between messages.
134 std::unique_ptr<boost::asio::steady_timer> delay_timer(
135 new boost::asio::steady_timer(socket.get_executor()));
136
137 // The boost::asio::async_compose function takes:
138 //
139 // - our asynchronous operation implementation,
140 // - the completion token,
141 // - the completion handler signature, and
142 // - any I/O objects (or executors) used by the operation
143 //
144 // It then wraps our implementation in an intermediate completion handler
145 // that meets the requirements of a conforming asynchronous operation. This
146 // includes tracking outstanding work against the I/O executors associated
147 // with the operation (in this example, this is the socket's executor).
148 return boost::asio::async_compose<
149 CompletionToken, void(boost::system::error_code)>(
150 async_write_messages_implementation{socket,
151 std::move(encoded_message), repeat_count,
152 std::move(delay_timer), boost::asio::coroutine()},
153 token, socket);
154}
155
156//------------------------------------------------------------------------------
157
158void test_callback()
159{
160 boost::asio::io_context io_context;
161
162 tcp::acceptor acceptor(io_context, {tcp::v4(), 55555});
163 tcp::socket socket = acceptor.accept();
164
165 // Test our asynchronous operation using a lambda as a callback.
166 async_write_messages(socket, "Testing callback\r\n", 5,
167 [](const boost::system::error_code& error)
168 {
169 if (!error)
170 {
171 std::cout << "Messages sent\n";
172 }
173 else
174 {
175 std::cout << "Error: " << error.message() << "\n";
176 }
177 });
178
179 io_context.run();
180}
181
182//------------------------------------------------------------------------------
183
184void test_future()
185{
186 boost::asio::io_context io_context;
187
188 tcp::acceptor acceptor(io_context, {tcp::v4(), 55555});
189 tcp::socket socket = acceptor.accept();
190
191 // Test our asynchronous operation using the use_future completion token.
192 // This token causes the operation's initiating function to return a future,
193 // which may be used to synchronously wait for the result of the operation.
194 std::future<void> f = async_write_messages(
195 socket, "Testing future\r\n", 5, boost::asio::use_future);
196
197 io_context.run();
198
199 try
200 {
201 // Get the result of the operation.
202 f.get();
203 std::cout << "Messages sent\n";
204 }
205 catch (const std::exception& e)
206 {
207 std::cout << "Error: " << e.what() << "\n";
208 }
209}
210
211//------------------------------------------------------------------------------
212
213int main()
214{
215 test_callback();
216 test_future();
217}