]> git.proxmox.com Git - ceph.git/blame - ceph/src/boost/tools/build/src/engine/boehm_gc/include/gc_cpp.h
Add patch for failing prerm scripts
[ceph.git] / ceph / src / boost / tools / build / src / engine / boehm_gc / include / gc_cpp.h
CommitLineData
7c673cae
FG
1#ifndef GC_CPP_H
2#define GC_CPP_H
3/****************************************************************************
4Copyright (c) 1994 by Xerox Corporation. All rights reserved.
5
6THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
7OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
8
9Permission is hereby granted to use or copy this program for any
10purpose, provided the above notices are retained on all copies.
11Permission to modify the code and to distribute modified code is
12granted, provided the above notices are retained, and a notice that
13the code was modified is included with the above copyright notice.
14****************************************************************************
15
16C++ Interface to the Boehm Collector
17
18 John R. Ellis and Jesse Hull
19
20This interface provides access to the Boehm collector. It provides
21basic facilities similar to those described in "Safe, Efficient
22Garbage Collection for C++", by John R. Elis and David L. Detlefs
23(ftp://ftp.parc.xerox.com/pub/ellis/gc).
24
25All heap-allocated objects are either "collectable" or
26"uncollectable". Programs must explicitly delete uncollectable
27objects, whereas the garbage collector will automatically delete
28collectable objects when it discovers them to be inaccessible.
29Collectable objects may freely point at uncollectable objects and vice
30versa.
31
32Objects allocated with the built-in "::operator new" are uncollectable.
33
34Objects derived from class "gc" are collectable. For example:
35
36 class A: public gc {...};
37 A* a = new A; // a is collectable.
38
39Collectable instances of non-class types can be allocated using the GC
40(or UseGC) placement:
41
42 typedef int A[ 10 ];
43 A* a = new (GC) A;
44
45Uncollectable instances of classes derived from "gc" can be allocated
46using the NoGC placement:
47
48 class A: public gc {...};
49 A* a = new (NoGC) A; // a is uncollectable.
50
51The new(PointerFreeGC) syntax allows the allocation of collectable
52objects that are not scanned by the collector. This useful if you
53are allocating compressed data, bitmaps, or network packets. (In
54the latter case, it may remove danger of unfriendly network packets
55intentionally containing values that cause spurious memory retention.)
56
57Both uncollectable and collectable objects can be explicitly deleted
58with "delete", which invokes an object's destructors and frees its
59storage immediately.
60
61A collectable object may have a clean-up function, which will be
62invoked when the collector discovers the object to be inaccessible.
63An object derived from "gc_cleanup" or containing a member derived
64from "gc_cleanup" has a default clean-up function that invokes the
65object's destructors. Explicit clean-up functions may be specified as
66an additional placement argument:
67
68 A* a = ::new (GC, MyCleanup) A;
69
70An object is considered "accessible" by the collector if it can be
71reached by a path of pointers from static variables, automatic
72variables of active functions, or from some object with clean-up
73enabled; pointers from an object to itself are ignored.
74
75Thus, if objects A and B both have clean-up functions, and A points at
76B, B is considered accessible. After A's clean-up is invoked and its
77storage released, B will then become inaccessible and will have its
78clean-up invoked. If A points at B and B points to A, forming a
79cycle, then that's considered a storage leak, and neither will be
80collectable. See the interface gc.h for low-level facilities for
81handling such cycles of objects with clean-up.
82
83The collector cannot guarantee that it will find all inaccessible
84objects. In practice, it finds almost all of them.
85
86
87Cautions:
88
891. Be sure the collector has been augmented with "make c++" or
90"--enable-cplusplus".
91
922. If your compiler supports the new "operator new[]" syntax, then
93add -DGC_OPERATOR_NEW_ARRAY to the Makefile.
94
95If your compiler doesn't support "operator new[]", beware that an
96array of type T, where T is derived from "gc", may or may not be
97allocated as a collectable object (it depends on the compiler). Use
98the explicit GC placement to make the array collectable. For example:
99
100 class A: public gc {...};
101 A* a1 = new A[ 10 ]; // collectable or uncollectable?
102 A* a2 = new (GC) A[ 10 ]; // collectable
103
1043. The destructors of collectable arrays of objects derived from
105"gc_cleanup" will not be invoked properly. For example:
106
107 class A: public gc_cleanup {...};
108 A* a = new (GC) A[ 10 ]; // destructors not invoked correctly
109
110Typically, only the destructor for the first element of the array will
111be invoked when the array is garbage-collected. To get all the
112destructors of any array executed, you must supply an explicit
113clean-up function:
114
115 A* a = new (GC, MyCleanUp) A[ 10 ];
116
117(Implementing clean-up of arrays correctly, portably, and in a way
118that preserves the correct exception semantics requires a language
119extension, e.g. the "gc" keyword.)
120
1214. Compiler bugs (now hopefully history):
122
123* Solaris 2's CC (SC3.0) doesn't implement t->~T() correctly, so the
124destructors of classes derived from gc_cleanup won't be invoked.
125You'll have to explicitly register a clean-up function with
126new-placement syntax.
127
128* Evidently cfront 3.0 does not allow destructors to be explicitly
129invoked using the ANSI-conforming syntax t->~T(). If you're using
130cfront 3.0, you'll have to comment out the class gc_cleanup, which
131uses explicit invocation.
132
1335. GC name conflicts:
134
135Many other systems seem to use the identifier "GC" as an abbreviation
136for "Graphics Context". Since version 5.0, GC placement has been replaced
137by UseGC. GC is an alias for UseGC, unless GC_NAME_CONFLICT is defined.
138
139****************************************************************************/
140
141#include "gc.h"
142
143#ifndef THINK_CPLUS
144# define GC_cdecl
145#else
146# define GC_cdecl _cdecl
147#endif
148
149#if ! defined( GC_NO_OPERATOR_NEW_ARRAY ) \
150 && !defined(_ENABLE_ARRAYNEW) /* Digimars */ \
151 && (defined(__BORLANDC__) && (__BORLANDC__ < 0x450) \
152 || (defined(__GNUC__) && \
153 (__GNUC__ < 2 || __GNUC__ == 2 && __GNUC_MINOR__ < 6)) \
154 || (defined(__WATCOMC__) && __WATCOMC__ < 1050))
155# define GC_NO_OPERATOR_NEW_ARRAY
156#endif
157
158#if !defined(GC_NO_OPERATOR_NEW_ARRAY) && !defined(GC_OPERATOR_NEW_ARRAY)
159# define GC_OPERATOR_NEW_ARRAY
160#endif
161
162#if ! defined ( __BORLANDC__ ) /* Confuses the Borland compiler. */ \
163 && ! defined ( __sgi )
164# define GC_PLACEMENT_DELETE
165#endif
166
167enum GCPlacement {UseGC,
168#ifndef GC_NAME_CONFLICT
169 GC=UseGC,
170#endif
171 NoGC, PointerFreeGC};
172
173class gc {public:
174 inline void* operator new( size_t size );
175 inline void* operator new( size_t size, GCPlacement gcp );
176 inline void* operator new( size_t size, void *p );
177 /* Must be redefined here, since the other overloadings */
178 /* hide the global definition. */
179 inline void operator delete( void* obj );
180# ifdef GC_PLACEMENT_DELETE
181 inline void operator delete( void*, void* );
182# endif
183
184#ifdef GC_OPERATOR_NEW_ARRAY
185 inline void* operator new[]( size_t size );
186 inline void* operator new[]( size_t size, GCPlacement gcp );
187 inline void* operator new[]( size_t size, void *p );
188 inline void operator delete[]( void* obj );
189# ifdef GC_PLACEMENT_DELETE
190 inline void operator delete[]( void*, void* );
191# endif
192#endif /* GC_OPERATOR_NEW_ARRAY */
193 };
194 /*
195 Instances of classes derived from "gc" will be allocated in the
196 collected heap by default, unless an explicit NoGC placement is
197 specified. */
198
199class gc_cleanup: virtual public gc {public:
200 inline gc_cleanup();
201 inline virtual ~gc_cleanup();
202private:
203 inline static void GC_cdecl cleanup( void* obj, void* clientData );};
204 /*
205 Instances of classes derived from "gc_cleanup" will be allocated
206 in the collected heap by default. When the collector discovers an
207 inaccessible object derived from "gc_cleanup" or containing a
208 member derived from "gc_cleanup", its destructors will be
209 invoked. */
210
211extern "C" {typedef void (*GCCleanUpFunc)( void* obj, void* clientData );}
212
213#ifdef _MSC_VER
214 // Disable warning that "no matching operator delete found; memory will
215 // not be freed if initialization throws an exception"
216# pragma warning(disable:4291)
217#endif
218
219inline void* operator new(
220 size_t size,
221 GCPlacement gcp,
222 GCCleanUpFunc cleanup = 0,
223 void* clientData = 0 );
224 /*
225 Allocates a collectable or uncollected object, according to the
226 value of "gcp".
227
228 For collectable objects, if "cleanup" is non-null, then when the
229 allocated object "obj" becomes inaccessible, the collector will
230 invoke the function "cleanup( obj, clientData )" but will not
231 invoke the object's destructors. It is an error to explicitly
232 delete an object allocated with a non-null "cleanup".
233
234 It is an error to specify a non-null "cleanup" with NoGC or for
235 classes derived from "gc_cleanup" or containing members derived
236 from "gc_cleanup". */
237
238
239#ifdef _MSC_VER
240 /** This ensures that the system default operator new[] doesn't get
241 * undefined, which is what seems to happen on VC++ 6 for some reason
242 * if we define a multi-argument operator new[].
243 * There seems to be really redirect new in this environment without
244 * including this everywhere.
245 */
246 void *operator new[]( size_t size );
247
248 void operator delete[](void* obj);
249
250 void* operator new( size_t size);
251
252 void operator delete(void* obj);
253
254 // This new operator is used by VC++ in case of Debug builds !
255 void* operator new( size_t size,
256 int ,//nBlockUse,
257 const char * szFileName,
258 int nLine );
259#endif /* _MSC_VER */
260
261
262#ifdef GC_OPERATOR_NEW_ARRAY
263
264inline void* operator new[](
265 size_t size,
266 GCPlacement gcp,
267 GCCleanUpFunc cleanup = 0,
268 void* clientData = 0 );
269 /*
270 The operator new for arrays, identical to the above. */
271
272#endif /* GC_OPERATOR_NEW_ARRAY */
273
274/****************************************************************************
275
276Inline implementation
277
278****************************************************************************/
279
280inline void* gc::operator new( size_t size ) {
281 return GC_MALLOC( size );}
282
283inline void* gc::operator new( size_t size, GCPlacement gcp ) {
284 if (gcp == UseGC)
285 return GC_MALLOC( size );
286 else if (gcp == PointerFreeGC)
287 return GC_MALLOC_ATOMIC( size );
288 else
289 return GC_MALLOC_UNCOLLECTABLE( size );}
290
291inline void* gc::operator new( size_t size, void *p ) {
292 return p;}
293
294inline void gc::operator delete( void* obj ) {
295 GC_FREE( obj );}
296
297#ifdef GC_PLACEMENT_DELETE
298 inline void gc::operator delete( void*, void* ) {}
299#endif
300
301#ifdef GC_OPERATOR_NEW_ARRAY
302
303inline void* gc::operator new[]( size_t size ) {
304 return gc::operator new( size );}
305
306inline void* gc::operator new[]( size_t size, GCPlacement gcp ) {
307 return gc::operator new( size, gcp );}
308
309inline void* gc::operator new[]( size_t size, void *p ) {
310 return p;}
311
312inline void gc::operator delete[]( void* obj ) {
313 gc::operator delete( obj );}
314
315#ifdef GC_PLACEMENT_DELETE
316 inline void gc::operator delete[]( void*, void* ) {}
317#endif
318
319#endif /* GC_OPERATOR_NEW_ARRAY */
320
321
322inline gc_cleanup::~gc_cleanup() {
323 GC_register_finalizer_ignore_self( GC_base(this), 0, 0, 0, 0 );}
324
325inline void gc_cleanup::cleanup( void* obj, void* displ ) {
326 ((gc_cleanup*) ((char*) obj + (ptrdiff_t) displ))->~gc_cleanup();}
327
328inline gc_cleanup::gc_cleanup() {
329 GC_finalization_proc oldProc;
330 void* oldData;
331 void* base = GC_base( (void *) this );
332 if (0 != base) {
333 // Don't call the debug version, since this is a real base address.
334 GC_register_finalizer_ignore_self(
335 base, (GC_finalization_proc)cleanup, (void*) ((char*) this - (char*) base),
336 &oldProc, &oldData );
337 if (0 != oldProc) {
338 GC_register_finalizer_ignore_self( base, oldProc, oldData, 0, 0 );}}}
339
340inline void* operator new(
341 size_t size,
342 GCPlacement gcp,
343 GCCleanUpFunc cleanup,
344 void* clientData )
345{
346 void* obj;
347
348 if (gcp == UseGC) {
349 obj = GC_MALLOC( size );
350 if (cleanup != 0)
351 GC_REGISTER_FINALIZER_IGNORE_SELF(
352 obj, cleanup, clientData, 0, 0 );}
353 else if (gcp == PointerFreeGC) {
354 obj = GC_MALLOC_ATOMIC( size );}
355 else {
356 obj = GC_MALLOC_UNCOLLECTABLE( size );};
357 return obj;}
358
359
360#ifdef GC_OPERATOR_NEW_ARRAY
361
362inline void* operator new[](
363 size_t size,
364 GCPlacement gcp,
365 GCCleanUpFunc cleanup,
366 void* clientData )
367{
368 return ::operator new( size, gcp, cleanup, clientData );}
369
370#endif /* GC_OPERATOR_NEW_ARRAY */
371
372
373#endif /* GC_CPP_H */
374