]> git.proxmox.com Git - ceph.git/blob - ceph/src/osd/osd_types.h
2d7da93d7a811b286690c9ebb7461ddd5d732067
[ceph.git] / ceph / src / osd / osd_types.h
1 // -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
2 // vim: ts=8 sw=2 smarttab
3 /*
4 * Ceph - scalable distributed file system
5 *
6 * Copyright (C) 2004-2006 Sage Weil <sage@newdream.net>
7 * Copyright (C) 2013,2014 Cloudwatt <libre.licensing@cloudwatt.com>
8 *
9 * Author: Loic Dachary <loic@dachary.org>
10 *
11 * This is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License version 2.1, as published by the Free Software
14 * Foundation. See file COPYING.
15 *
16 */
17
18 #ifndef CEPH_OSD_TYPES_H
19 #define CEPH_OSD_TYPES_H
20
21 #include <sstream>
22 #include <stdio.h>
23 #include <memory>
24 #include <boost/scoped_ptr.hpp>
25 #include <boost/optional/optional_io.hpp>
26 #include <boost/variant.hpp>
27
28 #include "include/rados/rados_types.hpp"
29 #include "include/mempool.h"
30
31 #include "msg/msg_types.h"
32 #include "include/types.h"
33 #include "include/utime.h"
34 #include "include/CompatSet.h"
35 #include "common/histogram.h"
36 #include "include/interval_set.h"
37 #include "include/inline_memory.h"
38 #include "common/Formatter.h"
39 #include "common/bloom_filter.hpp"
40 #include "common/hobject.h"
41 #include "common/snap_types.h"
42 #include "HitSet.h"
43 #include "Watch.h"
44 #include "include/cmp.h"
45 #include "librados/ListObjectImpl.h"
46 #include "compressor/Compressor.h"
47 #include <atomic>
48
49 #define CEPH_OSD_ONDISK_MAGIC "ceph osd volume v026"
50
51 #define CEPH_OSD_FEATURE_INCOMPAT_BASE CompatSet::Feature(1, "initial feature set(~v.18)")
52 #define CEPH_OSD_FEATURE_INCOMPAT_PGINFO CompatSet::Feature(2, "pginfo object")
53 #define CEPH_OSD_FEATURE_INCOMPAT_OLOC CompatSet::Feature(3, "object locator")
54 #define CEPH_OSD_FEATURE_INCOMPAT_LEC CompatSet::Feature(4, "last_epoch_clean")
55 #define CEPH_OSD_FEATURE_INCOMPAT_CATEGORIES CompatSet::Feature(5, "categories")
56 #define CEPH_OSD_FEATURE_INCOMPAT_HOBJECTPOOL CompatSet::Feature(6, "hobjectpool")
57 #define CEPH_OSD_FEATURE_INCOMPAT_BIGINFO CompatSet::Feature(7, "biginfo")
58 #define CEPH_OSD_FEATURE_INCOMPAT_LEVELDBINFO CompatSet::Feature(8, "leveldbinfo")
59 #define CEPH_OSD_FEATURE_INCOMPAT_LEVELDBLOG CompatSet::Feature(9, "leveldblog")
60 #define CEPH_OSD_FEATURE_INCOMPAT_SNAPMAPPER CompatSet::Feature(10, "snapmapper")
61 #define CEPH_OSD_FEATURE_INCOMPAT_SHARDS CompatSet::Feature(11, "sharded objects")
62 #define CEPH_OSD_FEATURE_INCOMPAT_HINTS CompatSet::Feature(12, "transaction hints")
63 #define CEPH_OSD_FEATURE_INCOMPAT_PGMETA CompatSet::Feature(13, "pg meta object")
64 #define CEPH_OSD_FEATURE_INCOMPAT_MISSING CompatSet::Feature(14, "explicit missing set")
65 #define CEPH_OSD_FEATURE_INCOMPAT_FASTINFO CompatSet::Feature(15, "fastinfo pg attr")
66 #define CEPH_OSD_FEATURE_INCOMPAT_RECOVERY_DELETES CompatSet::Feature(16, "deletes in missing set")
67
68
69 /// min recovery priority for MBackfillReserve
70 #define OSD_RECOVERY_PRIORITY_MIN 0
71
72 /// base backfill priority for MBackfillReserve
73 #define OSD_BACKFILL_PRIORITY_BASE 100
74
75 /// base backfill priority for MBackfillReserve (degraded PG)
76 #define OSD_BACKFILL_DEGRADED_PRIORITY_BASE 140
77
78 /// base recovery priority for MBackfillReserve
79 #define OSD_RECOVERY_PRIORITY_BASE 180
80
81 /// base backfill priority for MBackfillReserve (inactive PG)
82 #define OSD_BACKFILL_INACTIVE_PRIORITY_BASE 220
83
84 /// max manually/automatically set recovery priority for MBackfillReserve
85 #define OSD_RECOVERY_PRIORITY_MAX 254
86
87 /// max recovery priority for MBackfillReserve, only when forced manually
88 #define OSD_RECOVERY_PRIORITY_FORCED 255
89
90
91 typedef hobject_t collection_list_handle_t;
92
93 /// convert a single CPEH_OSD_FLAG_* to a string
94 const char *ceph_osd_flag_name(unsigned flag);
95 /// convert a single CEPH_OSD_OF_FLAG_* to a string
96 const char *ceph_osd_op_flag_name(unsigned flag);
97
98 /// convert CEPH_OSD_FLAG_* op flags to a string
99 string ceph_osd_flag_string(unsigned flags);
100 /// conver CEPH_OSD_OP_FLAG_* op flags to a string
101 string ceph_osd_op_flag_string(unsigned flags);
102 /// conver CEPH_OSD_ALLOC_HINT_FLAG_* op flags to a string
103 string ceph_osd_alloc_hint_flag_string(unsigned flags);
104
105
106 /**
107 * osd request identifier
108 *
109 * caller name + incarnation# + tid to unique identify this request.
110 */
111 struct osd_reqid_t {
112 entity_name_t name; // who
113 ceph_tid_t tid;
114 int32_t inc; // incarnation
115
116 osd_reqid_t()
117 : tid(0), inc(0)
118 {}
119 osd_reqid_t(const osd_reqid_t& other)
120 : name(other.name), tid(other.tid), inc(other.inc)
121 {}
122 osd_reqid_t(const entity_name_t& a, int i, ceph_tid_t t)
123 : name(a), tid(t), inc(i)
124 {}
125
126 DENC(osd_reqid_t, v, p) {
127 DENC_START(2, 2, p);
128 denc(v.name, p);
129 denc(v.tid, p);
130 denc(v.inc, p);
131 DENC_FINISH(p);
132 }
133 void dump(Formatter *f) const;
134 static void generate_test_instances(list<osd_reqid_t*>& o);
135 };
136 WRITE_CLASS_DENC(osd_reqid_t)
137
138
139
140 struct pg_shard_t {
141 static const int32_t NO_OSD = 0x7fffffff;
142 int32_t osd;
143 shard_id_t shard;
144 pg_shard_t() : osd(-1), shard(shard_id_t::NO_SHARD) {}
145 explicit pg_shard_t(int osd) : osd(osd), shard(shard_id_t::NO_SHARD) {}
146 pg_shard_t(int osd, shard_id_t shard) : osd(osd), shard(shard) {}
147 bool is_undefined() const {
148 return osd == -1;
149 }
150 string get_osd() const { return (osd == NO_OSD ? "NONE" : to_string(osd)); }
151 void encode(bufferlist &bl) const;
152 void decode(bufferlist::iterator &bl);
153 void dump(Formatter *f) const {
154 f->dump_unsigned("osd", osd);
155 if (shard != shard_id_t::NO_SHARD) {
156 f->dump_unsigned("shard", shard);
157 }
158 }
159 };
160 WRITE_CLASS_ENCODER(pg_shard_t)
161 WRITE_EQ_OPERATORS_2(pg_shard_t, osd, shard)
162 WRITE_CMP_OPERATORS_2(pg_shard_t, osd, shard)
163 ostream &operator<<(ostream &lhs, const pg_shard_t &rhs);
164
165 class IsPGRecoverablePredicate {
166 public:
167 /**
168 * have encodes the shards available
169 */
170 virtual bool operator()(const set<pg_shard_t> &have) const = 0;
171 virtual ~IsPGRecoverablePredicate() {}
172 };
173
174 class IsPGReadablePredicate {
175 public:
176 /**
177 * have encodes the shards available
178 */
179 virtual bool operator()(const set<pg_shard_t> &have) const = 0;
180 virtual ~IsPGReadablePredicate() {}
181 };
182
183 inline ostream& operator<<(ostream& out, const osd_reqid_t& r) {
184 return out << r.name << "." << r.inc << ":" << r.tid;
185 }
186
187 inline bool operator==(const osd_reqid_t& l, const osd_reqid_t& r) {
188 return (l.name == r.name) && (l.inc == r.inc) && (l.tid == r.tid);
189 }
190 inline bool operator!=(const osd_reqid_t& l, const osd_reqid_t& r) {
191 return (l.name != r.name) || (l.inc != r.inc) || (l.tid != r.tid);
192 }
193 inline bool operator<(const osd_reqid_t& l, const osd_reqid_t& r) {
194 return (l.name < r.name) || (l.inc < r.inc) ||
195 (l.name == r.name && l.inc == r.inc && l.tid < r.tid);
196 }
197 inline bool operator<=(const osd_reqid_t& l, const osd_reqid_t& r) {
198 return (l.name < r.name) || (l.inc < r.inc) ||
199 (l.name == r.name && l.inc == r.inc && l.tid <= r.tid);
200 }
201 inline bool operator>(const osd_reqid_t& l, const osd_reqid_t& r) { return !(l <= r); }
202 inline bool operator>=(const osd_reqid_t& l, const osd_reqid_t& r) { return !(l < r); }
203
204 namespace std {
205 template<> struct hash<osd_reqid_t> {
206 size_t operator()(const osd_reqid_t &r) const {
207 static hash<uint64_t> H;
208 return H(r.name.num() ^ r.tid ^ r.inc);
209 }
210 };
211 } // namespace std
212
213
214 // -----
215
216 // a locator constrains the placement of an object. mainly, which pool
217 // does it go in.
218 struct object_locator_t {
219 // You specify either the hash or the key -- not both
220 int64_t pool; ///< pool id
221 string key; ///< key string (if non-empty)
222 string nspace; ///< namespace
223 int64_t hash; ///< hash position (if >= 0)
224
225 explicit object_locator_t()
226 : pool(-1), hash(-1) {}
227 explicit object_locator_t(int64_t po)
228 : pool(po), hash(-1) {}
229 explicit object_locator_t(int64_t po, int64_t ps)
230 : pool(po), hash(ps) {}
231 explicit object_locator_t(int64_t po, string ns)
232 : pool(po), nspace(ns), hash(-1) {}
233 explicit object_locator_t(int64_t po, string ns, int64_t ps)
234 : pool(po), nspace(ns), hash(ps) {}
235 explicit object_locator_t(int64_t po, string ns, string s)
236 : pool(po), key(s), nspace(ns), hash(-1) {}
237 explicit object_locator_t(const hobject_t& soid)
238 : pool(soid.pool), key(soid.get_key()), nspace(soid.nspace), hash(-1) {}
239
240 int64_t get_pool() const {
241 return pool;
242 }
243
244 void clear() {
245 pool = -1;
246 key = "";
247 nspace = "";
248 hash = -1;
249 }
250
251 bool empty() const {
252 return pool == -1;
253 }
254
255 void encode(bufferlist& bl) const;
256 void decode(bufferlist::iterator& p);
257 void dump(Formatter *f) const;
258 static void generate_test_instances(list<object_locator_t*>& o);
259 };
260 WRITE_CLASS_ENCODER(object_locator_t)
261
262 inline bool operator==(const object_locator_t& l, const object_locator_t& r) {
263 return l.pool == r.pool && l.key == r.key && l.nspace == r.nspace && l.hash == r.hash;
264 }
265 inline bool operator!=(const object_locator_t& l, const object_locator_t& r) {
266 return !(l == r);
267 }
268
269 inline ostream& operator<<(ostream& out, const object_locator_t& loc)
270 {
271 out << "@" << loc.pool;
272 if (loc.nspace.length())
273 out << ";" << loc.nspace;
274 if (loc.key.length())
275 out << ":" << loc.key;
276 return out;
277 }
278
279 struct request_redirect_t {
280 private:
281 object_locator_t redirect_locator; ///< this is authoritative
282 string redirect_object; ///< If non-empty, the request goes to this object name
283 bufferlist osd_instructions; ///< a bufferlist for the OSDs, passed but not interpreted by clients
284
285 friend ostream& operator<<(ostream& out, const request_redirect_t& redir);
286 public:
287
288 request_redirect_t() {}
289 explicit request_redirect_t(const object_locator_t& orig, int64_t rpool) :
290 redirect_locator(orig) { redirect_locator.pool = rpool; }
291 explicit request_redirect_t(const object_locator_t& rloc) :
292 redirect_locator(rloc) {}
293 explicit request_redirect_t(const object_locator_t& orig,
294 const string& robj) :
295 redirect_locator(orig), redirect_object(robj) {}
296
297 void set_instructions(const bufferlist& bl) { osd_instructions = bl; }
298 const bufferlist& get_instructions() { return osd_instructions; }
299
300 bool empty() const { return redirect_locator.empty() &&
301 redirect_object.empty(); }
302
303 void combine_with_locator(object_locator_t& orig, string& obj) const {
304 orig = redirect_locator;
305 if (!redirect_object.empty())
306 obj = redirect_object;
307 }
308
309 void encode(bufferlist& bl) const;
310 void decode(bufferlist::iterator& bl);
311 void dump(Formatter *f) const;
312 static void generate_test_instances(list<request_redirect_t*>& o);
313 };
314 WRITE_CLASS_ENCODER(request_redirect_t)
315
316 inline ostream& operator<<(ostream& out, const request_redirect_t& redir) {
317 out << "object " << redir.redirect_object << ", locator{" << redir.redirect_locator << "}";
318 return out;
319 }
320
321 // Internal OSD op flags - set by the OSD based on the op types
322 enum {
323 CEPH_OSD_RMW_FLAG_READ = (1 << 1),
324 CEPH_OSD_RMW_FLAG_WRITE = (1 << 2),
325 CEPH_OSD_RMW_FLAG_CLASS_READ = (1 << 3),
326 CEPH_OSD_RMW_FLAG_CLASS_WRITE = (1 << 4),
327 CEPH_OSD_RMW_FLAG_PGOP = (1 << 5),
328 CEPH_OSD_RMW_FLAG_CACHE = (1 << 6),
329 CEPH_OSD_RMW_FLAG_FORCE_PROMOTE = (1 << 7),
330 CEPH_OSD_RMW_FLAG_SKIP_HANDLE_CACHE = (1 << 8),
331 CEPH_OSD_RMW_FLAG_SKIP_PROMOTE = (1 << 9),
332 CEPH_OSD_RMW_FLAG_RWORDERED = (1 << 10),
333 };
334
335
336 // pg stuff
337
338 #define OSD_SUPERBLOCK_GOBJECT ghobject_t(hobject_t(sobject_t(object_t("osd_superblock"), 0)))
339
340 // placement seed (a hash value)
341 typedef uint32_t ps_t;
342
343 // old (v1) pg_t encoding (wrap old struct ceph_pg)
344 struct old_pg_t {
345 ceph_pg v;
346 void encode(bufferlist& bl) const {
347 ::encode_raw(v, bl);
348 }
349 void decode(bufferlist::iterator& bl) {
350 ::decode_raw(v, bl);
351 }
352 };
353 WRITE_CLASS_ENCODER(old_pg_t)
354
355 // placement group id
356 struct pg_t {
357 uint64_t m_pool;
358 uint32_t m_seed;
359 int32_t m_preferred;
360
361 pg_t() : m_pool(0), m_seed(0), m_preferred(-1) {}
362 pg_t(ps_t seed, uint64_t pool, int pref=-1) :
363 m_pool(pool), m_seed(seed), m_preferred(pref) {}
364 // cppcheck-suppress noExplicitConstructor
365 pg_t(const ceph_pg& cpg) :
366 m_pool(cpg.pool), m_seed(cpg.ps), m_preferred((__s16)cpg.preferred) {}
367
368 // cppcheck-suppress noExplicitConstructor
369 pg_t(const old_pg_t& opg) {
370 *this = opg.v;
371 }
372
373 old_pg_t get_old_pg() const {
374 old_pg_t o;
375 assert(m_pool < 0xffffffffull);
376 o.v.pool = m_pool;
377 o.v.ps = m_seed;
378 o.v.preferred = (__s16)m_preferred;
379 return o;
380 }
381
382 ps_t ps() const {
383 return m_seed;
384 }
385 uint64_t pool() const {
386 return m_pool;
387 }
388 int32_t preferred() const {
389 return m_preferred;
390 }
391
392 static const uint8_t calc_name_buf_size = 36; // max length for max values len("18446744073709551615.ffffffff") + future suffix len("_head") + '\0'
393 char *calc_name(char *buf, const char *suffix_backwords) const;
394
395 void set_ps(ps_t p) {
396 m_seed = p;
397 }
398 void set_pool(uint64_t p) {
399 m_pool = p;
400 }
401 void set_preferred(int32_t osd) {
402 m_preferred = osd;
403 }
404
405 pg_t get_parent() const;
406 pg_t get_ancestor(unsigned old_pg_num) const;
407
408 int print(char *o, int maxlen) const;
409 bool parse(const char *s);
410
411 bool is_split(unsigned old_pg_num, unsigned new_pg_num, set<pg_t> *pchildren) const;
412
413 /**
414 * Returns b such that for all object o:
415 * ~((~0)<<b) & o.hash) == 0 iff o is in the pg for *this
416 */
417 unsigned get_split_bits(unsigned pg_num) const;
418
419 bool contains(int bits, const ghobject_t& oid) {
420 return oid.match(bits, ps());
421 }
422 bool contains(int bits, const hobject_t& oid) {
423 return oid.match(bits, ps());
424 }
425
426 hobject_t get_hobj_start() const;
427 hobject_t get_hobj_end(unsigned pg_num) const;
428
429 void encode(bufferlist& bl) const {
430 __u8 v = 1;
431 ::encode(v, bl);
432 ::encode(m_pool, bl);
433 ::encode(m_seed, bl);
434 ::encode(m_preferred, bl);
435 }
436 void decode(bufferlist::iterator& bl) {
437 __u8 v;
438 ::decode(v, bl);
439 ::decode(m_pool, bl);
440 ::decode(m_seed, bl);
441 ::decode(m_preferred, bl);
442 }
443 void decode_old(bufferlist::iterator& bl) {
444 old_pg_t opg;
445 ::decode(opg, bl);
446 *this = opg;
447 }
448 void dump(Formatter *f) const;
449 static void generate_test_instances(list<pg_t*>& o);
450 };
451 WRITE_CLASS_ENCODER(pg_t)
452
453 inline bool operator<(const pg_t& l, const pg_t& r) {
454 return l.pool() < r.pool() ||
455 (l.pool() == r.pool() && (l.preferred() < r.preferred() ||
456 (l.preferred() == r.preferred() && (l.ps() < r.ps()))));
457 }
458 inline bool operator<=(const pg_t& l, const pg_t& r) {
459 return l.pool() < r.pool() ||
460 (l.pool() == r.pool() && (l.preferred() < r.preferred() ||
461 (l.preferred() == r.preferred() && (l.ps() <= r.ps()))));
462 }
463 inline bool operator==(const pg_t& l, const pg_t& r) {
464 return l.pool() == r.pool() &&
465 l.preferred() == r.preferred() &&
466 l.ps() == r.ps();
467 }
468 inline bool operator!=(const pg_t& l, const pg_t& r) {
469 return l.pool() != r.pool() ||
470 l.preferred() != r.preferred() ||
471 l.ps() != r.ps();
472 }
473 inline bool operator>(const pg_t& l, const pg_t& r) {
474 return l.pool() > r.pool() ||
475 (l.pool() == r.pool() && (l.preferred() > r.preferred() ||
476 (l.preferred() == r.preferred() && (l.ps() > r.ps()))));
477 }
478 inline bool operator>=(const pg_t& l, const pg_t& r) {
479 return l.pool() > r.pool() ||
480 (l.pool() == r.pool() && (l.preferred() > r.preferred() ||
481 (l.preferred() == r.preferred() && (l.ps() >= r.ps()))));
482 }
483
484 ostream& operator<<(ostream& out, const pg_t &pg);
485
486 namespace std {
487 template<> struct hash< pg_t >
488 {
489 size_t operator()( const pg_t& x ) const
490 {
491 static hash<uint32_t> H;
492 return H((x.pool() & 0xffffffff) ^ (x.pool() >> 32) ^ x.ps() ^ x.preferred());
493 }
494 };
495 } // namespace std
496
497 struct spg_t {
498 pg_t pgid;
499 shard_id_t shard;
500 spg_t() : shard(shard_id_t::NO_SHARD) {}
501 spg_t(pg_t pgid, shard_id_t shard) : pgid(pgid), shard(shard) {}
502 explicit spg_t(pg_t pgid) : pgid(pgid), shard(shard_id_t::NO_SHARD) {}
503 unsigned get_split_bits(unsigned pg_num) const {
504 return pgid.get_split_bits(pg_num);
505 }
506 spg_t get_parent() const {
507 return spg_t(pgid.get_parent(), shard);
508 }
509 ps_t ps() const {
510 return pgid.ps();
511 }
512 uint64_t pool() const {
513 return pgid.pool();
514 }
515 int32_t preferred() const {
516 return pgid.preferred();
517 }
518
519 static const uint8_t calc_name_buf_size = pg_t::calc_name_buf_size + 4; // 36 + len('s') + len("255");
520 char *calc_name(char *buf, const char *suffix_backwords) const;
521
522 bool parse(const char *s);
523 bool parse(const std::string& s) {
524 return parse(s.c_str());
525 }
526 bool is_split(unsigned old_pg_num, unsigned new_pg_num,
527 set<spg_t> *pchildren) const {
528 set<pg_t> _children;
529 set<pg_t> *children = pchildren ? &_children : NULL;
530 bool is_split = pgid.is_split(old_pg_num, new_pg_num, children);
531 if (pchildren && is_split) {
532 for (set<pg_t>::iterator i = _children.begin();
533 i != _children.end();
534 ++i) {
535 pchildren->insert(spg_t(*i, shard));
536 }
537 }
538 return is_split;
539 }
540 bool is_no_shard() const {
541 return shard == shard_id_t::NO_SHARD;
542 }
543
544 ghobject_t make_pgmeta_oid() const {
545 return ghobject_t::make_pgmeta(pgid.pool(), pgid.ps(), shard);
546 }
547
548 void encode(bufferlist &bl) const {
549 ENCODE_START(1, 1, bl);
550 ::encode(pgid, bl);
551 ::encode(shard, bl);
552 ENCODE_FINISH(bl);
553 }
554 void decode(bufferlist::iterator &bl) {
555 DECODE_START(1, bl);
556 ::decode(pgid, bl);
557 ::decode(shard, bl);
558 DECODE_FINISH(bl);
559 }
560
561 ghobject_t make_temp_ghobject(const string& name) const {
562 return ghobject_t(
563 hobject_t(object_t(name), "", CEPH_NOSNAP,
564 pgid.ps(),
565 hobject_t::POOL_TEMP_START - pgid.pool(), ""),
566 ghobject_t::NO_GEN,
567 shard);
568 }
569
570 unsigned hash_to_shard(unsigned num_shards) const {
571 return ps() % num_shards;
572 }
573 };
574 WRITE_CLASS_ENCODER(spg_t)
575 WRITE_EQ_OPERATORS_2(spg_t, pgid, shard)
576 WRITE_CMP_OPERATORS_2(spg_t, pgid, shard)
577
578 namespace std {
579 template<> struct hash< spg_t >
580 {
581 size_t operator()( const spg_t& x ) const
582 {
583 static hash<uint32_t> H;
584 return H(hash<pg_t>()(x.pgid) ^ x.shard);
585 }
586 };
587 } // namespace std
588
589 ostream& operator<<(ostream& out, const spg_t &pg);
590
591 // ----------------------
592
593 class coll_t {
594 enum type_t {
595 TYPE_META = 0,
596 TYPE_LEGACY_TEMP = 1, /* no longer used */
597 TYPE_PG = 2,
598 TYPE_PG_TEMP = 3,
599 };
600 type_t type;
601 spg_t pgid;
602 uint64_t removal_seq; // note: deprecated, not encoded
603
604 char _str_buff[spg_t::calc_name_buf_size];
605 char *_str;
606
607 void calc_str();
608
609 coll_t(type_t t, spg_t p, uint64_t r)
610 : type(t), pgid(p), removal_seq(r) {
611 calc_str();
612 }
613
614 public:
615 coll_t() : type(TYPE_META), removal_seq(0)
616 {
617 calc_str();
618 }
619
620 coll_t(const coll_t& other)
621 : type(other.type), pgid(other.pgid), removal_seq(other.removal_seq) {
622 calc_str();
623 }
624
625 explicit coll_t(spg_t pgid)
626 : type(TYPE_PG), pgid(pgid), removal_seq(0)
627 {
628 calc_str();
629 }
630
631 coll_t& operator=(const coll_t& rhs)
632 {
633 this->type = rhs.type;
634 this->pgid = rhs.pgid;
635 this->removal_seq = rhs.removal_seq;
636 this->calc_str();
637 return *this;
638 }
639
640 // named constructors
641 static coll_t meta() {
642 return coll_t();
643 }
644 static coll_t pg(spg_t p) {
645 return coll_t(p);
646 }
647
648 const std::string to_str() const {
649 return string(_str);
650 }
651 const char *c_str() const {
652 return _str;
653 }
654
655 bool parse(const std::string& s);
656
657 int operator<(const coll_t &rhs) const {
658 return type < rhs.type ||
659 (type == rhs.type && pgid < rhs.pgid);
660 }
661
662 bool is_meta() const {
663 return type == TYPE_META;
664 }
665 bool is_pg_prefix(spg_t *pgid_) const {
666 if (type == TYPE_PG || type == TYPE_PG_TEMP) {
667 *pgid_ = pgid;
668 return true;
669 }
670 return false;
671 }
672 bool is_pg() const {
673 return type == TYPE_PG;
674 }
675 bool is_pg(spg_t *pgid_) const {
676 if (type == TYPE_PG) {
677 *pgid_ = pgid;
678 return true;
679 }
680 return false;
681 }
682 bool is_temp() const {
683 return type == TYPE_PG_TEMP;
684 }
685 bool is_temp(spg_t *pgid_) const {
686 if (type == TYPE_PG_TEMP) {
687 *pgid_ = pgid;
688 return true;
689 }
690 return false;
691 }
692
693 void encode(bufferlist& bl) const;
694 void decode(bufferlist::iterator& bl);
695 size_t encoded_size() const;
696
697 inline bool operator==(const coll_t& rhs) const {
698 // only compare type if meta
699 if (type != rhs.type)
700 return false;
701 if (type == TYPE_META)
702 return true;
703 return type == rhs.type && pgid == rhs.pgid;
704 }
705 inline bool operator!=(const coll_t& rhs) const {
706 return !(*this == rhs);
707 }
708
709 // get a TEMP collection that corresponds to the current collection,
710 // which we presume is a pg collection.
711 coll_t get_temp() const {
712 assert(type == TYPE_PG);
713 return coll_t(TYPE_PG_TEMP, pgid, 0);
714 }
715
716 ghobject_t get_min_hobj() const {
717 ghobject_t o;
718 switch (type) {
719 case TYPE_PG:
720 o.hobj.pool = pgid.pool();
721 o.set_shard(pgid.shard);
722 break;
723 case TYPE_META:
724 o.hobj.pool = -1;
725 break;
726 default:
727 break;
728 }
729 return o;
730 }
731
732 unsigned hash_to_shard(unsigned num_shards) const {
733 if (type == TYPE_PG)
734 return pgid.hash_to_shard(num_shards);
735 return 0; // whatever.
736 }
737
738 void dump(Formatter *f) const;
739 static void generate_test_instances(list<coll_t*>& o);
740 };
741
742 WRITE_CLASS_ENCODER(coll_t)
743
744 inline ostream& operator<<(ostream& out, const coll_t& c) {
745 out << c.to_str();
746 return out;
747 }
748
749 namespace std {
750 template<> struct hash<coll_t> {
751 size_t operator()(const coll_t &c) const {
752 size_t h = 0;
753 string str(c.to_str());
754 std::string::const_iterator end(str.end());
755 for (std::string::const_iterator s = str.begin(); s != end; ++s) {
756 h += *s;
757 h += (h << 10);
758 h ^= (h >> 6);
759 }
760 h += (h << 3);
761 h ^= (h >> 11);
762 h += (h << 15);
763 return h;
764 }
765 };
766 } // namespace std
767
768 inline ostream& operator<<(ostream& out, const ceph_object_layout &ol)
769 {
770 out << pg_t(ol.ol_pgid);
771 int su = ol.ol_stripe_unit;
772 if (su)
773 out << ".su=" << su;
774 return out;
775 }
776
777
778
779 // compound rados version type
780 /* WARNING: If add member in eversion_t, please make sure the encode/decode function
781 * work well. For little-endian machine, we should make sure there is no padding
782 * in 32-bit machine and 64-bit machine.
783 */
784 class eversion_t {
785 public:
786 version_t version;
787 epoch_t epoch;
788 __u32 __pad;
789 eversion_t() : version(0), epoch(0), __pad(0) {}
790 eversion_t(epoch_t e, version_t v) : version(v), epoch(e), __pad(0) {}
791
792 // cppcheck-suppress noExplicitConstructor
793 eversion_t(const ceph_eversion& ce) :
794 version(ce.version),
795 epoch(ce.epoch),
796 __pad(0) { }
797
798 explicit eversion_t(bufferlist& bl) : __pad(0) { decode(bl); }
799
800 static eversion_t max() {
801 eversion_t max;
802 max.version -= 1;
803 max.epoch -= 1;
804 return max;
805 }
806
807 operator ceph_eversion() {
808 ceph_eversion c;
809 c.epoch = epoch;
810 c.version = version;
811 return c;
812 }
813
814 string get_key_name() const;
815
816 void encode(bufferlist &bl) const {
817 #if defined(CEPH_LITTLE_ENDIAN)
818 bl.append((char *)this, sizeof(version_t) + sizeof(epoch_t));
819 #else
820 ::encode(version, bl);
821 ::encode(epoch, bl);
822 #endif
823 }
824 void decode(bufferlist::iterator &bl) {
825 #if defined(CEPH_LITTLE_ENDIAN)
826 bl.copy(sizeof(version_t) + sizeof(epoch_t), (char *)this);
827 #else
828 ::decode(version, bl);
829 ::decode(epoch, bl);
830 #endif
831 }
832 void decode(bufferlist& bl) {
833 bufferlist::iterator p = bl.begin();
834 decode(p);
835 }
836 };
837 WRITE_CLASS_ENCODER(eversion_t)
838
839 inline bool operator==(const eversion_t& l, const eversion_t& r) {
840 return (l.epoch == r.epoch) && (l.version == r.version);
841 }
842 inline bool operator!=(const eversion_t& l, const eversion_t& r) {
843 return (l.epoch != r.epoch) || (l.version != r.version);
844 }
845 inline bool operator<(const eversion_t& l, const eversion_t& r) {
846 return (l.epoch == r.epoch) ? (l.version < r.version):(l.epoch < r.epoch);
847 }
848 inline bool operator<=(const eversion_t& l, const eversion_t& r) {
849 return (l.epoch == r.epoch) ? (l.version <= r.version):(l.epoch <= r.epoch);
850 }
851 inline bool operator>(const eversion_t& l, const eversion_t& r) {
852 return (l.epoch == r.epoch) ? (l.version > r.version):(l.epoch > r.epoch);
853 }
854 inline bool operator>=(const eversion_t& l, const eversion_t& r) {
855 return (l.epoch == r.epoch) ? (l.version >= r.version):(l.epoch >= r.epoch);
856 }
857 inline ostream& operator<<(ostream& out, const eversion_t& e) {
858 return out << e.epoch << "'" << e.version;
859 }
860
861 /**
862 * objectstore_perf_stat_t
863 *
864 * current perf information about the osd
865 */
866 struct objectstore_perf_stat_t {
867 // cur_op_latency is in ms since double add/sub are not associative
868 uint32_t os_commit_latency;
869 uint32_t os_apply_latency;
870
871 objectstore_perf_stat_t() :
872 os_commit_latency(0), os_apply_latency(0) {}
873
874 bool operator==(const objectstore_perf_stat_t &r) const {
875 return os_commit_latency == r.os_commit_latency &&
876 os_apply_latency == r.os_apply_latency;
877 }
878
879 void add(const objectstore_perf_stat_t &o) {
880 os_commit_latency += o.os_commit_latency;
881 os_apply_latency += o.os_apply_latency;
882 }
883 void sub(const objectstore_perf_stat_t &o) {
884 os_commit_latency -= o.os_commit_latency;
885 os_apply_latency -= o.os_apply_latency;
886 }
887 void dump(Formatter *f) const;
888 void encode(bufferlist &bl) const;
889 void decode(bufferlist::iterator &bl);
890 static void generate_test_instances(std::list<objectstore_perf_stat_t*>& o);
891 };
892 WRITE_CLASS_ENCODER(objectstore_perf_stat_t)
893
894 /** osd_stat
895 * aggregate stats for an osd
896 */
897 struct osd_stat_t {
898 int64_t kb, kb_used, kb_avail;
899 vector<int> hb_peers;
900 int32_t snap_trim_queue_len, num_snap_trimming;
901
902 pow2_hist_t op_queue_age_hist;
903
904 objectstore_perf_stat_t os_perf_stat;
905
906 epoch_t up_from = 0;
907 uint64_t seq = 0;
908
909 uint32_t num_pgs = 0;
910
911 osd_stat_t() : kb(0), kb_used(0), kb_avail(0),
912 snap_trim_queue_len(0), num_snap_trimming(0) {}
913
914 void add(const osd_stat_t& o) {
915 kb += o.kb;
916 kb_used += o.kb_used;
917 kb_avail += o.kb_avail;
918 snap_trim_queue_len += o.snap_trim_queue_len;
919 num_snap_trimming += o.num_snap_trimming;
920 op_queue_age_hist.add(o.op_queue_age_hist);
921 os_perf_stat.add(o.os_perf_stat);
922 num_pgs += o.num_pgs;
923 }
924 void sub(const osd_stat_t& o) {
925 kb -= o.kb;
926 kb_used -= o.kb_used;
927 kb_avail -= o.kb_avail;
928 snap_trim_queue_len -= o.snap_trim_queue_len;
929 num_snap_trimming -= o.num_snap_trimming;
930 op_queue_age_hist.sub(o.op_queue_age_hist);
931 os_perf_stat.sub(o.os_perf_stat);
932 num_pgs -= o.num_pgs;
933 }
934
935 void dump(Formatter *f) const;
936 void encode(bufferlist &bl) const;
937 void decode(bufferlist::iterator &bl);
938 static void generate_test_instances(std::list<osd_stat_t*>& o);
939 };
940 WRITE_CLASS_ENCODER(osd_stat_t)
941
942 inline bool operator==(const osd_stat_t& l, const osd_stat_t& r) {
943 return l.kb == r.kb &&
944 l.kb_used == r.kb_used &&
945 l.kb_avail == r.kb_avail &&
946 l.snap_trim_queue_len == r.snap_trim_queue_len &&
947 l.num_snap_trimming == r.num_snap_trimming &&
948 l.hb_peers == r.hb_peers &&
949 l.op_queue_age_hist == r.op_queue_age_hist &&
950 l.os_perf_stat == r.os_perf_stat &&
951 l.num_pgs == r.num_pgs;
952 }
953 inline bool operator!=(const osd_stat_t& l, const osd_stat_t& r) {
954 return !(l == r);
955 }
956
957
958
959 inline ostream& operator<<(ostream& out, const osd_stat_t& s) {
960 return out << "osd_stat(" << kb_t(s.kb_used) << " used, "
961 << kb_t(s.kb_avail) << " avail, "
962 << kb_t(s.kb) << " total, "
963 << "peers " << s.hb_peers
964 << " op hist " << s.op_queue_age_hist.h
965 << ")";
966 }
967
968
969 /*
970 * pg states
971 */
972 #define PG_STATE_CREATING (1<<0) // creating
973 #define PG_STATE_ACTIVE (1<<1) // i am active. (primary: replicas too)
974 #define PG_STATE_CLEAN (1<<2) // peers are complete, clean of stray replicas.
975 #define PG_STATE_DOWN (1<<4) // a needed replica is down, PG offline
976 #define PG_STATE_RECOVERY_UNFOUND (1<<5) // recovery stopped due to unfound
977 #define PG_STATE_BACKFILL_UNFOUND (1<<6) // backfill stopped due to unfound
978 //#define PG_STATE_SPLITTING (1<<7) // i am splitting
979 #define PG_STATE_SCRUBBING (1<<8) // scrubbing
980 //#define PG_STATE_SCRUBQ (1<<9) // queued for scrub
981 #define PG_STATE_DEGRADED (1<<10) // pg contains objects with reduced redundancy
982 #define PG_STATE_INCONSISTENT (1<<11) // pg replicas are inconsistent (but shouldn't be)
983 #define PG_STATE_PEERING (1<<12) // pg is (re)peering
984 #define PG_STATE_REPAIR (1<<13) // pg should repair on next scrub
985 #define PG_STATE_RECOVERING (1<<14) // pg is recovering/migrating objects
986 #define PG_STATE_BACKFILL_WAIT (1<<15) // [active] reserving backfill
987 #define PG_STATE_INCOMPLETE (1<<16) // incomplete content, peering failed.
988 #define PG_STATE_STALE (1<<17) // our state for this pg is stale, unknown.
989 #define PG_STATE_REMAPPED (1<<18) // pg is explicitly remapped to different OSDs than CRUSH
990 #define PG_STATE_DEEP_SCRUB (1<<19) // deep scrub: check CRC32 on files
991 #define PG_STATE_BACKFILLING (1<<20) // [active] backfilling pg content
992 #define PG_STATE_BACKFILL_TOOFULL (1<<21) // backfill can't proceed: too full
993 #define PG_STATE_RECOVERY_WAIT (1<<22) // waiting for recovery reservations
994 #define PG_STATE_UNDERSIZED (1<<23) // pg acting < pool size
995 #define PG_STATE_ACTIVATING (1<<24) // pg is peered but not yet active
996 #define PG_STATE_PEERED (1<<25) // peered, cannot go active, can recover
997 #define PG_STATE_SNAPTRIM (1<<26) // trimming snaps
998 #define PG_STATE_SNAPTRIM_WAIT (1<<27) // queued to trim snaps
999 #define PG_STATE_RECOVERY_TOOFULL (1<<28) // recovery can't proceed: too full
1000 #define PG_STATE_SNAPTRIM_ERROR (1<<29) // error stopped trimming snaps
1001 #define PG_STATE_FORCED_RECOVERY (1<<30) // force recovery of this pg before any other
1002 #define PG_STATE_FORCED_BACKFILL (1<<31) // force backfill of this pg before any other
1003
1004 std::string pg_state_string(int state);
1005 std::string pg_vector_string(const vector<int32_t> &a);
1006 boost::optional<uint64_t> pg_string_state(const std::string& state);
1007
1008
1009 /*
1010 * pool_snap_info_t
1011 *
1012 * attributes for a single pool snapshot.
1013 */
1014 struct pool_snap_info_t {
1015 snapid_t snapid;
1016 utime_t stamp;
1017 string name;
1018
1019 void dump(Formatter *f) const;
1020 void encode(bufferlist& bl, uint64_t features) const;
1021 void decode(bufferlist::iterator& bl);
1022 static void generate_test_instances(list<pool_snap_info_t*>& o);
1023 };
1024 WRITE_CLASS_ENCODER_FEATURES(pool_snap_info_t)
1025
1026 inline ostream& operator<<(ostream& out, const pool_snap_info_t& si) {
1027 return out << si.snapid << '(' << si.name << ' ' << si.stamp << ')';
1028 }
1029
1030
1031 /*
1032 * pool_opts_t
1033 *
1034 * pool options.
1035 */
1036
1037 class pool_opts_t {
1038 public:
1039 enum key_t {
1040 SCRUB_MIN_INTERVAL,
1041 SCRUB_MAX_INTERVAL,
1042 DEEP_SCRUB_INTERVAL,
1043 RECOVERY_PRIORITY,
1044 RECOVERY_OP_PRIORITY,
1045 SCRUB_PRIORITY,
1046 COMPRESSION_MODE,
1047 COMPRESSION_ALGORITHM,
1048 COMPRESSION_REQUIRED_RATIO,
1049 COMPRESSION_MAX_BLOB_SIZE,
1050 COMPRESSION_MIN_BLOB_SIZE,
1051 CSUM_TYPE,
1052 CSUM_MAX_BLOCK,
1053 CSUM_MIN_BLOCK,
1054 };
1055
1056 enum type_t {
1057 STR,
1058 INT,
1059 DOUBLE,
1060 };
1061
1062 struct opt_desc_t {
1063 key_t key;
1064 type_t type;
1065
1066 opt_desc_t(key_t k, type_t t) : key(k), type(t) {}
1067
1068 bool operator==(const opt_desc_t& rhs) const {
1069 return key == rhs.key && type == rhs.type;
1070 }
1071 };
1072
1073 typedef boost::variant<std::string,int,double> value_t;
1074
1075 static bool is_opt_name(const std::string& name);
1076 static opt_desc_t get_opt_desc(const std::string& name);
1077
1078 pool_opts_t() : opts() {}
1079
1080 bool is_set(key_t key) const;
1081
1082 template<typename T>
1083 void set(key_t key, const T &val) {
1084 value_t value = val;
1085 opts[key] = value;
1086 }
1087
1088 template<typename T>
1089 bool get(key_t key, T *val) const {
1090 opts_t::const_iterator i = opts.find(key);
1091 if (i == opts.end()) {
1092 return false;
1093 }
1094 *val = boost::get<T>(i->second);
1095 return true;
1096 }
1097
1098 const value_t& get(key_t key) const;
1099
1100 bool unset(key_t key);
1101
1102 void dump(const std::string& name, Formatter *f) const;
1103
1104 void dump(Formatter *f) const;
1105 void encode(bufferlist &bl) const;
1106 void decode(bufferlist::iterator &bl);
1107
1108 private:
1109 typedef std::map<key_t, value_t> opts_t;
1110 opts_t opts;
1111
1112 friend ostream& operator<<(ostream& out, const pool_opts_t& opts);
1113 };
1114 WRITE_CLASS_ENCODER(pool_opts_t)
1115
1116 /*
1117 * pg_pool
1118 */
1119 struct pg_pool_t {
1120 static const char *APPLICATION_NAME_CEPHFS;
1121 static const char *APPLICATION_NAME_RBD;
1122 static const char *APPLICATION_NAME_RGW;
1123
1124 enum {
1125 TYPE_REPLICATED = 1, // replication
1126 //TYPE_RAID4 = 2, // raid4 (never implemented)
1127 TYPE_ERASURE = 3, // erasure-coded
1128 };
1129 static const char *get_type_name(int t) {
1130 switch (t) {
1131 case TYPE_REPLICATED: return "replicated";
1132 //case TYPE_RAID4: return "raid4";
1133 case TYPE_ERASURE: return "erasure";
1134 default: return "???";
1135 }
1136 }
1137 const char *get_type_name() const {
1138 return get_type_name(type);
1139 }
1140
1141 enum {
1142 FLAG_HASHPSPOOL = 1<<0, // hash pg seed and pool together (instead of adding)
1143 FLAG_FULL = 1<<1, // pool is full
1144 FLAG_EC_OVERWRITES = 1<<2, // enables overwrites, once enabled, cannot be disabled
1145 FLAG_INCOMPLETE_CLONES = 1<<3, // may have incomplete clones (bc we are/were an overlay)
1146 FLAG_NODELETE = 1<<4, // pool can't be deleted
1147 FLAG_NOPGCHANGE = 1<<5, // pool's pg and pgp num can't be changed
1148 FLAG_NOSIZECHANGE = 1<<6, // pool's size and min size can't be changed
1149 FLAG_WRITE_FADVISE_DONTNEED = 1<<7, // write mode with LIBRADOS_OP_FLAG_FADVISE_DONTNEED
1150 FLAG_NOSCRUB = 1<<8, // block periodic scrub
1151 FLAG_NODEEP_SCRUB = 1<<9, // block periodic deep-scrub
1152 FLAG_FULL_NO_QUOTA = 1<<10, // pool is currently running out of quota, will set FLAG_FULL too
1153 FLAG_NEARFULL = 1<<11, // pool is nearfull
1154 FLAG_BACKFILLFULL = 1<<12, // pool is backfillfull
1155 };
1156
1157 static const char *get_flag_name(int f) {
1158 switch (f) {
1159 case FLAG_HASHPSPOOL: return "hashpspool";
1160 case FLAG_FULL: return "full";
1161 case FLAG_EC_OVERWRITES: return "ec_overwrites";
1162 case FLAG_INCOMPLETE_CLONES: return "incomplete_clones";
1163 case FLAG_NODELETE: return "nodelete";
1164 case FLAG_NOPGCHANGE: return "nopgchange";
1165 case FLAG_NOSIZECHANGE: return "nosizechange";
1166 case FLAG_WRITE_FADVISE_DONTNEED: return "write_fadvise_dontneed";
1167 case FLAG_NOSCRUB: return "noscrub";
1168 case FLAG_NODEEP_SCRUB: return "nodeep-scrub";
1169 case FLAG_FULL_NO_QUOTA: return "full_no_quota";
1170 case FLAG_NEARFULL: return "nearfull";
1171 case FLAG_BACKFILLFULL: return "backfillfull";
1172 default: return "???";
1173 }
1174 }
1175 static string get_flags_string(uint64_t f) {
1176 string s;
1177 for (unsigned n=0; f && n<64; ++n) {
1178 if (f & (1ull << n)) {
1179 if (s.length())
1180 s += ",";
1181 s += get_flag_name(1ull << n);
1182 }
1183 }
1184 return s;
1185 }
1186 string get_flags_string() const {
1187 return get_flags_string(flags);
1188 }
1189 static uint64_t get_flag_by_name(const string& name) {
1190 if (name == "hashpspool")
1191 return FLAG_HASHPSPOOL;
1192 if (name == "full")
1193 return FLAG_FULL;
1194 if (name == "ec_overwrites")
1195 return FLAG_EC_OVERWRITES;
1196 if (name == "incomplete_clones")
1197 return FLAG_INCOMPLETE_CLONES;
1198 if (name == "nodelete")
1199 return FLAG_NODELETE;
1200 if (name == "nopgchange")
1201 return FLAG_NOPGCHANGE;
1202 if (name == "nosizechange")
1203 return FLAG_NOSIZECHANGE;
1204 if (name == "write_fadvise_dontneed")
1205 return FLAG_WRITE_FADVISE_DONTNEED;
1206 if (name == "noscrub")
1207 return FLAG_NOSCRUB;
1208 if (name == "nodeep-scrub")
1209 return FLAG_NODEEP_SCRUB;
1210 if (name == "full_no_quota")
1211 return FLAG_FULL_NO_QUOTA;
1212 if (name == "nearfull")
1213 return FLAG_NEARFULL;
1214 if (name == "backfillfull")
1215 return FLAG_BACKFILLFULL;
1216 return 0;
1217 }
1218
1219 /// converts the acting/up vector to a set of pg shards
1220 void convert_to_pg_shards(const vector<int> &from, set<pg_shard_t>* to) const;
1221
1222 typedef enum {
1223 CACHEMODE_NONE = 0, ///< no caching
1224 CACHEMODE_WRITEBACK = 1, ///< write to cache, flush later
1225 CACHEMODE_FORWARD = 2, ///< forward if not in cache
1226 CACHEMODE_READONLY = 3, ///< handle reads, forward writes [not strongly consistent]
1227 CACHEMODE_READFORWARD = 4, ///< forward reads, write to cache flush later
1228 CACHEMODE_READPROXY = 5, ///< proxy reads, write to cache flush later
1229 CACHEMODE_PROXY = 6, ///< proxy if not in cache
1230 } cache_mode_t;
1231 static const char *get_cache_mode_name(cache_mode_t m) {
1232 switch (m) {
1233 case CACHEMODE_NONE: return "none";
1234 case CACHEMODE_WRITEBACK: return "writeback";
1235 case CACHEMODE_FORWARD: return "forward";
1236 case CACHEMODE_READONLY: return "readonly";
1237 case CACHEMODE_READFORWARD: return "readforward";
1238 case CACHEMODE_READPROXY: return "readproxy";
1239 case CACHEMODE_PROXY: return "proxy";
1240 default: return "unknown";
1241 }
1242 }
1243 static cache_mode_t get_cache_mode_from_str(const string& s) {
1244 if (s == "none")
1245 return CACHEMODE_NONE;
1246 if (s == "writeback")
1247 return CACHEMODE_WRITEBACK;
1248 if (s == "forward")
1249 return CACHEMODE_FORWARD;
1250 if (s == "readonly")
1251 return CACHEMODE_READONLY;
1252 if (s == "readforward")
1253 return CACHEMODE_READFORWARD;
1254 if (s == "readproxy")
1255 return CACHEMODE_READPROXY;
1256 if (s == "proxy")
1257 return CACHEMODE_PROXY;
1258 return (cache_mode_t)-1;
1259 }
1260 const char *get_cache_mode_name() const {
1261 return get_cache_mode_name(cache_mode);
1262 }
1263 bool cache_mode_requires_hit_set() const {
1264 switch (cache_mode) {
1265 case CACHEMODE_NONE:
1266 case CACHEMODE_FORWARD:
1267 case CACHEMODE_READONLY:
1268 case CACHEMODE_PROXY:
1269 return false;
1270 case CACHEMODE_WRITEBACK:
1271 case CACHEMODE_READFORWARD:
1272 case CACHEMODE_READPROXY:
1273 return true;
1274 default:
1275 assert(0 == "implement me");
1276 }
1277 }
1278
1279 uint64_t flags; ///< FLAG_*
1280 __u8 type; ///< TYPE_*
1281 __u8 size, min_size; ///< number of osds in each pg
1282 __u8 crush_rule; ///< crush placement rule
1283 __u8 object_hash; ///< hash mapping object name to ps
1284 private:
1285 __u32 pg_num, pgp_num; ///< number of pgs
1286
1287
1288 public:
1289 map<string,string> properties; ///< OBSOLETE
1290 string erasure_code_profile; ///< name of the erasure code profile in OSDMap
1291 epoch_t last_change; ///< most recent epoch changed, exclusing snapshot changes
1292 epoch_t last_force_op_resend; ///< last epoch that forced clients to resend
1293 /// last epoch that forced clients to resend (pre-luminous clients only)
1294 epoch_t last_force_op_resend_preluminous;
1295 snapid_t snap_seq; ///< seq for per-pool snapshot
1296 epoch_t snap_epoch; ///< osdmap epoch of last snap
1297 uint64_t auid; ///< who owns the pg
1298 __u32 crash_replay_interval; ///< seconds to allow clients to replay ACKed but unCOMMITted requests
1299
1300 uint64_t quota_max_bytes; ///< maximum number of bytes for this pool
1301 uint64_t quota_max_objects; ///< maximum number of objects for this pool
1302
1303 /*
1304 * Pool snaps (global to this pool). These define a SnapContext for
1305 * the pool, unless the client manually specifies an alternate
1306 * context.
1307 */
1308 map<snapid_t, pool_snap_info_t> snaps;
1309 /*
1310 * Alternatively, if we are defining non-pool snaps (e.g. via the
1311 * Ceph MDS), we must track @removed_snaps (since @snaps is not
1312 * used). Snaps and removed_snaps are to be used exclusive of each
1313 * other!
1314 */
1315 interval_set<snapid_t> removed_snaps;
1316
1317 unsigned pg_num_mask, pgp_num_mask;
1318
1319 set<uint64_t> tiers; ///< pools that are tiers of us
1320 int64_t tier_of; ///< pool for which we are a tier
1321 // Note that write wins for read+write ops
1322 int64_t read_tier; ///< pool/tier for objecter to direct reads to
1323 int64_t write_tier; ///< pool/tier for objecter to direct writes to
1324 cache_mode_t cache_mode; ///< cache pool mode
1325
1326 bool is_tier() const { return tier_of >= 0; }
1327 bool has_tiers() const { return !tiers.empty(); }
1328 void clear_tier() {
1329 tier_of = -1;
1330 clear_read_tier();
1331 clear_write_tier();
1332 clear_tier_tunables();
1333 }
1334 bool has_read_tier() const { return read_tier >= 0; }
1335 void clear_read_tier() { read_tier = -1; }
1336 bool has_write_tier() const { return write_tier >= 0; }
1337 void clear_write_tier() { write_tier = -1; }
1338 void clear_tier_tunables() {
1339 if (cache_mode != CACHEMODE_NONE)
1340 flags |= FLAG_INCOMPLETE_CLONES;
1341 cache_mode = CACHEMODE_NONE;
1342
1343 target_max_bytes = 0;
1344 target_max_objects = 0;
1345 cache_target_dirty_ratio_micro = 0;
1346 cache_target_dirty_high_ratio_micro = 0;
1347 cache_target_full_ratio_micro = 0;
1348 hit_set_params = HitSet::Params();
1349 hit_set_period = 0;
1350 hit_set_count = 0;
1351 hit_set_grade_decay_rate = 0;
1352 hit_set_search_last_n = 0;
1353 grade_table.resize(0);
1354 }
1355
1356 uint64_t target_max_bytes; ///< tiering: target max pool size
1357 uint64_t target_max_objects; ///< tiering: target max pool size
1358
1359 uint32_t cache_target_dirty_ratio_micro; ///< cache: fraction of target to leave dirty
1360 uint32_t cache_target_dirty_high_ratio_micro; ///<cache: fraction of target to flush with high speed
1361 uint32_t cache_target_full_ratio_micro; ///< cache: fraction of target to fill before we evict in earnest
1362
1363 uint32_t cache_min_flush_age; ///< minimum age (seconds) before we can flush
1364 uint32_t cache_min_evict_age; ///< minimum age (seconds) before we can evict
1365
1366 HitSet::Params hit_set_params; ///< The HitSet params to use on this pool
1367 uint32_t hit_set_period; ///< periodicity of HitSet segments (seconds)
1368 uint32_t hit_set_count; ///< number of periods to retain
1369 bool use_gmt_hitset; ///< use gmt to name the hitset archive object
1370 uint32_t min_read_recency_for_promote; ///< minimum number of HitSet to check before promote on read
1371 uint32_t min_write_recency_for_promote; ///< minimum number of HitSet to check before promote on write
1372 uint32_t hit_set_grade_decay_rate; ///< current hit_set has highest priority on objects
1373 ///temperature count,the follow hit_set's priority decay
1374 ///by this params than pre hit_set
1375 uint32_t hit_set_search_last_n; ///<accumulate atmost N hit_sets for temperature
1376
1377 uint32_t stripe_width; ///< erasure coded stripe size in bytes
1378
1379 uint64_t expected_num_objects; ///< expected number of objects on this pool, a value of 0 indicates
1380 ///< user does not specify any expected value
1381 bool fast_read; ///< whether turn on fast read on the pool or not
1382
1383 pool_opts_t opts; ///< options
1384
1385 /// application -> key/value metadata
1386 map<string, std::map<string, string>> application_metadata;
1387
1388 private:
1389 vector<uint32_t> grade_table;
1390
1391 public:
1392 uint32_t get_grade(unsigned i) const {
1393 if (grade_table.size() <= i)
1394 return 0;
1395 return grade_table[i];
1396 }
1397 void calc_grade_table() {
1398 unsigned v = 1000000;
1399 grade_table.resize(hit_set_count);
1400 for (unsigned i = 0; i < hit_set_count; i++) {
1401 v = v * (1 - (hit_set_grade_decay_rate / 100.0));
1402 grade_table[i] = v;
1403 }
1404 }
1405
1406 pg_pool_t()
1407 : flags(0), type(0), size(0), min_size(0),
1408 crush_rule(0), object_hash(0),
1409 pg_num(0), pgp_num(0),
1410 last_change(0),
1411 last_force_op_resend(0),
1412 last_force_op_resend_preluminous(0),
1413 snap_seq(0), snap_epoch(0),
1414 auid(0),
1415 crash_replay_interval(0),
1416 quota_max_bytes(0), quota_max_objects(0),
1417 pg_num_mask(0), pgp_num_mask(0),
1418 tier_of(-1), read_tier(-1), write_tier(-1),
1419 cache_mode(CACHEMODE_NONE),
1420 target_max_bytes(0), target_max_objects(0),
1421 cache_target_dirty_ratio_micro(0),
1422 cache_target_dirty_high_ratio_micro(0),
1423 cache_target_full_ratio_micro(0),
1424 cache_min_flush_age(0),
1425 cache_min_evict_age(0),
1426 hit_set_params(),
1427 hit_set_period(0),
1428 hit_set_count(0),
1429 use_gmt_hitset(true),
1430 min_read_recency_for_promote(0),
1431 min_write_recency_for_promote(0),
1432 hit_set_grade_decay_rate(0),
1433 hit_set_search_last_n(0),
1434 stripe_width(0),
1435 expected_num_objects(0),
1436 fast_read(false),
1437 opts()
1438 { }
1439
1440 void dump(Formatter *f) const;
1441
1442 uint64_t get_flags() const { return flags; }
1443 bool has_flag(uint64_t f) const { return flags & f; }
1444 void set_flag(uint64_t f) { flags |= f; }
1445 void unset_flag(uint64_t f) { flags &= ~f; }
1446
1447 bool ec_pool() const {
1448 return type == TYPE_ERASURE;
1449 }
1450 bool require_rollback() const {
1451 return ec_pool();
1452 }
1453
1454 /// true if incomplete clones may be present
1455 bool allow_incomplete_clones() const {
1456 return cache_mode != CACHEMODE_NONE || has_flag(FLAG_INCOMPLETE_CLONES);
1457 }
1458
1459 unsigned get_type() const { return type; }
1460 unsigned get_size() const { return size; }
1461 unsigned get_min_size() const { return min_size; }
1462 int get_crush_rule() const { return crush_rule; }
1463 int get_object_hash() const { return object_hash; }
1464 const char *get_object_hash_name() const {
1465 return ceph_str_hash_name(get_object_hash());
1466 }
1467 epoch_t get_last_change() const { return last_change; }
1468 epoch_t get_last_force_op_resend() const { return last_force_op_resend; }
1469 epoch_t get_last_force_op_resend_preluminous() const {
1470 return last_force_op_resend_preluminous;
1471 }
1472 epoch_t get_snap_epoch() const { return snap_epoch; }
1473 snapid_t get_snap_seq() const { return snap_seq; }
1474 uint64_t get_auid() const { return auid; }
1475 unsigned get_crash_replay_interval() const { return crash_replay_interval; }
1476
1477 void set_snap_seq(snapid_t s) { snap_seq = s; }
1478 void set_snap_epoch(epoch_t e) { snap_epoch = e; }
1479
1480 void set_stripe_width(uint32_t s) { stripe_width = s; }
1481 uint32_t get_stripe_width() const { return stripe_width; }
1482
1483 bool is_replicated() const { return get_type() == TYPE_REPLICATED; }
1484 bool is_erasure() const { return get_type() == TYPE_ERASURE; }
1485
1486 bool supports_omap() const {
1487 return !(get_type() == TYPE_ERASURE);
1488 }
1489
1490 bool requires_aligned_append() const {
1491 return is_erasure() && !has_flag(FLAG_EC_OVERWRITES);
1492 }
1493 uint64_t required_alignment() const { return stripe_width; }
1494
1495 bool allows_ecoverwrites() const {
1496 return has_flag(FLAG_EC_OVERWRITES);
1497 }
1498
1499 bool can_shift_osds() const {
1500 switch (get_type()) {
1501 case TYPE_REPLICATED:
1502 return true;
1503 case TYPE_ERASURE:
1504 return false;
1505 default:
1506 assert(0 == "unhandled pool type");
1507 }
1508 }
1509
1510 unsigned get_pg_num() const { return pg_num; }
1511 unsigned get_pgp_num() const { return pgp_num; }
1512
1513 unsigned get_pg_num_mask() const { return pg_num_mask; }
1514 unsigned get_pgp_num_mask() const { return pgp_num_mask; }
1515
1516 // if pg_num is not a multiple of two, pgs are not equally sized.
1517 // return, for a given pg, the fraction (denominator) of the total
1518 // pool size that it represents.
1519 unsigned get_pg_num_divisor(pg_t pgid) const;
1520
1521 void set_pg_num(int p) {
1522 pg_num = p;
1523 calc_pg_masks();
1524 }
1525 void set_pgp_num(int p) {
1526 pgp_num = p;
1527 calc_pg_masks();
1528 }
1529
1530 void set_quota_max_bytes(uint64_t m) {
1531 quota_max_bytes = m;
1532 }
1533 uint64_t get_quota_max_bytes() {
1534 return quota_max_bytes;
1535 }
1536
1537 void set_quota_max_objects(uint64_t m) {
1538 quota_max_objects = m;
1539 }
1540 uint64_t get_quota_max_objects() {
1541 return quota_max_objects;
1542 }
1543
1544 void set_last_force_op_resend(uint64_t t) {
1545 last_force_op_resend = t;
1546 last_force_op_resend_preluminous = t;
1547 }
1548
1549 void calc_pg_masks();
1550
1551 /*
1552 * we have two snap modes:
1553 * - pool global snaps
1554 * - snap existence/non-existence defined by snaps[] and snap_seq
1555 * - user managed snaps
1556 * - removal governed by removed_snaps
1557 *
1558 * we know which mode we're using based on whether removed_snaps is empty.
1559 * If nothing has been created, both functions report false.
1560 */
1561 bool is_pool_snaps_mode() const;
1562 bool is_unmanaged_snaps_mode() const;
1563 bool is_removed_snap(snapid_t s) const;
1564
1565 /*
1566 * build set of known-removed sets from either pool snaps or
1567 * explicit removed_snaps set.
1568 */
1569 void build_removed_snaps(interval_set<snapid_t>& rs) const;
1570 snapid_t snap_exists(const char *s) const;
1571 void add_snap(const char *n, utime_t stamp);
1572 void add_unmanaged_snap(uint64_t& snapid);
1573 void remove_snap(snapid_t s);
1574 void remove_unmanaged_snap(snapid_t s);
1575
1576 SnapContext get_snap_context() const;
1577
1578 /// hash a object name+namespace key to a hash position
1579 uint32_t hash_key(const string& key, const string& ns) const;
1580
1581 /// round a hash position down to a pg num
1582 uint32_t raw_hash_to_pg(uint32_t v) const;
1583
1584 /*
1585 * map a raw pg (with full precision ps) into an actual pg, for storage
1586 */
1587 pg_t raw_pg_to_pg(pg_t pg) const;
1588
1589 /*
1590 * map raw pg (full precision ps) into a placement seed. include
1591 * pool id in that value so that different pools don't use the same
1592 * seeds.
1593 */
1594 ps_t raw_pg_to_pps(pg_t pg) const;
1595
1596 /// choose a random hash position within a pg
1597 uint32_t get_random_pg_position(pg_t pgid, uint32_t seed) const;
1598
1599 void encode(bufferlist& bl, uint64_t features) const;
1600 void decode(bufferlist::iterator& bl);
1601
1602 static void generate_test_instances(list<pg_pool_t*>& o);
1603 };
1604 WRITE_CLASS_ENCODER_FEATURES(pg_pool_t)
1605
1606 ostream& operator<<(ostream& out, const pg_pool_t& p);
1607
1608
1609 /**
1610 * a summation of object stats
1611 *
1612 * This is just a container for object stats; we don't know what for.
1613 *
1614 * If you add members in object_stat_sum_t, you should make sure there are
1615 * not padding among these members.
1616 * You should also modify the padding_check function.
1617
1618 */
1619 struct object_stat_sum_t {
1620 /**************************************************************************
1621 * WARNING: be sure to update operator==, floor, and split when
1622 * adding/removing fields!
1623 **************************************************************************/
1624 int64_t num_bytes; // in bytes
1625 int64_t num_objects;
1626 int64_t num_object_clones;
1627 int64_t num_object_copies; // num_objects * num_replicas
1628 int64_t num_objects_missing_on_primary;
1629 int64_t num_objects_degraded;
1630 int64_t num_objects_unfound;
1631 int64_t num_rd;
1632 int64_t num_rd_kb;
1633 int64_t num_wr;
1634 int64_t num_wr_kb;
1635 int64_t num_scrub_errors; // total deep and shallow scrub errors
1636 int64_t num_objects_recovered;
1637 int64_t num_bytes_recovered;
1638 int64_t num_keys_recovered;
1639 int64_t num_shallow_scrub_errors;
1640 int64_t num_deep_scrub_errors;
1641 int64_t num_objects_dirty;
1642 int64_t num_whiteouts;
1643 int64_t num_objects_omap;
1644 int64_t num_objects_hit_set_archive;
1645 int64_t num_objects_misplaced;
1646 int64_t num_bytes_hit_set_archive;
1647 int64_t num_flush;
1648 int64_t num_flush_kb;
1649 int64_t num_evict;
1650 int64_t num_evict_kb;
1651 int64_t num_promote;
1652 int32_t num_flush_mode_high; // 1 when in high flush mode, otherwise 0
1653 int32_t num_flush_mode_low; // 1 when in low flush mode, otherwise 0
1654 int32_t num_evict_mode_some; // 1 when in evict some mode, otherwise 0
1655 int32_t num_evict_mode_full; // 1 when in evict full mode, otherwise 0
1656 int64_t num_objects_pinned;
1657 int64_t num_objects_missing;
1658 int64_t num_legacy_snapsets; ///< upper bound on pre-luminous-style SnapSets
1659
1660 object_stat_sum_t()
1661 : num_bytes(0),
1662 num_objects(0), num_object_clones(0), num_object_copies(0),
1663 num_objects_missing_on_primary(0), num_objects_degraded(0),
1664 num_objects_unfound(0),
1665 num_rd(0), num_rd_kb(0), num_wr(0), num_wr_kb(0),
1666 num_scrub_errors(0),
1667 num_objects_recovered(0),
1668 num_bytes_recovered(0),
1669 num_keys_recovered(0),
1670 num_shallow_scrub_errors(0),
1671 num_deep_scrub_errors(0),
1672 num_objects_dirty(0),
1673 num_whiteouts(0),
1674 num_objects_omap(0),
1675 num_objects_hit_set_archive(0),
1676 num_objects_misplaced(0),
1677 num_bytes_hit_set_archive(0),
1678 num_flush(0),
1679 num_flush_kb(0),
1680 num_evict(0),
1681 num_evict_kb(0),
1682 num_promote(0),
1683 num_flush_mode_high(0), num_flush_mode_low(0),
1684 num_evict_mode_some(0), num_evict_mode_full(0),
1685 num_objects_pinned(0),
1686 num_objects_missing(0),
1687 num_legacy_snapsets(0)
1688 {}
1689
1690 void floor(int64_t f) {
1691 #define FLOOR(x) if (x < f) x = f
1692 FLOOR(num_bytes);
1693 FLOOR(num_objects);
1694 FLOOR(num_object_clones);
1695 FLOOR(num_object_copies);
1696 FLOOR(num_objects_missing_on_primary);
1697 FLOOR(num_objects_missing);
1698 FLOOR(num_objects_degraded);
1699 FLOOR(num_objects_misplaced);
1700 FLOOR(num_objects_unfound);
1701 FLOOR(num_rd);
1702 FLOOR(num_rd_kb);
1703 FLOOR(num_wr);
1704 FLOOR(num_wr_kb);
1705 FLOOR(num_shallow_scrub_errors);
1706 FLOOR(num_deep_scrub_errors);
1707 num_scrub_errors = num_shallow_scrub_errors + num_deep_scrub_errors;
1708 FLOOR(num_objects_recovered);
1709 FLOOR(num_bytes_recovered);
1710 FLOOR(num_keys_recovered);
1711 FLOOR(num_objects_dirty);
1712 FLOOR(num_whiteouts);
1713 FLOOR(num_objects_omap);
1714 FLOOR(num_objects_hit_set_archive);
1715 FLOOR(num_bytes_hit_set_archive);
1716 FLOOR(num_flush);
1717 FLOOR(num_flush_kb);
1718 FLOOR(num_evict);
1719 FLOOR(num_evict_kb);
1720 FLOOR(num_promote);
1721 FLOOR(num_flush_mode_high);
1722 FLOOR(num_flush_mode_low);
1723 FLOOR(num_evict_mode_some);
1724 FLOOR(num_evict_mode_full);
1725 FLOOR(num_objects_pinned);
1726 FLOOR(num_legacy_snapsets);
1727 #undef FLOOR
1728 }
1729
1730 void split(vector<object_stat_sum_t> &out) const {
1731 #define SPLIT(PARAM) \
1732 for (unsigned i = 0; i < out.size(); ++i) { \
1733 out[i].PARAM = PARAM / out.size(); \
1734 if (i < (PARAM % out.size())) { \
1735 out[i].PARAM++; \
1736 } \
1737 }
1738 #define SPLIT_PRESERVE_NONZERO(PARAM) \
1739 for (unsigned i = 0; i < out.size(); ++i) { \
1740 if (PARAM) \
1741 out[i].PARAM = 1 + PARAM / out.size(); \
1742 else \
1743 out[i].PARAM = 0; \
1744 }
1745
1746 SPLIT(num_bytes);
1747 SPLIT(num_objects);
1748 SPLIT(num_object_clones);
1749 SPLIT(num_object_copies);
1750 SPLIT(num_objects_missing_on_primary);
1751 SPLIT(num_objects_missing);
1752 SPLIT(num_objects_degraded);
1753 SPLIT(num_objects_misplaced);
1754 SPLIT(num_objects_unfound);
1755 SPLIT(num_rd);
1756 SPLIT(num_rd_kb);
1757 SPLIT(num_wr);
1758 SPLIT(num_wr_kb);
1759 SPLIT_PRESERVE_NONZERO(num_shallow_scrub_errors);
1760 SPLIT_PRESERVE_NONZERO(num_deep_scrub_errors);
1761 for (unsigned i = 0; i < out.size(); ++i) {
1762 out[i].num_scrub_errors = out[i].num_shallow_scrub_errors +
1763 out[i].num_deep_scrub_errors;
1764 }
1765 SPLIT(num_objects_recovered);
1766 SPLIT(num_bytes_recovered);
1767 SPLIT(num_keys_recovered);
1768 SPLIT(num_objects_dirty);
1769 SPLIT(num_whiteouts);
1770 SPLIT(num_objects_omap);
1771 SPLIT(num_objects_hit_set_archive);
1772 SPLIT(num_bytes_hit_set_archive);
1773 SPLIT(num_flush);
1774 SPLIT(num_flush_kb);
1775 SPLIT(num_evict);
1776 SPLIT(num_evict_kb);
1777 SPLIT(num_promote);
1778 SPLIT(num_flush_mode_high);
1779 SPLIT(num_flush_mode_low);
1780 SPLIT(num_evict_mode_some);
1781 SPLIT(num_evict_mode_full);
1782 SPLIT(num_objects_pinned);
1783 SPLIT_PRESERVE_NONZERO(num_legacy_snapsets);
1784 #undef SPLIT
1785 #undef SPLIT_PRESERVE_NONZERO
1786 }
1787
1788 void clear() {
1789 memset(this, 0, sizeof(*this));
1790 }
1791
1792 void calc_copies(int nrep) {
1793 num_object_copies = nrep * num_objects;
1794 }
1795
1796 bool is_zero() const {
1797 return mem_is_zero((char*)this, sizeof(*this));
1798 }
1799
1800 void add(const object_stat_sum_t& o);
1801 void sub(const object_stat_sum_t& o);
1802
1803 void dump(Formatter *f) const;
1804 void padding_check() {
1805 static_assert(
1806 sizeof(object_stat_sum_t) ==
1807 sizeof(num_bytes) +
1808 sizeof(num_objects) +
1809 sizeof(num_object_clones) +
1810 sizeof(num_object_copies) +
1811 sizeof(num_objects_missing_on_primary) +
1812 sizeof(num_objects_degraded) +
1813 sizeof(num_objects_unfound) +
1814 sizeof(num_rd) +
1815 sizeof(num_rd_kb) +
1816 sizeof(num_wr) +
1817 sizeof(num_wr_kb) +
1818 sizeof(num_scrub_errors) +
1819 sizeof(num_objects_recovered) +
1820 sizeof(num_bytes_recovered) +
1821 sizeof(num_keys_recovered) +
1822 sizeof(num_shallow_scrub_errors) +
1823 sizeof(num_deep_scrub_errors) +
1824 sizeof(num_objects_dirty) +
1825 sizeof(num_whiteouts) +
1826 sizeof(num_objects_omap) +
1827 sizeof(num_objects_hit_set_archive) +
1828 sizeof(num_objects_misplaced) +
1829 sizeof(num_bytes_hit_set_archive) +
1830 sizeof(num_flush) +
1831 sizeof(num_flush_kb) +
1832 sizeof(num_evict) +
1833 sizeof(num_evict_kb) +
1834 sizeof(num_promote) +
1835 sizeof(num_flush_mode_high) +
1836 sizeof(num_flush_mode_low) +
1837 sizeof(num_evict_mode_some) +
1838 sizeof(num_evict_mode_full) +
1839 sizeof(num_objects_pinned) +
1840 sizeof(num_objects_missing) +
1841 sizeof(num_legacy_snapsets)
1842 ,
1843 "object_stat_sum_t have padding");
1844 }
1845 void encode(bufferlist& bl) const;
1846 void decode(bufferlist::iterator& bl);
1847 static void generate_test_instances(list<object_stat_sum_t*>& o);
1848 };
1849 WRITE_CLASS_ENCODER(object_stat_sum_t)
1850
1851 bool operator==(const object_stat_sum_t& l, const object_stat_sum_t& r);
1852
1853 /**
1854 * a collection of object stat sums
1855 *
1856 * This is a collection of stat sums over different categories.
1857 */
1858 struct object_stat_collection_t {
1859 /**************************************************************************
1860 * WARNING: be sure to update the operator== when adding/removing fields! *
1861 **************************************************************************/
1862 object_stat_sum_t sum;
1863
1864 void calc_copies(int nrep) {
1865 sum.calc_copies(nrep);
1866 }
1867
1868 void dump(Formatter *f) const;
1869 void encode(bufferlist& bl) const;
1870 void decode(bufferlist::iterator& bl);
1871 static void generate_test_instances(list<object_stat_collection_t*>& o);
1872
1873 bool is_zero() const {
1874 return sum.is_zero();
1875 }
1876
1877 void clear() {
1878 sum.clear();
1879 }
1880
1881 void floor(int64_t f) {
1882 sum.floor(f);
1883 }
1884
1885 void add(const object_stat_sum_t& o) {
1886 sum.add(o);
1887 }
1888
1889 void add(const object_stat_collection_t& o) {
1890 sum.add(o.sum);
1891 }
1892 void sub(const object_stat_collection_t& o) {
1893 sum.sub(o.sum);
1894 }
1895 };
1896 WRITE_CLASS_ENCODER(object_stat_collection_t)
1897
1898 inline bool operator==(const object_stat_collection_t& l,
1899 const object_stat_collection_t& r) {
1900 return l.sum == r.sum;
1901 }
1902
1903
1904 /** pg_stat
1905 * aggregate stats for a single PG.
1906 */
1907 struct pg_stat_t {
1908 /**************************************************************************
1909 * WARNING: be sure to update the operator== when adding/removing fields! *
1910 **************************************************************************/
1911 eversion_t version;
1912 version_t reported_seq; // sequence number
1913 epoch_t reported_epoch; // epoch of this report
1914 __u32 state;
1915 utime_t last_fresh; // last reported
1916 utime_t last_change; // new state != previous state
1917 utime_t last_active; // state & PG_STATE_ACTIVE
1918 utime_t last_peered; // state & PG_STATE_ACTIVE || state & PG_STATE_PEERED
1919 utime_t last_clean; // state & PG_STATE_CLEAN
1920 utime_t last_unstale; // (state & PG_STATE_STALE) == 0
1921 utime_t last_undegraded; // (state & PG_STATE_DEGRADED) == 0
1922 utime_t last_fullsized; // (state & PG_STATE_UNDERSIZED) == 0
1923
1924 eversion_t log_start; // (log_start,version]
1925 eversion_t ondisk_log_start; // there may be more on disk
1926
1927 epoch_t created;
1928 epoch_t last_epoch_clean;
1929 pg_t parent;
1930 __u32 parent_split_bits;
1931
1932 eversion_t last_scrub;
1933 eversion_t last_deep_scrub;
1934 utime_t last_scrub_stamp;
1935 utime_t last_deep_scrub_stamp;
1936 utime_t last_clean_scrub_stamp;
1937
1938 object_stat_collection_t stats;
1939
1940 int64_t log_size;
1941 int64_t ondisk_log_size; // >= active_log_size
1942
1943 vector<int32_t> up, acting;
1944 epoch_t mapping_epoch;
1945
1946 vector<int32_t> blocked_by; ///< osds on which the pg is blocked
1947
1948 utime_t last_became_active;
1949 utime_t last_became_peered;
1950
1951 /// up, acting primaries
1952 int32_t up_primary;
1953 int32_t acting_primary;
1954
1955 // snaptrimq.size() is 64bit, but let's be serious - anything over 50k is
1956 // absurd already, so cap it to 2^32 and save 4 bytes at the same time
1957 uint32_t snaptrimq_len;
1958
1959 bool stats_invalid:1;
1960 /// true if num_objects_dirty is not accurate (because it was not
1961 /// maintained starting from pool creation)
1962 bool dirty_stats_invalid:1;
1963 bool omap_stats_invalid:1;
1964 bool hitset_stats_invalid:1;
1965 bool hitset_bytes_stats_invalid:1;
1966 bool pin_stats_invalid:1;
1967
1968 pg_stat_t()
1969 : reported_seq(0),
1970 reported_epoch(0),
1971 state(0),
1972 created(0), last_epoch_clean(0),
1973 parent_split_bits(0),
1974 log_size(0), ondisk_log_size(0),
1975 mapping_epoch(0),
1976 up_primary(-1),
1977 acting_primary(-1),
1978 snaptrimq_len(0),
1979 stats_invalid(false),
1980 dirty_stats_invalid(false),
1981 omap_stats_invalid(false),
1982 hitset_stats_invalid(false),
1983 hitset_bytes_stats_invalid(false),
1984 pin_stats_invalid(false)
1985 { }
1986
1987 epoch_t get_effective_last_epoch_clean() const {
1988 if (state & PG_STATE_CLEAN) {
1989 // we are clean as of this report, and should thus take the
1990 // reported epoch
1991 return reported_epoch;
1992 } else {
1993 return last_epoch_clean;
1994 }
1995 }
1996
1997 pair<epoch_t, version_t> get_version_pair() const {
1998 return make_pair(reported_epoch, reported_seq);
1999 }
2000
2001 void floor(int64_t f) {
2002 stats.floor(f);
2003 if (log_size < f)
2004 log_size = f;
2005 if (ondisk_log_size < f)
2006 ondisk_log_size = f;
2007 if (snaptrimq_len < f)
2008 snaptrimq_len = f;
2009 }
2010
2011 void add(const pg_stat_t& o) {
2012 stats.add(o.stats);
2013 log_size += o.log_size;
2014 ondisk_log_size += o.ondisk_log_size;
2015 if (((uint64_t)snaptrimq_len + (uint64_t)o.snaptrimq_len) > (uint64_t)(1 << 31)) {
2016 snaptrimq_len = 1 << 31;
2017 } else {
2018 snaptrimq_len += o.snaptrimq_len;
2019 }
2020 }
2021 void sub(const pg_stat_t& o) {
2022 stats.sub(o.stats);
2023 log_size -= o.log_size;
2024 ondisk_log_size -= o.ondisk_log_size;
2025 if (o.snaptrimq_len < snaptrimq_len) {
2026 snaptrimq_len -= o.snaptrimq_len;
2027 } else {
2028 snaptrimq_len = 0;
2029 }
2030 }
2031
2032 bool is_acting_osd(int32_t osd, bool primary) const;
2033 void dump(Formatter *f) const;
2034 void dump_brief(Formatter *f) const;
2035 void encode(bufferlist &bl) const;
2036 void decode(bufferlist::iterator &bl);
2037 static void generate_test_instances(list<pg_stat_t*>& o);
2038 };
2039 WRITE_CLASS_ENCODER(pg_stat_t)
2040
2041 bool operator==(const pg_stat_t& l, const pg_stat_t& r);
2042
2043 /*
2044 * summation over an entire pool
2045 */
2046 struct pool_stat_t {
2047 object_stat_collection_t stats;
2048 int64_t log_size;
2049 int64_t ondisk_log_size; // >= active_log_size
2050 int32_t up; ///< number of up replicas or shards
2051 int32_t acting; ///< number of acting replicas or shards
2052
2053 pool_stat_t() : log_size(0), ondisk_log_size(0), up(0), acting(0)
2054 { }
2055
2056 void floor(int64_t f) {
2057 stats.floor(f);
2058 if (log_size < f)
2059 log_size = f;
2060 if (ondisk_log_size < f)
2061 ondisk_log_size = f;
2062 if (up < f)
2063 up = f;
2064 if (acting < f)
2065 acting = f;
2066 }
2067
2068 void add(const pg_stat_t& o) {
2069 stats.add(o.stats);
2070 log_size += o.log_size;
2071 ondisk_log_size += o.ondisk_log_size;
2072 up += o.up.size();
2073 acting += o.acting.size();
2074 }
2075 void sub(const pg_stat_t& o) {
2076 stats.sub(o.stats);
2077 log_size -= o.log_size;
2078 ondisk_log_size -= o.ondisk_log_size;
2079 up -= o.up.size();
2080 acting -= o.acting.size();
2081 }
2082
2083 bool is_zero() const {
2084 return (stats.is_zero() &&
2085 log_size == 0 &&
2086 ondisk_log_size == 0 &&
2087 up == 0 &&
2088 acting == 0);
2089 }
2090
2091 void dump(Formatter *f) const;
2092 void encode(bufferlist &bl, uint64_t features) const;
2093 void decode(bufferlist::iterator &bl);
2094 static void generate_test_instances(list<pool_stat_t*>& o);
2095 };
2096 WRITE_CLASS_ENCODER_FEATURES(pool_stat_t)
2097
2098
2099 // -----------------------------------------
2100
2101 /**
2102 * pg_hit_set_info_t - information about a single recorded HitSet
2103 *
2104 * Track basic metadata about a HitSet, like the nubmer of insertions
2105 * and the time range it covers.
2106 */
2107 struct pg_hit_set_info_t {
2108 utime_t begin, end; ///< time interval
2109 eversion_t version; ///< version this HitSet object was written
2110 bool using_gmt; ///< use gmt for creating the hit_set archive object name
2111
2112 friend bool operator==(const pg_hit_set_info_t& l,
2113 const pg_hit_set_info_t& r) {
2114 return
2115 l.begin == r.begin &&
2116 l.end == r.end &&
2117 l.version == r.version &&
2118 l.using_gmt == r.using_gmt;
2119 }
2120
2121 explicit pg_hit_set_info_t(bool using_gmt = true)
2122 : using_gmt(using_gmt) {}
2123
2124 void encode(bufferlist &bl) const;
2125 void decode(bufferlist::iterator &bl);
2126 void dump(Formatter *f) const;
2127 static void generate_test_instances(list<pg_hit_set_info_t*>& o);
2128 };
2129 WRITE_CLASS_ENCODER(pg_hit_set_info_t)
2130
2131 /**
2132 * pg_hit_set_history_t - information about a history of hitsets
2133 *
2134 * Include information about the currently accumulating hit set as well
2135 * as archived/historical ones.
2136 */
2137 struct pg_hit_set_history_t {
2138 eversion_t current_last_update; ///< last version inserted into current set
2139 list<pg_hit_set_info_t> history; ///< archived sets, sorted oldest -> newest
2140
2141 friend bool operator==(const pg_hit_set_history_t& l,
2142 const pg_hit_set_history_t& r) {
2143 return
2144 l.current_last_update == r.current_last_update &&
2145 l.history == r.history;
2146 }
2147
2148 void encode(bufferlist &bl) const;
2149 void decode(bufferlist::iterator &bl);
2150 void dump(Formatter *f) const;
2151 static void generate_test_instances(list<pg_hit_set_history_t*>& o);
2152 };
2153 WRITE_CLASS_ENCODER(pg_hit_set_history_t)
2154
2155
2156 // -----------------------------------------
2157
2158 /**
2159 * pg_history_t - information about recent pg peering/mapping history
2160 *
2161 * This is aggressively shared between OSDs to bound the amount of past
2162 * history they need to worry about.
2163 */
2164 struct pg_history_t {
2165 epoch_t epoch_created; // epoch in which *pg* was created (pool or pg)
2166 epoch_t epoch_pool_created; // epoch in which *pool* was created
2167 // (note: may be pg creation epoch for
2168 // pre-luminous clusters)
2169 epoch_t last_epoch_started; // lower bound on last epoch started (anywhere, not necessarily locally)
2170 epoch_t last_interval_started; // first epoch of last_epoch_started interval
2171 epoch_t last_epoch_clean; // lower bound on last epoch the PG was completely clean.
2172 epoch_t last_interval_clean; // first epoch of last_epoch_clean interval
2173 epoch_t last_epoch_split; // as parent or child
2174 epoch_t last_epoch_marked_full; // pool or cluster
2175
2176 /**
2177 * In the event of a map discontinuity, same_*_since may reflect the first
2178 * map the osd has seen in the new map sequence rather than the actual start
2179 * of the interval. This is ok since a discontinuity at epoch e means there
2180 * must have been a clean interval between e and now and that we cannot be
2181 * in the active set during the interval containing e.
2182 */
2183 epoch_t same_up_since; // same acting set since
2184 epoch_t same_interval_since; // same acting AND up set since
2185 epoch_t same_primary_since; // same primary at least back through this epoch.
2186
2187 eversion_t last_scrub;
2188 eversion_t last_deep_scrub;
2189 utime_t last_scrub_stamp;
2190 utime_t last_deep_scrub_stamp;
2191 utime_t last_clean_scrub_stamp;
2192
2193 friend bool operator==(const pg_history_t& l, const pg_history_t& r) {
2194 return
2195 l.epoch_created == r.epoch_created &&
2196 l.epoch_pool_created == r.epoch_pool_created &&
2197 l.last_epoch_started == r.last_epoch_started &&
2198 l.last_interval_started == r.last_interval_started &&
2199 l.last_epoch_clean == r.last_epoch_clean &&
2200 l.last_interval_clean == r.last_interval_clean &&
2201 l.last_epoch_split == r.last_epoch_split &&
2202 l.last_epoch_marked_full == r.last_epoch_marked_full &&
2203 l.same_up_since == r.same_up_since &&
2204 l.same_interval_since == r.same_interval_since &&
2205 l.same_primary_since == r.same_primary_since &&
2206 l.last_scrub == r.last_scrub &&
2207 l.last_deep_scrub == r.last_deep_scrub &&
2208 l.last_scrub_stamp == r.last_scrub_stamp &&
2209 l.last_deep_scrub_stamp == r.last_deep_scrub_stamp &&
2210 l.last_clean_scrub_stamp == r.last_clean_scrub_stamp;
2211 }
2212
2213 pg_history_t()
2214 : epoch_created(0),
2215 epoch_pool_created(0),
2216 last_epoch_started(0),
2217 last_interval_started(0),
2218 last_epoch_clean(0),
2219 last_interval_clean(0),
2220 last_epoch_split(0),
2221 last_epoch_marked_full(0),
2222 same_up_since(0), same_interval_since(0), same_primary_since(0) {}
2223
2224 bool merge(const pg_history_t &other) {
2225 // Here, we only update the fields which cannot be calculated from the OSDmap.
2226 bool modified = false;
2227 if (epoch_created < other.epoch_created) {
2228 epoch_created = other.epoch_created;
2229 modified = true;
2230 }
2231 if (epoch_pool_created < other.epoch_pool_created) {
2232 // FIXME: for jewel compat only; this should either be 0 or always the
2233 // same value across all pg instances.
2234 epoch_pool_created = other.epoch_pool_created;
2235 modified = true;
2236 }
2237 if (last_epoch_started < other.last_epoch_started) {
2238 last_epoch_started = other.last_epoch_started;
2239 modified = true;
2240 }
2241 if (last_interval_started < other.last_interval_started) {
2242 last_interval_started = other.last_interval_started;
2243 modified = true;
2244 }
2245 if (last_epoch_clean < other.last_epoch_clean) {
2246 last_epoch_clean = other.last_epoch_clean;
2247 modified = true;
2248 }
2249 if (last_interval_clean < other.last_interval_clean) {
2250 last_interval_clean = other.last_interval_clean;
2251 modified = true;
2252 }
2253 if (last_epoch_split < other.last_epoch_split) {
2254 last_epoch_split = other.last_epoch_split;
2255 modified = true;
2256 }
2257 if (last_epoch_marked_full < other.last_epoch_marked_full) {
2258 last_epoch_marked_full = other.last_epoch_marked_full;
2259 modified = true;
2260 }
2261 if (other.last_scrub > last_scrub) {
2262 last_scrub = other.last_scrub;
2263 modified = true;
2264 }
2265 if (other.last_scrub_stamp > last_scrub_stamp) {
2266 last_scrub_stamp = other.last_scrub_stamp;
2267 modified = true;
2268 }
2269 if (other.last_deep_scrub > last_deep_scrub) {
2270 last_deep_scrub = other.last_deep_scrub;
2271 modified = true;
2272 }
2273 if (other.last_deep_scrub_stamp > last_deep_scrub_stamp) {
2274 last_deep_scrub_stamp = other.last_deep_scrub_stamp;
2275 modified = true;
2276 }
2277 if (other.last_clean_scrub_stamp > last_clean_scrub_stamp) {
2278 last_clean_scrub_stamp = other.last_clean_scrub_stamp;
2279 modified = true;
2280 }
2281 return modified;
2282 }
2283
2284 void encode(bufferlist& bl) const;
2285 void decode(bufferlist::iterator& p);
2286 void dump(Formatter *f) const;
2287 static void generate_test_instances(list<pg_history_t*>& o);
2288 };
2289 WRITE_CLASS_ENCODER(pg_history_t)
2290
2291 inline ostream& operator<<(ostream& out, const pg_history_t& h) {
2292 return out << "ec=" << h.epoch_created << "/" << h.epoch_pool_created
2293 << " lis/c " << h.last_interval_started
2294 << "/" << h.last_interval_clean
2295 << " les/c/f " << h.last_epoch_started << "/" << h.last_epoch_clean
2296 << "/" << h.last_epoch_marked_full
2297 << " " << h.same_up_since
2298 << "/" << h.same_interval_since
2299 << "/" << h.same_primary_since;
2300 }
2301
2302
2303 /**
2304 * pg_info_t - summary of PG statistics.
2305 *
2306 * some notes:
2307 * - last_complete implies we have all objects that existed as of that
2308 * stamp, OR a newer object, OR have already applied a later delete.
2309 * - if last_complete >= log.bottom, then we know pg contents thru log.head.
2310 * otherwise, we have no idea what the pg is supposed to contain.
2311 */
2312 struct pg_info_t {
2313 spg_t pgid;
2314 eversion_t last_update; ///< last object version applied to store.
2315 eversion_t last_complete; ///< last version pg was complete through.
2316 epoch_t last_epoch_started; ///< last epoch at which this pg started on this osd
2317 epoch_t last_interval_started; ///< first epoch of last_epoch_started interval
2318
2319 version_t last_user_version; ///< last user object version applied to store
2320
2321 eversion_t log_tail; ///< oldest log entry.
2322
2323 hobject_t last_backfill; ///< objects >= this and < last_complete may be missing
2324 bool last_backfill_bitwise; ///< true if last_backfill reflects a bitwise (vs nibblewise) sort
2325
2326 interval_set<snapid_t> purged_snaps;
2327
2328 pg_stat_t stats;
2329
2330 pg_history_t history;
2331 pg_hit_set_history_t hit_set;
2332
2333 friend bool operator==(const pg_info_t& l, const pg_info_t& r) {
2334 return
2335 l.pgid == r.pgid &&
2336 l.last_update == r.last_update &&
2337 l.last_complete == r.last_complete &&
2338 l.last_epoch_started == r.last_epoch_started &&
2339 l.last_interval_started == r.last_interval_started &&
2340 l.last_user_version == r.last_user_version &&
2341 l.log_tail == r.log_tail &&
2342 l.last_backfill == r.last_backfill &&
2343 l.last_backfill_bitwise == r.last_backfill_bitwise &&
2344 l.purged_snaps == r.purged_snaps &&
2345 l.stats == r.stats &&
2346 l.history == r.history &&
2347 l.hit_set == r.hit_set;
2348 }
2349
2350 pg_info_t()
2351 : last_epoch_started(0),
2352 last_interval_started(0),
2353 last_user_version(0),
2354 last_backfill(hobject_t::get_max()),
2355 last_backfill_bitwise(false)
2356 { }
2357 // cppcheck-suppress noExplicitConstructor
2358 pg_info_t(spg_t p)
2359 : pgid(p),
2360 last_epoch_started(0),
2361 last_interval_started(0),
2362 last_user_version(0),
2363 last_backfill(hobject_t::get_max()),
2364 last_backfill_bitwise(false)
2365 { }
2366
2367 void set_last_backfill(hobject_t pos) {
2368 last_backfill = pos;
2369 last_backfill_bitwise = true;
2370 }
2371
2372 bool is_empty() const { return last_update.version == 0; }
2373 bool dne() const { return history.epoch_created == 0; }
2374
2375 bool is_incomplete() const { return !last_backfill.is_max(); }
2376
2377 void encode(bufferlist& bl) const;
2378 void decode(bufferlist::iterator& p);
2379 void dump(Formatter *f) const;
2380 bool overlaps_with(const pg_info_t &oinfo) const {
2381 return last_update > oinfo.log_tail ?
2382 oinfo.last_update >= log_tail :
2383 last_update >= oinfo.log_tail;
2384 }
2385 static void generate_test_instances(list<pg_info_t*>& o);
2386 };
2387 WRITE_CLASS_ENCODER(pg_info_t)
2388
2389 inline ostream& operator<<(ostream& out, const pg_info_t& pgi)
2390 {
2391 out << pgi.pgid << "(";
2392 if (pgi.dne())
2393 out << " DNE";
2394 if (pgi.is_empty())
2395 out << " empty";
2396 else {
2397 out << " v " << pgi.last_update;
2398 if (pgi.last_complete != pgi.last_update)
2399 out << " lc " << pgi.last_complete;
2400 out << " (" << pgi.log_tail << "," << pgi.last_update << "]";
2401 }
2402 if (pgi.is_incomplete())
2403 out << " lb " << pgi.last_backfill
2404 << (pgi.last_backfill_bitwise ? " (bitwise)" : " (NIBBLEWISE)");
2405 //out << " c " << pgi.epoch_created;
2406 out << " local-lis/les=" << pgi.last_interval_started
2407 << "/" << pgi.last_epoch_started;
2408 out << " n=" << pgi.stats.stats.sum.num_objects;
2409 out << " " << pgi.history
2410 << ")";
2411 return out;
2412 }
2413
2414 /**
2415 * pg_fast_info_t - common pg_info_t fields
2416 *
2417 * These are the fields of pg_info_t (and children) that are updated for
2418 * most IO operations.
2419 *
2420 * ** WARNING **
2421 * Because we rely on these fields to be applied to the normal
2422 * info struct, adding a new field here that is not also new in info
2423 * means that we must set an incompat OSD feature bit!
2424 */
2425 struct pg_fast_info_t {
2426 eversion_t last_update;
2427 eversion_t last_complete;
2428 version_t last_user_version;
2429 struct { // pg_stat_t stats
2430 eversion_t version;
2431 version_t reported_seq;
2432 utime_t last_fresh;
2433 utime_t last_active;
2434 utime_t last_peered;
2435 utime_t last_clean;
2436 utime_t last_unstale;
2437 utime_t last_undegraded;
2438 utime_t last_fullsized;
2439 int64_t log_size; // (also ondisk_log_size, which has the same value)
2440 struct { // object_stat_collection_t stats;
2441 struct { // objct_stat_sum_t sum
2442 int64_t num_bytes; // in bytes
2443 int64_t num_objects;
2444 int64_t num_object_copies;
2445 int64_t num_rd;
2446 int64_t num_rd_kb;
2447 int64_t num_wr;
2448 int64_t num_wr_kb;
2449 int64_t num_objects_dirty;
2450 } sum;
2451 } stats;
2452 } stats;
2453
2454 void populate_from(const pg_info_t& info) {
2455 last_update = info.last_update;
2456 last_complete = info.last_complete;
2457 last_user_version = info.last_user_version;
2458 stats.version = info.stats.version;
2459 stats.reported_seq = info.stats.reported_seq;
2460 stats.last_fresh = info.stats.last_fresh;
2461 stats.last_active = info.stats.last_active;
2462 stats.last_peered = info.stats.last_peered;
2463 stats.last_clean = info.stats.last_clean;
2464 stats.last_unstale = info.stats.last_unstale;
2465 stats.last_undegraded = info.stats.last_undegraded;
2466 stats.last_fullsized = info.stats.last_fullsized;
2467 stats.log_size = info.stats.log_size;
2468 stats.stats.sum.num_bytes = info.stats.stats.sum.num_bytes;
2469 stats.stats.sum.num_objects = info.stats.stats.sum.num_objects;
2470 stats.stats.sum.num_object_copies = info.stats.stats.sum.num_object_copies;
2471 stats.stats.sum.num_rd = info.stats.stats.sum.num_rd;
2472 stats.stats.sum.num_rd_kb = info.stats.stats.sum.num_rd_kb;
2473 stats.stats.sum.num_wr = info.stats.stats.sum.num_wr;
2474 stats.stats.sum.num_wr_kb = info.stats.stats.sum.num_wr_kb;
2475 stats.stats.sum.num_objects_dirty = info.stats.stats.sum.num_objects_dirty;
2476 }
2477
2478 bool try_apply_to(pg_info_t* info) {
2479 if (last_update <= info->last_update)
2480 return false;
2481 info->last_update = last_update;
2482 info->last_complete = last_complete;
2483 info->last_user_version = last_user_version;
2484 info->stats.version = stats.version;
2485 info->stats.reported_seq = stats.reported_seq;
2486 info->stats.last_fresh = stats.last_fresh;
2487 info->stats.last_active = stats.last_active;
2488 info->stats.last_peered = stats.last_peered;
2489 info->stats.last_clean = stats.last_clean;
2490 info->stats.last_unstale = stats.last_unstale;
2491 info->stats.last_undegraded = stats.last_undegraded;
2492 info->stats.last_fullsized = stats.last_fullsized;
2493 info->stats.log_size = stats.log_size;
2494 info->stats.ondisk_log_size = stats.log_size;
2495 info->stats.stats.sum.num_bytes = stats.stats.sum.num_bytes;
2496 info->stats.stats.sum.num_objects = stats.stats.sum.num_objects;
2497 info->stats.stats.sum.num_object_copies = stats.stats.sum.num_object_copies;
2498 info->stats.stats.sum.num_rd = stats.stats.sum.num_rd;
2499 info->stats.stats.sum.num_rd_kb = stats.stats.sum.num_rd_kb;
2500 info->stats.stats.sum.num_wr = stats.stats.sum.num_wr;
2501 info->stats.stats.sum.num_wr_kb = stats.stats.sum.num_wr_kb;
2502 info->stats.stats.sum.num_objects_dirty = stats.stats.sum.num_objects_dirty;
2503 return true;
2504 }
2505
2506 void encode(bufferlist& bl) const {
2507 ENCODE_START(1, 1, bl);
2508 ::encode(last_update, bl);
2509 ::encode(last_complete, bl);
2510 ::encode(last_user_version, bl);
2511 ::encode(stats.version, bl);
2512 ::encode(stats.reported_seq, bl);
2513 ::encode(stats.last_fresh, bl);
2514 ::encode(stats.last_active, bl);
2515 ::encode(stats.last_peered, bl);
2516 ::encode(stats.last_clean, bl);
2517 ::encode(stats.last_unstale, bl);
2518 ::encode(stats.last_undegraded, bl);
2519 ::encode(stats.last_fullsized, bl);
2520 ::encode(stats.log_size, bl);
2521 ::encode(stats.stats.sum.num_bytes, bl);
2522 ::encode(stats.stats.sum.num_objects, bl);
2523 ::encode(stats.stats.sum.num_object_copies, bl);
2524 ::encode(stats.stats.sum.num_rd, bl);
2525 ::encode(stats.stats.sum.num_rd_kb, bl);
2526 ::encode(stats.stats.sum.num_wr, bl);
2527 ::encode(stats.stats.sum.num_wr_kb, bl);
2528 ::encode(stats.stats.sum.num_objects_dirty, bl);
2529 ENCODE_FINISH(bl);
2530 }
2531 void decode(bufferlist::iterator& p) {
2532 DECODE_START(1, p);
2533 ::decode(last_update, p);
2534 ::decode(last_complete, p);
2535 ::decode(last_user_version, p);
2536 ::decode(stats.version, p);
2537 ::decode(stats.reported_seq, p);
2538 ::decode(stats.last_fresh, p);
2539 ::decode(stats.last_active, p);
2540 ::decode(stats.last_peered, p);
2541 ::decode(stats.last_clean, p);
2542 ::decode(stats.last_unstale, p);
2543 ::decode(stats.last_undegraded, p);
2544 ::decode(stats.last_fullsized, p);
2545 ::decode(stats.log_size, p);
2546 ::decode(stats.stats.sum.num_bytes, p);
2547 ::decode(stats.stats.sum.num_objects, p);
2548 ::decode(stats.stats.sum.num_object_copies, p);
2549 ::decode(stats.stats.sum.num_rd, p);
2550 ::decode(stats.stats.sum.num_rd_kb, p);
2551 ::decode(stats.stats.sum.num_wr, p);
2552 ::decode(stats.stats.sum.num_wr_kb, p);
2553 ::decode(stats.stats.sum.num_objects_dirty, p);
2554 DECODE_FINISH(p);
2555 }
2556 };
2557 WRITE_CLASS_ENCODER(pg_fast_info_t)
2558
2559
2560 struct pg_notify_t {
2561 epoch_t query_epoch;
2562 epoch_t epoch_sent;
2563 pg_info_t info;
2564 shard_id_t to;
2565 shard_id_t from;
2566 pg_notify_t() :
2567 query_epoch(0), epoch_sent(0), to(shard_id_t::NO_SHARD),
2568 from(shard_id_t::NO_SHARD) {}
2569 pg_notify_t(
2570 shard_id_t to,
2571 shard_id_t from,
2572 epoch_t query_epoch,
2573 epoch_t epoch_sent,
2574 const pg_info_t &info)
2575 : query_epoch(query_epoch),
2576 epoch_sent(epoch_sent),
2577 info(info), to(to), from(from) {
2578 assert(from == info.pgid.shard);
2579 }
2580 void encode(bufferlist &bl) const;
2581 void decode(bufferlist::iterator &p);
2582 void dump(Formatter *f) const;
2583 static void generate_test_instances(list<pg_notify_t*> &o);
2584 };
2585 WRITE_CLASS_ENCODER(pg_notify_t)
2586 ostream &operator<<(ostream &lhs, const pg_notify_t &notify);
2587
2588
2589 class OSDMap;
2590 /**
2591 * PastIntervals -- information needed to determine the PriorSet and
2592 * the might_have_unfound set
2593 */
2594 class PastIntervals {
2595 public:
2596 struct pg_interval_t {
2597 vector<int32_t> up, acting;
2598 epoch_t first, last;
2599 bool maybe_went_rw;
2600 int32_t primary;
2601 int32_t up_primary;
2602
2603 pg_interval_t()
2604 : first(0), last(0),
2605 maybe_went_rw(false),
2606 primary(-1),
2607 up_primary(-1)
2608 {}
2609
2610 pg_interval_t(
2611 vector<int32_t> &&up,
2612 vector<int32_t> &&acting,
2613 epoch_t first,
2614 epoch_t last,
2615 bool maybe_went_rw,
2616 int32_t primary,
2617 int32_t up_primary)
2618 : up(up), acting(acting), first(first), last(last),
2619 maybe_went_rw(maybe_went_rw), primary(primary), up_primary(up_primary)
2620 {}
2621
2622 void encode(bufferlist& bl) const;
2623 void decode(bufferlist::iterator& bl);
2624 void dump(Formatter *f) const;
2625 static void generate_test_instances(list<pg_interval_t*>& o);
2626 };
2627
2628 PastIntervals() = default;
2629 PastIntervals(bool ec_pool, const OSDMap &osdmap) : PastIntervals() {
2630 update_type_from_map(ec_pool, osdmap);
2631 }
2632 PastIntervals(bool ec_pool, bool compact) : PastIntervals() {
2633 update_type(ec_pool, compact);
2634 }
2635 PastIntervals(PastIntervals &&rhs) = default;
2636 PastIntervals &operator=(PastIntervals &&rhs) = default;
2637
2638 PastIntervals(const PastIntervals &rhs);
2639 PastIntervals &operator=(const PastIntervals &rhs);
2640
2641 class interval_rep {
2642 public:
2643 virtual size_t size() const = 0;
2644 virtual bool empty() const = 0;
2645 virtual void clear() = 0;
2646 virtual pair<epoch_t, epoch_t> get_bounds() const = 0;
2647 virtual set<pg_shard_t> get_all_participants(
2648 bool ec_pool) const = 0;
2649 virtual void add_interval(bool ec_pool, const pg_interval_t &interval) = 0;
2650 virtual unique_ptr<interval_rep> clone() const = 0;
2651 virtual ostream &print(ostream &out) const = 0;
2652 virtual void encode(bufferlist &bl) const = 0;
2653 virtual void decode(bufferlist::iterator &bl) = 0;
2654 virtual void dump(Formatter *f) const = 0;
2655 virtual bool is_classic() const = 0;
2656 virtual void iterate_mayberw_back_to(
2657 bool ec_pool,
2658 epoch_t les,
2659 std::function<void(epoch_t, const set<pg_shard_t> &)> &&f) const = 0;
2660
2661 virtual bool has_full_intervals() const { return false; }
2662 virtual void iterate_all_intervals(
2663 std::function<void(const pg_interval_t &)> &&f) const {
2664 assert(!has_full_intervals());
2665 assert(0 == "not valid for this implementation");
2666 }
2667
2668 virtual ~interval_rep() {}
2669 };
2670 friend class pi_simple_rep;
2671 friend class pi_compact_rep;
2672 private:
2673
2674 unique_ptr<interval_rep> past_intervals;
2675
2676 PastIntervals(interval_rep *rep) : past_intervals(rep) {}
2677
2678 public:
2679 void add_interval(bool ec_pool, const pg_interval_t &interval) {
2680 assert(past_intervals);
2681 return past_intervals->add_interval(ec_pool, interval);
2682 }
2683
2684 bool is_classic() const {
2685 assert(past_intervals);
2686 return past_intervals->is_classic();
2687 }
2688
2689 void encode(bufferlist &bl) const {
2690 ENCODE_START(1, 1, bl);
2691 if (past_intervals) {
2692 __u8 type = is_classic() ? 1 : 2;
2693 ::encode(type, bl);
2694 past_intervals->encode(bl);
2695 } else {
2696 ::encode((__u8)0, bl);
2697 }
2698 ENCODE_FINISH(bl);
2699 }
2700 void encode_classic(bufferlist &bl) const {
2701 if (past_intervals) {
2702 assert(past_intervals->is_classic());
2703 past_intervals->encode(bl);
2704 } else {
2705 // it's a map<>
2706 ::encode((uint32_t)0, bl);
2707 }
2708 }
2709
2710 void decode(bufferlist::iterator &bl);
2711 void decode_classic(bufferlist::iterator &bl);
2712
2713 void dump(Formatter *f) const {
2714 assert(past_intervals);
2715 past_intervals->dump(f);
2716 }
2717 static void generate_test_instances(list<PastIntervals *> & o);
2718
2719 /**
2720 * Determines whether there is an interval change
2721 */
2722 static bool is_new_interval(
2723 int old_acting_primary,
2724 int new_acting_primary,
2725 const vector<int> &old_acting,
2726 const vector<int> &new_acting,
2727 int old_up_primary,
2728 int new_up_primary,
2729 const vector<int> &old_up,
2730 const vector<int> &new_up,
2731 int old_size,
2732 int new_size,
2733 int old_min_size,
2734 int new_min_size,
2735 unsigned old_pg_num,
2736 unsigned new_pg_num,
2737 bool old_sort_bitwise,
2738 bool new_sort_bitwise,
2739 bool old_recovery_deletes,
2740 bool new_recovery_deletes,
2741 pg_t pgid
2742 );
2743
2744 /**
2745 * Determines whether there is an interval change
2746 */
2747 static bool is_new_interval(
2748 int old_acting_primary, ///< [in] primary as of lastmap
2749 int new_acting_primary, ///< [in] primary as of lastmap
2750 const vector<int> &old_acting, ///< [in] acting as of lastmap
2751 const vector<int> &new_acting, ///< [in] acting as of osdmap
2752 int old_up_primary, ///< [in] up primary of lastmap
2753 int new_up_primary, ///< [in] up primary of osdmap
2754 const vector<int> &old_up, ///< [in] up as of lastmap
2755 const vector<int> &new_up, ///< [in] up as of osdmap
2756 ceph::shared_ptr<const OSDMap> osdmap, ///< [in] current map
2757 ceph::shared_ptr<const OSDMap> lastmap, ///< [in] last map
2758 pg_t pgid ///< [in] pgid for pg
2759 );
2760
2761 /**
2762 * Integrates a new map into *past_intervals, returns true
2763 * if an interval was closed out.
2764 */
2765 static bool check_new_interval(
2766 int old_acting_primary, ///< [in] primary as of lastmap
2767 int new_acting_primary, ///< [in] primary as of osdmap
2768 const vector<int> &old_acting, ///< [in] acting as of lastmap
2769 const vector<int> &new_acting, ///< [in] acting as of osdmap
2770 int old_up_primary, ///< [in] up primary of lastmap
2771 int new_up_primary, ///< [in] up primary of osdmap
2772 const vector<int> &old_up, ///< [in] up as of lastmap
2773 const vector<int> &new_up, ///< [in] up as of osdmap
2774 epoch_t same_interval_since, ///< [in] as of osdmap
2775 epoch_t last_epoch_clean, ///< [in] current
2776 ceph::shared_ptr<const OSDMap> osdmap, ///< [in] current map
2777 ceph::shared_ptr<const OSDMap> lastmap, ///< [in] last map
2778 pg_t pgid, ///< [in] pgid for pg
2779 IsPGRecoverablePredicate *could_have_gone_active, /// [in] predicate whether the pg can be active
2780 PastIntervals *past_intervals, ///< [out] intervals
2781 ostream *out = 0 ///< [out] debug ostream
2782 );
2783
2784 friend ostream& operator<<(ostream& out, const PastIntervals &i);
2785
2786 template <typename F>
2787 void iterate_mayberw_back_to(
2788 bool ec_pool,
2789 epoch_t les,
2790 F &&f) const {
2791 assert(past_intervals);
2792 past_intervals->iterate_mayberw_back_to(ec_pool, les, std::forward<F>(f));
2793 }
2794 void clear() {
2795 assert(past_intervals);
2796 past_intervals->clear();
2797 }
2798
2799 /**
2800 * Should return a value which gives an indication of the amount
2801 * of state contained
2802 */
2803 size_t size() const {
2804 assert(past_intervals);
2805 return past_intervals->size();
2806 }
2807
2808 bool empty() const {
2809 assert(past_intervals);
2810 return past_intervals->empty();
2811 }
2812
2813 void swap(PastIntervals &other) {
2814 using std::swap;
2815 swap(other.past_intervals, past_intervals);
2816 }
2817
2818 /**
2819 * Return all shards which have been in the acting set back to the
2820 * latest epoch to which we have trimmed except for pg_whoami
2821 */
2822 set<pg_shard_t> get_might_have_unfound(
2823 pg_shard_t pg_whoami,
2824 bool ec_pool) const {
2825 assert(past_intervals);
2826 auto ret = past_intervals->get_all_participants(ec_pool);
2827 ret.erase(pg_whoami);
2828 return ret;
2829 }
2830
2831 /**
2832 * Return all shards which we might want to talk to for peering
2833 */
2834 set<pg_shard_t> get_all_probe(
2835 bool ec_pool) const {
2836 assert(past_intervals);
2837 return past_intervals->get_all_participants(ec_pool);
2838 }
2839
2840 /* Return the set of epochs [start, end) represented by the
2841 * past_interval set.
2842 */
2843 pair<epoch_t, epoch_t> get_bounds() const {
2844 assert(past_intervals);
2845 return past_intervals->get_bounds();
2846 }
2847
2848 enum osd_state_t {
2849 UP,
2850 DOWN,
2851 DNE,
2852 LOST
2853 };
2854 struct PriorSet {
2855 bool ec_pool = false;
2856 set<pg_shard_t> probe; /// current+prior OSDs we need to probe.
2857 set<int> down; /// down osds that would normally be in @a probe and might be interesting.
2858 map<int, epoch_t> blocked_by; /// current lost_at values for any OSDs in cur set for which (re)marking them lost would affect cur set
2859
2860 bool pg_down = false; /// some down osds are included in @a cur; the DOWN pg state bit should be set.
2861 unique_ptr<IsPGRecoverablePredicate> pcontdec;
2862
2863 PriorSet() = default;
2864 PriorSet(PriorSet &&) = default;
2865 PriorSet &operator=(PriorSet &&) = default;
2866
2867 PriorSet &operator=(const PriorSet &) = delete;
2868 PriorSet(const PriorSet &) = delete;
2869
2870 bool operator==(const PriorSet &rhs) const {
2871 return (ec_pool == rhs.ec_pool) &&
2872 (probe == rhs.probe) &&
2873 (down == rhs.down) &&
2874 (blocked_by == rhs.blocked_by) &&
2875 (pg_down == rhs.pg_down);
2876 }
2877
2878 bool affected_by_map(
2879 const OSDMap &osdmap,
2880 const DoutPrefixProvider *dpp) const;
2881
2882 // For verifying tests
2883 PriorSet(
2884 bool ec_pool,
2885 set<pg_shard_t> probe,
2886 set<int> down,
2887 map<int, epoch_t> blocked_by,
2888 bool pg_down,
2889 IsPGRecoverablePredicate *pcontdec)
2890 : ec_pool(ec_pool), probe(probe), down(down), blocked_by(blocked_by),
2891 pg_down(pg_down), pcontdec(pcontdec) {}
2892
2893 private:
2894 template <typename F>
2895 PriorSet(
2896 const PastIntervals &past_intervals,
2897 bool ec_pool,
2898 epoch_t last_epoch_started,
2899 IsPGRecoverablePredicate *c,
2900 F f,
2901 const vector<int> &up,
2902 const vector<int> &acting,
2903 const DoutPrefixProvider *dpp);
2904
2905 friend class PastIntervals;
2906 };
2907
2908 void update_type(bool ec_pool, bool compact);
2909 void update_type_from_map(bool ec_pool, const OSDMap &osdmap);
2910
2911 template <typename... Args>
2912 PriorSet get_prior_set(Args&&... args) const {
2913 return PriorSet(*this, std::forward<Args>(args)...);
2914 }
2915 };
2916 WRITE_CLASS_ENCODER(PastIntervals)
2917
2918 ostream& operator<<(ostream& out, const PastIntervals::pg_interval_t& i);
2919 ostream& operator<<(ostream& out, const PastIntervals &i);
2920 ostream& operator<<(ostream& out, const PastIntervals::PriorSet &i);
2921
2922 template <typename F>
2923 PastIntervals::PriorSet::PriorSet(
2924 const PastIntervals &past_intervals,
2925 bool ec_pool,
2926 epoch_t last_epoch_started,
2927 IsPGRecoverablePredicate *c,
2928 F f,
2929 const vector<int> &up,
2930 const vector<int> &acting,
2931 const DoutPrefixProvider *dpp)
2932 : ec_pool(ec_pool), pg_down(false), pcontdec(c)
2933 {
2934 /*
2935 * We have to be careful to gracefully deal with situations like
2936 * so. Say we have a power outage or something that takes out both
2937 * OSDs, but the monitor doesn't mark them down in the same epoch.
2938 * The history may look like
2939 *
2940 * 1: A B
2941 * 2: B
2942 * 3: let's say B dies for good, too (say, from the power spike)
2943 * 4: A
2944 *
2945 * which makes it look like B may have applied updates to the PG
2946 * that we need in order to proceed. This sucks...
2947 *
2948 * To minimize the risk of this happening, we CANNOT go active if
2949 * _any_ OSDs in the prior set are down until we send an MOSDAlive
2950 * to the monitor such that the OSDMap sets osd_up_thru to an epoch.
2951 * Then, we have something like
2952 *
2953 * 1: A B
2954 * 2: B up_thru[B]=0
2955 * 3:
2956 * 4: A
2957 *
2958 * -> we can ignore B, bc it couldn't have gone active (alive_thru
2959 * still 0).
2960 *
2961 * or,
2962 *
2963 * 1: A B
2964 * 2: B up_thru[B]=0
2965 * 3: B up_thru[B]=2
2966 * 4:
2967 * 5: A
2968 *
2969 * -> we must wait for B, bc it was alive through 2, and could have
2970 * written to the pg.
2971 *
2972 * If B is really dead, then an administrator will need to manually
2973 * intervene by marking the OSD as "lost."
2974 */
2975
2976 // Include current acting and up nodes... not because they may
2977 // contain old data (this interval hasn't gone active, obviously),
2978 // but because we want their pg_info to inform choose_acting(), and
2979 // so that we know what they do/do not have explicitly before
2980 // sending them any new info/logs/whatever.
2981 for (unsigned i = 0; i < acting.size(); i++) {
2982 if (acting[i] != 0x7fffffff /* CRUSH_ITEM_NONE, can't import crush.h here */)
2983 probe.insert(pg_shard_t(acting[i], ec_pool ? shard_id_t(i) : shard_id_t::NO_SHARD));
2984 }
2985 // It may be possible to exclude the up nodes, but let's keep them in
2986 // there for now.
2987 for (unsigned i = 0; i < up.size(); i++) {
2988 if (up[i] != 0x7fffffff /* CRUSH_ITEM_NONE, can't import crush.h here */)
2989 probe.insert(pg_shard_t(up[i], ec_pool ? shard_id_t(i) : shard_id_t::NO_SHARD));
2990 }
2991
2992 set<pg_shard_t> all_probe = past_intervals.get_all_probe(ec_pool);
2993 ldpp_dout(dpp, 10) << "build_prior all_probe " << all_probe << dendl;
2994 for (auto &&i: all_probe) {
2995 switch (f(0, i.osd, nullptr)) {
2996 case UP: {
2997 probe.insert(i);
2998 break;
2999 }
3000 case DNE:
3001 case LOST:
3002 case DOWN: {
3003 down.insert(i.osd);
3004 break;
3005 }
3006 }
3007 }
3008
3009 past_intervals.iterate_mayberw_back_to(
3010 ec_pool,
3011 last_epoch_started,
3012 [&](epoch_t start, const set<pg_shard_t> &acting) {
3013 ldpp_dout(dpp, 10) << "build_prior maybe_rw interval:" << start
3014 << ", acting: " << acting << dendl;
3015
3016 // look at candidate osds during this interval. each falls into
3017 // one of three categories: up, down (but potentially
3018 // interesting), or lost (down, but we won't wait for it).
3019 set<pg_shard_t> up_now;
3020 map<int, epoch_t> candidate_blocked_by;
3021 // any candidates down now (that might have useful data)
3022 bool any_down_now = false;
3023
3024 // consider ACTING osds
3025 for (auto &&so: acting) {
3026 epoch_t lost_at = 0;
3027 switch (f(start, so.osd, &lost_at)) {
3028 case UP: {
3029 // include past acting osds if they are up.
3030 up_now.insert(so);
3031 break;
3032 }
3033 case DNE: {
3034 ldpp_dout(dpp, 10) << "build_prior prior osd." << so.osd
3035 << " no longer exists" << dendl;
3036 break;
3037 }
3038 case LOST: {
3039 ldpp_dout(dpp, 10) << "build_prior prior osd." << so.osd
3040 << " is down, but lost_at " << lost_at << dendl;
3041 up_now.insert(so);
3042 break;
3043 }
3044 case DOWN: {
3045 ldpp_dout(dpp, 10) << "build_prior prior osd." << so.osd
3046 << " is down" << dendl;
3047 candidate_blocked_by[so.osd] = lost_at;
3048 any_down_now = true;
3049 break;
3050 }
3051 }
3052 }
3053
3054 // if not enough osds survived this interval, and we may have gone rw,
3055 // then we need to wait for one of those osds to recover to
3056 // ensure that we haven't lost any information.
3057 if (!(*pcontdec)(up_now) && any_down_now) {
3058 // fixme: how do we identify a "clean" shutdown anyway?
3059 ldpp_dout(dpp, 10) << "build_prior possibly went active+rw,"
3060 << " insufficient up; including down osds" << dendl;
3061 assert(!candidate_blocked_by.empty());
3062 pg_down = true;
3063 blocked_by.insert(
3064 candidate_blocked_by.begin(),
3065 candidate_blocked_by.end());
3066 }
3067 });
3068
3069 ldpp_dout(dpp, 10) << "build_prior final: probe " << probe
3070 << " down " << down
3071 << " blocked_by " << blocked_by
3072 << (pg_down ? " pg_down":"")
3073 << dendl;
3074 }
3075
3076 /**
3077 * pg_query_t - used to ask a peer for information about a pg.
3078 *
3079 * note: if version=0, type=LOG, then we just provide our full log.
3080 */
3081 struct pg_query_t {
3082 enum {
3083 INFO = 0,
3084 LOG = 1,
3085 MISSING = 4,
3086 FULLLOG = 5,
3087 };
3088 const char *get_type_name() const {
3089 switch (type) {
3090 case INFO: return "info";
3091 case LOG: return "log";
3092 case MISSING: return "missing";
3093 case FULLLOG: return "fulllog";
3094 default: return "???";
3095 }
3096 }
3097
3098 __s32 type;
3099 eversion_t since;
3100 pg_history_t history;
3101 epoch_t epoch_sent;
3102 shard_id_t to;
3103 shard_id_t from;
3104
3105 pg_query_t() : type(-1), epoch_sent(0), to(shard_id_t::NO_SHARD),
3106 from(shard_id_t::NO_SHARD) {}
3107 pg_query_t(
3108 int t,
3109 shard_id_t to,
3110 shard_id_t from,
3111 const pg_history_t& h,
3112 epoch_t epoch_sent)
3113 : type(t),
3114 history(h),
3115 epoch_sent(epoch_sent),
3116 to(to), from(from) {
3117 assert(t != LOG);
3118 }
3119 pg_query_t(
3120 int t,
3121 shard_id_t to,
3122 shard_id_t from,
3123 eversion_t s,
3124 const pg_history_t& h,
3125 epoch_t epoch_sent)
3126 : type(t), since(s), history(h),
3127 epoch_sent(epoch_sent), to(to), from(from) {
3128 assert(t == LOG);
3129 }
3130
3131 void encode(bufferlist &bl, uint64_t features) const;
3132 void decode(bufferlist::iterator &bl);
3133
3134 void dump(Formatter *f) const;
3135 static void generate_test_instances(list<pg_query_t*>& o);
3136 };
3137 WRITE_CLASS_ENCODER_FEATURES(pg_query_t)
3138
3139 inline ostream& operator<<(ostream& out, const pg_query_t& q) {
3140 out << "query(" << q.get_type_name() << " " << q.since;
3141 if (q.type == pg_query_t::LOG)
3142 out << " " << q.history;
3143 out << ")";
3144 return out;
3145 }
3146
3147 class PGBackend;
3148 class ObjectModDesc {
3149 bool can_local_rollback;
3150 bool rollback_info_completed;
3151
3152 // version required to decode, reflected in encode/decode version
3153 __u8 max_required_version = 1;
3154 public:
3155 class Visitor {
3156 public:
3157 virtual void append(uint64_t old_offset) {}
3158 virtual void setattrs(map<string, boost::optional<bufferlist> > &attrs) {}
3159 virtual void rmobject(version_t old_version) {}
3160 /**
3161 * Used to support the unfound_lost_delete log event: if the stashed
3162 * version exists, we unstash it, otherwise, we do nothing. This way
3163 * each replica rolls back to whatever state it had prior to the attempt
3164 * at mark unfound lost delete
3165 */
3166 virtual void try_rmobject(version_t old_version) {
3167 rmobject(old_version);
3168 }
3169 virtual void create() {}
3170 virtual void update_snaps(const set<snapid_t> &old_snaps) {}
3171 virtual void rollback_extents(
3172 version_t gen,
3173 const vector<pair<uint64_t, uint64_t> > &extents) {}
3174 virtual ~Visitor() {}
3175 };
3176 void visit(Visitor *visitor) const;
3177 mutable bufferlist bl;
3178 enum ModID {
3179 APPEND = 1,
3180 SETATTRS = 2,
3181 DELETE = 3,
3182 CREATE = 4,
3183 UPDATE_SNAPS = 5,
3184 TRY_DELETE = 6,
3185 ROLLBACK_EXTENTS = 7
3186 };
3187 ObjectModDesc() : can_local_rollback(true), rollback_info_completed(false) {
3188 bl.reassign_to_mempool(mempool::mempool_osd_pglog);
3189 }
3190 void claim(ObjectModDesc &other) {
3191 bl.clear();
3192 bl.claim(other.bl);
3193 can_local_rollback = other.can_local_rollback;
3194 rollback_info_completed = other.rollback_info_completed;
3195 }
3196 void claim_append(ObjectModDesc &other) {
3197 if (!can_local_rollback || rollback_info_completed)
3198 return;
3199 if (!other.can_local_rollback) {
3200 mark_unrollbackable();
3201 return;
3202 }
3203 bl.claim_append(other.bl);
3204 rollback_info_completed = other.rollback_info_completed;
3205 }
3206 void swap(ObjectModDesc &other) {
3207 bl.swap(other.bl);
3208
3209 using std::swap;
3210 swap(other.can_local_rollback, can_local_rollback);
3211 swap(other.rollback_info_completed, rollback_info_completed);
3212 swap(other.max_required_version, max_required_version);
3213 }
3214 void append_id(ModID id) {
3215 uint8_t _id(id);
3216 ::encode(_id, bl);
3217 }
3218 void append(uint64_t old_size) {
3219 if (!can_local_rollback || rollback_info_completed)
3220 return;
3221 ENCODE_START(1, 1, bl);
3222 append_id(APPEND);
3223 ::encode(old_size, bl);
3224 ENCODE_FINISH(bl);
3225 }
3226 void setattrs(map<string, boost::optional<bufferlist> > &old_attrs) {
3227 if (!can_local_rollback || rollback_info_completed)
3228 return;
3229 ENCODE_START(1, 1, bl);
3230 append_id(SETATTRS);
3231 ::encode(old_attrs, bl);
3232 ENCODE_FINISH(bl);
3233 }
3234 bool rmobject(version_t deletion_version) {
3235 if (!can_local_rollback || rollback_info_completed)
3236 return false;
3237 ENCODE_START(1, 1, bl);
3238 append_id(DELETE);
3239 ::encode(deletion_version, bl);
3240 ENCODE_FINISH(bl);
3241 rollback_info_completed = true;
3242 return true;
3243 }
3244 bool try_rmobject(version_t deletion_version) {
3245 if (!can_local_rollback || rollback_info_completed)
3246 return false;
3247 ENCODE_START(1, 1, bl);
3248 append_id(TRY_DELETE);
3249 ::encode(deletion_version, bl);
3250 ENCODE_FINISH(bl);
3251 rollback_info_completed = true;
3252 return true;
3253 }
3254 void create() {
3255 if (!can_local_rollback || rollback_info_completed)
3256 return;
3257 rollback_info_completed = true;
3258 ENCODE_START(1, 1, bl);
3259 append_id(CREATE);
3260 ENCODE_FINISH(bl);
3261 }
3262 void update_snaps(const set<snapid_t> &old_snaps) {
3263 if (!can_local_rollback || rollback_info_completed)
3264 return;
3265 ENCODE_START(1, 1, bl);
3266 append_id(UPDATE_SNAPS);
3267 ::encode(old_snaps, bl);
3268 ENCODE_FINISH(bl);
3269 }
3270 void rollback_extents(
3271 version_t gen, const vector<pair<uint64_t, uint64_t> > &extents) {
3272 assert(can_local_rollback);
3273 assert(!rollback_info_completed);
3274 if (max_required_version < 2)
3275 max_required_version = 2;
3276 ENCODE_START(2, 2, bl);
3277 append_id(ROLLBACK_EXTENTS);
3278 ::encode(gen, bl);
3279 ::encode(extents, bl);
3280 ENCODE_FINISH(bl);
3281 }
3282
3283 // cannot be rolled back
3284 void mark_unrollbackable() {
3285 can_local_rollback = false;
3286 bl.clear();
3287 }
3288 bool can_rollback() const {
3289 return can_local_rollback;
3290 }
3291 bool empty() const {
3292 return can_local_rollback && (bl.length() == 0);
3293 }
3294
3295 bool requires_kraken() const {
3296 return max_required_version >= 2;
3297 }
3298
3299 /**
3300 * Create fresh copy of bl bytes to avoid keeping large buffers around
3301 * in the case that bl contains ptrs which point into a much larger
3302 * message buffer
3303 */
3304 void trim_bl() const {
3305 if (bl.length() > 0)
3306 bl.rebuild();
3307 }
3308 void encode(bufferlist &bl) const;
3309 void decode(bufferlist::iterator &bl);
3310 void dump(Formatter *f) const;
3311 static void generate_test_instances(list<ObjectModDesc*>& o);
3312 };
3313 WRITE_CLASS_ENCODER(ObjectModDesc)
3314
3315
3316 /**
3317 * pg_log_entry_t - single entry/event in pg log
3318 *
3319 */
3320 struct pg_log_entry_t {
3321 enum {
3322 MODIFY = 1, // some unspecified modification (but not *all* modifications)
3323 CLONE = 2, // cloned object from head
3324 DELETE = 3, // deleted object
3325 BACKLOG = 4, // event invented by generate_backlog [deprecated]
3326 LOST_REVERT = 5, // lost new version, revert to an older version.
3327 LOST_DELETE = 6, // lost new version, revert to no object (deleted).
3328 LOST_MARK = 7, // lost new version, now EIO
3329 PROMOTE = 8, // promoted object from another tier
3330 CLEAN = 9, // mark an object clean
3331 ERROR = 10, // write that returned an error
3332 };
3333 static const char *get_op_name(int op) {
3334 switch (op) {
3335 case MODIFY:
3336 return "modify";
3337 case PROMOTE:
3338 return "promote";
3339 case CLONE:
3340 return "clone";
3341 case DELETE:
3342 return "delete";
3343 case BACKLOG:
3344 return "backlog";
3345 case LOST_REVERT:
3346 return "l_revert";
3347 case LOST_DELETE:
3348 return "l_delete";
3349 case LOST_MARK:
3350 return "l_mark";
3351 case CLEAN:
3352 return "clean";
3353 case ERROR:
3354 return "error";
3355 default:
3356 return "unknown";
3357 }
3358 }
3359 const char *get_op_name() const {
3360 return get_op_name(op);
3361 }
3362
3363 // describes state for a locally-rollbackable entry
3364 ObjectModDesc mod_desc;
3365 bufferlist snaps; // only for clone entries
3366 hobject_t soid;
3367 osd_reqid_t reqid; // caller+tid to uniquely identify request
3368 mempool::osd_pglog::vector<pair<osd_reqid_t, version_t> > extra_reqids;
3369 eversion_t version, prior_version, reverting_to;
3370 version_t user_version; // the user version for this entry
3371 utime_t mtime; // this is the _user_ mtime, mind you
3372 int32_t return_code; // only stored for ERRORs for dup detection
3373
3374 __s32 op;
3375 bool invalid_hash; // only when decoding sobject_t based entries
3376 bool invalid_pool; // only when decoding pool-less hobject based entries
3377
3378 pg_log_entry_t()
3379 : user_version(0), return_code(0), op(0),
3380 invalid_hash(false), invalid_pool(false) {
3381 snaps.reassign_to_mempool(mempool::mempool_osd_pglog);
3382 }
3383 pg_log_entry_t(int _op, const hobject_t& _soid,
3384 const eversion_t& v, const eversion_t& pv,
3385 version_t uv,
3386 const osd_reqid_t& rid, const utime_t& mt,
3387 int return_code)
3388 : soid(_soid), reqid(rid), version(v), prior_version(pv), user_version(uv),
3389 mtime(mt), return_code(return_code), op(_op),
3390 invalid_hash(false), invalid_pool(false) {
3391 snaps.reassign_to_mempool(mempool::mempool_osd_pglog);
3392 }
3393
3394 bool is_clone() const { return op == CLONE; }
3395 bool is_modify() const { return op == MODIFY; }
3396 bool is_promote() const { return op == PROMOTE; }
3397 bool is_clean() const { return op == CLEAN; }
3398 bool is_backlog() const { return op == BACKLOG; }
3399 bool is_lost_revert() const { return op == LOST_REVERT; }
3400 bool is_lost_delete() const { return op == LOST_DELETE; }
3401 bool is_lost_mark() const { return op == LOST_MARK; }
3402 bool is_error() const { return op == ERROR; }
3403
3404 bool is_update() const {
3405 return
3406 is_clone() || is_modify() || is_promote() || is_clean() ||
3407 is_backlog() || is_lost_revert() || is_lost_mark();
3408 }
3409 bool is_delete() const {
3410 return op == DELETE || op == LOST_DELETE;
3411 }
3412
3413 bool can_rollback() const {
3414 return mod_desc.can_rollback();
3415 }
3416
3417 void mark_unrollbackable() {
3418 mod_desc.mark_unrollbackable();
3419 }
3420
3421 bool requires_kraken() const {
3422 return mod_desc.requires_kraken();
3423 }
3424
3425 // Errors are only used for dup detection, whereas
3426 // the index by objects is used by recovery, copy_get,
3427 // and other facilities that don't expect or need to
3428 // be aware of error entries.
3429 bool object_is_indexed() const {
3430 return !is_error();
3431 }
3432
3433 bool reqid_is_indexed() const {
3434 return reqid != osd_reqid_t() &&
3435 (op == MODIFY || op == DELETE || op == ERROR);
3436 }
3437
3438 string get_key_name() const;
3439 void encode_with_checksum(bufferlist& bl) const;
3440 void decode_with_checksum(bufferlist::iterator& p);
3441
3442 void encode(bufferlist &bl) const;
3443 void decode(bufferlist::iterator &bl);
3444 void dump(Formatter *f) const;
3445 static void generate_test_instances(list<pg_log_entry_t*>& o);
3446
3447 };
3448 WRITE_CLASS_ENCODER(pg_log_entry_t)
3449
3450 ostream& operator<<(ostream& out, const pg_log_entry_t& e);
3451
3452 struct pg_log_dup_t {
3453 osd_reqid_t reqid; // caller+tid to uniquely identify request
3454 eversion_t version;
3455 version_t user_version; // the user version for this entry
3456 int32_t return_code; // only stored for ERRORs for dup detection
3457
3458 pg_log_dup_t()
3459 : user_version(0), return_code(0)
3460 {}
3461 explicit pg_log_dup_t(const pg_log_entry_t& entry)
3462 : reqid(entry.reqid), version(entry.version),
3463 user_version(entry.user_version), return_code(entry.return_code)
3464 {}
3465 pg_log_dup_t(const eversion_t& v, version_t uv,
3466 const osd_reqid_t& rid, int return_code)
3467 : reqid(rid), version(v), user_version(uv),
3468 return_code(return_code)
3469 {}
3470
3471 string get_key_name() const;
3472 void encode(bufferlist &bl) const;
3473 void decode(bufferlist::iterator &bl);
3474 void dump(Formatter *f) const;
3475 static void generate_test_instances(list<pg_log_dup_t*>& o);
3476
3477 bool operator==(const pg_log_dup_t &rhs) const {
3478 return reqid == rhs.reqid &&
3479 version == rhs.version &&
3480 user_version == rhs.user_version &&
3481 return_code == rhs.return_code;
3482 }
3483 bool operator!=(const pg_log_dup_t &rhs) const {
3484 return !(*this == rhs);
3485 }
3486
3487 friend std::ostream& operator<<(std::ostream& out, const pg_log_dup_t& e);
3488 };
3489 WRITE_CLASS_ENCODER(pg_log_dup_t)
3490
3491 std::ostream& operator<<(std::ostream& out, const pg_log_dup_t& e);
3492
3493 /**
3494 * pg_log_t - incremental log of recent pg changes.
3495 *
3496 * serves as a recovery queue for recent changes.
3497 */
3498 struct pg_log_t {
3499 /*
3500 * head - newest entry (update|delete)
3501 * tail - entry previous to oldest (update|delete) for which we have
3502 * complete negative information.
3503 * i.e. we can infer pg contents for any store whose last_update >= tail.
3504 */
3505 eversion_t head; // newest entry
3506 eversion_t tail; // version prior to oldest
3507
3508 protected:
3509 // We can rollback rollback-able entries > can_rollback_to
3510 eversion_t can_rollback_to;
3511
3512 // always <= can_rollback_to, indicates how far stashed rollback
3513 // data can be found
3514 eversion_t rollback_info_trimmed_to;
3515
3516 public:
3517 // the actual log
3518 mempool::osd_pglog::list<pg_log_entry_t> log;
3519
3520 // entries just for dup op detection ordered oldest to newest
3521 mempool::osd_pglog::list<pg_log_dup_t> dups;
3522
3523 pg_log_t() = default;
3524 pg_log_t(const eversion_t &last_update,
3525 const eversion_t &log_tail,
3526 const eversion_t &can_rollback_to,
3527 const eversion_t &rollback_info_trimmed_to,
3528 mempool::osd_pglog::list<pg_log_entry_t> &&entries,
3529 mempool::osd_pglog::list<pg_log_dup_t> &&dup_entries)
3530 : head(last_update), tail(log_tail), can_rollback_to(can_rollback_to),
3531 rollback_info_trimmed_to(rollback_info_trimmed_to),
3532 log(std::move(entries)), dups(std::move(dup_entries)) {}
3533 pg_log_t(const eversion_t &last_update,
3534 const eversion_t &log_tail,
3535 const eversion_t &can_rollback_to,
3536 const eversion_t &rollback_info_trimmed_to,
3537 const std::list<pg_log_entry_t> &entries,
3538 const std::list<pg_log_dup_t> &dup_entries)
3539 : head(last_update), tail(log_tail), can_rollback_to(can_rollback_to),
3540 rollback_info_trimmed_to(rollback_info_trimmed_to) {
3541 for (auto &&entry: entries) {
3542 log.push_back(entry);
3543 }
3544 for (auto &&entry: dup_entries) {
3545 dups.push_back(entry);
3546 }
3547 }
3548
3549 void clear() {
3550 eversion_t z;
3551 rollback_info_trimmed_to = can_rollback_to = head = tail = z;
3552 log.clear();
3553 dups.clear();
3554 }
3555
3556 eversion_t get_rollback_info_trimmed_to() const {
3557 return rollback_info_trimmed_to;
3558 }
3559 eversion_t get_can_rollback_to() const {
3560 return can_rollback_to;
3561 }
3562
3563
3564 pg_log_t split_out_child(pg_t child_pgid, unsigned split_bits) {
3565 mempool::osd_pglog::list<pg_log_entry_t> oldlog, childlog;
3566 oldlog.swap(log);
3567
3568 eversion_t old_tail;
3569 unsigned mask = ~((~0)<<split_bits);
3570 for (auto i = oldlog.begin();
3571 i != oldlog.end();
3572 ) {
3573 if ((i->soid.get_hash() & mask) == child_pgid.m_seed) {
3574 childlog.push_back(*i);
3575 } else {
3576 log.push_back(*i);
3577 }
3578 oldlog.erase(i++);
3579 }
3580
3581 // osd_reqid is unique, so it doesn't matter if there are extra
3582 // dup entries in each pg. To avoid storing oid with the dup
3583 // entries, just copy the whole list.
3584 auto childdups(dups);
3585
3586 return pg_log_t(
3587 head,
3588 tail,
3589 can_rollback_to,
3590 rollback_info_trimmed_to,
3591 std::move(childlog),
3592 std::move(childdups));
3593 }
3594
3595 mempool::osd_pglog::list<pg_log_entry_t> rewind_from_head(eversion_t newhead) {
3596 assert(newhead >= tail);
3597
3598 mempool::osd_pglog::list<pg_log_entry_t>::iterator p = log.end();
3599 mempool::osd_pglog::list<pg_log_entry_t> divergent;
3600 while (true) {
3601 if (p == log.begin()) {
3602 // yikes, the whole thing is divergent!
3603 using std::swap;
3604 swap(divergent, log);
3605 break;
3606 }
3607 --p;
3608 if (p->version.version <= newhead.version) {
3609 /*
3610 * look at eversion.version here. we want to avoid a situation like:
3611 * our log: 100'10 (0'0) m 10000004d3a.00000000/head by client4225.1:18529
3612 * new log: 122'10 (0'0) m 10000004d3a.00000000/head by client4225.1:18529
3613 * lower_bound = 100'9
3614 * i.e, same request, different version. If the eversion.version is > the
3615 * lower_bound, we it is divergent.
3616 */
3617 ++p;
3618 divergent.splice(divergent.begin(), log, p, log.end());
3619 break;
3620 }
3621 assert(p->version > newhead);
3622 }
3623 head = newhead;
3624
3625 if (can_rollback_to > newhead)
3626 can_rollback_to = newhead;
3627
3628 if (rollback_info_trimmed_to > newhead)
3629 rollback_info_trimmed_to = newhead;
3630
3631 return divergent;
3632 }
3633
3634 bool empty() const {
3635 return log.empty();
3636 }
3637
3638 bool null() const {
3639 return head.version == 0 && head.epoch == 0;
3640 }
3641
3642 size_t approx_size() const {
3643 return head.version - tail.version;
3644 }
3645
3646 static void filter_log(spg_t import_pgid, const OSDMap &curmap,
3647 const string &hit_set_namespace, const pg_log_t &in,
3648 pg_log_t &out, pg_log_t &reject);
3649
3650 /**
3651 * copy entries from the tail of another pg_log_t
3652 *
3653 * @param other pg_log_t to copy from
3654 * @param from copy entries after this version
3655 */
3656 void copy_after(const pg_log_t &other, eversion_t from);
3657
3658 /**
3659 * copy a range of entries from another pg_log_t
3660 *
3661 * @param other pg_log_t to copy from
3662 * @param from copy entries after this version
3663 * @param to up to and including this version
3664 */
3665 void copy_range(const pg_log_t &other, eversion_t from, eversion_t to);
3666
3667 /**
3668 * copy up to N entries
3669 *
3670 * @param other source log
3671 * @param max max number of entries to copy
3672 */
3673 void copy_up_to(const pg_log_t &other, int max);
3674
3675 ostream& print(ostream& out) const;
3676
3677 void encode(bufferlist &bl) const;
3678 void decode(bufferlist::iterator &bl, int64_t pool = -1);
3679 void dump(Formatter *f) const;
3680 static void generate_test_instances(list<pg_log_t*>& o);
3681 };
3682 WRITE_CLASS_ENCODER(pg_log_t)
3683
3684 inline ostream& operator<<(ostream& out, const pg_log_t& log)
3685 {
3686 out << "log((" << log.tail << "," << log.head << "], crt="
3687 << log.get_can_rollback_to() << ")";
3688 return out;
3689 }
3690
3691
3692 /**
3693 * pg_missing_t - summary of missing objects.
3694 *
3695 * kept in memory, as a supplement to pg_log_t
3696 * also used to pass missing info in messages.
3697 */
3698 struct pg_missing_item {
3699 eversion_t need, have;
3700 enum missing_flags_t {
3701 FLAG_NONE = 0,
3702 FLAG_DELETE = 1,
3703 } flags;
3704 pg_missing_item() : flags(FLAG_NONE) {}
3705 explicit pg_missing_item(eversion_t n) : need(n), flags(FLAG_NONE) {} // have no old version
3706 pg_missing_item(eversion_t n, eversion_t h, bool is_delete=false) : need(n), have(h) {
3707 set_delete(is_delete);
3708 }
3709
3710 void encode(bufferlist& bl, uint64_t features) const {
3711 if (HAVE_FEATURE(features, OSD_RECOVERY_DELETES)) {
3712 // encoding a zeroed eversion_t to differentiate between this and
3713 // legacy unversioned encoding - a need value of 0'0 is not
3714 // possible. This can be replaced with the legacy encoding
3715 // macros post-luminous.
3716 eversion_t e;
3717 ::encode(e, bl);
3718 ::encode(need, bl);
3719 ::encode(have, bl);
3720 ::encode(static_cast<uint8_t>(flags), bl);
3721 } else {
3722 // legacy unversioned encoding
3723 ::encode(need, bl);
3724 ::encode(have, bl);
3725 }
3726 }
3727 void decode(bufferlist::iterator& bl) {
3728 eversion_t e;
3729 ::decode(e, bl);
3730 if (e != eversion_t()) {
3731 // legacy encoding, this is the need value
3732 need = e;
3733 ::decode(have, bl);
3734 } else {
3735 ::decode(need, bl);
3736 ::decode(have, bl);
3737 uint8_t f;
3738 ::decode(f, bl);
3739 flags = static_cast<missing_flags_t>(f);
3740 }
3741 }
3742
3743 void set_delete(bool is_delete) {
3744 flags = is_delete ? FLAG_DELETE : FLAG_NONE;
3745 }
3746
3747 bool is_delete() const {
3748 return (flags & FLAG_DELETE) == FLAG_DELETE;
3749 }
3750
3751 string flag_str() const {
3752 if (flags == FLAG_NONE) {
3753 return "none";
3754 } else {
3755 return "delete";
3756 }
3757 }
3758
3759 void dump(Formatter *f) const {
3760 f->dump_stream("need") << need;
3761 f->dump_stream("have") << have;
3762 f->dump_stream("flags") << flag_str();
3763 }
3764 static void generate_test_instances(list<pg_missing_item*>& o) {
3765 o.push_back(new pg_missing_item);
3766 o.push_back(new pg_missing_item);
3767 o.back()->need = eversion_t(1, 2);
3768 o.back()->have = eversion_t(1, 1);
3769 o.push_back(new pg_missing_item);
3770 o.back()->need = eversion_t(3, 5);
3771 o.back()->have = eversion_t(3, 4);
3772 o.back()->flags = FLAG_DELETE;
3773 }
3774 bool operator==(const pg_missing_item &rhs) const {
3775 return need == rhs.need && have == rhs.have && flags == rhs.flags;
3776 }
3777 bool operator!=(const pg_missing_item &rhs) const {
3778 return !(*this == rhs);
3779 }
3780 };
3781 WRITE_CLASS_ENCODER_FEATURES(pg_missing_item)
3782 ostream& operator<<(ostream& out, const pg_missing_item &item);
3783
3784 class pg_missing_const_i {
3785 public:
3786 virtual const map<hobject_t, pg_missing_item> &
3787 get_items() const = 0;
3788 virtual const map<version_t, hobject_t> &get_rmissing() const = 0;
3789 virtual bool get_may_include_deletes() const = 0;
3790 virtual unsigned int num_missing() const = 0;
3791 virtual bool have_missing() const = 0;
3792 virtual bool is_missing(const hobject_t& oid, pg_missing_item *out = nullptr) const = 0;
3793 virtual bool is_missing(const hobject_t& oid, eversion_t v) const = 0;
3794 virtual eversion_t have_old(const hobject_t& oid) const = 0;
3795 virtual ~pg_missing_const_i() {}
3796 };
3797
3798
3799 template <bool Track>
3800 class ChangeTracker {
3801 public:
3802 void changed(const hobject_t &obj) {}
3803 template <typename F>
3804 void get_changed(F &&f) const {}
3805 void flush() {}
3806 bool is_clean() const {
3807 return true;
3808 }
3809 };
3810 template <>
3811 class ChangeTracker<true> {
3812 set<hobject_t> _changed;
3813 public:
3814 void changed(const hobject_t &obj) {
3815 _changed.insert(obj);
3816 }
3817 template <typename F>
3818 void get_changed(F &&f) const {
3819 for (auto const &i: _changed) {
3820 f(i);
3821 }
3822 }
3823 void flush() {
3824 _changed.clear();
3825 }
3826 bool is_clean() const {
3827 return _changed.empty();
3828 }
3829 };
3830
3831 template <bool TrackChanges>
3832 class pg_missing_set : public pg_missing_const_i {
3833 using item = pg_missing_item;
3834 map<hobject_t, item> missing; // oid -> (need v, have v)
3835 map<version_t, hobject_t> rmissing; // v -> oid
3836 ChangeTracker<TrackChanges> tracker;
3837
3838 public:
3839 pg_missing_set() = default;
3840
3841 template <typename missing_type>
3842 pg_missing_set(const missing_type &m) {
3843 missing = m.get_items();
3844 rmissing = m.get_rmissing();
3845 may_include_deletes = m.get_may_include_deletes();
3846 for (auto &&i: missing)
3847 tracker.changed(i.first);
3848 }
3849
3850 bool may_include_deletes = false;
3851
3852 const map<hobject_t, item> &get_items() const override {
3853 return missing;
3854 }
3855 const map<version_t, hobject_t> &get_rmissing() const override {
3856 return rmissing;
3857 }
3858 bool get_may_include_deletes() const override {
3859 return may_include_deletes;
3860 }
3861 unsigned int num_missing() const override {
3862 return missing.size();
3863 }
3864 bool have_missing() const override {
3865 return !missing.empty();
3866 }
3867 bool is_missing(const hobject_t& oid, pg_missing_item *out = nullptr) const override {
3868 auto iter = missing.find(oid);
3869 if (iter == missing.end())
3870 return false;
3871 if (out)
3872 *out = iter->second;
3873 return true;
3874 }
3875 bool is_missing(const hobject_t& oid, eversion_t v) const override {
3876 map<hobject_t, item>::const_iterator m =
3877 missing.find(oid);
3878 if (m == missing.end())
3879 return false;
3880 const item &item(m->second);
3881 if (item.need > v)
3882 return false;
3883 return true;
3884 }
3885 eversion_t have_old(const hobject_t& oid) const override {
3886 map<hobject_t, item>::const_iterator m =
3887 missing.find(oid);
3888 if (m == missing.end())
3889 return eversion_t();
3890 const item &item(m->second);
3891 return item.have;
3892 }
3893
3894 void claim(pg_missing_set& o) {
3895 static_assert(!TrackChanges, "Can't use claim with TrackChanges");
3896 missing.swap(o.missing);
3897 rmissing.swap(o.rmissing);
3898 }
3899
3900 /*
3901 * this needs to be called in log order as we extend the log. it
3902 * assumes missing is accurate up through the previous log entry.
3903 */
3904 void add_next_event(const pg_log_entry_t& e) {
3905 map<hobject_t, item>::iterator missing_it;
3906 missing_it = missing.find(e.soid);
3907 bool is_missing_divergent_item = missing_it != missing.end();
3908 if (e.prior_version == eversion_t() || e.is_clone()) {
3909 // new object.
3910 if (is_missing_divergent_item) { // use iterator
3911 rmissing.erase((missing_it->second).need.version);
3912 missing_it->second = item(e.version, eversion_t(), e.is_delete()); // .have = nil
3913 } else // create new element in missing map
3914 missing[e.soid] = item(e.version, eversion_t(), e.is_delete()); // .have = nil
3915 } else if (is_missing_divergent_item) {
3916 // already missing (prior).
3917 rmissing.erase((missing_it->second).need.version);
3918 (missing_it->second).need = e.version; // leave .have unchanged.
3919 missing_it->second.set_delete(e.is_delete());
3920 } else if (e.is_backlog()) {
3921 // May not have prior version
3922 assert(0 == "these don't exist anymore");
3923 } else {
3924 // not missing, we must have prior_version (if any)
3925 assert(!is_missing_divergent_item);
3926 missing[e.soid] = item(e.version, e.prior_version, e.is_delete());
3927 }
3928 rmissing[e.version.version] = e.soid;
3929 tracker.changed(e.soid);
3930 }
3931
3932 void revise_need(hobject_t oid, eversion_t need, bool is_delete) {
3933 if (missing.count(oid)) {
3934 rmissing.erase(missing[oid].need.version);
3935 missing[oid].need = need; // no not adjust .have
3936 missing[oid].set_delete(is_delete);
3937 } else {
3938 missing[oid] = item(need, eversion_t(), is_delete);
3939 }
3940 rmissing[need.version] = oid;
3941
3942 tracker.changed(oid);
3943 }
3944
3945 void revise_have(hobject_t oid, eversion_t have) {
3946 if (missing.count(oid)) {
3947 tracker.changed(oid);
3948 missing[oid].have = have;
3949 }
3950 }
3951
3952 void add(const hobject_t& oid, eversion_t need, eversion_t have,
3953 bool is_delete) {
3954 missing[oid] = item(need, have, is_delete);
3955 rmissing[need.version] = oid;
3956 tracker.changed(oid);
3957 }
3958
3959 void rm(const hobject_t& oid, eversion_t v) {
3960 std::map<hobject_t, item>::iterator p = missing.find(oid);
3961 if (p != missing.end() && p->second.need <= v)
3962 rm(p);
3963 }
3964
3965 void rm(std::map<hobject_t, item>::const_iterator m) {
3966 tracker.changed(m->first);
3967 rmissing.erase(m->second.need.version);
3968 missing.erase(m);
3969 }
3970
3971 void got(const hobject_t& oid, eversion_t v) {
3972 std::map<hobject_t, item>::iterator p = missing.find(oid);
3973 assert(p != missing.end());
3974 assert(p->second.need <= v || p->second.is_delete());
3975 got(p);
3976 }
3977
3978 void got(std::map<hobject_t, item>::const_iterator m) {
3979 tracker.changed(m->first);
3980 rmissing.erase(m->second.need.version);
3981 missing.erase(m);
3982 }
3983
3984 void split_into(
3985 pg_t child_pgid,
3986 unsigned split_bits,
3987 pg_missing_set *omissing) {
3988 omissing->may_include_deletes = may_include_deletes;
3989 unsigned mask = ~((~0)<<split_bits);
3990 for (map<hobject_t, item>::iterator i = missing.begin();
3991 i != missing.end();
3992 ) {
3993 if ((i->first.get_hash() & mask) == child_pgid.m_seed) {
3994 omissing->add(i->first, i->second.need, i->second.have,
3995 i->second.is_delete());
3996 rm(i++);
3997 } else {
3998 ++i;
3999 }
4000 }
4001 }
4002
4003 void clear() {
4004 for (auto const &i: missing)
4005 tracker.changed(i.first);
4006 missing.clear();
4007 rmissing.clear();
4008 }
4009
4010 void encode(bufferlist &bl) const {
4011 ENCODE_START(4, 2, bl);
4012 ::encode(missing, bl, may_include_deletes ? CEPH_FEATURE_OSD_RECOVERY_DELETES : 0);
4013 ::encode(may_include_deletes, bl);
4014 ENCODE_FINISH(bl);
4015 }
4016 void decode(bufferlist::iterator &bl, int64_t pool = -1) {
4017 for (auto const &i: missing)
4018 tracker.changed(i.first);
4019 DECODE_START_LEGACY_COMPAT_LEN(4, 2, 2, bl);
4020 ::decode(missing, bl);
4021 if (struct_v >= 4) {
4022 ::decode(may_include_deletes, bl);
4023 }
4024 DECODE_FINISH(bl);
4025
4026 if (struct_v < 3) {
4027 // Handle hobject_t upgrade
4028 map<hobject_t, item> tmp;
4029 for (map<hobject_t, item>::iterator i =
4030 missing.begin();
4031 i != missing.end();
4032 ) {
4033 if (!i->first.is_max() && i->first.pool == -1) {
4034 hobject_t to_insert(i->first);
4035 to_insert.pool = pool;
4036 tmp[to_insert] = i->second;
4037 missing.erase(i++);
4038 } else {
4039 ++i;
4040 }
4041 }
4042 missing.insert(tmp.begin(), tmp.end());
4043 }
4044
4045 for (map<hobject_t,item>::iterator it =
4046 missing.begin();
4047 it != missing.end();
4048 ++it)
4049 rmissing[it->second.need.version] = it->first;
4050 for (auto const &i: missing)
4051 tracker.changed(i.first);
4052 }
4053 void dump(Formatter *f) const {
4054 f->open_array_section("missing");
4055 for (map<hobject_t,item>::const_iterator p =
4056 missing.begin(); p != missing.end(); ++p) {
4057 f->open_object_section("item");
4058 f->dump_stream("object") << p->first;
4059 p->second.dump(f);
4060 f->close_section();
4061 }
4062 f->close_section();
4063 f->dump_bool("may_include_deletes", may_include_deletes);
4064 }
4065 template <typename F>
4066 void filter_objects(F &&f) {
4067 for (auto i = missing.begin(); i != missing.end();) {
4068 if (f(i->first)) {
4069 rm(i++);
4070 } else {
4071 ++i;
4072 }
4073 }
4074 }
4075 static void generate_test_instances(list<pg_missing_set*>& o) {
4076 o.push_back(new pg_missing_set);
4077 o.push_back(new pg_missing_set);
4078 o.back()->add(
4079 hobject_t(object_t("foo"), "foo", 123, 456, 0, ""),
4080 eversion_t(5, 6), eversion_t(5, 1), false);
4081 o.push_back(new pg_missing_set);
4082 o.back()->add(
4083 hobject_t(object_t("foo"), "foo", 123, 456, 0, ""),
4084 eversion_t(5, 6), eversion_t(5, 1), true);
4085 o.back()->may_include_deletes = true;
4086 }
4087 template <typename F>
4088 void get_changed(F &&f) const {
4089 tracker.get_changed(f);
4090 }
4091 void flush() {
4092 tracker.flush();
4093 }
4094 bool is_clean() const {
4095 return tracker.is_clean();
4096 }
4097 template <typename missing_t>
4098 bool debug_verify_from_init(
4099 const missing_t &init_missing,
4100 ostream *oss) const {
4101 if (!TrackChanges)
4102 return true;
4103 auto check_missing(init_missing.get_items());
4104 tracker.get_changed([&](const hobject_t &hoid) {
4105 check_missing.erase(hoid);
4106 if (missing.count(hoid)) {
4107 check_missing.insert(*(missing.find(hoid)));
4108 }
4109 });
4110 bool ok = true;
4111 if (check_missing.size() != missing.size()) {
4112 if (oss) {
4113 *oss << "Size mismatch, check: " << check_missing.size()
4114 << ", actual: " << missing.size() << "\n";
4115 }
4116 ok = false;
4117 }
4118 for (auto &i: missing) {
4119 if (!check_missing.count(i.first)) {
4120 if (oss)
4121 *oss << "check_missing missing " << i.first << "\n";
4122 ok = false;
4123 } else if (check_missing[i.first] != i.second) {
4124 if (oss)
4125 *oss << "check_missing missing item mismatch on " << i.first
4126 << ", check: " << check_missing[i.first]
4127 << ", actual: " << i.second << "\n";
4128 ok = false;
4129 }
4130 }
4131 if (oss && !ok) {
4132 *oss << "check_missing: " << check_missing << "\n";
4133 set<hobject_t> changed;
4134 tracker.get_changed([&](const hobject_t &hoid) { changed.insert(hoid); });
4135 *oss << "changed: " << changed << "\n";
4136 }
4137 return ok;
4138 }
4139 };
4140 template <bool TrackChanges>
4141 void encode(
4142 const pg_missing_set<TrackChanges> &c, bufferlist &bl, uint64_t features=0) {
4143 ENCODE_DUMP_PRE();
4144 c.encode(bl);
4145 ENCODE_DUMP_POST(cl);
4146 }
4147 template <bool TrackChanges>
4148 void decode(pg_missing_set<TrackChanges> &c, bufferlist::iterator &p) {
4149 c.decode(p);
4150 }
4151 template <bool TrackChanges>
4152 ostream& operator<<(ostream& out, const pg_missing_set<TrackChanges> &missing)
4153 {
4154 out << "missing(" << missing.num_missing()
4155 << " may_include_deletes = " << missing.may_include_deletes;
4156 //if (missing.num_lost()) out << ", " << missing.num_lost() << " lost";
4157 out << ")";
4158 return out;
4159 }
4160
4161 using pg_missing_t = pg_missing_set<false>;
4162 using pg_missing_tracker_t = pg_missing_set<true>;
4163
4164
4165 /**
4166 * pg list objects response format
4167 *
4168 */
4169 struct pg_nls_response_t {
4170 collection_list_handle_t handle;
4171 list<librados::ListObjectImpl> entries;
4172
4173 void encode(bufferlist& bl) const {
4174 ENCODE_START(1, 1, bl);
4175 ::encode(handle, bl);
4176 __u32 n = (__u32)entries.size();
4177 ::encode(n, bl);
4178 for (list<librados::ListObjectImpl>::const_iterator i = entries.begin(); i != entries.end(); ++i) {
4179 ::encode(i->nspace, bl);
4180 ::encode(i->oid, bl);
4181 ::encode(i->locator, bl);
4182 }
4183 ENCODE_FINISH(bl);
4184 }
4185 void decode(bufferlist::iterator& bl) {
4186 DECODE_START(1, bl);
4187 ::decode(handle, bl);
4188 __u32 n;
4189 ::decode(n, bl);
4190 entries.clear();
4191 while (n--) {
4192 librados::ListObjectImpl i;
4193 ::decode(i.nspace, bl);
4194 ::decode(i.oid, bl);
4195 ::decode(i.locator, bl);
4196 entries.push_back(i);
4197 }
4198 DECODE_FINISH(bl);
4199 }
4200 void dump(Formatter *f) const {
4201 f->dump_stream("handle") << handle;
4202 f->open_array_section("entries");
4203 for (list<librados::ListObjectImpl>::const_iterator p = entries.begin(); p != entries.end(); ++p) {
4204 f->open_object_section("object");
4205 f->dump_string("namespace", p->nspace);
4206 f->dump_string("object", p->oid);
4207 f->dump_string("key", p->locator);
4208 f->close_section();
4209 }
4210 f->close_section();
4211 }
4212 static void generate_test_instances(list<pg_nls_response_t*>& o) {
4213 o.push_back(new pg_nls_response_t);
4214 o.push_back(new pg_nls_response_t);
4215 o.back()->handle = hobject_t(object_t("hi"), "key", 1, 2, -1, "");
4216 o.back()->entries.push_back(librados::ListObjectImpl("", "one", ""));
4217 o.back()->entries.push_back(librados::ListObjectImpl("", "two", "twokey"));
4218 o.back()->entries.push_back(librados::ListObjectImpl("", "three", ""));
4219 o.push_back(new pg_nls_response_t);
4220 o.back()->handle = hobject_t(object_t("hi"), "key", 3, 4, -1, "");
4221 o.back()->entries.push_back(librados::ListObjectImpl("n1", "n1one", ""));
4222 o.back()->entries.push_back(librados::ListObjectImpl("n1", "n1two", "n1twokey"));
4223 o.back()->entries.push_back(librados::ListObjectImpl("n1", "n1three", ""));
4224 o.push_back(new pg_nls_response_t);
4225 o.back()->handle = hobject_t(object_t("hi"), "key", 5, 6, -1, "");
4226 o.back()->entries.push_back(librados::ListObjectImpl("", "one", ""));
4227 o.back()->entries.push_back(librados::ListObjectImpl("", "two", "twokey"));
4228 o.back()->entries.push_back(librados::ListObjectImpl("", "three", ""));
4229 o.back()->entries.push_back(librados::ListObjectImpl("n1", "n1one", ""));
4230 o.back()->entries.push_back(librados::ListObjectImpl("n1", "n1two", "n1twokey"));
4231 o.back()->entries.push_back(librados::ListObjectImpl("n1", "n1three", ""));
4232 }
4233 };
4234
4235 WRITE_CLASS_ENCODER(pg_nls_response_t)
4236
4237 // For backwards compatibility with older OSD requests
4238 struct pg_ls_response_t {
4239 collection_list_handle_t handle;
4240 list<pair<object_t, string> > entries;
4241
4242 void encode(bufferlist& bl) const {
4243 __u8 v = 1;
4244 ::encode(v, bl);
4245 ::encode(handle, bl);
4246 ::encode(entries, bl);
4247 }
4248 void decode(bufferlist::iterator& bl) {
4249 __u8 v;
4250 ::decode(v, bl);
4251 assert(v == 1);
4252 ::decode(handle, bl);
4253 ::decode(entries, bl);
4254 }
4255 void dump(Formatter *f) const {
4256 f->dump_stream("handle") << handle;
4257 f->open_array_section("entries");
4258 for (list<pair<object_t, string> >::const_iterator p = entries.begin(); p != entries.end(); ++p) {
4259 f->open_object_section("object");
4260 f->dump_stream("object") << p->first;
4261 f->dump_string("key", p->second);
4262 f->close_section();
4263 }
4264 f->close_section();
4265 }
4266 static void generate_test_instances(list<pg_ls_response_t*>& o) {
4267 o.push_back(new pg_ls_response_t);
4268 o.push_back(new pg_ls_response_t);
4269 o.back()->handle = hobject_t(object_t("hi"), "key", 1, 2, -1, "");
4270 o.back()->entries.push_back(make_pair(object_t("one"), string()));
4271 o.back()->entries.push_back(make_pair(object_t("two"), string("twokey")));
4272 }
4273 };
4274
4275 WRITE_CLASS_ENCODER(pg_ls_response_t)
4276
4277 /**
4278 * object_copy_cursor_t
4279 */
4280 struct object_copy_cursor_t {
4281 uint64_t data_offset;
4282 string omap_offset;
4283 bool attr_complete;
4284 bool data_complete;
4285 bool omap_complete;
4286
4287 object_copy_cursor_t()
4288 : data_offset(0),
4289 attr_complete(false),
4290 data_complete(false),
4291 omap_complete(false)
4292 {}
4293
4294 bool is_initial() const {
4295 return !attr_complete && data_offset == 0 && omap_offset.empty();
4296 }
4297 bool is_complete() const {
4298 return attr_complete && data_complete && omap_complete;
4299 }
4300
4301 static void generate_test_instances(list<object_copy_cursor_t*>& o);
4302 void encode(bufferlist& bl) const;
4303 void decode(bufferlist::iterator &bl);
4304 void dump(Formatter *f) const;
4305 };
4306 WRITE_CLASS_ENCODER(object_copy_cursor_t)
4307
4308 /**
4309 * object_copy_data_t
4310 *
4311 * Return data from a copy request. The semantics are a little strange
4312 * as a result of the encoding's heritage.
4313 *
4314 * In particular, the sender unconditionally fills in the cursor (from what
4315 * it receives and sends), the size, and the mtime, but is responsible for
4316 * figuring out whether it should put any data in the attrs, data, or
4317 * omap members (corresponding to xattrs, object data, and the omap entries)
4318 * based on external data (the client includes a max amount to return with
4319 * the copy request). The client then looks into the attrs, data, and/or omap
4320 * based on the contents of the cursor.
4321 */
4322 struct object_copy_data_t {
4323 enum {
4324 FLAG_DATA_DIGEST = 1<<0,
4325 FLAG_OMAP_DIGEST = 1<<1,
4326 };
4327 object_copy_cursor_t cursor;
4328 uint64_t size;
4329 utime_t mtime;
4330 uint32_t data_digest, omap_digest;
4331 uint32_t flags;
4332 map<string, bufferlist> attrs;
4333 bufferlist data;
4334 bufferlist omap_header;
4335 bufferlist omap_data;
4336
4337 /// which snaps we are defined for (if a snap and not the head)
4338 vector<snapid_t> snaps;
4339 ///< latest snap seq for the object (if head)
4340 snapid_t snap_seq;
4341
4342 ///< recent reqids on this object
4343 mempool::osd_pglog::vector<pair<osd_reqid_t, version_t> > reqids;
4344
4345 uint64_t truncate_seq;
4346 uint64_t truncate_size;
4347
4348 public:
4349 object_copy_data_t() :
4350 size((uint64_t)-1), data_digest(-1),
4351 omap_digest(-1), flags(0),
4352 truncate_seq(0),
4353 truncate_size(0) {}
4354
4355 static void generate_test_instances(list<object_copy_data_t*>& o);
4356 void encode(bufferlist& bl, uint64_t features) const;
4357 void decode(bufferlist::iterator& bl);
4358 void dump(Formatter *f) const;
4359 };
4360 WRITE_CLASS_ENCODER_FEATURES(object_copy_data_t)
4361
4362 /**
4363 * pg creation info
4364 */
4365 struct pg_create_t {
4366 epoch_t created; // epoch pg created
4367 pg_t parent; // split from parent (if != pg_t())
4368 __s32 split_bits;
4369
4370 pg_create_t()
4371 : created(0), split_bits(0) {}
4372 pg_create_t(unsigned c, pg_t p, int s)
4373 : created(c), parent(p), split_bits(s) {}
4374
4375 void encode(bufferlist &bl) const;
4376 void decode(bufferlist::iterator &bl);
4377 void dump(Formatter *f) const;
4378 static void generate_test_instances(list<pg_create_t*>& o);
4379 };
4380 WRITE_CLASS_ENCODER(pg_create_t)
4381
4382 // -----------------------------------------
4383
4384 struct osd_peer_stat_t {
4385 utime_t stamp;
4386
4387 osd_peer_stat_t() { }
4388
4389 void encode(bufferlist &bl) const;
4390 void decode(bufferlist::iterator &bl);
4391 void dump(Formatter *f) const;
4392 static void generate_test_instances(list<osd_peer_stat_t*>& o);
4393 };
4394 WRITE_CLASS_ENCODER(osd_peer_stat_t)
4395
4396 ostream& operator<<(ostream& out, const osd_peer_stat_t &stat);
4397
4398
4399 // -----------------------------------------
4400
4401 class ObjectExtent {
4402 /**
4403 * ObjectExtents are used for specifying IO behavior against RADOS
4404 * objects when one is using the ObjectCacher.
4405 *
4406 * To use this in a real system, *every member* must be filled
4407 * out correctly. In particular, make sure to initialize the
4408 * oloc correctly, as its default values are deliberate poison
4409 * and will cause internal ObjectCacher asserts.
4410 *
4411 * Similarly, your buffer_extents vector *must* specify a total
4412 * size equal to your length. If the buffer_extents inadvertently
4413 * contain less space than the length member specifies, you
4414 * will get unintelligible asserts deep in the ObjectCacher.
4415 *
4416 * If you are trying to do testing and don't care about actual
4417 * RADOS function, the simplest thing to do is to initialize
4418 * the ObjectExtent (truncate_size can be 0), create a single entry
4419 * in buffer_extents matching the length, and set oloc.pool to 0.
4420 */
4421 public:
4422 object_t oid; // object id
4423 uint64_t objectno;
4424 uint64_t offset; // in object
4425 uint64_t length; // in object
4426 uint64_t truncate_size; // in object
4427
4428 object_locator_t oloc; // object locator (pool etc)
4429
4430 vector<pair<uint64_t,uint64_t> > buffer_extents; // off -> len. extents in buffer being mapped (may be fragmented bc of striping!)
4431
4432 ObjectExtent() : objectno(0), offset(0), length(0), truncate_size(0) {}
4433 ObjectExtent(object_t o, uint64_t ono, uint64_t off, uint64_t l, uint64_t ts) :
4434 oid(o), objectno(ono), offset(off), length(l), truncate_size(ts) { }
4435 };
4436
4437 inline ostream& operator<<(ostream& out, const ObjectExtent &ex)
4438 {
4439 return out << "extent("
4440 << ex.oid << " (" << ex.objectno << ") in " << ex.oloc
4441 << " " << ex.offset << "~" << ex.length
4442 << " -> " << ex.buffer_extents
4443 << ")";
4444 }
4445
4446
4447 // ---------------------------------------
4448
4449 class OSDSuperblock {
4450 public:
4451 uuid_d cluster_fsid, osd_fsid;
4452 int32_t whoami; // my role in this fs.
4453 epoch_t current_epoch; // most recent epoch
4454 epoch_t oldest_map, newest_map; // oldest/newest maps we have.
4455 double weight;
4456
4457 CompatSet compat_features;
4458
4459 // last interval over which i mounted and was then active
4460 epoch_t mounted; // last epoch i mounted
4461 epoch_t clean_thru; // epoch i was active and clean thru
4462
4463 OSDSuperblock() :
4464 whoami(-1),
4465 current_epoch(0), oldest_map(0), newest_map(0), weight(0),
4466 mounted(0), clean_thru(0) {
4467 }
4468
4469 void encode(bufferlist &bl) const;
4470 void decode(bufferlist::iterator &bl);
4471 void dump(Formatter *f) const;
4472 static void generate_test_instances(list<OSDSuperblock*>& o);
4473 };
4474 WRITE_CLASS_ENCODER(OSDSuperblock)
4475
4476 inline ostream& operator<<(ostream& out, const OSDSuperblock& sb)
4477 {
4478 return out << "sb(" << sb.cluster_fsid
4479 << " osd." << sb.whoami
4480 << " " << sb.osd_fsid
4481 << " e" << sb.current_epoch
4482 << " [" << sb.oldest_map << "," << sb.newest_map << "]"
4483 << " lci=[" << sb.mounted << "," << sb.clean_thru << "]"
4484 << ")";
4485 }
4486
4487
4488 // -------
4489
4490
4491
4492
4493
4494
4495 /*
4496 * attached to object head. describes most recent snap context, and
4497 * set of existing clones.
4498 */
4499 struct SnapSet {
4500 snapid_t seq;
4501 bool head_exists;
4502 vector<snapid_t> snaps; // descending
4503 vector<snapid_t> clones; // ascending
4504 map<snapid_t, interval_set<uint64_t> > clone_overlap; // overlap w/ next newest
4505 map<snapid_t, uint64_t> clone_size;
4506 map<snapid_t, vector<snapid_t>> clone_snaps; // descending
4507
4508 SnapSet() : seq(0), head_exists(false) {}
4509 explicit SnapSet(bufferlist& bl) {
4510 bufferlist::iterator p = bl.begin();
4511 decode(p);
4512 }
4513
4514 bool is_legacy() const {
4515 return clone_snaps.size() < clones.size() || !head_exists;
4516 }
4517
4518 /// populate SnapSet from a librados::snap_set_t
4519 void from_snap_set(const librados::snap_set_t& ss, bool legacy);
4520
4521 /// get space accounted to clone
4522 uint64_t get_clone_bytes(snapid_t clone) const;
4523
4524 void encode(bufferlist& bl) const;
4525 void decode(bufferlist::iterator& bl);
4526 void dump(Formatter *f) const;
4527 static void generate_test_instances(list<SnapSet*>& o);
4528
4529 SnapContext get_ssc_as_of(snapid_t as_of) const {
4530 SnapContext out;
4531 out.seq = as_of;
4532 for (vector<snapid_t>::const_iterator i = snaps.begin();
4533 i != snaps.end();
4534 ++i) {
4535 if (*i <= as_of)
4536 out.snaps.push_back(*i);
4537 }
4538 return out;
4539 }
4540
4541 // return min element of snaps > after, return max if no such element
4542 snapid_t get_first_snap_after(snapid_t after, snapid_t max) const {
4543 for (vector<snapid_t>::const_reverse_iterator i = snaps.rbegin();
4544 i != snaps.rend();
4545 ++i) {
4546 if (*i > after)
4547 return *i;
4548 }
4549 return max;
4550 }
4551
4552 SnapSet get_filtered(const pg_pool_t &pinfo) const;
4553 void filter(const pg_pool_t &pinfo);
4554 };
4555 WRITE_CLASS_ENCODER(SnapSet)
4556
4557 ostream& operator<<(ostream& out, const SnapSet& cs);
4558
4559
4560
4561 #define OI_ATTR "_"
4562 #define SS_ATTR "snapset"
4563
4564 struct watch_info_t {
4565 uint64_t cookie;
4566 uint32_t timeout_seconds;
4567 entity_addr_t addr;
4568
4569 watch_info_t() : cookie(0), timeout_seconds(0) { }
4570 watch_info_t(uint64_t c, uint32_t t, const entity_addr_t& a) : cookie(c), timeout_seconds(t), addr(a) {}
4571
4572 void encode(bufferlist& bl, uint64_t features) const;
4573 void decode(bufferlist::iterator& bl);
4574 void dump(Formatter *f) const;
4575 static void generate_test_instances(list<watch_info_t*>& o);
4576 };
4577 WRITE_CLASS_ENCODER_FEATURES(watch_info_t)
4578
4579 static inline bool operator==(const watch_info_t& l, const watch_info_t& r) {
4580 return l.cookie == r.cookie && l.timeout_seconds == r.timeout_seconds
4581 && l.addr == r.addr;
4582 }
4583
4584 static inline ostream& operator<<(ostream& out, const watch_info_t& w) {
4585 return out << "watch(cookie " << w.cookie << " " << w.timeout_seconds << "s"
4586 << " " << w.addr << ")";
4587 }
4588
4589 struct notify_info_t {
4590 uint64_t cookie;
4591 uint64_t notify_id;
4592 uint32_t timeout;
4593 bufferlist bl;
4594 };
4595
4596 static inline ostream& operator<<(ostream& out, const notify_info_t& n) {
4597 return out << "notify(cookie " << n.cookie
4598 << " notify" << n.notify_id
4599 << " " << n.timeout << "s)";
4600 }
4601
4602 struct object_info_t;
4603 struct object_manifest_t {
4604 enum {
4605 TYPE_NONE = 0,
4606 TYPE_REDIRECT = 1, // start with this
4607 TYPE_CHUNKED = 2, // do this later
4608 };
4609 uint8_t type; // redirect, chunked, ...
4610 hobject_t redirect_target;
4611
4612 object_manifest_t() : type(0) { }
4613 object_manifest_t(uint8_t type, const hobject_t& redirect_target)
4614 : type(type), redirect_target(redirect_target) { }
4615
4616 bool is_empty() const {
4617 return type == TYPE_NONE;
4618 }
4619 bool is_redirect() const {
4620 return type == TYPE_REDIRECT;
4621 }
4622 bool is_chunked() const {
4623 return type == TYPE_CHUNKED;
4624 }
4625 static const char *get_type_name(uint8_t m) {
4626 switch (m) {
4627 case TYPE_NONE: return "none";
4628 case TYPE_REDIRECT: return "redirect";
4629 case TYPE_CHUNKED: return "chunked";
4630 default: return "unknown";
4631 }
4632 }
4633 const char *get_type_name() const {
4634 return get_type_name(type);
4635 }
4636 static void generate_test_instances(list<object_manifest_t*>& o);
4637 void encode(bufferlist &bl) const;
4638 void decode(bufferlist::iterator &bl);
4639 void dump(Formatter *f) const;
4640 friend ostream& operator<<(ostream& out, const object_info_t& oi);
4641 };
4642 WRITE_CLASS_ENCODER(object_manifest_t)
4643 ostream& operator<<(ostream& out, const object_manifest_t& oi);
4644
4645 struct object_info_t {
4646 hobject_t soid;
4647 eversion_t version, prior_version;
4648 version_t user_version;
4649 osd_reqid_t last_reqid;
4650
4651 uint64_t size;
4652 utime_t mtime;
4653 utime_t local_mtime; // local mtime
4654
4655 // note: these are currently encoded into a total 16 bits; see
4656 // encode()/decode() for the weirdness.
4657 typedef enum {
4658 FLAG_LOST = 1<<0,
4659 FLAG_WHITEOUT = 1<<1, // object logically does not exist
4660 FLAG_DIRTY = 1<<2, // object has been modified since last flushed or undirtied
4661 FLAG_OMAP = 1 << 3, // has (or may have) some/any omap data
4662 FLAG_DATA_DIGEST = 1 << 4, // has data crc
4663 FLAG_OMAP_DIGEST = 1 << 5, // has omap crc
4664 FLAG_CACHE_PIN = 1 << 6, // pin the object in cache tier
4665 FLAG_MANIFEST = 1 << 7, // has manifest
4666 // ...
4667 FLAG_USES_TMAP = 1<<8, // deprecated; no longer used.
4668 } flag_t;
4669
4670 flag_t flags;
4671
4672 static string get_flag_string(flag_t flags) {
4673 string s;
4674 vector<string> sv = get_flag_vector(flags);
4675 for (auto ss : sv) {
4676 s += string("|") + ss;
4677 }
4678 if (s.length())
4679 return s.substr(1);
4680 return s;
4681 }
4682 static vector<string> get_flag_vector(flag_t flags) {
4683 vector<string> sv;
4684 if (flags & FLAG_LOST)
4685 sv.insert(sv.end(), "lost");
4686 if (flags & FLAG_WHITEOUT)
4687 sv.insert(sv.end(), "whiteout");
4688 if (flags & FLAG_DIRTY)
4689 sv.insert(sv.end(), "dirty");
4690 if (flags & FLAG_USES_TMAP)
4691 sv.insert(sv.end(), "uses_tmap");
4692 if (flags & FLAG_OMAP)
4693 sv.insert(sv.end(), "omap");
4694 if (flags & FLAG_DATA_DIGEST)
4695 sv.insert(sv.end(), "data_digest");
4696 if (flags & FLAG_OMAP_DIGEST)
4697 sv.insert(sv.end(), "omap_digest");
4698 if (flags & FLAG_CACHE_PIN)
4699 sv.insert(sv.end(), "cache_pin");
4700 if (flags & FLAG_MANIFEST)
4701 sv.insert(sv.end(), "manifest");
4702 return sv;
4703 }
4704 string get_flag_string() const {
4705 return get_flag_string(flags);
4706 }
4707
4708 /// [clone] descending. pre-luminous; moved to SnapSet
4709 vector<snapid_t> legacy_snaps;
4710
4711 uint64_t truncate_seq, truncate_size;
4712
4713 map<pair<uint64_t, entity_name_t>, watch_info_t> watchers;
4714
4715 // opportunistic checksums; may or may not be present
4716 __u32 data_digest; ///< data crc32c
4717 __u32 omap_digest; ///< omap crc32c
4718
4719 // alloc hint attribute
4720 uint64_t expected_object_size, expected_write_size;
4721 uint32_t alloc_hint_flags;
4722
4723 struct object_manifest_t manifest;
4724
4725 void copy_user_bits(const object_info_t& other);
4726
4727 static ps_t legacy_object_locator_to_ps(const object_t &oid,
4728 const object_locator_t &loc);
4729
4730 bool test_flag(flag_t f) const {
4731 return (flags & f) == f;
4732 }
4733 void set_flag(flag_t f) {
4734 flags = (flag_t)(flags | f);
4735 }
4736 void clear_flag(flag_t f) {
4737 flags = (flag_t)(flags & ~f);
4738 }
4739 bool is_lost() const {
4740 return test_flag(FLAG_LOST);
4741 }
4742 bool is_whiteout() const {
4743 return test_flag(FLAG_WHITEOUT);
4744 }
4745 bool is_dirty() const {
4746 return test_flag(FLAG_DIRTY);
4747 }
4748 bool is_omap() const {
4749 return test_flag(FLAG_OMAP);
4750 }
4751 bool is_data_digest() const {
4752 return test_flag(FLAG_DATA_DIGEST);
4753 }
4754 bool is_omap_digest() const {
4755 return test_flag(FLAG_OMAP_DIGEST);
4756 }
4757 bool is_cache_pinned() const {
4758 return test_flag(FLAG_CACHE_PIN);
4759 }
4760 bool has_manifest() const {
4761 return test_flag(FLAG_MANIFEST);
4762 }
4763
4764 void set_data_digest(__u32 d) {
4765 set_flag(FLAG_DATA_DIGEST);
4766 data_digest = d;
4767 }
4768 void set_omap_digest(__u32 d) {
4769 set_flag(FLAG_OMAP_DIGEST);
4770 omap_digest = d;
4771 }
4772 void clear_data_digest() {
4773 clear_flag(FLAG_DATA_DIGEST);
4774 data_digest = -1;
4775 }
4776 void clear_omap_digest() {
4777 clear_flag(FLAG_OMAP_DIGEST);
4778 omap_digest = -1;
4779 }
4780 void new_object() {
4781 set_data_digest(-1);
4782 set_omap_digest(-1);
4783 }
4784
4785 void encode(bufferlist& bl, uint64_t features) const;
4786 void decode(bufferlist::iterator& bl);
4787 void decode(bufferlist& bl) {
4788 bufferlist::iterator p = bl.begin();
4789 decode(p);
4790 }
4791 void dump(Formatter *f) const;
4792 static void generate_test_instances(list<object_info_t*>& o);
4793
4794 explicit object_info_t()
4795 : user_version(0), size(0), flags((flag_t)0),
4796 truncate_seq(0), truncate_size(0),
4797 data_digest(-1), omap_digest(-1),
4798 expected_object_size(0), expected_write_size(0),
4799 alloc_hint_flags(0)
4800 {}
4801
4802 explicit object_info_t(const hobject_t& s)
4803 : soid(s),
4804 user_version(0), size(0), flags((flag_t)0),
4805 truncate_seq(0), truncate_size(0),
4806 data_digest(-1), omap_digest(-1),
4807 expected_object_size(0), expected_write_size(0),
4808 alloc_hint_flags(0)
4809 {}
4810
4811 explicit object_info_t(bufferlist& bl) {
4812 decode(bl);
4813 }
4814 };
4815 WRITE_CLASS_ENCODER_FEATURES(object_info_t)
4816
4817 ostream& operator<<(ostream& out, const object_info_t& oi);
4818
4819
4820
4821 // Object recovery
4822 struct ObjectRecoveryInfo {
4823 hobject_t soid;
4824 eversion_t version;
4825 uint64_t size;
4826 object_info_t oi;
4827 SnapSet ss; // only populated if soid is_snap()
4828 interval_set<uint64_t> copy_subset;
4829 map<hobject_t, interval_set<uint64_t>> clone_subset;
4830
4831 ObjectRecoveryInfo() : size(0) { }
4832
4833 static void generate_test_instances(list<ObjectRecoveryInfo*>& o);
4834 void encode(bufferlist &bl, uint64_t features) const;
4835 void decode(bufferlist::iterator &bl, int64_t pool = -1);
4836 ostream &print(ostream &out) const;
4837 void dump(Formatter *f) const;
4838 };
4839 WRITE_CLASS_ENCODER_FEATURES(ObjectRecoveryInfo)
4840 ostream& operator<<(ostream& out, const ObjectRecoveryInfo &inf);
4841
4842 struct ObjectRecoveryProgress {
4843 uint64_t data_recovered_to;
4844 string omap_recovered_to;
4845 bool first;
4846 bool data_complete;
4847 bool omap_complete;
4848 bool error = false;
4849
4850 ObjectRecoveryProgress()
4851 : data_recovered_to(0),
4852 first(true),
4853 data_complete(false), omap_complete(false) { }
4854
4855 bool is_complete(const ObjectRecoveryInfo& info) const {
4856 return (data_recovered_to >= (
4857 info.copy_subset.empty() ?
4858 0 : info.copy_subset.range_end())) &&
4859 omap_complete;
4860 }
4861
4862 static void generate_test_instances(list<ObjectRecoveryProgress*>& o);
4863 void encode(bufferlist &bl) const;
4864 void decode(bufferlist::iterator &bl);
4865 ostream &print(ostream &out) const;
4866 void dump(Formatter *f) const;
4867 };
4868 WRITE_CLASS_ENCODER(ObjectRecoveryProgress)
4869 ostream& operator<<(ostream& out, const ObjectRecoveryProgress &prog);
4870
4871 struct PushReplyOp {
4872 hobject_t soid;
4873
4874 static void generate_test_instances(list<PushReplyOp*>& o);
4875 void encode(bufferlist &bl) const;
4876 void decode(bufferlist::iterator &bl);
4877 ostream &print(ostream &out) const;
4878 void dump(Formatter *f) const;
4879
4880 uint64_t cost(CephContext *cct) const;
4881 };
4882 WRITE_CLASS_ENCODER(PushReplyOp)
4883 ostream& operator<<(ostream& out, const PushReplyOp &op);
4884
4885 struct PullOp {
4886 hobject_t soid;
4887
4888 ObjectRecoveryInfo recovery_info;
4889 ObjectRecoveryProgress recovery_progress;
4890
4891 static void generate_test_instances(list<PullOp*>& o);
4892 void encode(bufferlist &bl, uint64_t features) const;
4893 void decode(bufferlist::iterator &bl);
4894 ostream &print(ostream &out) const;
4895 void dump(Formatter *f) const;
4896
4897 uint64_t cost(CephContext *cct) const;
4898 };
4899 WRITE_CLASS_ENCODER_FEATURES(PullOp)
4900 ostream& operator<<(ostream& out, const PullOp &op);
4901
4902 struct PushOp {
4903 hobject_t soid;
4904 eversion_t version;
4905 bufferlist data;
4906 interval_set<uint64_t> data_included;
4907 bufferlist omap_header;
4908 map<string, bufferlist> omap_entries;
4909 map<string, bufferlist> attrset;
4910
4911 ObjectRecoveryInfo recovery_info;
4912 ObjectRecoveryProgress before_progress;
4913 ObjectRecoveryProgress after_progress;
4914
4915 static void generate_test_instances(list<PushOp*>& o);
4916 void encode(bufferlist &bl, uint64_t features) const;
4917 void decode(bufferlist::iterator &bl);
4918 ostream &print(ostream &out) const;
4919 void dump(Formatter *f) const;
4920
4921 uint64_t cost(CephContext *cct) const;
4922 };
4923 WRITE_CLASS_ENCODER_FEATURES(PushOp)
4924 ostream& operator<<(ostream& out, const PushOp &op);
4925
4926
4927 /*
4928 * summarize pg contents for purposes of a scrub
4929 */
4930 struct ScrubMap {
4931 struct object {
4932 map<string,bufferptr> attrs;
4933 uint64_t size;
4934 __u32 omap_digest; ///< omap crc32c
4935 __u32 digest; ///< data crc32c
4936 bool negative:1;
4937 bool digest_present:1;
4938 bool omap_digest_present:1;
4939 bool read_error:1;
4940 bool stat_error:1;
4941 bool ec_hash_mismatch:1;
4942 bool ec_size_mismatch:1;
4943
4944 object() :
4945 // Init invalid size so it won't match if we get a stat EIO error
4946 size(-1), omap_digest(0), digest(0),
4947 negative(false), digest_present(false), omap_digest_present(false),
4948 read_error(false), stat_error(false), ec_hash_mismatch(false), ec_size_mismatch(false) {}
4949
4950 void encode(bufferlist& bl) const;
4951 void decode(bufferlist::iterator& bl);
4952 void dump(Formatter *f) const;
4953 static void generate_test_instances(list<object*>& o);
4954 };
4955 WRITE_CLASS_ENCODER(object)
4956
4957 map<hobject_t,object> objects;
4958 eversion_t valid_through;
4959 eversion_t incr_since;
4960
4961 void merge_incr(const ScrubMap &l);
4962 void insert(const ScrubMap &r) {
4963 objects.insert(r.objects.begin(), r.objects.end());
4964 }
4965 void swap(ScrubMap &r) {
4966 using std::swap;
4967 swap(objects, r.objects);
4968 swap(valid_through, r.valid_through);
4969 swap(incr_since, r.incr_since);
4970 }
4971
4972 void encode(bufferlist& bl) const;
4973 void decode(bufferlist::iterator& bl, int64_t pool=-1);
4974 void dump(Formatter *f) const;
4975 static void generate_test_instances(list<ScrubMap*>& o);
4976 };
4977 WRITE_CLASS_ENCODER(ScrubMap::object)
4978 WRITE_CLASS_ENCODER(ScrubMap)
4979
4980 struct OSDOp {
4981 ceph_osd_op op;
4982 sobject_t soid;
4983
4984 bufferlist indata, outdata;
4985 errorcode32_t rval;
4986
4987 OSDOp() : rval(0) {
4988 memset(&op, 0, sizeof(ceph_osd_op));
4989 }
4990
4991 /**
4992 * split a bufferlist into constituent indata members of a vector of OSDOps
4993 *
4994 * @param ops [out] vector of OSDOps
4995 * @param in [in] combined data buffer
4996 */
4997 static void split_osd_op_vector_in_data(vector<OSDOp>& ops, bufferlist& in);
4998
4999 /**
5000 * merge indata members of a vector of OSDOp into a single bufferlist
5001 *
5002 * Notably this also encodes certain other OSDOp data into the data
5003 * buffer, including the sobject_t soid.
5004 *
5005 * @param ops [in] vector of OSDOps
5006 * @param out [out] combined data buffer
5007 */
5008 static void merge_osd_op_vector_in_data(vector<OSDOp>& ops, bufferlist& out);
5009
5010 /**
5011 * split a bufferlist into constituent outdata members of a vector of OSDOps
5012 *
5013 * @param ops [out] vector of OSDOps
5014 * @param in [in] combined data buffer
5015 */
5016 static void split_osd_op_vector_out_data(vector<OSDOp>& ops, bufferlist& in);
5017
5018 /**
5019 * merge outdata members of a vector of OSDOps into a single bufferlist
5020 *
5021 * @param ops [in] vector of OSDOps
5022 * @param out [out] combined data buffer
5023 */
5024 static void merge_osd_op_vector_out_data(vector<OSDOp>& ops, bufferlist& out);
5025
5026 /**
5027 * Clear data as much as possible, leave minimal data for historical op dump
5028 *
5029 * @param ops [in] vector of OSDOps
5030 */
5031 static void clear_data(vector<OSDOp>& ops);
5032 };
5033
5034 ostream& operator<<(ostream& out, const OSDOp& op);
5035
5036 struct watch_item_t {
5037 entity_name_t name;
5038 uint64_t cookie;
5039 uint32_t timeout_seconds;
5040 entity_addr_t addr;
5041
5042 watch_item_t() : cookie(0), timeout_seconds(0) { }
5043 watch_item_t(entity_name_t name, uint64_t cookie, uint32_t timeout,
5044 const entity_addr_t& addr)
5045 : name(name), cookie(cookie), timeout_seconds(timeout),
5046 addr(addr) { }
5047
5048 void encode(bufferlist &bl, uint64_t features) const {
5049 ENCODE_START(2, 1, bl);
5050 ::encode(name, bl);
5051 ::encode(cookie, bl);
5052 ::encode(timeout_seconds, bl);
5053 ::encode(addr, bl, features);
5054 ENCODE_FINISH(bl);
5055 }
5056 void decode(bufferlist::iterator &bl) {
5057 DECODE_START(2, bl);
5058 ::decode(name, bl);
5059 ::decode(cookie, bl);
5060 ::decode(timeout_seconds, bl);
5061 if (struct_v >= 2) {
5062 ::decode(addr, bl);
5063 }
5064 DECODE_FINISH(bl);
5065 }
5066 };
5067 WRITE_CLASS_ENCODER_FEATURES(watch_item_t)
5068
5069 struct obj_watch_item_t {
5070 hobject_t obj;
5071 watch_item_t wi;
5072 };
5073
5074 /**
5075 * obj list watch response format
5076 *
5077 */
5078 struct obj_list_watch_response_t {
5079 list<watch_item_t> entries;
5080
5081 void encode(bufferlist& bl, uint64_t features) const {
5082 ENCODE_START(1, 1, bl);
5083 ::encode(entries, bl, features);
5084 ENCODE_FINISH(bl);
5085 }
5086 void decode(bufferlist::iterator& bl) {
5087 DECODE_START(1, bl);
5088 ::decode(entries, bl);
5089 DECODE_FINISH(bl);
5090 }
5091 void dump(Formatter *f) const {
5092 f->open_array_section("entries");
5093 for (list<watch_item_t>::const_iterator p = entries.begin(); p != entries.end(); ++p) {
5094 f->open_object_section("watch");
5095 f->dump_stream("watcher") << p->name;
5096 f->dump_int("cookie", p->cookie);
5097 f->dump_int("timeout", p->timeout_seconds);
5098 f->open_object_section("addr");
5099 p->addr.dump(f);
5100 f->close_section();
5101 f->close_section();
5102 }
5103 f->close_section();
5104 }
5105 static void generate_test_instances(list<obj_list_watch_response_t*>& o) {
5106 entity_addr_t ea;
5107 o.push_back(new obj_list_watch_response_t);
5108 o.push_back(new obj_list_watch_response_t);
5109 ea.set_type(entity_addr_t::TYPE_LEGACY);
5110 ea.set_nonce(1000);
5111 ea.set_family(AF_INET);
5112 ea.set_in4_quad(0, 127);
5113 ea.set_in4_quad(1, 0);
5114 ea.set_in4_quad(2, 0);
5115 ea.set_in4_quad(3, 1);
5116 ea.set_port(1024);
5117 o.back()->entries.push_back(watch_item_t(entity_name_t(entity_name_t::TYPE_CLIENT, 1), 10, 30, ea));
5118 ea.set_nonce(1001);
5119 ea.set_in4_quad(3, 2);
5120 ea.set_port(1025);
5121 o.back()->entries.push_back(watch_item_t(entity_name_t(entity_name_t::TYPE_CLIENT, 2), 20, 60, ea));
5122 }
5123 };
5124 WRITE_CLASS_ENCODER_FEATURES(obj_list_watch_response_t)
5125
5126 struct clone_info {
5127 snapid_t cloneid;
5128 vector<snapid_t> snaps; // ascending
5129 vector< pair<uint64_t,uint64_t> > overlap;
5130 uint64_t size;
5131
5132 clone_info() : cloneid(CEPH_NOSNAP), size(0) {}
5133
5134 void encode(bufferlist& bl) const {
5135 ENCODE_START(1, 1, bl);
5136 ::encode(cloneid, bl);
5137 ::encode(snaps, bl);
5138 ::encode(overlap, bl);
5139 ::encode(size, bl);
5140 ENCODE_FINISH(bl);
5141 }
5142 void decode(bufferlist::iterator& bl) {
5143 DECODE_START(1, bl);
5144 ::decode(cloneid, bl);
5145 ::decode(snaps, bl);
5146 ::decode(overlap, bl);
5147 ::decode(size, bl);
5148 DECODE_FINISH(bl);
5149 }
5150 void dump(Formatter *f) const {
5151 if (cloneid == CEPH_NOSNAP)
5152 f->dump_string("cloneid", "HEAD");
5153 else
5154 f->dump_unsigned("cloneid", cloneid.val);
5155 f->open_array_section("snapshots");
5156 for (vector<snapid_t>::const_iterator p = snaps.begin(); p != snaps.end(); ++p) {
5157 f->open_object_section("snap");
5158 f->dump_unsigned("id", p->val);
5159 f->close_section();
5160 }
5161 f->close_section();
5162 f->open_array_section("overlaps");
5163 for (vector< pair<uint64_t,uint64_t> >::const_iterator q = overlap.begin();
5164 q != overlap.end(); ++q) {
5165 f->open_object_section("overlap");
5166 f->dump_unsigned("offset", q->first);
5167 f->dump_unsigned("length", q->second);
5168 f->close_section();
5169 }
5170 f->close_section();
5171 f->dump_unsigned("size", size);
5172 }
5173 static void generate_test_instances(list<clone_info*>& o) {
5174 o.push_back(new clone_info);
5175 o.push_back(new clone_info);
5176 o.back()->cloneid = 1;
5177 o.back()->snaps.push_back(1);
5178 o.back()->overlap.push_back(pair<uint64_t,uint64_t>(0,4096));
5179 o.back()->overlap.push_back(pair<uint64_t,uint64_t>(8192,4096));
5180 o.back()->size = 16384;
5181 o.push_back(new clone_info);
5182 o.back()->cloneid = CEPH_NOSNAP;
5183 o.back()->size = 32768;
5184 }
5185 };
5186 WRITE_CLASS_ENCODER(clone_info)
5187
5188 /**
5189 * obj list snaps response format
5190 *
5191 */
5192 struct obj_list_snap_response_t {
5193 vector<clone_info> clones; // ascending
5194 snapid_t seq;
5195
5196 void encode(bufferlist& bl) const {
5197 ENCODE_START(2, 1, bl);
5198 ::encode(clones, bl);
5199 ::encode(seq, bl);
5200 ENCODE_FINISH(bl);
5201 }
5202 void decode(bufferlist::iterator& bl) {
5203 DECODE_START(2, bl);
5204 ::decode(clones, bl);
5205 if (struct_v >= 2)
5206 ::decode(seq, bl);
5207 else
5208 seq = CEPH_NOSNAP;
5209 DECODE_FINISH(bl);
5210 }
5211 void dump(Formatter *f) const {
5212 f->open_array_section("clones");
5213 for (vector<clone_info>::const_iterator p = clones.begin(); p != clones.end(); ++p) {
5214 f->open_object_section("clone");
5215 p->dump(f);
5216 f->close_section();
5217 }
5218 f->dump_unsigned("seq", seq);
5219 f->close_section();
5220 }
5221 static void generate_test_instances(list<obj_list_snap_response_t*>& o) {
5222 o.push_back(new obj_list_snap_response_t);
5223 o.push_back(new obj_list_snap_response_t);
5224 clone_info cl;
5225 cl.cloneid = 1;
5226 cl.snaps.push_back(1);
5227 cl.overlap.push_back(pair<uint64_t,uint64_t>(0,4096));
5228 cl.overlap.push_back(pair<uint64_t,uint64_t>(8192,4096));
5229 cl.size = 16384;
5230 o.back()->clones.push_back(cl);
5231 cl.cloneid = CEPH_NOSNAP;
5232 cl.snaps.clear();
5233 cl.overlap.clear();
5234 cl.size = 32768;
5235 o.back()->clones.push_back(cl);
5236 o.back()->seq = 123;
5237 }
5238 };
5239
5240 WRITE_CLASS_ENCODER(obj_list_snap_response_t)
5241
5242 // PromoteCounter
5243
5244 struct PromoteCounter {
5245 std::atomic_ullong attempts{0};
5246 std::atomic_ullong objects{0};
5247 std::atomic_ullong bytes{0};
5248
5249 void attempt() {
5250 attempts++;
5251 }
5252
5253 void finish(uint64_t size) {
5254 objects++;
5255 bytes += size;
5256 }
5257
5258 void sample_and_attenuate(uint64_t *a, uint64_t *o, uint64_t *b) {
5259 *a = attempts;
5260 *o = objects;
5261 *b = bytes;
5262 attempts = *a / 2;
5263 objects = *o / 2;
5264 bytes = *b / 2;
5265 }
5266 };
5267
5268 /** store_statfs_t
5269 * ObjectStore full statfs information
5270 */
5271 struct store_statfs_t
5272 {
5273 uint64_t total = 0; // Total bytes
5274 uint64_t available = 0; // Free bytes available
5275
5276 int64_t allocated = 0; // Bytes allocated by the store
5277 int64_t stored = 0; // Bytes actually stored by the user
5278 int64_t compressed = 0; // Bytes stored after compression
5279 int64_t compressed_allocated = 0; // Bytes allocated for compressed data
5280 int64_t compressed_original = 0; // Bytes that were successfully compressed
5281
5282 void reset() {
5283 *this = store_statfs_t();
5284 }
5285 bool operator ==(const store_statfs_t& other) const;
5286 void dump(Formatter *f) const;
5287 };
5288 ostream &operator<<(ostream &lhs, const store_statfs_t &rhs);
5289
5290 #endif