]> git.proxmox.com Git - ceph.git/blob - ceph/src/osd/osd_types.h
58cdfdefbd139ca2c3a95d3073c0cce87518d3ec
[ceph.git] / ceph / src / osd / osd_types.h
1 // -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
2 // vim: ts=8 sw=2 smarttab
3 /*
4 * Ceph - scalable distributed file system
5 *
6 * Copyright (C) 2004-2006 Sage Weil <sage@newdream.net>
7 * Copyright (C) 2013,2014 Cloudwatt <libre.licensing@cloudwatt.com>
8 *
9 * Author: Loic Dachary <loic@dachary.org>
10 *
11 * This is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License version 2.1, as published by the Free Software
14 * Foundation. See file COPYING.
15 *
16 */
17
18 #ifndef CEPH_OSD_TYPES_H
19 #define CEPH_OSD_TYPES_H
20
21 #include <sstream>
22 #include <stdio.h>
23 #include <memory>
24 #include <boost/scoped_ptr.hpp>
25 #include <boost/optional/optional_io.hpp>
26 #include <boost/variant.hpp>
27
28 #include "include/rados/rados_types.hpp"
29 #include "include/mempool.h"
30
31 #include "msg/msg_types.h"
32 #include "include/types.h"
33 #include "include/utime.h"
34 #include "include/CompatSet.h"
35 #include "common/histogram.h"
36 #include "include/interval_set.h"
37 #include "include/inline_memory.h"
38 #include "common/Formatter.h"
39 #include "common/bloom_filter.hpp"
40 #include "common/hobject.h"
41 #include "common/snap_types.h"
42 #include "HitSet.h"
43 #include "Watch.h"
44 #include "include/cmp.h"
45 #include "librados/ListObjectImpl.h"
46 #include "compressor/Compressor.h"
47 #include <atomic>
48
49 #define CEPH_OSD_ONDISK_MAGIC "ceph osd volume v026"
50
51 #define CEPH_OSD_FEATURE_INCOMPAT_BASE CompatSet::Feature(1, "initial feature set(~v.18)")
52 #define CEPH_OSD_FEATURE_INCOMPAT_PGINFO CompatSet::Feature(2, "pginfo object")
53 #define CEPH_OSD_FEATURE_INCOMPAT_OLOC CompatSet::Feature(3, "object locator")
54 #define CEPH_OSD_FEATURE_INCOMPAT_LEC CompatSet::Feature(4, "last_epoch_clean")
55 #define CEPH_OSD_FEATURE_INCOMPAT_CATEGORIES CompatSet::Feature(5, "categories")
56 #define CEPH_OSD_FEATURE_INCOMPAT_HOBJECTPOOL CompatSet::Feature(6, "hobjectpool")
57 #define CEPH_OSD_FEATURE_INCOMPAT_BIGINFO CompatSet::Feature(7, "biginfo")
58 #define CEPH_OSD_FEATURE_INCOMPAT_LEVELDBINFO CompatSet::Feature(8, "leveldbinfo")
59 #define CEPH_OSD_FEATURE_INCOMPAT_LEVELDBLOG CompatSet::Feature(9, "leveldblog")
60 #define CEPH_OSD_FEATURE_INCOMPAT_SNAPMAPPER CompatSet::Feature(10, "snapmapper")
61 #define CEPH_OSD_FEATURE_INCOMPAT_SHARDS CompatSet::Feature(11, "sharded objects")
62 #define CEPH_OSD_FEATURE_INCOMPAT_HINTS CompatSet::Feature(12, "transaction hints")
63 #define CEPH_OSD_FEATURE_INCOMPAT_PGMETA CompatSet::Feature(13, "pg meta object")
64 #define CEPH_OSD_FEATURE_INCOMPAT_MISSING CompatSet::Feature(14, "explicit missing set")
65 #define CEPH_OSD_FEATURE_INCOMPAT_FASTINFO CompatSet::Feature(15, "fastinfo pg attr")
66 #define CEPH_OSD_FEATURE_INCOMPAT_RECOVERY_DELETES CompatSet::Feature(16, "deletes in missing set")
67
68
69 /// min recovery priority for MBackfillReserve
70 #define OSD_RECOVERY_PRIORITY_MIN 0
71
72 /// base backfill priority for MBackfillReserve
73 #define OSD_BACKFILL_PRIORITY_BASE 100
74
75 /// base backfill priority for MBackfillReserve (degraded PG)
76 #define OSD_BACKFILL_DEGRADED_PRIORITY_BASE 140
77
78 /// base recovery priority for MBackfillReserve
79 #define OSD_RECOVERY_PRIORITY_BASE 180
80
81 /// base backfill priority for MBackfillReserve (inactive PG)
82 #define OSD_BACKFILL_INACTIVE_PRIORITY_BASE 220
83
84 /// max manually/automatically set recovery priority for MBackfillReserve
85 #define OSD_RECOVERY_PRIORITY_MAX 254
86
87 /// max recovery priority for MBackfillReserve, only when forced manually
88 #define OSD_RECOVERY_PRIORITY_FORCED 255
89
90
91 typedef hobject_t collection_list_handle_t;
92
93 /// convert a single CPEH_OSD_FLAG_* to a string
94 const char *ceph_osd_flag_name(unsigned flag);
95 /// convert a single CEPH_OSD_OF_FLAG_* to a string
96 const char *ceph_osd_op_flag_name(unsigned flag);
97
98 /// convert CEPH_OSD_FLAG_* op flags to a string
99 string ceph_osd_flag_string(unsigned flags);
100 /// conver CEPH_OSD_OP_FLAG_* op flags to a string
101 string ceph_osd_op_flag_string(unsigned flags);
102 /// conver CEPH_OSD_ALLOC_HINT_FLAG_* op flags to a string
103 string ceph_osd_alloc_hint_flag_string(unsigned flags);
104
105
106 /**
107 * osd request identifier
108 *
109 * caller name + incarnation# + tid to unique identify this request.
110 */
111 struct osd_reqid_t {
112 entity_name_t name; // who
113 ceph_tid_t tid;
114 int32_t inc; // incarnation
115
116 osd_reqid_t()
117 : tid(0), inc(0)
118 {}
119 osd_reqid_t(const osd_reqid_t& other)
120 : name(other.name), tid(other.tid), inc(other.inc)
121 {}
122 osd_reqid_t(const entity_name_t& a, int i, ceph_tid_t t)
123 : name(a), tid(t), inc(i)
124 {}
125
126 DENC(osd_reqid_t, v, p) {
127 DENC_START(2, 2, p);
128 denc(v.name, p);
129 denc(v.tid, p);
130 denc(v.inc, p);
131 DENC_FINISH(p);
132 }
133 void dump(Formatter *f) const;
134 static void generate_test_instances(list<osd_reqid_t*>& o);
135 };
136 WRITE_CLASS_DENC(osd_reqid_t)
137
138
139
140 struct pg_shard_t {
141 static const int32_t NO_OSD = 0x7fffffff;
142 int32_t osd;
143 shard_id_t shard;
144 pg_shard_t() : osd(-1), shard(shard_id_t::NO_SHARD) {}
145 explicit pg_shard_t(int osd) : osd(osd), shard(shard_id_t::NO_SHARD) {}
146 pg_shard_t(int osd, shard_id_t shard) : osd(osd), shard(shard) {}
147 bool is_undefined() const {
148 return osd == -1;
149 }
150 string get_osd() const { return (osd == NO_OSD ? "NONE" : to_string(osd)); }
151 void encode(bufferlist &bl) const;
152 void decode(bufferlist::iterator &bl);
153 void dump(Formatter *f) const {
154 f->dump_unsigned("osd", osd);
155 if (shard != shard_id_t::NO_SHARD) {
156 f->dump_unsigned("shard", shard);
157 }
158 }
159 };
160 WRITE_CLASS_ENCODER(pg_shard_t)
161 WRITE_EQ_OPERATORS_2(pg_shard_t, osd, shard)
162 WRITE_CMP_OPERATORS_2(pg_shard_t, osd, shard)
163 ostream &operator<<(ostream &lhs, const pg_shard_t &rhs);
164
165 class IsPGRecoverablePredicate {
166 public:
167 /**
168 * have encodes the shards available
169 */
170 virtual bool operator()(const set<pg_shard_t> &have) const = 0;
171 virtual ~IsPGRecoverablePredicate() {}
172 };
173
174 class IsPGReadablePredicate {
175 public:
176 /**
177 * have encodes the shards available
178 */
179 virtual bool operator()(const set<pg_shard_t> &have) const = 0;
180 virtual ~IsPGReadablePredicate() {}
181 };
182
183 inline ostream& operator<<(ostream& out, const osd_reqid_t& r) {
184 return out << r.name << "." << r.inc << ":" << r.tid;
185 }
186
187 inline bool operator==(const osd_reqid_t& l, const osd_reqid_t& r) {
188 return (l.name == r.name) && (l.inc == r.inc) && (l.tid == r.tid);
189 }
190 inline bool operator!=(const osd_reqid_t& l, const osd_reqid_t& r) {
191 return (l.name != r.name) || (l.inc != r.inc) || (l.tid != r.tid);
192 }
193 inline bool operator<(const osd_reqid_t& l, const osd_reqid_t& r) {
194 return (l.name < r.name) || (l.inc < r.inc) ||
195 (l.name == r.name && l.inc == r.inc && l.tid < r.tid);
196 }
197 inline bool operator<=(const osd_reqid_t& l, const osd_reqid_t& r) {
198 return (l.name < r.name) || (l.inc < r.inc) ||
199 (l.name == r.name && l.inc == r.inc && l.tid <= r.tid);
200 }
201 inline bool operator>(const osd_reqid_t& l, const osd_reqid_t& r) { return !(l <= r); }
202 inline bool operator>=(const osd_reqid_t& l, const osd_reqid_t& r) { return !(l < r); }
203
204 namespace std {
205 template<> struct hash<osd_reqid_t> {
206 size_t operator()(const osd_reqid_t &r) const {
207 static hash<uint64_t> H;
208 return H(r.name.num() ^ r.tid ^ r.inc);
209 }
210 };
211 } // namespace std
212
213
214 // -----
215
216 // a locator constrains the placement of an object. mainly, which pool
217 // does it go in.
218 struct object_locator_t {
219 // You specify either the hash or the key -- not both
220 int64_t pool; ///< pool id
221 string key; ///< key string (if non-empty)
222 string nspace; ///< namespace
223 int64_t hash; ///< hash position (if >= 0)
224
225 explicit object_locator_t()
226 : pool(-1), hash(-1) {}
227 explicit object_locator_t(int64_t po)
228 : pool(po), hash(-1) {}
229 explicit object_locator_t(int64_t po, int64_t ps)
230 : pool(po), hash(ps) {}
231 explicit object_locator_t(int64_t po, string ns)
232 : pool(po), nspace(ns), hash(-1) {}
233 explicit object_locator_t(int64_t po, string ns, int64_t ps)
234 : pool(po), nspace(ns), hash(ps) {}
235 explicit object_locator_t(int64_t po, string ns, string s)
236 : pool(po), key(s), nspace(ns), hash(-1) {}
237 explicit object_locator_t(const hobject_t& soid)
238 : pool(soid.pool), key(soid.get_key()), nspace(soid.nspace), hash(-1) {}
239
240 int64_t get_pool() const {
241 return pool;
242 }
243
244 void clear() {
245 pool = -1;
246 key = "";
247 nspace = "";
248 hash = -1;
249 }
250
251 bool empty() const {
252 return pool == -1;
253 }
254
255 void encode(bufferlist& bl) const;
256 void decode(bufferlist::iterator& p);
257 void dump(Formatter *f) const;
258 static void generate_test_instances(list<object_locator_t*>& o);
259 };
260 WRITE_CLASS_ENCODER(object_locator_t)
261
262 inline bool operator==(const object_locator_t& l, const object_locator_t& r) {
263 return l.pool == r.pool && l.key == r.key && l.nspace == r.nspace && l.hash == r.hash;
264 }
265 inline bool operator!=(const object_locator_t& l, const object_locator_t& r) {
266 return !(l == r);
267 }
268
269 inline ostream& operator<<(ostream& out, const object_locator_t& loc)
270 {
271 out << "@" << loc.pool;
272 if (loc.nspace.length())
273 out << ";" << loc.nspace;
274 if (loc.key.length())
275 out << ":" << loc.key;
276 return out;
277 }
278
279 struct request_redirect_t {
280 private:
281 object_locator_t redirect_locator; ///< this is authoritative
282 string redirect_object; ///< If non-empty, the request goes to this object name
283 bufferlist osd_instructions; ///< a bufferlist for the OSDs, passed but not interpreted by clients
284
285 friend ostream& operator<<(ostream& out, const request_redirect_t& redir);
286 public:
287
288 request_redirect_t() {}
289 explicit request_redirect_t(const object_locator_t& orig, int64_t rpool) :
290 redirect_locator(orig) { redirect_locator.pool = rpool; }
291 explicit request_redirect_t(const object_locator_t& rloc) :
292 redirect_locator(rloc) {}
293 explicit request_redirect_t(const object_locator_t& orig,
294 const string& robj) :
295 redirect_locator(orig), redirect_object(robj) {}
296
297 void set_instructions(const bufferlist& bl) { osd_instructions = bl; }
298 const bufferlist& get_instructions() { return osd_instructions; }
299
300 bool empty() const { return redirect_locator.empty() &&
301 redirect_object.empty(); }
302
303 void combine_with_locator(object_locator_t& orig, string& obj) const {
304 orig = redirect_locator;
305 if (!redirect_object.empty())
306 obj = redirect_object;
307 }
308
309 void encode(bufferlist& bl) const;
310 void decode(bufferlist::iterator& bl);
311 void dump(Formatter *f) const;
312 static void generate_test_instances(list<request_redirect_t*>& o);
313 };
314 WRITE_CLASS_ENCODER(request_redirect_t)
315
316 inline ostream& operator<<(ostream& out, const request_redirect_t& redir) {
317 out << "object " << redir.redirect_object << ", locator{" << redir.redirect_locator << "}";
318 return out;
319 }
320
321 // Internal OSD op flags - set by the OSD based on the op types
322 enum {
323 CEPH_OSD_RMW_FLAG_READ = (1 << 1),
324 CEPH_OSD_RMW_FLAG_WRITE = (1 << 2),
325 CEPH_OSD_RMW_FLAG_CLASS_READ = (1 << 3),
326 CEPH_OSD_RMW_FLAG_CLASS_WRITE = (1 << 4),
327 CEPH_OSD_RMW_FLAG_PGOP = (1 << 5),
328 CEPH_OSD_RMW_FLAG_CACHE = (1 << 6),
329 CEPH_OSD_RMW_FLAG_FORCE_PROMOTE = (1 << 7),
330 CEPH_OSD_RMW_FLAG_SKIP_HANDLE_CACHE = (1 << 8),
331 CEPH_OSD_RMW_FLAG_SKIP_PROMOTE = (1 << 9),
332 CEPH_OSD_RMW_FLAG_RWORDERED = (1 << 10),
333 };
334
335
336 // pg stuff
337
338 #define OSD_SUPERBLOCK_GOBJECT ghobject_t(hobject_t(sobject_t(object_t("osd_superblock"), 0)))
339
340 // placement seed (a hash value)
341 typedef uint32_t ps_t;
342
343 // old (v1) pg_t encoding (wrap old struct ceph_pg)
344 struct old_pg_t {
345 ceph_pg v;
346 void encode(bufferlist& bl) const {
347 ::encode_raw(v, bl);
348 }
349 void decode(bufferlist::iterator& bl) {
350 ::decode_raw(v, bl);
351 }
352 };
353 WRITE_CLASS_ENCODER(old_pg_t)
354
355 // placement group id
356 struct pg_t {
357 uint64_t m_pool;
358 uint32_t m_seed;
359 int32_t m_preferred;
360
361 pg_t() : m_pool(0), m_seed(0), m_preferred(-1) {}
362 pg_t(ps_t seed, uint64_t pool, int pref=-1) :
363 m_pool(pool), m_seed(seed), m_preferred(pref) {}
364 // cppcheck-suppress noExplicitConstructor
365 pg_t(const ceph_pg& cpg) :
366 m_pool(cpg.pool), m_seed(cpg.ps), m_preferred((__s16)cpg.preferred) {}
367
368 // cppcheck-suppress noExplicitConstructor
369 pg_t(const old_pg_t& opg) {
370 *this = opg.v;
371 }
372
373 old_pg_t get_old_pg() const {
374 old_pg_t o;
375 assert(m_pool < 0xffffffffull);
376 o.v.pool = m_pool;
377 o.v.ps = m_seed;
378 o.v.preferred = (__s16)m_preferred;
379 return o;
380 }
381
382 ps_t ps() const {
383 return m_seed;
384 }
385 uint64_t pool() const {
386 return m_pool;
387 }
388 int32_t preferred() const {
389 return m_preferred;
390 }
391
392 static const uint8_t calc_name_buf_size = 36; // max length for max values len("18446744073709551615.ffffffff") + future suffix len("_head") + '\0'
393 char *calc_name(char *buf, const char *suffix_backwords) const;
394
395 void set_ps(ps_t p) {
396 m_seed = p;
397 }
398 void set_pool(uint64_t p) {
399 m_pool = p;
400 }
401 void set_preferred(int32_t osd) {
402 m_preferred = osd;
403 }
404
405 pg_t get_parent() const;
406 pg_t get_ancestor(unsigned old_pg_num) const;
407
408 int print(char *o, int maxlen) const;
409 bool parse(const char *s);
410
411 bool is_split(unsigned old_pg_num, unsigned new_pg_num, set<pg_t> *pchildren) const;
412
413 /**
414 * Returns b such that for all object o:
415 * ~((~0)<<b) & o.hash) == 0 iff o is in the pg for *this
416 */
417 unsigned get_split_bits(unsigned pg_num) const;
418
419 bool contains(int bits, const ghobject_t& oid) {
420 return oid.match(bits, ps());
421 }
422 bool contains(int bits, const hobject_t& oid) {
423 return oid.match(bits, ps());
424 }
425
426 hobject_t get_hobj_start() const;
427 hobject_t get_hobj_end(unsigned pg_num) const;
428
429 void encode(bufferlist& bl) const {
430 __u8 v = 1;
431 ::encode(v, bl);
432 ::encode(m_pool, bl);
433 ::encode(m_seed, bl);
434 ::encode(m_preferred, bl);
435 }
436 void decode(bufferlist::iterator& bl) {
437 __u8 v;
438 ::decode(v, bl);
439 ::decode(m_pool, bl);
440 ::decode(m_seed, bl);
441 ::decode(m_preferred, bl);
442 }
443 void decode_old(bufferlist::iterator& bl) {
444 old_pg_t opg;
445 ::decode(opg, bl);
446 *this = opg;
447 }
448 void dump(Formatter *f) const;
449 static void generate_test_instances(list<pg_t*>& o);
450 };
451 WRITE_CLASS_ENCODER(pg_t)
452
453 inline bool operator<(const pg_t& l, const pg_t& r) {
454 return l.pool() < r.pool() ||
455 (l.pool() == r.pool() && (l.preferred() < r.preferred() ||
456 (l.preferred() == r.preferred() && (l.ps() < r.ps()))));
457 }
458 inline bool operator<=(const pg_t& l, const pg_t& r) {
459 return l.pool() < r.pool() ||
460 (l.pool() == r.pool() && (l.preferred() < r.preferred() ||
461 (l.preferred() == r.preferred() && (l.ps() <= r.ps()))));
462 }
463 inline bool operator==(const pg_t& l, const pg_t& r) {
464 return l.pool() == r.pool() &&
465 l.preferred() == r.preferred() &&
466 l.ps() == r.ps();
467 }
468 inline bool operator!=(const pg_t& l, const pg_t& r) {
469 return l.pool() != r.pool() ||
470 l.preferred() != r.preferred() ||
471 l.ps() != r.ps();
472 }
473 inline bool operator>(const pg_t& l, const pg_t& r) {
474 return l.pool() > r.pool() ||
475 (l.pool() == r.pool() && (l.preferred() > r.preferred() ||
476 (l.preferred() == r.preferred() && (l.ps() > r.ps()))));
477 }
478 inline bool operator>=(const pg_t& l, const pg_t& r) {
479 return l.pool() > r.pool() ||
480 (l.pool() == r.pool() && (l.preferred() > r.preferred() ||
481 (l.preferred() == r.preferred() && (l.ps() >= r.ps()))));
482 }
483
484 ostream& operator<<(ostream& out, const pg_t &pg);
485
486 namespace std {
487 template<> struct hash< pg_t >
488 {
489 size_t operator()( const pg_t& x ) const
490 {
491 static hash<uint32_t> H;
492 return H((x.pool() & 0xffffffff) ^ (x.pool() >> 32) ^ x.ps() ^ x.preferred());
493 }
494 };
495 } // namespace std
496
497 struct spg_t {
498 pg_t pgid;
499 shard_id_t shard;
500 spg_t() : shard(shard_id_t::NO_SHARD) {}
501 spg_t(pg_t pgid, shard_id_t shard) : pgid(pgid), shard(shard) {}
502 explicit spg_t(pg_t pgid) : pgid(pgid), shard(shard_id_t::NO_SHARD) {}
503 unsigned get_split_bits(unsigned pg_num) const {
504 return pgid.get_split_bits(pg_num);
505 }
506 spg_t get_parent() const {
507 return spg_t(pgid.get_parent(), shard);
508 }
509 ps_t ps() const {
510 return pgid.ps();
511 }
512 uint64_t pool() const {
513 return pgid.pool();
514 }
515 int32_t preferred() const {
516 return pgid.preferred();
517 }
518
519 static const uint8_t calc_name_buf_size = pg_t::calc_name_buf_size + 4; // 36 + len('s') + len("255");
520 char *calc_name(char *buf, const char *suffix_backwords) const;
521
522 bool parse(const char *s);
523 bool parse(const std::string& s) {
524 return parse(s.c_str());
525 }
526 bool is_split(unsigned old_pg_num, unsigned new_pg_num,
527 set<spg_t> *pchildren) const {
528 set<pg_t> _children;
529 set<pg_t> *children = pchildren ? &_children : NULL;
530 bool is_split = pgid.is_split(old_pg_num, new_pg_num, children);
531 if (pchildren && is_split) {
532 for (set<pg_t>::iterator i = _children.begin();
533 i != _children.end();
534 ++i) {
535 pchildren->insert(spg_t(*i, shard));
536 }
537 }
538 return is_split;
539 }
540 bool is_no_shard() const {
541 return shard == shard_id_t::NO_SHARD;
542 }
543
544 ghobject_t make_pgmeta_oid() const {
545 return ghobject_t::make_pgmeta(pgid.pool(), pgid.ps(), shard);
546 }
547
548 void encode(bufferlist &bl) const {
549 ENCODE_START(1, 1, bl);
550 ::encode(pgid, bl);
551 ::encode(shard, bl);
552 ENCODE_FINISH(bl);
553 }
554 void decode(bufferlist::iterator &bl) {
555 DECODE_START(1, bl);
556 ::decode(pgid, bl);
557 ::decode(shard, bl);
558 DECODE_FINISH(bl);
559 }
560
561 ghobject_t make_temp_ghobject(const string& name) const {
562 return ghobject_t(
563 hobject_t(object_t(name), "", CEPH_NOSNAP,
564 pgid.ps(),
565 hobject_t::POOL_TEMP_START - pgid.pool(), ""),
566 ghobject_t::NO_GEN,
567 shard);
568 }
569
570 unsigned hash_to_shard(unsigned num_shards) const {
571 return ps() % num_shards;
572 }
573 };
574 WRITE_CLASS_ENCODER(spg_t)
575 WRITE_EQ_OPERATORS_2(spg_t, pgid, shard)
576 WRITE_CMP_OPERATORS_2(spg_t, pgid, shard)
577
578 namespace std {
579 template<> struct hash< spg_t >
580 {
581 size_t operator()( const spg_t& x ) const
582 {
583 static hash<uint32_t> H;
584 return H(hash<pg_t>()(x.pgid) ^ x.shard);
585 }
586 };
587 } // namespace std
588
589 ostream& operator<<(ostream& out, const spg_t &pg);
590
591 // ----------------------
592
593 class coll_t {
594 enum type_t {
595 TYPE_META = 0,
596 TYPE_LEGACY_TEMP = 1, /* no longer used */
597 TYPE_PG = 2,
598 TYPE_PG_TEMP = 3,
599 };
600 type_t type;
601 spg_t pgid;
602 uint64_t removal_seq; // note: deprecated, not encoded
603
604 char _str_buff[spg_t::calc_name_buf_size];
605 char *_str;
606
607 void calc_str();
608
609 coll_t(type_t t, spg_t p, uint64_t r)
610 : type(t), pgid(p), removal_seq(r) {
611 calc_str();
612 }
613
614 public:
615 coll_t() : type(TYPE_META), removal_seq(0)
616 {
617 calc_str();
618 }
619
620 coll_t(const coll_t& other)
621 : type(other.type), pgid(other.pgid), removal_seq(other.removal_seq) {
622 calc_str();
623 }
624
625 explicit coll_t(spg_t pgid)
626 : type(TYPE_PG), pgid(pgid), removal_seq(0)
627 {
628 calc_str();
629 }
630
631 coll_t& operator=(const coll_t& rhs)
632 {
633 this->type = rhs.type;
634 this->pgid = rhs.pgid;
635 this->removal_seq = rhs.removal_seq;
636 this->calc_str();
637 return *this;
638 }
639
640 // named constructors
641 static coll_t meta() {
642 return coll_t();
643 }
644 static coll_t pg(spg_t p) {
645 return coll_t(p);
646 }
647
648 const std::string to_str() const {
649 return string(_str);
650 }
651 const char *c_str() const {
652 return _str;
653 }
654
655 bool parse(const std::string& s);
656
657 int operator<(const coll_t &rhs) const {
658 return type < rhs.type ||
659 (type == rhs.type && pgid < rhs.pgid);
660 }
661
662 bool is_meta() const {
663 return type == TYPE_META;
664 }
665 bool is_pg_prefix(spg_t *pgid_) const {
666 if (type == TYPE_PG || type == TYPE_PG_TEMP) {
667 *pgid_ = pgid;
668 return true;
669 }
670 return false;
671 }
672 bool is_pg() const {
673 return type == TYPE_PG;
674 }
675 bool is_pg(spg_t *pgid_) const {
676 if (type == TYPE_PG) {
677 *pgid_ = pgid;
678 return true;
679 }
680 return false;
681 }
682 bool is_temp() const {
683 return type == TYPE_PG_TEMP;
684 }
685 bool is_temp(spg_t *pgid_) const {
686 if (type == TYPE_PG_TEMP) {
687 *pgid_ = pgid;
688 return true;
689 }
690 return false;
691 }
692
693 void encode(bufferlist& bl) const;
694 void decode(bufferlist::iterator& bl);
695 size_t encoded_size() const;
696
697 inline bool operator==(const coll_t& rhs) const {
698 // only compare type if meta
699 if (type != rhs.type)
700 return false;
701 if (type == TYPE_META)
702 return true;
703 return type == rhs.type && pgid == rhs.pgid;
704 }
705 inline bool operator!=(const coll_t& rhs) const {
706 return !(*this == rhs);
707 }
708
709 // get a TEMP collection that corresponds to the current collection,
710 // which we presume is a pg collection.
711 coll_t get_temp() const {
712 assert(type == TYPE_PG);
713 return coll_t(TYPE_PG_TEMP, pgid, 0);
714 }
715
716 ghobject_t get_min_hobj() const {
717 ghobject_t o;
718 switch (type) {
719 case TYPE_PG:
720 o.hobj.pool = pgid.pool();
721 o.set_shard(pgid.shard);
722 break;
723 case TYPE_META:
724 o.hobj.pool = -1;
725 break;
726 default:
727 break;
728 }
729 return o;
730 }
731
732 unsigned hash_to_shard(unsigned num_shards) const {
733 if (type == TYPE_PG)
734 return pgid.hash_to_shard(num_shards);
735 return 0; // whatever.
736 }
737
738 void dump(Formatter *f) const;
739 static void generate_test_instances(list<coll_t*>& o);
740 };
741
742 WRITE_CLASS_ENCODER(coll_t)
743
744 inline ostream& operator<<(ostream& out, const coll_t& c) {
745 out << c.to_str();
746 return out;
747 }
748
749 namespace std {
750 template<> struct hash<coll_t> {
751 size_t operator()(const coll_t &c) const {
752 size_t h = 0;
753 string str(c.to_str());
754 std::string::const_iterator end(str.end());
755 for (std::string::const_iterator s = str.begin(); s != end; ++s) {
756 h += *s;
757 h += (h << 10);
758 h ^= (h >> 6);
759 }
760 h += (h << 3);
761 h ^= (h >> 11);
762 h += (h << 15);
763 return h;
764 }
765 };
766 } // namespace std
767
768 inline ostream& operator<<(ostream& out, const ceph_object_layout &ol)
769 {
770 out << pg_t(ol.ol_pgid);
771 int su = ol.ol_stripe_unit;
772 if (su)
773 out << ".su=" << su;
774 return out;
775 }
776
777
778
779 // compound rados version type
780 /* WARNING: If add member in eversion_t, please make sure the encode/decode function
781 * work well. For little-endian machine, we should make sure there is no padding
782 * in 32-bit machine and 64-bit machine.
783 */
784 class eversion_t {
785 public:
786 version_t version;
787 epoch_t epoch;
788 __u32 __pad;
789 eversion_t() : version(0), epoch(0), __pad(0) {}
790 eversion_t(epoch_t e, version_t v) : version(v), epoch(e), __pad(0) {}
791
792 // cppcheck-suppress noExplicitConstructor
793 eversion_t(const ceph_eversion& ce) :
794 version(ce.version),
795 epoch(ce.epoch),
796 __pad(0) { }
797
798 explicit eversion_t(bufferlist& bl) : __pad(0) { decode(bl); }
799
800 static eversion_t max() {
801 eversion_t max;
802 max.version -= 1;
803 max.epoch -= 1;
804 return max;
805 }
806
807 operator ceph_eversion() {
808 ceph_eversion c;
809 c.epoch = epoch;
810 c.version = version;
811 return c;
812 }
813
814 string get_key_name() const;
815
816 void encode(bufferlist &bl) const {
817 #if defined(CEPH_LITTLE_ENDIAN)
818 bl.append((char *)this, sizeof(version_t) + sizeof(epoch_t));
819 #else
820 ::encode(version, bl);
821 ::encode(epoch, bl);
822 #endif
823 }
824 void decode(bufferlist::iterator &bl) {
825 #if defined(CEPH_LITTLE_ENDIAN)
826 bl.copy(sizeof(version_t) + sizeof(epoch_t), (char *)this);
827 #else
828 ::decode(version, bl);
829 ::decode(epoch, bl);
830 #endif
831 }
832 void decode(bufferlist& bl) {
833 bufferlist::iterator p = bl.begin();
834 decode(p);
835 }
836 };
837 WRITE_CLASS_ENCODER(eversion_t)
838
839 inline bool operator==(const eversion_t& l, const eversion_t& r) {
840 return (l.epoch == r.epoch) && (l.version == r.version);
841 }
842 inline bool operator!=(const eversion_t& l, const eversion_t& r) {
843 return (l.epoch != r.epoch) || (l.version != r.version);
844 }
845 inline bool operator<(const eversion_t& l, const eversion_t& r) {
846 return (l.epoch == r.epoch) ? (l.version < r.version):(l.epoch < r.epoch);
847 }
848 inline bool operator<=(const eversion_t& l, const eversion_t& r) {
849 return (l.epoch == r.epoch) ? (l.version <= r.version):(l.epoch <= r.epoch);
850 }
851 inline bool operator>(const eversion_t& l, const eversion_t& r) {
852 return (l.epoch == r.epoch) ? (l.version > r.version):(l.epoch > r.epoch);
853 }
854 inline bool operator>=(const eversion_t& l, const eversion_t& r) {
855 return (l.epoch == r.epoch) ? (l.version >= r.version):(l.epoch >= r.epoch);
856 }
857 inline ostream& operator<<(ostream& out, const eversion_t& e) {
858 return out << e.epoch << "'" << e.version;
859 }
860
861 /**
862 * objectstore_perf_stat_t
863 *
864 * current perf information about the osd
865 */
866 struct objectstore_perf_stat_t {
867 // cur_op_latency is in ms since double add/sub are not associative
868 uint32_t os_commit_latency;
869 uint32_t os_apply_latency;
870
871 objectstore_perf_stat_t() :
872 os_commit_latency(0), os_apply_latency(0) {}
873
874 bool operator==(const objectstore_perf_stat_t &r) const {
875 return os_commit_latency == r.os_commit_latency &&
876 os_apply_latency == r.os_apply_latency;
877 }
878
879 void add(const objectstore_perf_stat_t &o) {
880 os_commit_latency += o.os_commit_latency;
881 os_apply_latency += o.os_apply_latency;
882 }
883 void sub(const objectstore_perf_stat_t &o) {
884 os_commit_latency -= o.os_commit_latency;
885 os_apply_latency -= o.os_apply_latency;
886 }
887 void dump(Formatter *f) const;
888 void encode(bufferlist &bl) const;
889 void decode(bufferlist::iterator &bl);
890 static void generate_test_instances(std::list<objectstore_perf_stat_t*>& o);
891 };
892 WRITE_CLASS_ENCODER(objectstore_perf_stat_t)
893
894 /** osd_stat
895 * aggregate stats for an osd
896 */
897 struct osd_stat_t {
898 int64_t kb, kb_used, kb_avail;
899 vector<int> hb_peers;
900 int32_t snap_trim_queue_len, num_snap_trimming;
901
902 pow2_hist_t op_queue_age_hist;
903
904 objectstore_perf_stat_t os_perf_stat;
905
906 epoch_t up_from = 0;
907 uint64_t seq = 0;
908
909 uint32_t num_pgs = 0;
910
911 osd_stat_t() : kb(0), kb_used(0), kb_avail(0),
912 snap_trim_queue_len(0), num_snap_trimming(0) {}
913
914 void add(const osd_stat_t& o) {
915 kb += o.kb;
916 kb_used += o.kb_used;
917 kb_avail += o.kb_avail;
918 snap_trim_queue_len += o.snap_trim_queue_len;
919 num_snap_trimming += o.num_snap_trimming;
920 op_queue_age_hist.add(o.op_queue_age_hist);
921 os_perf_stat.add(o.os_perf_stat);
922 num_pgs += o.num_pgs;
923 }
924 void sub(const osd_stat_t& o) {
925 kb -= o.kb;
926 kb_used -= o.kb_used;
927 kb_avail -= o.kb_avail;
928 snap_trim_queue_len -= o.snap_trim_queue_len;
929 num_snap_trimming -= o.num_snap_trimming;
930 op_queue_age_hist.sub(o.op_queue_age_hist);
931 os_perf_stat.sub(o.os_perf_stat);
932 num_pgs -= o.num_pgs;
933 }
934
935 void dump(Formatter *f) const;
936 void encode(bufferlist &bl) const;
937 void decode(bufferlist::iterator &bl);
938 static void generate_test_instances(std::list<osd_stat_t*>& o);
939 };
940 WRITE_CLASS_ENCODER(osd_stat_t)
941
942 inline bool operator==(const osd_stat_t& l, const osd_stat_t& r) {
943 return l.kb == r.kb &&
944 l.kb_used == r.kb_used &&
945 l.kb_avail == r.kb_avail &&
946 l.snap_trim_queue_len == r.snap_trim_queue_len &&
947 l.num_snap_trimming == r.num_snap_trimming &&
948 l.hb_peers == r.hb_peers &&
949 l.op_queue_age_hist == r.op_queue_age_hist &&
950 l.os_perf_stat == r.os_perf_stat &&
951 l.num_pgs == r.num_pgs;
952 }
953 inline bool operator!=(const osd_stat_t& l, const osd_stat_t& r) {
954 return !(l == r);
955 }
956
957
958
959 inline ostream& operator<<(ostream& out, const osd_stat_t& s) {
960 return out << "osd_stat(" << byte_u_t(s.kb_used << 10) << " used, "
961 << byte_u_t(s.kb_avail << 10) << " avail, "
962 << byte_u_t(s.kb << 10) << " total, "
963 << "peers " << s.hb_peers
964 << " op hist " << s.op_queue_age_hist.h
965 << ")";
966 }
967
968
969 /*
970 * pg states
971 */
972 #define PG_STATE_CREATING (1<<0) // creating
973 #define PG_STATE_ACTIVE (1<<1) // i am active. (primary: replicas too)
974 #define PG_STATE_CLEAN (1<<2) // peers are complete, clean of stray replicas.
975 #define PG_STATE_DOWN (1<<4) // a needed replica is down, PG offline
976 #define PG_STATE_RECOVERY_UNFOUND (1<<5) // recovery stopped due to unfound
977 #define PG_STATE_BACKFILL_UNFOUND (1<<6) // backfill stopped due to unfound
978 //#define PG_STATE_SPLITTING (1<<7) // i am splitting
979 #define PG_STATE_SCRUBBING (1<<8) // scrubbing
980 //#define PG_STATE_SCRUBQ (1<<9) // queued for scrub
981 #define PG_STATE_DEGRADED (1<<10) // pg contains objects with reduced redundancy
982 #define PG_STATE_INCONSISTENT (1<<11) // pg replicas are inconsistent (but shouldn't be)
983 #define PG_STATE_PEERING (1<<12) // pg is (re)peering
984 #define PG_STATE_REPAIR (1<<13) // pg should repair on next scrub
985 #define PG_STATE_RECOVERING (1<<14) // pg is recovering/migrating objects
986 #define PG_STATE_BACKFILL_WAIT (1<<15) // [active] reserving backfill
987 #define PG_STATE_INCOMPLETE (1<<16) // incomplete content, peering failed.
988 #define PG_STATE_STALE (1<<17) // our state for this pg is stale, unknown.
989 #define PG_STATE_REMAPPED (1<<18) // pg is explicitly remapped to different OSDs than CRUSH
990 #define PG_STATE_DEEP_SCRUB (1<<19) // deep scrub: check CRC32 on files
991 #define PG_STATE_BACKFILLING (1<<20) // [active] backfilling pg content
992 #define PG_STATE_BACKFILL_TOOFULL (1<<21) // backfill can't proceed: too full
993 #define PG_STATE_RECOVERY_WAIT (1<<22) // waiting for recovery reservations
994 #define PG_STATE_UNDERSIZED (1<<23) // pg acting < pool size
995 #define PG_STATE_ACTIVATING (1<<24) // pg is peered but not yet active
996 #define PG_STATE_PEERED (1<<25) // peered, cannot go active, can recover
997 #define PG_STATE_SNAPTRIM (1<<26) // trimming snaps
998 #define PG_STATE_SNAPTRIM_WAIT (1<<27) // queued to trim snaps
999 #define PG_STATE_RECOVERY_TOOFULL (1<<28) // recovery can't proceed: too full
1000 #define PG_STATE_SNAPTRIM_ERROR (1<<29) // error stopped trimming snaps
1001 #define PG_STATE_FORCED_RECOVERY (1<<30) // force recovery of this pg before any other
1002 #define PG_STATE_FORCED_BACKFILL (1<<31) // force backfill of this pg before any other
1003
1004 std::string pg_state_string(int state);
1005 std::string pg_vector_string(const vector<int32_t> &a);
1006 boost::optional<uint64_t> pg_string_state(const std::string& state);
1007
1008
1009 /*
1010 * pool_snap_info_t
1011 *
1012 * attributes for a single pool snapshot.
1013 */
1014 struct pool_snap_info_t {
1015 snapid_t snapid;
1016 utime_t stamp;
1017 string name;
1018
1019 void dump(Formatter *f) const;
1020 void encode(bufferlist& bl, uint64_t features) const;
1021 void decode(bufferlist::iterator& bl);
1022 static void generate_test_instances(list<pool_snap_info_t*>& o);
1023 };
1024 WRITE_CLASS_ENCODER_FEATURES(pool_snap_info_t)
1025
1026 inline ostream& operator<<(ostream& out, const pool_snap_info_t& si) {
1027 return out << si.snapid << '(' << si.name << ' ' << si.stamp << ')';
1028 }
1029
1030
1031 /*
1032 * pool_opts_t
1033 *
1034 * pool options.
1035 */
1036
1037 class pool_opts_t {
1038 public:
1039 enum key_t {
1040 SCRUB_MIN_INTERVAL,
1041 SCRUB_MAX_INTERVAL,
1042 DEEP_SCRUB_INTERVAL,
1043 RECOVERY_PRIORITY,
1044 RECOVERY_OP_PRIORITY,
1045 SCRUB_PRIORITY,
1046 COMPRESSION_MODE,
1047 COMPRESSION_ALGORITHM,
1048 COMPRESSION_REQUIRED_RATIO,
1049 COMPRESSION_MAX_BLOB_SIZE,
1050 COMPRESSION_MIN_BLOB_SIZE,
1051 CSUM_TYPE,
1052 CSUM_MAX_BLOCK,
1053 CSUM_MIN_BLOCK,
1054 };
1055
1056 enum type_t {
1057 STR,
1058 INT,
1059 DOUBLE,
1060 };
1061
1062 struct opt_desc_t {
1063 key_t key;
1064 type_t type;
1065
1066 opt_desc_t(key_t k, type_t t) : key(k), type(t) {}
1067
1068 bool operator==(const opt_desc_t& rhs) const {
1069 return key == rhs.key && type == rhs.type;
1070 }
1071 };
1072
1073 typedef boost::variant<std::string,int,double> value_t;
1074
1075 static bool is_opt_name(const std::string& name);
1076 static opt_desc_t get_opt_desc(const std::string& name);
1077
1078 pool_opts_t() : opts() {}
1079
1080 bool is_set(key_t key) const;
1081
1082 template<typename T>
1083 void set(key_t key, const T &val) {
1084 value_t value = val;
1085 opts[key] = value;
1086 }
1087
1088 template<typename T>
1089 bool get(key_t key, T *val) const {
1090 opts_t::const_iterator i = opts.find(key);
1091 if (i == opts.end()) {
1092 return false;
1093 }
1094 *val = boost::get<T>(i->second);
1095 return true;
1096 }
1097
1098 const value_t& get(key_t key) const;
1099
1100 bool unset(key_t key);
1101
1102 void dump(const std::string& name, Formatter *f) const;
1103
1104 void dump(Formatter *f) const;
1105 void encode(bufferlist &bl) const;
1106 void decode(bufferlist::iterator &bl);
1107
1108 private:
1109 typedef std::map<key_t, value_t> opts_t;
1110 opts_t opts;
1111
1112 friend ostream& operator<<(ostream& out, const pool_opts_t& opts);
1113 };
1114 WRITE_CLASS_ENCODER(pool_opts_t)
1115
1116 /*
1117 * pg_pool
1118 */
1119 struct pg_pool_t {
1120 static const char *APPLICATION_NAME_CEPHFS;
1121 static const char *APPLICATION_NAME_RBD;
1122 static const char *APPLICATION_NAME_RGW;
1123
1124 enum {
1125 TYPE_REPLICATED = 1, // replication
1126 //TYPE_RAID4 = 2, // raid4 (never implemented)
1127 TYPE_ERASURE = 3, // erasure-coded
1128 };
1129 static const char *get_type_name(int t) {
1130 switch (t) {
1131 case TYPE_REPLICATED: return "replicated";
1132 //case TYPE_RAID4: return "raid4";
1133 case TYPE_ERASURE: return "erasure";
1134 default: return "???";
1135 }
1136 }
1137 const char *get_type_name() const {
1138 return get_type_name(type);
1139 }
1140
1141 enum {
1142 FLAG_HASHPSPOOL = 1<<0, // hash pg seed and pool together (instead of adding)
1143 FLAG_FULL = 1<<1, // pool is full
1144 FLAG_EC_OVERWRITES = 1<<2, // enables overwrites, once enabled, cannot be disabled
1145 FLAG_INCOMPLETE_CLONES = 1<<3, // may have incomplete clones (bc we are/were an overlay)
1146 FLAG_NODELETE = 1<<4, // pool can't be deleted
1147 FLAG_NOPGCHANGE = 1<<5, // pool's pg and pgp num can't be changed
1148 FLAG_NOSIZECHANGE = 1<<6, // pool's size and min size can't be changed
1149 FLAG_WRITE_FADVISE_DONTNEED = 1<<7, // write mode with LIBRADOS_OP_FLAG_FADVISE_DONTNEED
1150 FLAG_NOSCRUB = 1<<8, // block periodic scrub
1151 FLAG_NODEEP_SCRUB = 1<<9, // block periodic deep-scrub
1152 FLAG_FULL_NO_QUOTA = 1<<10, // pool is currently running out of quota, will set FLAG_FULL too
1153 FLAG_NEARFULL = 1<<11, // pool is nearfull
1154 FLAG_BACKFILLFULL = 1<<12, // pool is backfillfull
1155 };
1156
1157 static const char *get_flag_name(int f) {
1158 switch (f) {
1159 case FLAG_HASHPSPOOL: return "hashpspool";
1160 case FLAG_FULL: return "full";
1161 case FLAG_EC_OVERWRITES: return "ec_overwrites";
1162 case FLAG_INCOMPLETE_CLONES: return "incomplete_clones";
1163 case FLAG_NODELETE: return "nodelete";
1164 case FLAG_NOPGCHANGE: return "nopgchange";
1165 case FLAG_NOSIZECHANGE: return "nosizechange";
1166 case FLAG_WRITE_FADVISE_DONTNEED: return "write_fadvise_dontneed";
1167 case FLAG_NOSCRUB: return "noscrub";
1168 case FLAG_NODEEP_SCRUB: return "nodeep-scrub";
1169 case FLAG_FULL_NO_QUOTA: return "full_no_quota";
1170 case FLAG_NEARFULL: return "nearfull";
1171 case FLAG_BACKFILLFULL: return "backfillfull";
1172 default: return "???";
1173 }
1174 }
1175 static string get_flags_string(uint64_t f) {
1176 string s;
1177 for (unsigned n=0; f && n<64; ++n) {
1178 if (f & (1ull << n)) {
1179 if (s.length())
1180 s += ",";
1181 s += get_flag_name(1ull << n);
1182 }
1183 }
1184 return s;
1185 }
1186 string get_flags_string() const {
1187 return get_flags_string(flags);
1188 }
1189 static uint64_t get_flag_by_name(const string& name) {
1190 if (name == "hashpspool")
1191 return FLAG_HASHPSPOOL;
1192 if (name == "full")
1193 return FLAG_FULL;
1194 if (name == "ec_overwrites")
1195 return FLAG_EC_OVERWRITES;
1196 if (name == "incomplete_clones")
1197 return FLAG_INCOMPLETE_CLONES;
1198 if (name == "nodelete")
1199 return FLAG_NODELETE;
1200 if (name == "nopgchange")
1201 return FLAG_NOPGCHANGE;
1202 if (name == "nosizechange")
1203 return FLAG_NOSIZECHANGE;
1204 if (name == "write_fadvise_dontneed")
1205 return FLAG_WRITE_FADVISE_DONTNEED;
1206 if (name == "noscrub")
1207 return FLAG_NOSCRUB;
1208 if (name == "nodeep-scrub")
1209 return FLAG_NODEEP_SCRUB;
1210 if (name == "full_no_quota")
1211 return FLAG_FULL_NO_QUOTA;
1212 if (name == "nearfull")
1213 return FLAG_NEARFULL;
1214 if (name == "backfillfull")
1215 return FLAG_BACKFILLFULL;
1216 return 0;
1217 }
1218
1219 /// converts the acting/up vector to a set of pg shards
1220 void convert_to_pg_shards(const vector<int> &from, set<pg_shard_t>* to) const;
1221
1222 typedef enum {
1223 CACHEMODE_NONE = 0, ///< no caching
1224 CACHEMODE_WRITEBACK = 1, ///< write to cache, flush later
1225 CACHEMODE_FORWARD = 2, ///< forward if not in cache
1226 CACHEMODE_READONLY = 3, ///< handle reads, forward writes [not strongly consistent]
1227 CACHEMODE_READFORWARD = 4, ///< forward reads, write to cache flush later
1228 CACHEMODE_READPROXY = 5, ///< proxy reads, write to cache flush later
1229 CACHEMODE_PROXY = 6, ///< proxy if not in cache
1230 } cache_mode_t;
1231 static const char *get_cache_mode_name(cache_mode_t m) {
1232 switch (m) {
1233 case CACHEMODE_NONE: return "none";
1234 case CACHEMODE_WRITEBACK: return "writeback";
1235 case CACHEMODE_FORWARD: return "forward";
1236 case CACHEMODE_READONLY: return "readonly";
1237 case CACHEMODE_READFORWARD: return "readforward";
1238 case CACHEMODE_READPROXY: return "readproxy";
1239 case CACHEMODE_PROXY: return "proxy";
1240 default: return "unknown";
1241 }
1242 }
1243 static cache_mode_t get_cache_mode_from_str(const string& s) {
1244 if (s == "none")
1245 return CACHEMODE_NONE;
1246 if (s == "writeback")
1247 return CACHEMODE_WRITEBACK;
1248 if (s == "forward")
1249 return CACHEMODE_FORWARD;
1250 if (s == "readonly")
1251 return CACHEMODE_READONLY;
1252 if (s == "readforward")
1253 return CACHEMODE_READFORWARD;
1254 if (s == "readproxy")
1255 return CACHEMODE_READPROXY;
1256 if (s == "proxy")
1257 return CACHEMODE_PROXY;
1258 return (cache_mode_t)-1;
1259 }
1260 const char *get_cache_mode_name() const {
1261 return get_cache_mode_name(cache_mode);
1262 }
1263 bool cache_mode_requires_hit_set() const {
1264 switch (cache_mode) {
1265 case CACHEMODE_NONE:
1266 case CACHEMODE_FORWARD:
1267 case CACHEMODE_READONLY:
1268 case CACHEMODE_PROXY:
1269 return false;
1270 case CACHEMODE_WRITEBACK:
1271 case CACHEMODE_READFORWARD:
1272 case CACHEMODE_READPROXY:
1273 return true;
1274 default:
1275 assert(0 == "implement me");
1276 }
1277 }
1278
1279 uint64_t flags; ///< FLAG_*
1280 __u8 type; ///< TYPE_*
1281 __u8 size, min_size; ///< number of osds in each pg
1282 __u8 crush_rule; ///< crush placement rule
1283 __u8 object_hash; ///< hash mapping object name to ps
1284 private:
1285 __u32 pg_num, pgp_num; ///< number of pgs
1286
1287
1288 public:
1289 map<string,string> properties; ///< OBSOLETE
1290 string erasure_code_profile; ///< name of the erasure code profile in OSDMap
1291 epoch_t last_change; ///< most recent epoch changed, exclusing snapshot changes
1292 epoch_t last_force_op_resend; ///< last epoch that forced clients to resend
1293 /// last epoch that forced clients to resend (pre-luminous clients only)
1294 epoch_t last_force_op_resend_preluminous;
1295 snapid_t snap_seq; ///< seq for per-pool snapshot
1296 epoch_t snap_epoch; ///< osdmap epoch of last snap
1297 uint64_t auid; ///< who owns the pg
1298 __u32 crash_replay_interval; ///< seconds to allow clients to replay ACKed but unCOMMITted requests
1299
1300 uint64_t quota_max_bytes; ///< maximum number of bytes for this pool
1301 uint64_t quota_max_objects; ///< maximum number of objects for this pool
1302
1303 /*
1304 * Pool snaps (global to this pool). These define a SnapContext for
1305 * the pool, unless the client manually specifies an alternate
1306 * context.
1307 */
1308 map<snapid_t, pool_snap_info_t> snaps;
1309 /*
1310 * Alternatively, if we are defining non-pool snaps (e.g. via the
1311 * Ceph MDS), we must track @removed_snaps (since @snaps is not
1312 * used). Snaps and removed_snaps are to be used exclusive of each
1313 * other!
1314 */
1315 interval_set<snapid_t> removed_snaps;
1316
1317 unsigned pg_num_mask, pgp_num_mask;
1318
1319 set<uint64_t> tiers; ///< pools that are tiers of us
1320 int64_t tier_of; ///< pool for which we are a tier
1321 // Note that write wins for read+write ops
1322 int64_t read_tier; ///< pool/tier for objecter to direct reads to
1323 int64_t write_tier; ///< pool/tier for objecter to direct writes to
1324 cache_mode_t cache_mode; ///< cache pool mode
1325
1326 bool is_tier() const { return tier_of >= 0; }
1327 bool has_tiers() const { return !tiers.empty(); }
1328 void clear_tier() {
1329 tier_of = -1;
1330 clear_read_tier();
1331 clear_write_tier();
1332 clear_tier_tunables();
1333 }
1334 bool has_read_tier() const { return read_tier >= 0; }
1335 void clear_read_tier() { read_tier = -1; }
1336 bool has_write_tier() const { return write_tier >= 0; }
1337 void clear_write_tier() { write_tier = -1; }
1338 void clear_tier_tunables() {
1339 if (cache_mode != CACHEMODE_NONE)
1340 flags |= FLAG_INCOMPLETE_CLONES;
1341 cache_mode = CACHEMODE_NONE;
1342
1343 target_max_bytes = 0;
1344 target_max_objects = 0;
1345 cache_target_dirty_ratio_micro = 0;
1346 cache_target_dirty_high_ratio_micro = 0;
1347 cache_target_full_ratio_micro = 0;
1348 hit_set_params = HitSet::Params();
1349 hit_set_period = 0;
1350 hit_set_count = 0;
1351 hit_set_grade_decay_rate = 0;
1352 hit_set_search_last_n = 0;
1353 grade_table.resize(0);
1354 }
1355
1356 uint64_t target_max_bytes; ///< tiering: target max pool size
1357 uint64_t target_max_objects; ///< tiering: target max pool size
1358
1359 uint32_t cache_target_dirty_ratio_micro; ///< cache: fraction of target to leave dirty
1360 uint32_t cache_target_dirty_high_ratio_micro; ///<cache: fraction of target to flush with high speed
1361 uint32_t cache_target_full_ratio_micro; ///< cache: fraction of target to fill before we evict in earnest
1362
1363 uint32_t cache_min_flush_age; ///< minimum age (seconds) before we can flush
1364 uint32_t cache_min_evict_age; ///< minimum age (seconds) before we can evict
1365
1366 HitSet::Params hit_set_params; ///< The HitSet params to use on this pool
1367 uint32_t hit_set_period; ///< periodicity of HitSet segments (seconds)
1368 uint32_t hit_set_count; ///< number of periods to retain
1369 bool use_gmt_hitset; ///< use gmt to name the hitset archive object
1370 uint32_t min_read_recency_for_promote; ///< minimum number of HitSet to check before promote on read
1371 uint32_t min_write_recency_for_promote; ///< minimum number of HitSet to check before promote on write
1372 uint32_t hit_set_grade_decay_rate; ///< current hit_set has highest priority on objects
1373 ///temperature count,the follow hit_set's priority decay
1374 ///by this params than pre hit_set
1375 uint32_t hit_set_search_last_n; ///<accumulate atmost N hit_sets for temperature
1376
1377 uint32_t stripe_width; ///< erasure coded stripe size in bytes
1378
1379 uint64_t expected_num_objects; ///< expected number of objects on this pool, a value of 0 indicates
1380 ///< user does not specify any expected value
1381 bool fast_read; ///< whether turn on fast read on the pool or not
1382
1383 pool_opts_t opts; ///< options
1384
1385 /// application -> key/value metadata
1386 map<string, std::map<string, string>> application_metadata;
1387
1388 private:
1389 vector<uint32_t> grade_table;
1390
1391 public:
1392 uint32_t get_grade(unsigned i) const {
1393 if (grade_table.size() <= i)
1394 return 0;
1395 return grade_table[i];
1396 }
1397 void calc_grade_table() {
1398 unsigned v = 1000000;
1399 grade_table.resize(hit_set_count);
1400 for (unsigned i = 0; i < hit_set_count; i++) {
1401 v = v * (1 - (hit_set_grade_decay_rate / 100.0));
1402 grade_table[i] = v;
1403 }
1404 }
1405
1406 pg_pool_t()
1407 : flags(0), type(0), size(0), min_size(0),
1408 crush_rule(0), object_hash(0),
1409 pg_num(0), pgp_num(0),
1410 last_change(0),
1411 last_force_op_resend(0),
1412 last_force_op_resend_preluminous(0),
1413 snap_seq(0), snap_epoch(0),
1414 auid(0),
1415 crash_replay_interval(0),
1416 quota_max_bytes(0), quota_max_objects(0),
1417 pg_num_mask(0), pgp_num_mask(0),
1418 tier_of(-1), read_tier(-1), write_tier(-1),
1419 cache_mode(CACHEMODE_NONE),
1420 target_max_bytes(0), target_max_objects(0),
1421 cache_target_dirty_ratio_micro(0),
1422 cache_target_dirty_high_ratio_micro(0),
1423 cache_target_full_ratio_micro(0),
1424 cache_min_flush_age(0),
1425 cache_min_evict_age(0),
1426 hit_set_params(),
1427 hit_set_period(0),
1428 hit_set_count(0),
1429 use_gmt_hitset(true),
1430 min_read_recency_for_promote(0),
1431 min_write_recency_for_promote(0),
1432 hit_set_grade_decay_rate(0),
1433 hit_set_search_last_n(0),
1434 stripe_width(0),
1435 expected_num_objects(0),
1436 fast_read(false),
1437 opts()
1438 { }
1439
1440 void dump(Formatter *f) const;
1441
1442 uint64_t get_flags() const { return flags; }
1443 bool has_flag(uint64_t f) const { return flags & f; }
1444 void set_flag(uint64_t f) { flags |= f; }
1445 void unset_flag(uint64_t f) { flags &= ~f; }
1446
1447 bool ec_pool() const {
1448 return type == TYPE_ERASURE;
1449 }
1450 bool require_rollback() const {
1451 return ec_pool();
1452 }
1453
1454 /// true if incomplete clones may be present
1455 bool allow_incomplete_clones() const {
1456 return cache_mode != CACHEMODE_NONE || has_flag(FLAG_INCOMPLETE_CLONES);
1457 }
1458
1459 unsigned get_type() const { return type; }
1460 unsigned get_size() const { return size; }
1461 unsigned get_min_size() const { return min_size; }
1462 int get_crush_rule() const { return crush_rule; }
1463 int get_object_hash() const { return object_hash; }
1464 const char *get_object_hash_name() const {
1465 return ceph_str_hash_name(get_object_hash());
1466 }
1467 epoch_t get_last_change() const { return last_change; }
1468 epoch_t get_last_force_op_resend() const { return last_force_op_resend; }
1469 epoch_t get_last_force_op_resend_preluminous() const {
1470 return last_force_op_resend_preluminous;
1471 }
1472 epoch_t get_snap_epoch() const { return snap_epoch; }
1473 snapid_t get_snap_seq() const { return snap_seq; }
1474 uint64_t get_auid() const { return auid; }
1475 unsigned get_crash_replay_interval() const { return crash_replay_interval; }
1476
1477 void set_snap_seq(snapid_t s) { snap_seq = s; }
1478 void set_snap_epoch(epoch_t e) { snap_epoch = e; }
1479
1480 void set_stripe_width(uint32_t s) { stripe_width = s; }
1481 uint32_t get_stripe_width() const { return stripe_width; }
1482
1483 bool is_replicated() const { return get_type() == TYPE_REPLICATED; }
1484 bool is_erasure() const { return get_type() == TYPE_ERASURE; }
1485
1486 bool supports_omap() const {
1487 return !(get_type() == TYPE_ERASURE);
1488 }
1489
1490 bool requires_aligned_append() const {
1491 return is_erasure() && !has_flag(FLAG_EC_OVERWRITES);
1492 }
1493 uint64_t required_alignment() const { return stripe_width; }
1494
1495 bool allows_ecoverwrites() const {
1496 return has_flag(FLAG_EC_OVERWRITES);
1497 }
1498
1499 bool can_shift_osds() const {
1500 switch (get_type()) {
1501 case TYPE_REPLICATED:
1502 return true;
1503 case TYPE_ERASURE:
1504 return false;
1505 default:
1506 assert(0 == "unhandled pool type");
1507 }
1508 }
1509
1510 unsigned get_pg_num() const { return pg_num; }
1511 unsigned get_pgp_num() const { return pgp_num; }
1512
1513 unsigned get_pg_num_mask() const { return pg_num_mask; }
1514 unsigned get_pgp_num_mask() const { return pgp_num_mask; }
1515
1516 // if pg_num is not a multiple of two, pgs are not equally sized.
1517 // return, for a given pg, the fraction (denominator) of the total
1518 // pool size that it represents.
1519 unsigned get_pg_num_divisor(pg_t pgid) const;
1520
1521 void set_pg_num(int p) {
1522 pg_num = p;
1523 calc_pg_masks();
1524 }
1525 void set_pgp_num(int p) {
1526 pgp_num = p;
1527 calc_pg_masks();
1528 }
1529
1530 void set_quota_max_bytes(uint64_t m) {
1531 quota_max_bytes = m;
1532 }
1533 uint64_t get_quota_max_bytes() {
1534 return quota_max_bytes;
1535 }
1536
1537 void set_quota_max_objects(uint64_t m) {
1538 quota_max_objects = m;
1539 }
1540 uint64_t get_quota_max_objects() {
1541 return quota_max_objects;
1542 }
1543
1544 void set_last_force_op_resend(uint64_t t) {
1545 last_force_op_resend = t;
1546 last_force_op_resend_preluminous = t;
1547 }
1548
1549 void calc_pg_masks();
1550
1551 /*
1552 * we have two snap modes:
1553 * - pool global snaps
1554 * - snap existence/non-existence defined by snaps[] and snap_seq
1555 * - user managed snaps
1556 * - removal governed by removed_snaps
1557 *
1558 * we know which mode we're using based on whether removed_snaps is empty.
1559 * If nothing has been created, both functions report false.
1560 */
1561 bool is_pool_snaps_mode() const;
1562 bool is_unmanaged_snaps_mode() const;
1563 bool is_removed_snap(snapid_t s) const;
1564
1565 /*
1566 * build set of known-removed sets from either pool snaps or
1567 * explicit removed_snaps set.
1568 */
1569 void build_removed_snaps(interval_set<snapid_t>& rs) const;
1570 bool maybe_updated_removed_snaps(const interval_set<snapid_t>& cached) const;
1571 snapid_t snap_exists(const char *s) const;
1572 void add_snap(const char *n, utime_t stamp);
1573 void add_unmanaged_snap(uint64_t& snapid);
1574 void remove_snap(snapid_t s);
1575 void remove_unmanaged_snap(snapid_t s);
1576
1577 SnapContext get_snap_context() const;
1578
1579 /// hash a object name+namespace key to a hash position
1580 uint32_t hash_key(const string& key, const string& ns) const;
1581
1582 /// round a hash position down to a pg num
1583 uint32_t raw_hash_to_pg(uint32_t v) const;
1584
1585 /*
1586 * map a raw pg (with full precision ps) into an actual pg, for storage
1587 */
1588 pg_t raw_pg_to_pg(pg_t pg) const;
1589
1590 /*
1591 * map raw pg (full precision ps) into a placement seed. include
1592 * pool id in that value so that different pools don't use the same
1593 * seeds.
1594 */
1595 ps_t raw_pg_to_pps(pg_t pg) const;
1596
1597 /// choose a random hash position within a pg
1598 uint32_t get_random_pg_position(pg_t pgid, uint32_t seed) const;
1599
1600 void encode(bufferlist& bl, uint64_t features) const;
1601 void decode(bufferlist::iterator& bl);
1602
1603 static void generate_test_instances(list<pg_pool_t*>& o);
1604 };
1605 WRITE_CLASS_ENCODER_FEATURES(pg_pool_t)
1606
1607 ostream& operator<<(ostream& out, const pg_pool_t& p);
1608
1609
1610 /**
1611 * a summation of object stats
1612 *
1613 * This is just a container for object stats; we don't know what for.
1614 *
1615 * If you add members in object_stat_sum_t, you should make sure there are
1616 * not padding among these members.
1617 * You should also modify the padding_check function.
1618
1619 */
1620 struct object_stat_sum_t {
1621 /**************************************************************************
1622 * WARNING: be sure to update operator==, floor, and split when
1623 * adding/removing fields!
1624 **************************************************************************/
1625 int64_t num_bytes; // in bytes
1626 int64_t num_objects;
1627 int64_t num_object_clones;
1628 int64_t num_object_copies; // num_objects * num_replicas
1629 int64_t num_objects_missing_on_primary;
1630 int64_t num_objects_degraded;
1631 int64_t num_objects_unfound;
1632 int64_t num_rd;
1633 int64_t num_rd_kb;
1634 int64_t num_wr;
1635 int64_t num_wr_kb;
1636 int64_t num_scrub_errors; // total deep and shallow scrub errors
1637 int64_t num_objects_recovered;
1638 int64_t num_bytes_recovered;
1639 int64_t num_keys_recovered;
1640 int64_t num_shallow_scrub_errors;
1641 int64_t num_deep_scrub_errors;
1642 int64_t num_objects_dirty;
1643 int64_t num_whiteouts;
1644 int64_t num_objects_omap;
1645 int64_t num_objects_hit_set_archive;
1646 int64_t num_objects_misplaced;
1647 int64_t num_bytes_hit_set_archive;
1648 int64_t num_flush;
1649 int64_t num_flush_kb;
1650 int64_t num_evict;
1651 int64_t num_evict_kb;
1652 int64_t num_promote;
1653 int32_t num_flush_mode_high; // 1 when in high flush mode, otherwise 0
1654 int32_t num_flush_mode_low; // 1 when in low flush mode, otherwise 0
1655 int32_t num_evict_mode_some; // 1 when in evict some mode, otherwise 0
1656 int32_t num_evict_mode_full; // 1 when in evict full mode, otherwise 0
1657 int64_t num_objects_pinned;
1658 int64_t num_objects_missing;
1659 int64_t num_legacy_snapsets; ///< upper bound on pre-luminous-style SnapSets
1660 int64_t num_large_omap_objects = 0;
1661
1662 object_stat_sum_t()
1663 : num_bytes(0),
1664 num_objects(0), num_object_clones(0), num_object_copies(0),
1665 num_objects_missing_on_primary(0), num_objects_degraded(0),
1666 num_objects_unfound(0),
1667 num_rd(0), num_rd_kb(0), num_wr(0), num_wr_kb(0),
1668 num_scrub_errors(0),
1669 num_objects_recovered(0),
1670 num_bytes_recovered(0),
1671 num_keys_recovered(0),
1672 num_shallow_scrub_errors(0),
1673 num_deep_scrub_errors(0),
1674 num_objects_dirty(0),
1675 num_whiteouts(0),
1676 num_objects_omap(0),
1677 num_objects_hit_set_archive(0),
1678 num_objects_misplaced(0),
1679 num_bytes_hit_set_archive(0),
1680 num_flush(0),
1681 num_flush_kb(0),
1682 num_evict(0),
1683 num_evict_kb(0),
1684 num_promote(0),
1685 num_flush_mode_high(0), num_flush_mode_low(0),
1686 num_evict_mode_some(0), num_evict_mode_full(0),
1687 num_objects_pinned(0),
1688 num_objects_missing(0),
1689 num_legacy_snapsets(0)
1690 {}
1691
1692 void floor(int64_t f) {
1693 #define FLOOR(x) if (x < f) x = f
1694 FLOOR(num_bytes);
1695 FLOOR(num_objects);
1696 FLOOR(num_object_clones);
1697 FLOOR(num_object_copies);
1698 FLOOR(num_objects_missing_on_primary);
1699 FLOOR(num_objects_missing);
1700 FLOOR(num_objects_degraded);
1701 FLOOR(num_objects_misplaced);
1702 FLOOR(num_objects_unfound);
1703 FLOOR(num_rd);
1704 FLOOR(num_rd_kb);
1705 FLOOR(num_wr);
1706 FLOOR(num_wr_kb);
1707 FLOOR(num_large_omap_objects);
1708 FLOOR(num_shallow_scrub_errors);
1709 FLOOR(num_deep_scrub_errors);
1710 num_scrub_errors = num_shallow_scrub_errors + num_deep_scrub_errors;
1711 FLOOR(num_objects_recovered);
1712 FLOOR(num_bytes_recovered);
1713 FLOOR(num_keys_recovered);
1714 FLOOR(num_objects_dirty);
1715 FLOOR(num_whiteouts);
1716 FLOOR(num_objects_omap);
1717 FLOOR(num_objects_hit_set_archive);
1718 FLOOR(num_bytes_hit_set_archive);
1719 FLOOR(num_flush);
1720 FLOOR(num_flush_kb);
1721 FLOOR(num_evict);
1722 FLOOR(num_evict_kb);
1723 FLOOR(num_promote);
1724 FLOOR(num_flush_mode_high);
1725 FLOOR(num_flush_mode_low);
1726 FLOOR(num_evict_mode_some);
1727 FLOOR(num_evict_mode_full);
1728 FLOOR(num_objects_pinned);
1729 FLOOR(num_legacy_snapsets);
1730 #undef FLOOR
1731 }
1732
1733 void split(vector<object_stat_sum_t> &out) const {
1734 #define SPLIT(PARAM) \
1735 for (unsigned i = 0; i < out.size(); ++i) { \
1736 out[i].PARAM = PARAM / out.size(); \
1737 if (i < (PARAM % out.size())) { \
1738 out[i].PARAM++; \
1739 } \
1740 }
1741 #define SPLIT_PRESERVE_NONZERO(PARAM) \
1742 for (unsigned i = 0; i < out.size(); ++i) { \
1743 if (PARAM) \
1744 out[i].PARAM = 1 + PARAM / out.size(); \
1745 else \
1746 out[i].PARAM = 0; \
1747 }
1748
1749 SPLIT(num_bytes);
1750 SPLIT(num_objects);
1751 SPLIT(num_object_clones);
1752 SPLIT(num_object_copies);
1753 SPLIT(num_objects_missing_on_primary);
1754 SPLIT(num_objects_missing);
1755 SPLIT(num_objects_degraded);
1756 SPLIT(num_objects_misplaced);
1757 SPLIT(num_objects_unfound);
1758 SPLIT(num_rd);
1759 SPLIT(num_rd_kb);
1760 SPLIT(num_wr);
1761 SPLIT(num_wr_kb);
1762 SPLIT_PRESERVE_NONZERO(num_shallow_scrub_errors);
1763 SPLIT_PRESERVE_NONZERO(num_deep_scrub_errors);
1764 for (unsigned i = 0; i < out.size(); ++i) {
1765 out[i].num_scrub_errors = out[i].num_shallow_scrub_errors +
1766 out[i].num_deep_scrub_errors;
1767 }
1768 SPLIT(num_large_omap_objects);
1769 SPLIT(num_objects_recovered);
1770 SPLIT(num_bytes_recovered);
1771 SPLIT(num_keys_recovered);
1772 SPLIT(num_objects_dirty);
1773 SPLIT(num_whiteouts);
1774 SPLIT(num_objects_omap);
1775 SPLIT(num_objects_hit_set_archive);
1776 SPLIT(num_bytes_hit_set_archive);
1777 SPLIT(num_flush);
1778 SPLIT(num_flush_kb);
1779 SPLIT(num_evict);
1780 SPLIT(num_evict_kb);
1781 SPLIT(num_promote);
1782 SPLIT(num_flush_mode_high);
1783 SPLIT(num_flush_mode_low);
1784 SPLIT(num_evict_mode_some);
1785 SPLIT(num_evict_mode_full);
1786 SPLIT(num_objects_pinned);
1787 SPLIT_PRESERVE_NONZERO(num_legacy_snapsets);
1788 #undef SPLIT
1789 #undef SPLIT_PRESERVE_NONZERO
1790 }
1791
1792 void clear() {
1793 memset(this, 0, sizeof(*this));
1794 }
1795
1796 void calc_copies(int nrep) {
1797 num_object_copies = nrep * num_objects;
1798 }
1799
1800 bool is_zero() const {
1801 return mem_is_zero((char*)this, sizeof(*this));
1802 }
1803
1804 void add(const object_stat_sum_t& o);
1805 void sub(const object_stat_sum_t& o);
1806
1807 void dump(Formatter *f) const;
1808 void padding_check() {
1809 static_assert(
1810 sizeof(object_stat_sum_t) ==
1811 sizeof(num_bytes) +
1812 sizeof(num_objects) +
1813 sizeof(num_object_clones) +
1814 sizeof(num_object_copies) +
1815 sizeof(num_objects_missing_on_primary) +
1816 sizeof(num_objects_degraded) +
1817 sizeof(num_objects_unfound) +
1818 sizeof(num_rd) +
1819 sizeof(num_rd_kb) +
1820 sizeof(num_wr) +
1821 sizeof(num_wr_kb) +
1822 sizeof(num_scrub_errors) +
1823 sizeof(num_large_omap_objects) +
1824 sizeof(num_objects_recovered) +
1825 sizeof(num_bytes_recovered) +
1826 sizeof(num_keys_recovered) +
1827 sizeof(num_shallow_scrub_errors) +
1828 sizeof(num_deep_scrub_errors) +
1829 sizeof(num_objects_dirty) +
1830 sizeof(num_whiteouts) +
1831 sizeof(num_objects_omap) +
1832 sizeof(num_objects_hit_set_archive) +
1833 sizeof(num_objects_misplaced) +
1834 sizeof(num_bytes_hit_set_archive) +
1835 sizeof(num_flush) +
1836 sizeof(num_flush_kb) +
1837 sizeof(num_evict) +
1838 sizeof(num_evict_kb) +
1839 sizeof(num_promote) +
1840 sizeof(num_flush_mode_high) +
1841 sizeof(num_flush_mode_low) +
1842 sizeof(num_evict_mode_some) +
1843 sizeof(num_evict_mode_full) +
1844 sizeof(num_objects_pinned) +
1845 sizeof(num_objects_missing) +
1846 sizeof(num_legacy_snapsets)
1847 ,
1848 "object_stat_sum_t have padding");
1849 }
1850 void encode(bufferlist& bl) const;
1851 void decode(bufferlist::iterator& bl);
1852 static void generate_test_instances(list<object_stat_sum_t*>& o);
1853 };
1854 WRITE_CLASS_ENCODER(object_stat_sum_t)
1855
1856 bool operator==(const object_stat_sum_t& l, const object_stat_sum_t& r);
1857
1858 /**
1859 * a collection of object stat sums
1860 *
1861 * This is a collection of stat sums over different categories.
1862 */
1863 struct object_stat_collection_t {
1864 /**************************************************************************
1865 * WARNING: be sure to update the operator== when adding/removing fields! *
1866 **************************************************************************/
1867 object_stat_sum_t sum;
1868
1869 void calc_copies(int nrep) {
1870 sum.calc_copies(nrep);
1871 }
1872
1873 void dump(Formatter *f) const;
1874 void encode(bufferlist& bl) const;
1875 void decode(bufferlist::iterator& bl);
1876 static void generate_test_instances(list<object_stat_collection_t*>& o);
1877
1878 bool is_zero() const {
1879 return sum.is_zero();
1880 }
1881
1882 void clear() {
1883 sum.clear();
1884 }
1885
1886 void floor(int64_t f) {
1887 sum.floor(f);
1888 }
1889
1890 void add(const object_stat_sum_t& o) {
1891 sum.add(o);
1892 }
1893
1894 void add(const object_stat_collection_t& o) {
1895 sum.add(o.sum);
1896 }
1897 void sub(const object_stat_collection_t& o) {
1898 sum.sub(o.sum);
1899 }
1900 };
1901 WRITE_CLASS_ENCODER(object_stat_collection_t)
1902
1903 inline bool operator==(const object_stat_collection_t& l,
1904 const object_stat_collection_t& r) {
1905 return l.sum == r.sum;
1906 }
1907
1908
1909 /** pg_stat
1910 * aggregate stats for a single PG.
1911 */
1912 struct pg_stat_t {
1913 /**************************************************************************
1914 * WARNING: be sure to update the operator== when adding/removing fields! *
1915 **************************************************************************/
1916 eversion_t version;
1917 version_t reported_seq; // sequence number
1918 epoch_t reported_epoch; // epoch of this report
1919 __u32 state;
1920 utime_t last_fresh; // last reported
1921 utime_t last_change; // new state != previous state
1922 utime_t last_active; // state & PG_STATE_ACTIVE
1923 utime_t last_peered; // state & PG_STATE_ACTIVE || state & PG_STATE_PEERED
1924 utime_t last_clean; // state & PG_STATE_CLEAN
1925 utime_t last_unstale; // (state & PG_STATE_STALE) == 0
1926 utime_t last_undegraded; // (state & PG_STATE_DEGRADED) == 0
1927 utime_t last_fullsized; // (state & PG_STATE_UNDERSIZED) == 0
1928
1929 eversion_t log_start; // (log_start,version]
1930 eversion_t ondisk_log_start; // there may be more on disk
1931
1932 epoch_t created;
1933 epoch_t last_epoch_clean;
1934 pg_t parent;
1935 __u32 parent_split_bits;
1936
1937 eversion_t last_scrub;
1938 eversion_t last_deep_scrub;
1939 utime_t last_scrub_stamp;
1940 utime_t last_deep_scrub_stamp;
1941 utime_t last_clean_scrub_stamp;
1942
1943 object_stat_collection_t stats;
1944
1945 int64_t log_size;
1946 int64_t ondisk_log_size; // >= active_log_size
1947
1948 vector<int32_t> up, acting;
1949 epoch_t mapping_epoch;
1950
1951 vector<int32_t> blocked_by; ///< osds on which the pg is blocked
1952
1953 utime_t last_became_active;
1954 utime_t last_became_peered;
1955
1956 /// up, acting primaries
1957 int32_t up_primary;
1958 int32_t acting_primary;
1959
1960 // snaptrimq.size() is 64bit, but let's be serious - anything over 50k is
1961 // absurd already, so cap it to 2^32 and save 4 bytes at the same time
1962 uint32_t snaptrimq_len;
1963
1964 bool stats_invalid:1;
1965 /// true if num_objects_dirty is not accurate (because it was not
1966 /// maintained starting from pool creation)
1967 bool dirty_stats_invalid:1;
1968 bool omap_stats_invalid:1;
1969 bool hitset_stats_invalid:1;
1970 bool hitset_bytes_stats_invalid:1;
1971 bool pin_stats_invalid:1;
1972
1973 pg_stat_t()
1974 : reported_seq(0),
1975 reported_epoch(0),
1976 state(0),
1977 created(0), last_epoch_clean(0),
1978 parent_split_bits(0),
1979 log_size(0), ondisk_log_size(0),
1980 mapping_epoch(0),
1981 up_primary(-1),
1982 acting_primary(-1),
1983 snaptrimq_len(0),
1984 stats_invalid(false),
1985 dirty_stats_invalid(false),
1986 omap_stats_invalid(false),
1987 hitset_stats_invalid(false),
1988 hitset_bytes_stats_invalid(false),
1989 pin_stats_invalid(false)
1990 { }
1991
1992 epoch_t get_effective_last_epoch_clean() const {
1993 if (state & PG_STATE_CLEAN) {
1994 // we are clean as of this report, and should thus take the
1995 // reported epoch
1996 return reported_epoch;
1997 } else {
1998 return last_epoch_clean;
1999 }
2000 }
2001
2002 pair<epoch_t, version_t> get_version_pair() const {
2003 return make_pair(reported_epoch, reported_seq);
2004 }
2005
2006 void floor(int64_t f) {
2007 stats.floor(f);
2008 if (log_size < f)
2009 log_size = f;
2010 if (ondisk_log_size < f)
2011 ondisk_log_size = f;
2012 if (snaptrimq_len < f)
2013 snaptrimq_len = f;
2014 }
2015
2016 void add(const pg_stat_t& o) {
2017 stats.add(o.stats);
2018 log_size += o.log_size;
2019 ondisk_log_size += o.ondisk_log_size;
2020 if (((uint64_t)snaptrimq_len + (uint64_t)o.snaptrimq_len) > (uint64_t)(1 << 31)) {
2021 snaptrimq_len = 1 << 31;
2022 } else {
2023 snaptrimq_len += o.snaptrimq_len;
2024 }
2025 }
2026 void sub(const pg_stat_t& o) {
2027 stats.sub(o.stats);
2028 log_size -= o.log_size;
2029 ondisk_log_size -= o.ondisk_log_size;
2030 if (o.snaptrimq_len < snaptrimq_len) {
2031 snaptrimq_len -= o.snaptrimq_len;
2032 } else {
2033 snaptrimq_len = 0;
2034 }
2035 }
2036
2037 bool is_acting_osd(int32_t osd, bool primary) const;
2038 void dump(Formatter *f) const;
2039 void dump_brief(Formatter *f) const;
2040 void encode(bufferlist &bl) const;
2041 void decode(bufferlist::iterator &bl);
2042 static void generate_test_instances(list<pg_stat_t*>& o);
2043 };
2044 WRITE_CLASS_ENCODER(pg_stat_t)
2045
2046 bool operator==(const pg_stat_t& l, const pg_stat_t& r);
2047
2048 /*
2049 * summation over an entire pool
2050 */
2051 struct pool_stat_t {
2052 object_stat_collection_t stats;
2053 int64_t log_size;
2054 int64_t ondisk_log_size; // >= active_log_size
2055 int32_t up; ///< number of up replicas or shards
2056 int32_t acting; ///< number of acting replicas or shards
2057
2058 pool_stat_t() : log_size(0), ondisk_log_size(0), up(0), acting(0)
2059 { }
2060
2061 void floor(int64_t f) {
2062 stats.floor(f);
2063 if (log_size < f)
2064 log_size = f;
2065 if (ondisk_log_size < f)
2066 ondisk_log_size = f;
2067 if (up < f)
2068 up = f;
2069 if (acting < f)
2070 acting = f;
2071 }
2072
2073 void add(const pg_stat_t& o) {
2074 stats.add(o.stats);
2075 log_size += o.log_size;
2076 ondisk_log_size += o.ondisk_log_size;
2077 up += o.up.size();
2078 acting += o.acting.size();
2079 }
2080 void sub(const pg_stat_t& o) {
2081 stats.sub(o.stats);
2082 log_size -= o.log_size;
2083 ondisk_log_size -= o.ondisk_log_size;
2084 up -= o.up.size();
2085 acting -= o.acting.size();
2086 }
2087
2088 bool is_zero() const {
2089 return (stats.is_zero() &&
2090 log_size == 0 &&
2091 ondisk_log_size == 0 &&
2092 up == 0 &&
2093 acting == 0);
2094 }
2095
2096 void dump(Formatter *f) const;
2097 void encode(bufferlist &bl, uint64_t features) const;
2098 void decode(bufferlist::iterator &bl);
2099 static void generate_test_instances(list<pool_stat_t*>& o);
2100 };
2101 WRITE_CLASS_ENCODER_FEATURES(pool_stat_t)
2102
2103
2104 // -----------------------------------------
2105
2106 /**
2107 * pg_hit_set_info_t - information about a single recorded HitSet
2108 *
2109 * Track basic metadata about a HitSet, like the nubmer of insertions
2110 * and the time range it covers.
2111 */
2112 struct pg_hit_set_info_t {
2113 utime_t begin, end; ///< time interval
2114 eversion_t version; ///< version this HitSet object was written
2115 bool using_gmt; ///< use gmt for creating the hit_set archive object name
2116
2117 friend bool operator==(const pg_hit_set_info_t& l,
2118 const pg_hit_set_info_t& r) {
2119 return
2120 l.begin == r.begin &&
2121 l.end == r.end &&
2122 l.version == r.version &&
2123 l.using_gmt == r.using_gmt;
2124 }
2125
2126 explicit pg_hit_set_info_t(bool using_gmt = true)
2127 : using_gmt(using_gmt) {}
2128
2129 void encode(bufferlist &bl) const;
2130 void decode(bufferlist::iterator &bl);
2131 void dump(Formatter *f) const;
2132 static void generate_test_instances(list<pg_hit_set_info_t*>& o);
2133 };
2134 WRITE_CLASS_ENCODER(pg_hit_set_info_t)
2135
2136 /**
2137 * pg_hit_set_history_t - information about a history of hitsets
2138 *
2139 * Include information about the currently accumulating hit set as well
2140 * as archived/historical ones.
2141 */
2142 struct pg_hit_set_history_t {
2143 eversion_t current_last_update; ///< last version inserted into current set
2144 list<pg_hit_set_info_t> history; ///< archived sets, sorted oldest -> newest
2145
2146 friend bool operator==(const pg_hit_set_history_t& l,
2147 const pg_hit_set_history_t& r) {
2148 return
2149 l.current_last_update == r.current_last_update &&
2150 l.history == r.history;
2151 }
2152
2153 void encode(bufferlist &bl) const;
2154 void decode(bufferlist::iterator &bl);
2155 void dump(Formatter *f) const;
2156 static void generate_test_instances(list<pg_hit_set_history_t*>& o);
2157 };
2158 WRITE_CLASS_ENCODER(pg_hit_set_history_t)
2159
2160
2161 // -----------------------------------------
2162
2163 /**
2164 * pg_history_t - information about recent pg peering/mapping history
2165 *
2166 * This is aggressively shared between OSDs to bound the amount of past
2167 * history they need to worry about.
2168 */
2169 struct pg_history_t {
2170 epoch_t epoch_created; // epoch in which *pg* was created (pool or pg)
2171 epoch_t epoch_pool_created; // epoch in which *pool* was created
2172 // (note: may be pg creation epoch for
2173 // pre-luminous clusters)
2174 epoch_t last_epoch_started; // lower bound on last epoch started (anywhere, not necessarily locally)
2175 epoch_t last_interval_started; // first epoch of last_epoch_started interval
2176 epoch_t last_epoch_clean; // lower bound on last epoch the PG was completely clean.
2177 epoch_t last_interval_clean; // first epoch of last_epoch_clean interval
2178 epoch_t last_epoch_split; // as parent or child
2179 epoch_t last_epoch_marked_full; // pool or cluster
2180
2181 /**
2182 * In the event of a map discontinuity, same_*_since may reflect the first
2183 * map the osd has seen in the new map sequence rather than the actual start
2184 * of the interval. This is ok since a discontinuity at epoch e means there
2185 * must have been a clean interval between e and now and that we cannot be
2186 * in the active set during the interval containing e.
2187 */
2188 epoch_t same_up_since; // same acting set since
2189 epoch_t same_interval_since; // same acting AND up set since
2190 epoch_t same_primary_since; // same primary at least back through this epoch.
2191
2192 eversion_t last_scrub;
2193 eversion_t last_deep_scrub;
2194 utime_t last_scrub_stamp;
2195 utime_t last_deep_scrub_stamp;
2196 utime_t last_clean_scrub_stamp;
2197
2198 friend bool operator==(const pg_history_t& l, const pg_history_t& r) {
2199 return
2200 l.epoch_created == r.epoch_created &&
2201 l.epoch_pool_created == r.epoch_pool_created &&
2202 l.last_epoch_started == r.last_epoch_started &&
2203 l.last_interval_started == r.last_interval_started &&
2204 l.last_epoch_clean == r.last_epoch_clean &&
2205 l.last_interval_clean == r.last_interval_clean &&
2206 l.last_epoch_split == r.last_epoch_split &&
2207 l.last_epoch_marked_full == r.last_epoch_marked_full &&
2208 l.same_up_since == r.same_up_since &&
2209 l.same_interval_since == r.same_interval_since &&
2210 l.same_primary_since == r.same_primary_since &&
2211 l.last_scrub == r.last_scrub &&
2212 l.last_deep_scrub == r.last_deep_scrub &&
2213 l.last_scrub_stamp == r.last_scrub_stamp &&
2214 l.last_deep_scrub_stamp == r.last_deep_scrub_stamp &&
2215 l.last_clean_scrub_stamp == r.last_clean_scrub_stamp;
2216 }
2217
2218 pg_history_t()
2219 : epoch_created(0),
2220 epoch_pool_created(0),
2221 last_epoch_started(0),
2222 last_interval_started(0),
2223 last_epoch_clean(0),
2224 last_interval_clean(0),
2225 last_epoch_split(0),
2226 last_epoch_marked_full(0),
2227 same_up_since(0), same_interval_since(0), same_primary_since(0) {}
2228
2229 bool merge(const pg_history_t &other) {
2230 // Here, we only update the fields which cannot be calculated from the OSDmap.
2231 bool modified = false;
2232 if (epoch_created < other.epoch_created) {
2233 epoch_created = other.epoch_created;
2234 modified = true;
2235 }
2236 if (epoch_pool_created < other.epoch_pool_created) {
2237 // FIXME: for jewel compat only; this should either be 0 or always the
2238 // same value across all pg instances.
2239 epoch_pool_created = other.epoch_pool_created;
2240 modified = true;
2241 }
2242 if (last_epoch_started < other.last_epoch_started) {
2243 last_epoch_started = other.last_epoch_started;
2244 modified = true;
2245 }
2246 if (last_interval_started < other.last_interval_started) {
2247 last_interval_started = other.last_interval_started;
2248 modified = true;
2249 }
2250 if (last_epoch_clean < other.last_epoch_clean) {
2251 last_epoch_clean = other.last_epoch_clean;
2252 modified = true;
2253 }
2254 if (last_interval_clean < other.last_interval_clean) {
2255 last_interval_clean = other.last_interval_clean;
2256 modified = true;
2257 }
2258 if (last_epoch_split < other.last_epoch_split) {
2259 last_epoch_split = other.last_epoch_split;
2260 modified = true;
2261 }
2262 if (last_epoch_marked_full < other.last_epoch_marked_full) {
2263 last_epoch_marked_full = other.last_epoch_marked_full;
2264 modified = true;
2265 }
2266 if (other.last_scrub > last_scrub) {
2267 last_scrub = other.last_scrub;
2268 modified = true;
2269 }
2270 if (other.last_scrub_stamp > last_scrub_stamp) {
2271 last_scrub_stamp = other.last_scrub_stamp;
2272 modified = true;
2273 }
2274 if (other.last_deep_scrub > last_deep_scrub) {
2275 last_deep_scrub = other.last_deep_scrub;
2276 modified = true;
2277 }
2278 if (other.last_deep_scrub_stamp > last_deep_scrub_stamp) {
2279 last_deep_scrub_stamp = other.last_deep_scrub_stamp;
2280 modified = true;
2281 }
2282 if (other.last_clean_scrub_stamp > last_clean_scrub_stamp) {
2283 last_clean_scrub_stamp = other.last_clean_scrub_stamp;
2284 modified = true;
2285 }
2286 return modified;
2287 }
2288
2289 void encode(bufferlist& bl) const;
2290 void decode(bufferlist::iterator& p);
2291 void dump(Formatter *f) const;
2292 static void generate_test_instances(list<pg_history_t*>& o);
2293 };
2294 WRITE_CLASS_ENCODER(pg_history_t)
2295
2296 inline ostream& operator<<(ostream& out, const pg_history_t& h) {
2297 return out << "ec=" << h.epoch_created << "/" << h.epoch_pool_created
2298 << " lis/c " << h.last_interval_started
2299 << "/" << h.last_interval_clean
2300 << " les/c/f " << h.last_epoch_started << "/" << h.last_epoch_clean
2301 << "/" << h.last_epoch_marked_full
2302 << " " << h.same_up_since
2303 << "/" << h.same_interval_since
2304 << "/" << h.same_primary_since;
2305 }
2306
2307
2308 /**
2309 * pg_info_t - summary of PG statistics.
2310 *
2311 * some notes:
2312 * - last_complete implies we have all objects that existed as of that
2313 * stamp, OR a newer object, OR have already applied a later delete.
2314 * - if last_complete >= log.bottom, then we know pg contents thru log.head.
2315 * otherwise, we have no idea what the pg is supposed to contain.
2316 */
2317 struct pg_info_t {
2318 spg_t pgid;
2319 eversion_t last_update; ///< last object version applied to store.
2320 eversion_t last_complete; ///< last version pg was complete through.
2321 epoch_t last_epoch_started; ///< last epoch at which this pg started on this osd
2322 epoch_t last_interval_started; ///< first epoch of last_epoch_started interval
2323
2324 version_t last_user_version; ///< last user object version applied to store
2325
2326 eversion_t log_tail; ///< oldest log entry.
2327
2328 hobject_t last_backfill; ///< objects >= this and < last_complete may be missing
2329 bool last_backfill_bitwise; ///< true if last_backfill reflects a bitwise (vs nibblewise) sort
2330
2331 interval_set<snapid_t> purged_snaps;
2332
2333 pg_stat_t stats;
2334
2335 pg_history_t history;
2336 pg_hit_set_history_t hit_set;
2337
2338 friend bool operator==(const pg_info_t& l, const pg_info_t& r) {
2339 return
2340 l.pgid == r.pgid &&
2341 l.last_update == r.last_update &&
2342 l.last_complete == r.last_complete &&
2343 l.last_epoch_started == r.last_epoch_started &&
2344 l.last_interval_started == r.last_interval_started &&
2345 l.last_user_version == r.last_user_version &&
2346 l.log_tail == r.log_tail &&
2347 l.last_backfill == r.last_backfill &&
2348 l.last_backfill_bitwise == r.last_backfill_bitwise &&
2349 l.purged_snaps == r.purged_snaps &&
2350 l.stats == r.stats &&
2351 l.history == r.history &&
2352 l.hit_set == r.hit_set;
2353 }
2354
2355 pg_info_t()
2356 : last_epoch_started(0),
2357 last_interval_started(0),
2358 last_user_version(0),
2359 last_backfill(hobject_t::get_max()),
2360 last_backfill_bitwise(false)
2361 { }
2362 // cppcheck-suppress noExplicitConstructor
2363 pg_info_t(spg_t p)
2364 : pgid(p),
2365 last_epoch_started(0),
2366 last_interval_started(0),
2367 last_user_version(0),
2368 last_backfill(hobject_t::get_max()),
2369 last_backfill_bitwise(false)
2370 { }
2371
2372 void set_last_backfill(hobject_t pos) {
2373 last_backfill = pos;
2374 last_backfill_bitwise = true;
2375 }
2376
2377 bool is_empty() const { return last_update.version == 0; }
2378 bool dne() const { return history.epoch_created == 0; }
2379
2380 bool is_incomplete() const { return !last_backfill.is_max(); }
2381
2382 void encode(bufferlist& bl) const;
2383 void decode(bufferlist::iterator& p);
2384 void dump(Formatter *f) const;
2385 bool overlaps_with(const pg_info_t &oinfo) const {
2386 return last_update > oinfo.log_tail ?
2387 oinfo.last_update >= log_tail :
2388 last_update >= oinfo.log_tail;
2389 }
2390 static void generate_test_instances(list<pg_info_t*>& o);
2391 };
2392 WRITE_CLASS_ENCODER(pg_info_t)
2393
2394 inline ostream& operator<<(ostream& out, const pg_info_t& pgi)
2395 {
2396 out << pgi.pgid << "(";
2397 if (pgi.dne())
2398 out << " DNE";
2399 if (pgi.is_empty())
2400 out << " empty";
2401 else {
2402 out << " v " << pgi.last_update;
2403 if (pgi.last_complete != pgi.last_update)
2404 out << " lc " << pgi.last_complete;
2405 out << " (" << pgi.log_tail << "," << pgi.last_update << "]";
2406 }
2407 if (pgi.is_incomplete())
2408 out << " lb " << pgi.last_backfill
2409 << (pgi.last_backfill_bitwise ? " (bitwise)" : " (NIBBLEWISE)");
2410 //out << " c " << pgi.epoch_created;
2411 out << " local-lis/les=" << pgi.last_interval_started
2412 << "/" << pgi.last_epoch_started;
2413 out << " n=" << pgi.stats.stats.sum.num_objects;
2414 out << " " << pgi.history
2415 << ")";
2416 return out;
2417 }
2418
2419 /**
2420 * pg_fast_info_t - common pg_info_t fields
2421 *
2422 * These are the fields of pg_info_t (and children) that are updated for
2423 * most IO operations.
2424 *
2425 * ** WARNING **
2426 * Because we rely on these fields to be applied to the normal
2427 * info struct, adding a new field here that is not also new in info
2428 * means that we must set an incompat OSD feature bit!
2429 */
2430 struct pg_fast_info_t {
2431 eversion_t last_update;
2432 eversion_t last_complete;
2433 version_t last_user_version;
2434 struct { // pg_stat_t stats
2435 eversion_t version;
2436 version_t reported_seq;
2437 utime_t last_fresh;
2438 utime_t last_active;
2439 utime_t last_peered;
2440 utime_t last_clean;
2441 utime_t last_unstale;
2442 utime_t last_undegraded;
2443 utime_t last_fullsized;
2444 int64_t log_size; // (also ondisk_log_size, which has the same value)
2445 struct { // object_stat_collection_t stats;
2446 struct { // objct_stat_sum_t sum
2447 int64_t num_bytes; // in bytes
2448 int64_t num_objects;
2449 int64_t num_object_copies;
2450 int64_t num_rd;
2451 int64_t num_rd_kb;
2452 int64_t num_wr;
2453 int64_t num_wr_kb;
2454 int64_t num_objects_dirty;
2455 } sum;
2456 } stats;
2457 } stats;
2458
2459 void populate_from(const pg_info_t& info) {
2460 last_update = info.last_update;
2461 last_complete = info.last_complete;
2462 last_user_version = info.last_user_version;
2463 stats.version = info.stats.version;
2464 stats.reported_seq = info.stats.reported_seq;
2465 stats.last_fresh = info.stats.last_fresh;
2466 stats.last_active = info.stats.last_active;
2467 stats.last_peered = info.stats.last_peered;
2468 stats.last_clean = info.stats.last_clean;
2469 stats.last_unstale = info.stats.last_unstale;
2470 stats.last_undegraded = info.stats.last_undegraded;
2471 stats.last_fullsized = info.stats.last_fullsized;
2472 stats.log_size = info.stats.log_size;
2473 stats.stats.sum.num_bytes = info.stats.stats.sum.num_bytes;
2474 stats.stats.sum.num_objects = info.stats.stats.sum.num_objects;
2475 stats.stats.sum.num_object_copies = info.stats.stats.sum.num_object_copies;
2476 stats.stats.sum.num_rd = info.stats.stats.sum.num_rd;
2477 stats.stats.sum.num_rd_kb = info.stats.stats.sum.num_rd_kb;
2478 stats.stats.sum.num_wr = info.stats.stats.sum.num_wr;
2479 stats.stats.sum.num_wr_kb = info.stats.stats.sum.num_wr_kb;
2480 stats.stats.sum.num_objects_dirty = info.stats.stats.sum.num_objects_dirty;
2481 }
2482
2483 bool try_apply_to(pg_info_t* info) {
2484 if (last_update <= info->last_update)
2485 return false;
2486 info->last_update = last_update;
2487 info->last_complete = last_complete;
2488 info->last_user_version = last_user_version;
2489 info->stats.version = stats.version;
2490 info->stats.reported_seq = stats.reported_seq;
2491 info->stats.last_fresh = stats.last_fresh;
2492 info->stats.last_active = stats.last_active;
2493 info->stats.last_peered = stats.last_peered;
2494 info->stats.last_clean = stats.last_clean;
2495 info->stats.last_unstale = stats.last_unstale;
2496 info->stats.last_undegraded = stats.last_undegraded;
2497 info->stats.last_fullsized = stats.last_fullsized;
2498 info->stats.log_size = stats.log_size;
2499 info->stats.ondisk_log_size = stats.log_size;
2500 info->stats.stats.sum.num_bytes = stats.stats.sum.num_bytes;
2501 info->stats.stats.sum.num_objects = stats.stats.sum.num_objects;
2502 info->stats.stats.sum.num_object_copies = stats.stats.sum.num_object_copies;
2503 info->stats.stats.sum.num_rd = stats.stats.sum.num_rd;
2504 info->stats.stats.sum.num_rd_kb = stats.stats.sum.num_rd_kb;
2505 info->stats.stats.sum.num_wr = stats.stats.sum.num_wr;
2506 info->stats.stats.sum.num_wr_kb = stats.stats.sum.num_wr_kb;
2507 info->stats.stats.sum.num_objects_dirty = stats.stats.sum.num_objects_dirty;
2508 return true;
2509 }
2510
2511 void encode(bufferlist& bl) const {
2512 ENCODE_START(1, 1, bl);
2513 ::encode(last_update, bl);
2514 ::encode(last_complete, bl);
2515 ::encode(last_user_version, bl);
2516 ::encode(stats.version, bl);
2517 ::encode(stats.reported_seq, bl);
2518 ::encode(stats.last_fresh, bl);
2519 ::encode(stats.last_active, bl);
2520 ::encode(stats.last_peered, bl);
2521 ::encode(stats.last_clean, bl);
2522 ::encode(stats.last_unstale, bl);
2523 ::encode(stats.last_undegraded, bl);
2524 ::encode(stats.last_fullsized, bl);
2525 ::encode(stats.log_size, bl);
2526 ::encode(stats.stats.sum.num_bytes, bl);
2527 ::encode(stats.stats.sum.num_objects, bl);
2528 ::encode(stats.stats.sum.num_object_copies, bl);
2529 ::encode(stats.stats.sum.num_rd, bl);
2530 ::encode(stats.stats.sum.num_rd_kb, bl);
2531 ::encode(stats.stats.sum.num_wr, bl);
2532 ::encode(stats.stats.sum.num_wr_kb, bl);
2533 ::encode(stats.stats.sum.num_objects_dirty, bl);
2534 ENCODE_FINISH(bl);
2535 }
2536 void decode(bufferlist::iterator& p) {
2537 DECODE_START(1, p);
2538 ::decode(last_update, p);
2539 ::decode(last_complete, p);
2540 ::decode(last_user_version, p);
2541 ::decode(stats.version, p);
2542 ::decode(stats.reported_seq, p);
2543 ::decode(stats.last_fresh, p);
2544 ::decode(stats.last_active, p);
2545 ::decode(stats.last_peered, p);
2546 ::decode(stats.last_clean, p);
2547 ::decode(stats.last_unstale, p);
2548 ::decode(stats.last_undegraded, p);
2549 ::decode(stats.last_fullsized, p);
2550 ::decode(stats.log_size, p);
2551 ::decode(stats.stats.sum.num_bytes, p);
2552 ::decode(stats.stats.sum.num_objects, p);
2553 ::decode(stats.stats.sum.num_object_copies, p);
2554 ::decode(stats.stats.sum.num_rd, p);
2555 ::decode(stats.stats.sum.num_rd_kb, p);
2556 ::decode(stats.stats.sum.num_wr, p);
2557 ::decode(stats.stats.sum.num_wr_kb, p);
2558 ::decode(stats.stats.sum.num_objects_dirty, p);
2559 DECODE_FINISH(p);
2560 }
2561 };
2562 WRITE_CLASS_ENCODER(pg_fast_info_t)
2563
2564
2565 struct pg_notify_t {
2566 epoch_t query_epoch;
2567 epoch_t epoch_sent;
2568 pg_info_t info;
2569 shard_id_t to;
2570 shard_id_t from;
2571 pg_notify_t() :
2572 query_epoch(0), epoch_sent(0), to(shard_id_t::NO_SHARD),
2573 from(shard_id_t::NO_SHARD) {}
2574 pg_notify_t(
2575 shard_id_t to,
2576 shard_id_t from,
2577 epoch_t query_epoch,
2578 epoch_t epoch_sent,
2579 const pg_info_t &info)
2580 : query_epoch(query_epoch),
2581 epoch_sent(epoch_sent),
2582 info(info), to(to), from(from) {
2583 assert(from == info.pgid.shard);
2584 }
2585 void encode(bufferlist &bl) const;
2586 void decode(bufferlist::iterator &p);
2587 void dump(Formatter *f) const;
2588 static void generate_test_instances(list<pg_notify_t*> &o);
2589 };
2590 WRITE_CLASS_ENCODER(pg_notify_t)
2591 ostream &operator<<(ostream &lhs, const pg_notify_t &notify);
2592
2593
2594 class OSDMap;
2595 /**
2596 * PastIntervals -- information needed to determine the PriorSet and
2597 * the might_have_unfound set
2598 */
2599 class PastIntervals {
2600 public:
2601 struct pg_interval_t {
2602 vector<int32_t> up, acting;
2603 epoch_t first, last;
2604 bool maybe_went_rw;
2605 int32_t primary;
2606 int32_t up_primary;
2607
2608 pg_interval_t()
2609 : first(0), last(0),
2610 maybe_went_rw(false),
2611 primary(-1),
2612 up_primary(-1)
2613 {}
2614
2615 pg_interval_t(
2616 vector<int32_t> &&up,
2617 vector<int32_t> &&acting,
2618 epoch_t first,
2619 epoch_t last,
2620 bool maybe_went_rw,
2621 int32_t primary,
2622 int32_t up_primary)
2623 : up(up), acting(acting), first(first), last(last),
2624 maybe_went_rw(maybe_went_rw), primary(primary), up_primary(up_primary)
2625 {}
2626
2627 void encode(bufferlist& bl) const;
2628 void decode(bufferlist::iterator& bl);
2629 void dump(Formatter *f) const;
2630 static void generate_test_instances(list<pg_interval_t*>& o);
2631 };
2632
2633 PastIntervals() = default;
2634 PastIntervals(bool ec_pool, const OSDMap &osdmap) : PastIntervals() {
2635 update_type_from_map(ec_pool, osdmap);
2636 }
2637 PastIntervals(bool ec_pool, bool compact) : PastIntervals() {
2638 update_type(ec_pool, compact);
2639 }
2640 PastIntervals(PastIntervals &&rhs) = default;
2641 PastIntervals &operator=(PastIntervals &&rhs) = default;
2642
2643 PastIntervals(const PastIntervals &rhs);
2644 PastIntervals &operator=(const PastIntervals &rhs);
2645
2646 class interval_rep {
2647 public:
2648 virtual size_t size() const = 0;
2649 virtual bool empty() const = 0;
2650 virtual void clear() = 0;
2651 virtual pair<epoch_t, epoch_t> get_bounds() const = 0;
2652 virtual set<pg_shard_t> get_all_participants(
2653 bool ec_pool) const = 0;
2654 virtual void add_interval(bool ec_pool, const pg_interval_t &interval) = 0;
2655 virtual unique_ptr<interval_rep> clone() const = 0;
2656 virtual ostream &print(ostream &out) const = 0;
2657 virtual void encode(bufferlist &bl) const = 0;
2658 virtual void decode(bufferlist::iterator &bl) = 0;
2659 virtual void dump(Formatter *f) const = 0;
2660 virtual bool is_classic() const = 0;
2661 virtual void iterate_mayberw_back_to(
2662 bool ec_pool,
2663 epoch_t les,
2664 std::function<void(epoch_t, const set<pg_shard_t> &)> &&f) const = 0;
2665
2666 virtual bool has_full_intervals() const { return false; }
2667 virtual void iterate_all_intervals(
2668 std::function<void(const pg_interval_t &)> &&f) const {
2669 assert(!has_full_intervals());
2670 assert(0 == "not valid for this implementation");
2671 }
2672
2673 virtual ~interval_rep() {}
2674 };
2675 friend class pi_simple_rep;
2676 friend class pi_compact_rep;
2677 private:
2678
2679 unique_ptr<interval_rep> past_intervals;
2680
2681 PastIntervals(interval_rep *rep) : past_intervals(rep) {}
2682
2683 public:
2684 void add_interval(bool ec_pool, const pg_interval_t &interval) {
2685 assert(past_intervals);
2686 return past_intervals->add_interval(ec_pool, interval);
2687 }
2688
2689 bool is_classic() const {
2690 assert(past_intervals);
2691 return past_intervals->is_classic();
2692 }
2693
2694 void encode(bufferlist &bl) const {
2695 ENCODE_START(1, 1, bl);
2696 if (past_intervals) {
2697 __u8 type = is_classic() ? 1 : 2;
2698 ::encode(type, bl);
2699 past_intervals->encode(bl);
2700 } else {
2701 ::encode((__u8)0, bl);
2702 }
2703 ENCODE_FINISH(bl);
2704 }
2705 void encode_classic(bufferlist &bl) const {
2706 if (past_intervals) {
2707 assert(past_intervals->is_classic());
2708 past_intervals->encode(bl);
2709 } else {
2710 // it's a map<>
2711 ::encode((uint32_t)0, bl);
2712 }
2713 }
2714
2715 void decode(bufferlist::iterator &bl);
2716 void decode_classic(bufferlist::iterator &bl);
2717
2718 void dump(Formatter *f) const {
2719 assert(past_intervals);
2720 past_intervals->dump(f);
2721 }
2722 static void generate_test_instances(list<PastIntervals *> & o);
2723
2724 /**
2725 * Determines whether there is an interval change
2726 */
2727 static bool is_new_interval(
2728 int old_acting_primary,
2729 int new_acting_primary,
2730 const vector<int> &old_acting,
2731 const vector<int> &new_acting,
2732 int old_up_primary,
2733 int new_up_primary,
2734 const vector<int> &old_up,
2735 const vector<int> &new_up,
2736 int old_size,
2737 int new_size,
2738 int old_min_size,
2739 int new_min_size,
2740 unsigned old_pg_num,
2741 unsigned new_pg_num,
2742 bool old_sort_bitwise,
2743 bool new_sort_bitwise,
2744 bool old_recovery_deletes,
2745 bool new_recovery_deletes,
2746 pg_t pgid
2747 );
2748
2749 /**
2750 * Determines whether there is an interval change
2751 */
2752 static bool is_new_interval(
2753 int old_acting_primary, ///< [in] primary as of lastmap
2754 int new_acting_primary, ///< [in] primary as of lastmap
2755 const vector<int> &old_acting, ///< [in] acting as of lastmap
2756 const vector<int> &new_acting, ///< [in] acting as of osdmap
2757 int old_up_primary, ///< [in] up primary of lastmap
2758 int new_up_primary, ///< [in] up primary of osdmap
2759 const vector<int> &old_up, ///< [in] up as of lastmap
2760 const vector<int> &new_up, ///< [in] up as of osdmap
2761 ceph::shared_ptr<const OSDMap> osdmap, ///< [in] current map
2762 ceph::shared_ptr<const OSDMap> lastmap, ///< [in] last map
2763 pg_t pgid ///< [in] pgid for pg
2764 );
2765
2766 /**
2767 * Integrates a new map into *past_intervals, returns true
2768 * if an interval was closed out.
2769 */
2770 static bool check_new_interval(
2771 int old_acting_primary, ///< [in] primary as of lastmap
2772 int new_acting_primary, ///< [in] primary as of osdmap
2773 const vector<int> &old_acting, ///< [in] acting as of lastmap
2774 const vector<int> &new_acting, ///< [in] acting as of osdmap
2775 int old_up_primary, ///< [in] up primary of lastmap
2776 int new_up_primary, ///< [in] up primary of osdmap
2777 const vector<int> &old_up, ///< [in] up as of lastmap
2778 const vector<int> &new_up, ///< [in] up as of osdmap
2779 epoch_t same_interval_since, ///< [in] as of osdmap
2780 epoch_t last_epoch_clean, ///< [in] current
2781 ceph::shared_ptr<const OSDMap> osdmap, ///< [in] current map
2782 ceph::shared_ptr<const OSDMap> lastmap, ///< [in] last map
2783 pg_t pgid, ///< [in] pgid for pg
2784 IsPGRecoverablePredicate *could_have_gone_active, /// [in] predicate whether the pg can be active
2785 PastIntervals *past_intervals, ///< [out] intervals
2786 ostream *out = 0 ///< [out] debug ostream
2787 );
2788
2789 friend ostream& operator<<(ostream& out, const PastIntervals &i);
2790
2791 template <typename F>
2792 void iterate_mayberw_back_to(
2793 bool ec_pool,
2794 epoch_t les,
2795 F &&f) const {
2796 assert(past_intervals);
2797 past_intervals->iterate_mayberw_back_to(ec_pool, les, std::forward<F>(f));
2798 }
2799 void clear() {
2800 assert(past_intervals);
2801 past_intervals->clear();
2802 }
2803
2804 /**
2805 * Should return a value which gives an indication of the amount
2806 * of state contained
2807 */
2808 size_t size() const {
2809 assert(past_intervals);
2810 return past_intervals->size();
2811 }
2812
2813 bool empty() const {
2814 assert(past_intervals);
2815 return past_intervals->empty();
2816 }
2817
2818 void swap(PastIntervals &other) {
2819 using std::swap;
2820 swap(other.past_intervals, past_intervals);
2821 }
2822
2823 /**
2824 * Return all shards which have been in the acting set back to the
2825 * latest epoch to which we have trimmed except for pg_whoami
2826 */
2827 set<pg_shard_t> get_might_have_unfound(
2828 pg_shard_t pg_whoami,
2829 bool ec_pool) const {
2830 assert(past_intervals);
2831 auto ret = past_intervals->get_all_participants(ec_pool);
2832 ret.erase(pg_whoami);
2833 return ret;
2834 }
2835
2836 /**
2837 * Return all shards which we might want to talk to for peering
2838 */
2839 set<pg_shard_t> get_all_probe(
2840 bool ec_pool) const {
2841 assert(past_intervals);
2842 return past_intervals->get_all_participants(ec_pool);
2843 }
2844
2845 /* Return the set of epochs [start, end) represented by the
2846 * past_interval set.
2847 */
2848 pair<epoch_t, epoch_t> get_bounds() const {
2849 assert(past_intervals);
2850 return past_intervals->get_bounds();
2851 }
2852
2853 enum osd_state_t {
2854 UP,
2855 DOWN,
2856 DNE,
2857 LOST
2858 };
2859 struct PriorSet {
2860 bool ec_pool = false;
2861 set<pg_shard_t> probe; /// current+prior OSDs we need to probe.
2862 set<int> down; /// down osds that would normally be in @a probe and might be interesting.
2863 map<int, epoch_t> blocked_by; /// current lost_at values for any OSDs in cur set for which (re)marking them lost would affect cur set
2864
2865 bool pg_down = false; /// some down osds are included in @a cur; the DOWN pg state bit should be set.
2866 unique_ptr<IsPGRecoverablePredicate> pcontdec;
2867
2868 PriorSet() = default;
2869 PriorSet(PriorSet &&) = default;
2870 PriorSet &operator=(PriorSet &&) = default;
2871
2872 PriorSet &operator=(const PriorSet &) = delete;
2873 PriorSet(const PriorSet &) = delete;
2874
2875 bool operator==(const PriorSet &rhs) const {
2876 return (ec_pool == rhs.ec_pool) &&
2877 (probe == rhs.probe) &&
2878 (down == rhs.down) &&
2879 (blocked_by == rhs.blocked_by) &&
2880 (pg_down == rhs.pg_down);
2881 }
2882
2883 bool affected_by_map(
2884 const OSDMap &osdmap,
2885 const DoutPrefixProvider *dpp) const;
2886
2887 // For verifying tests
2888 PriorSet(
2889 bool ec_pool,
2890 set<pg_shard_t> probe,
2891 set<int> down,
2892 map<int, epoch_t> blocked_by,
2893 bool pg_down,
2894 IsPGRecoverablePredicate *pcontdec)
2895 : ec_pool(ec_pool), probe(probe), down(down), blocked_by(blocked_by),
2896 pg_down(pg_down), pcontdec(pcontdec) {}
2897
2898 private:
2899 template <typename F>
2900 PriorSet(
2901 const PastIntervals &past_intervals,
2902 bool ec_pool,
2903 epoch_t last_epoch_started,
2904 IsPGRecoverablePredicate *c,
2905 F f,
2906 const vector<int> &up,
2907 const vector<int> &acting,
2908 const DoutPrefixProvider *dpp);
2909
2910 friend class PastIntervals;
2911 };
2912
2913 void update_type(bool ec_pool, bool compact);
2914 void update_type_from_map(bool ec_pool, const OSDMap &osdmap);
2915
2916 template <typename... Args>
2917 PriorSet get_prior_set(Args&&... args) const {
2918 return PriorSet(*this, std::forward<Args>(args)...);
2919 }
2920 };
2921 WRITE_CLASS_ENCODER(PastIntervals)
2922
2923 ostream& operator<<(ostream& out, const PastIntervals::pg_interval_t& i);
2924 ostream& operator<<(ostream& out, const PastIntervals &i);
2925 ostream& operator<<(ostream& out, const PastIntervals::PriorSet &i);
2926
2927 template <typename F>
2928 PastIntervals::PriorSet::PriorSet(
2929 const PastIntervals &past_intervals,
2930 bool ec_pool,
2931 epoch_t last_epoch_started,
2932 IsPGRecoverablePredicate *c,
2933 F f,
2934 const vector<int> &up,
2935 const vector<int> &acting,
2936 const DoutPrefixProvider *dpp)
2937 : ec_pool(ec_pool), pg_down(false), pcontdec(c)
2938 {
2939 /*
2940 * We have to be careful to gracefully deal with situations like
2941 * so. Say we have a power outage or something that takes out both
2942 * OSDs, but the monitor doesn't mark them down in the same epoch.
2943 * The history may look like
2944 *
2945 * 1: A B
2946 * 2: B
2947 * 3: let's say B dies for good, too (say, from the power spike)
2948 * 4: A
2949 *
2950 * which makes it look like B may have applied updates to the PG
2951 * that we need in order to proceed. This sucks...
2952 *
2953 * To minimize the risk of this happening, we CANNOT go active if
2954 * _any_ OSDs in the prior set are down until we send an MOSDAlive
2955 * to the monitor such that the OSDMap sets osd_up_thru to an epoch.
2956 * Then, we have something like
2957 *
2958 * 1: A B
2959 * 2: B up_thru[B]=0
2960 * 3:
2961 * 4: A
2962 *
2963 * -> we can ignore B, bc it couldn't have gone active (alive_thru
2964 * still 0).
2965 *
2966 * or,
2967 *
2968 * 1: A B
2969 * 2: B up_thru[B]=0
2970 * 3: B up_thru[B]=2
2971 * 4:
2972 * 5: A
2973 *
2974 * -> we must wait for B, bc it was alive through 2, and could have
2975 * written to the pg.
2976 *
2977 * If B is really dead, then an administrator will need to manually
2978 * intervene by marking the OSD as "lost."
2979 */
2980
2981 // Include current acting and up nodes... not because they may
2982 // contain old data (this interval hasn't gone active, obviously),
2983 // but because we want their pg_info to inform choose_acting(), and
2984 // so that we know what they do/do not have explicitly before
2985 // sending them any new info/logs/whatever.
2986 for (unsigned i = 0; i < acting.size(); i++) {
2987 if (acting[i] != 0x7fffffff /* CRUSH_ITEM_NONE, can't import crush.h here */)
2988 probe.insert(pg_shard_t(acting[i], ec_pool ? shard_id_t(i) : shard_id_t::NO_SHARD));
2989 }
2990 // It may be possible to exclude the up nodes, but let's keep them in
2991 // there for now.
2992 for (unsigned i = 0; i < up.size(); i++) {
2993 if (up[i] != 0x7fffffff /* CRUSH_ITEM_NONE, can't import crush.h here */)
2994 probe.insert(pg_shard_t(up[i], ec_pool ? shard_id_t(i) : shard_id_t::NO_SHARD));
2995 }
2996
2997 set<pg_shard_t> all_probe = past_intervals.get_all_probe(ec_pool);
2998 ldpp_dout(dpp, 10) << "build_prior all_probe " << all_probe << dendl;
2999 for (auto &&i: all_probe) {
3000 switch (f(0, i.osd, nullptr)) {
3001 case UP: {
3002 probe.insert(i);
3003 break;
3004 }
3005 case DNE:
3006 case LOST:
3007 case DOWN: {
3008 down.insert(i.osd);
3009 break;
3010 }
3011 }
3012 }
3013
3014 past_intervals.iterate_mayberw_back_to(
3015 ec_pool,
3016 last_epoch_started,
3017 [&](epoch_t start, const set<pg_shard_t> &acting) {
3018 ldpp_dout(dpp, 10) << "build_prior maybe_rw interval:" << start
3019 << ", acting: " << acting << dendl;
3020
3021 // look at candidate osds during this interval. each falls into
3022 // one of three categories: up, down (but potentially
3023 // interesting), or lost (down, but we won't wait for it).
3024 set<pg_shard_t> up_now;
3025 map<int, epoch_t> candidate_blocked_by;
3026 // any candidates down now (that might have useful data)
3027 bool any_down_now = false;
3028
3029 // consider ACTING osds
3030 for (auto &&so: acting) {
3031 epoch_t lost_at = 0;
3032 switch (f(start, so.osd, &lost_at)) {
3033 case UP: {
3034 // include past acting osds if they are up.
3035 up_now.insert(so);
3036 break;
3037 }
3038 case DNE: {
3039 ldpp_dout(dpp, 10) << "build_prior prior osd." << so.osd
3040 << " no longer exists" << dendl;
3041 break;
3042 }
3043 case LOST: {
3044 ldpp_dout(dpp, 10) << "build_prior prior osd." << so.osd
3045 << " is down, but lost_at " << lost_at << dendl;
3046 up_now.insert(so);
3047 break;
3048 }
3049 case DOWN: {
3050 ldpp_dout(dpp, 10) << "build_prior prior osd." << so.osd
3051 << " is down" << dendl;
3052 candidate_blocked_by[so.osd] = lost_at;
3053 any_down_now = true;
3054 break;
3055 }
3056 }
3057 }
3058
3059 // if not enough osds survived this interval, and we may have gone rw,
3060 // then we need to wait for one of those osds to recover to
3061 // ensure that we haven't lost any information.
3062 if (!(*pcontdec)(up_now) && any_down_now) {
3063 // fixme: how do we identify a "clean" shutdown anyway?
3064 ldpp_dout(dpp, 10) << "build_prior possibly went active+rw,"
3065 << " insufficient up; including down osds" << dendl;
3066 assert(!candidate_blocked_by.empty());
3067 pg_down = true;
3068 blocked_by.insert(
3069 candidate_blocked_by.begin(),
3070 candidate_blocked_by.end());
3071 }
3072 });
3073
3074 ldpp_dout(dpp, 10) << "build_prior final: probe " << probe
3075 << " down " << down
3076 << " blocked_by " << blocked_by
3077 << (pg_down ? " pg_down":"")
3078 << dendl;
3079 }
3080
3081 /**
3082 * pg_query_t - used to ask a peer for information about a pg.
3083 *
3084 * note: if version=0, type=LOG, then we just provide our full log.
3085 */
3086 struct pg_query_t {
3087 enum {
3088 INFO = 0,
3089 LOG = 1,
3090 MISSING = 4,
3091 FULLLOG = 5,
3092 };
3093 const char *get_type_name() const {
3094 switch (type) {
3095 case INFO: return "info";
3096 case LOG: return "log";
3097 case MISSING: return "missing";
3098 case FULLLOG: return "fulllog";
3099 default: return "???";
3100 }
3101 }
3102
3103 __s32 type;
3104 eversion_t since;
3105 pg_history_t history;
3106 epoch_t epoch_sent;
3107 shard_id_t to;
3108 shard_id_t from;
3109
3110 pg_query_t() : type(-1), epoch_sent(0), to(shard_id_t::NO_SHARD),
3111 from(shard_id_t::NO_SHARD) {}
3112 pg_query_t(
3113 int t,
3114 shard_id_t to,
3115 shard_id_t from,
3116 const pg_history_t& h,
3117 epoch_t epoch_sent)
3118 : type(t),
3119 history(h),
3120 epoch_sent(epoch_sent),
3121 to(to), from(from) {
3122 assert(t != LOG);
3123 }
3124 pg_query_t(
3125 int t,
3126 shard_id_t to,
3127 shard_id_t from,
3128 eversion_t s,
3129 const pg_history_t& h,
3130 epoch_t epoch_sent)
3131 : type(t), since(s), history(h),
3132 epoch_sent(epoch_sent), to(to), from(from) {
3133 assert(t == LOG);
3134 }
3135
3136 void encode(bufferlist &bl, uint64_t features) const;
3137 void decode(bufferlist::iterator &bl);
3138
3139 void dump(Formatter *f) const;
3140 static void generate_test_instances(list<pg_query_t*>& o);
3141 };
3142 WRITE_CLASS_ENCODER_FEATURES(pg_query_t)
3143
3144 inline ostream& operator<<(ostream& out, const pg_query_t& q) {
3145 out << "query(" << q.get_type_name() << " " << q.since;
3146 if (q.type == pg_query_t::LOG)
3147 out << " " << q.history;
3148 out << ")";
3149 return out;
3150 }
3151
3152 class PGBackend;
3153 class ObjectModDesc {
3154 bool can_local_rollback;
3155 bool rollback_info_completed;
3156
3157 // version required to decode, reflected in encode/decode version
3158 __u8 max_required_version = 1;
3159 public:
3160 class Visitor {
3161 public:
3162 virtual void append(uint64_t old_offset) {}
3163 virtual void setattrs(map<string, boost::optional<bufferlist> > &attrs) {}
3164 virtual void rmobject(version_t old_version) {}
3165 /**
3166 * Used to support the unfound_lost_delete log event: if the stashed
3167 * version exists, we unstash it, otherwise, we do nothing. This way
3168 * each replica rolls back to whatever state it had prior to the attempt
3169 * at mark unfound lost delete
3170 */
3171 virtual void try_rmobject(version_t old_version) {
3172 rmobject(old_version);
3173 }
3174 virtual void create() {}
3175 virtual void update_snaps(const set<snapid_t> &old_snaps) {}
3176 virtual void rollback_extents(
3177 version_t gen,
3178 const vector<pair<uint64_t, uint64_t> > &extents) {}
3179 virtual ~Visitor() {}
3180 };
3181 void visit(Visitor *visitor) const;
3182 mutable bufferlist bl;
3183 enum ModID {
3184 APPEND = 1,
3185 SETATTRS = 2,
3186 DELETE = 3,
3187 CREATE = 4,
3188 UPDATE_SNAPS = 5,
3189 TRY_DELETE = 6,
3190 ROLLBACK_EXTENTS = 7
3191 };
3192 ObjectModDesc() : can_local_rollback(true), rollback_info_completed(false) {
3193 bl.reassign_to_mempool(mempool::mempool_osd_pglog);
3194 }
3195 void claim(ObjectModDesc &other) {
3196 bl.clear();
3197 bl.claim(other.bl);
3198 can_local_rollback = other.can_local_rollback;
3199 rollback_info_completed = other.rollback_info_completed;
3200 }
3201 void claim_append(ObjectModDesc &other) {
3202 if (!can_local_rollback || rollback_info_completed)
3203 return;
3204 if (!other.can_local_rollback) {
3205 mark_unrollbackable();
3206 return;
3207 }
3208 bl.claim_append(other.bl);
3209 rollback_info_completed = other.rollback_info_completed;
3210 }
3211 void swap(ObjectModDesc &other) {
3212 bl.swap(other.bl);
3213
3214 using std::swap;
3215 swap(other.can_local_rollback, can_local_rollback);
3216 swap(other.rollback_info_completed, rollback_info_completed);
3217 swap(other.max_required_version, max_required_version);
3218 }
3219 void append_id(ModID id) {
3220 uint8_t _id(id);
3221 ::encode(_id, bl);
3222 }
3223 void append(uint64_t old_size) {
3224 if (!can_local_rollback || rollback_info_completed)
3225 return;
3226 ENCODE_START(1, 1, bl);
3227 append_id(APPEND);
3228 ::encode(old_size, bl);
3229 ENCODE_FINISH(bl);
3230 }
3231 void setattrs(map<string, boost::optional<bufferlist> > &old_attrs) {
3232 if (!can_local_rollback || rollback_info_completed)
3233 return;
3234 ENCODE_START(1, 1, bl);
3235 append_id(SETATTRS);
3236 ::encode(old_attrs, bl);
3237 ENCODE_FINISH(bl);
3238 }
3239 bool rmobject(version_t deletion_version) {
3240 if (!can_local_rollback || rollback_info_completed)
3241 return false;
3242 ENCODE_START(1, 1, bl);
3243 append_id(DELETE);
3244 ::encode(deletion_version, bl);
3245 ENCODE_FINISH(bl);
3246 rollback_info_completed = true;
3247 return true;
3248 }
3249 bool try_rmobject(version_t deletion_version) {
3250 if (!can_local_rollback || rollback_info_completed)
3251 return false;
3252 ENCODE_START(1, 1, bl);
3253 append_id(TRY_DELETE);
3254 ::encode(deletion_version, bl);
3255 ENCODE_FINISH(bl);
3256 rollback_info_completed = true;
3257 return true;
3258 }
3259 void create() {
3260 if (!can_local_rollback || rollback_info_completed)
3261 return;
3262 rollback_info_completed = true;
3263 ENCODE_START(1, 1, bl);
3264 append_id(CREATE);
3265 ENCODE_FINISH(bl);
3266 }
3267 void update_snaps(const set<snapid_t> &old_snaps) {
3268 if (!can_local_rollback || rollback_info_completed)
3269 return;
3270 ENCODE_START(1, 1, bl);
3271 append_id(UPDATE_SNAPS);
3272 ::encode(old_snaps, bl);
3273 ENCODE_FINISH(bl);
3274 }
3275 void rollback_extents(
3276 version_t gen, const vector<pair<uint64_t, uint64_t> > &extents) {
3277 assert(can_local_rollback);
3278 assert(!rollback_info_completed);
3279 if (max_required_version < 2)
3280 max_required_version = 2;
3281 ENCODE_START(2, 2, bl);
3282 append_id(ROLLBACK_EXTENTS);
3283 ::encode(gen, bl);
3284 ::encode(extents, bl);
3285 ENCODE_FINISH(bl);
3286 }
3287
3288 // cannot be rolled back
3289 void mark_unrollbackable() {
3290 can_local_rollback = false;
3291 bl.clear();
3292 }
3293 bool can_rollback() const {
3294 return can_local_rollback;
3295 }
3296 bool empty() const {
3297 return can_local_rollback && (bl.length() == 0);
3298 }
3299
3300 bool requires_kraken() const {
3301 return max_required_version >= 2;
3302 }
3303
3304 /**
3305 * Create fresh copy of bl bytes to avoid keeping large buffers around
3306 * in the case that bl contains ptrs which point into a much larger
3307 * message buffer
3308 */
3309 void trim_bl() const {
3310 if (bl.length() > 0)
3311 bl.rebuild();
3312 }
3313 void encode(bufferlist &bl) const;
3314 void decode(bufferlist::iterator &bl);
3315 void dump(Formatter *f) const;
3316 static void generate_test_instances(list<ObjectModDesc*>& o);
3317 };
3318 WRITE_CLASS_ENCODER(ObjectModDesc)
3319
3320
3321 /**
3322 * pg_log_entry_t - single entry/event in pg log
3323 *
3324 */
3325 struct pg_log_entry_t {
3326 enum {
3327 MODIFY = 1, // some unspecified modification (but not *all* modifications)
3328 CLONE = 2, // cloned object from head
3329 DELETE = 3, // deleted object
3330 BACKLOG = 4, // event invented by generate_backlog [deprecated]
3331 LOST_REVERT = 5, // lost new version, revert to an older version.
3332 LOST_DELETE = 6, // lost new version, revert to no object (deleted).
3333 LOST_MARK = 7, // lost new version, now EIO
3334 PROMOTE = 8, // promoted object from another tier
3335 CLEAN = 9, // mark an object clean
3336 ERROR = 10, // write that returned an error
3337 };
3338 static const char *get_op_name(int op) {
3339 switch (op) {
3340 case MODIFY:
3341 return "modify";
3342 case PROMOTE:
3343 return "promote";
3344 case CLONE:
3345 return "clone";
3346 case DELETE:
3347 return "delete";
3348 case BACKLOG:
3349 return "backlog";
3350 case LOST_REVERT:
3351 return "l_revert";
3352 case LOST_DELETE:
3353 return "l_delete";
3354 case LOST_MARK:
3355 return "l_mark";
3356 case CLEAN:
3357 return "clean";
3358 case ERROR:
3359 return "error";
3360 default:
3361 return "unknown";
3362 }
3363 }
3364 const char *get_op_name() const {
3365 return get_op_name(op);
3366 }
3367
3368 // describes state for a locally-rollbackable entry
3369 ObjectModDesc mod_desc;
3370 bufferlist snaps; // only for clone entries
3371 hobject_t soid;
3372 osd_reqid_t reqid; // caller+tid to uniquely identify request
3373 mempool::osd_pglog::vector<pair<osd_reqid_t, version_t> > extra_reqids;
3374 eversion_t version, prior_version, reverting_to;
3375 version_t user_version; // the user version for this entry
3376 utime_t mtime; // this is the _user_ mtime, mind you
3377 int32_t return_code; // only stored for ERRORs for dup detection
3378
3379 __s32 op;
3380 bool invalid_hash; // only when decoding sobject_t based entries
3381 bool invalid_pool; // only when decoding pool-less hobject based entries
3382
3383 pg_log_entry_t()
3384 : user_version(0), return_code(0), op(0),
3385 invalid_hash(false), invalid_pool(false) {
3386 snaps.reassign_to_mempool(mempool::mempool_osd_pglog);
3387 }
3388 pg_log_entry_t(int _op, const hobject_t& _soid,
3389 const eversion_t& v, const eversion_t& pv,
3390 version_t uv,
3391 const osd_reqid_t& rid, const utime_t& mt,
3392 int return_code)
3393 : soid(_soid), reqid(rid), version(v), prior_version(pv), user_version(uv),
3394 mtime(mt), return_code(return_code), op(_op),
3395 invalid_hash(false), invalid_pool(false) {
3396 snaps.reassign_to_mempool(mempool::mempool_osd_pglog);
3397 }
3398
3399 bool is_clone() const { return op == CLONE; }
3400 bool is_modify() const { return op == MODIFY; }
3401 bool is_promote() const { return op == PROMOTE; }
3402 bool is_clean() const { return op == CLEAN; }
3403 bool is_backlog() const { return op == BACKLOG; }
3404 bool is_lost_revert() const { return op == LOST_REVERT; }
3405 bool is_lost_delete() const { return op == LOST_DELETE; }
3406 bool is_lost_mark() const { return op == LOST_MARK; }
3407 bool is_error() const { return op == ERROR; }
3408
3409 bool is_update() const {
3410 return
3411 is_clone() || is_modify() || is_promote() || is_clean() ||
3412 is_backlog() || is_lost_revert() || is_lost_mark();
3413 }
3414 bool is_delete() const {
3415 return op == DELETE || op == LOST_DELETE;
3416 }
3417
3418 bool can_rollback() const {
3419 return mod_desc.can_rollback();
3420 }
3421
3422 void mark_unrollbackable() {
3423 mod_desc.mark_unrollbackable();
3424 }
3425
3426 bool requires_kraken() const {
3427 return mod_desc.requires_kraken();
3428 }
3429
3430 // Errors are only used for dup detection, whereas
3431 // the index by objects is used by recovery, copy_get,
3432 // and other facilities that don't expect or need to
3433 // be aware of error entries.
3434 bool object_is_indexed() const {
3435 return !is_error();
3436 }
3437
3438 bool reqid_is_indexed() const {
3439 return reqid != osd_reqid_t() &&
3440 (op == MODIFY || op == DELETE || op == ERROR);
3441 }
3442
3443 string get_key_name() const;
3444 void encode_with_checksum(bufferlist& bl) const;
3445 void decode_with_checksum(bufferlist::iterator& p);
3446
3447 void encode(bufferlist &bl) const;
3448 void decode(bufferlist::iterator &bl);
3449 void dump(Formatter *f) const;
3450 static void generate_test_instances(list<pg_log_entry_t*>& o);
3451
3452 };
3453 WRITE_CLASS_ENCODER(pg_log_entry_t)
3454
3455 ostream& operator<<(ostream& out, const pg_log_entry_t& e);
3456
3457 struct pg_log_dup_t {
3458 osd_reqid_t reqid; // caller+tid to uniquely identify request
3459 eversion_t version;
3460 version_t user_version; // the user version for this entry
3461 int32_t return_code; // only stored for ERRORs for dup detection
3462
3463 pg_log_dup_t()
3464 : user_version(0), return_code(0)
3465 {}
3466 explicit pg_log_dup_t(const pg_log_entry_t& entry)
3467 : reqid(entry.reqid), version(entry.version),
3468 user_version(entry.user_version), return_code(entry.return_code)
3469 {}
3470 pg_log_dup_t(const eversion_t& v, version_t uv,
3471 const osd_reqid_t& rid, int return_code)
3472 : reqid(rid), version(v), user_version(uv),
3473 return_code(return_code)
3474 {}
3475
3476 string get_key_name() const;
3477 void encode(bufferlist &bl) const;
3478 void decode(bufferlist::iterator &bl);
3479 void dump(Formatter *f) const;
3480 static void generate_test_instances(list<pg_log_dup_t*>& o);
3481
3482 bool operator==(const pg_log_dup_t &rhs) const {
3483 return reqid == rhs.reqid &&
3484 version == rhs.version &&
3485 user_version == rhs.user_version &&
3486 return_code == rhs.return_code;
3487 }
3488 bool operator!=(const pg_log_dup_t &rhs) const {
3489 return !(*this == rhs);
3490 }
3491
3492 friend std::ostream& operator<<(std::ostream& out, const pg_log_dup_t& e);
3493 };
3494 WRITE_CLASS_ENCODER(pg_log_dup_t)
3495
3496 std::ostream& operator<<(std::ostream& out, const pg_log_dup_t& e);
3497
3498 /**
3499 * pg_log_t - incremental log of recent pg changes.
3500 *
3501 * serves as a recovery queue for recent changes.
3502 */
3503 struct pg_log_t {
3504 /*
3505 * head - newest entry (update|delete)
3506 * tail - entry previous to oldest (update|delete) for which we have
3507 * complete negative information.
3508 * i.e. we can infer pg contents for any store whose last_update >= tail.
3509 */
3510 eversion_t head; // newest entry
3511 eversion_t tail; // version prior to oldest
3512
3513 protected:
3514 // We can rollback rollback-able entries > can_rollback_to
3515 eversion_t can_rollback_to;
3516
3517 // always <= can_rollback_to, indicates how far stashed rollback
3518 // data can be found
3519 eversion_t rollback_info_trimmed_to;
3520
3521 public:
3522 // the actual log
3523 mempool::osd_pglog::list<pg_log_entry_t> log;
3524
3525 // entries just for dup op detection ordered oldest to newest
3526 mempool::osd_pglog::list<pg_log_dup_t> dups;
3527
3528 pg_log_t() = default;
3529 pg_log_t(const eversion_t &last_update,
3530 const eversion_t &log_tail,
3531 const eversion_t &can_rollback_to,
3532 const eversion_t &rollback_info_trimmed_to,
3533 mempool::osd_pglog::list<pg_log_entry_t> &&entries,
3534 mempool::osd_pglog::list<pg_log_dup_t> &&dup_entries)
3535 : head(last_update), tail(log_tail), can_rollback_to(can_rollback_to),
3536 rollback_info_trimmed_to(rollback_info_trimmed_to),
3537 log(std::move(entries)), dups(std::move(dup_entries)) {}
3538 pg_log_t(const eversion_t &last_update,
3539 const eversion_t &log_tail,
3540 const eversion_t &can_rollback_to,
3541 const eversion_t &rollback_info_trimmed_to,
3542 const std::list<pg_log_entry_t> &entries,
3543 const std::list<pg_log_dup_t> &dup_entries)
3544 : head(last_update), tail(log_tail), can_rollback_to(can_rollback_to),
3545 rollback_info_trimmed_to(rollback_info_trimmed_to) {
3546 for (auto &&entry: entries) {
3547 log.push_back(entry);
3548 }
3549 for (auto &&entry: dup_entries) {
3550 dups.push_back(entry);
3551 }
3552 }
3553
3554 void clear() {
3555 eversion_t z;
3556 rollback_info_trimmed_to = can_rollback_to = head = tail = z;
3557 log.clear();
3558 dups.clear();
3559 }
3560
3561 eversion_t get_rollback_info_trimmed_to() const {
3562 return rollback_info_trimmed_to;
3563 }
3564 eversion_t get_can_rollback_to() const {
3565 return can_rollback_to;
3566 }
3567
3568
3569 pg_log_t split_out_child(pg_t child_pgid, unsigned split_bits) {
3570 mempool::osd_pglog::list<pg_log_entry_t> oldlog, childlog;
3571 oldlog.swap(log);
3572
3573 eversion_t old_tail;
3574 unsigned mask = ~((~0)<<split_bits);
3575 for (auto i = oldlog.begin();
3576 i != oldlog.end();
3577 ) {
3578 if ((i->soid.get_hash() & mask) == child_pgid.m_seed) {
3579 childlog.push_back(*i);
3580 } else {
3581 log.push_back(*i);
3582 }
3583 oldlog.erase(i++);
3584 }
3585
3586 // osd_reqid is unique, so it doesn't matter if there are extra
3587 // dup entries in each pg. To avoid storing oid with the dup
3588 // entries, just copy the whole list.
3589 auto childdups(dups);
3590
3591 return pg_log_t(
3592 head,
3593 tail,
3594 can_rollback_to,
3595 rollback_info_trimmed_to,
3596 std::move(childlog),
3597 std::move(childdups));
3598 }
3599
3600 mempool::osd_pglog::list<pg_log_entry_t> rewind_from_head(eversion_t newhead) {
3601 assert(newhead >= tail);
3602
3603 mempool::osd_pglog::list<pg_log_entry_t>::iterator p = log.end();
3604 mempool::osd_pglog::list<pg_log_entry_t> divergent;
3605 while (true) {
3606 if (p == log.begin()) {
3607 // yikes, the whole thing is divergent!
3608 using std::swap;
3609 swap(divergent, log);
3610 break;
3611 }
3612 --p;
3613 if (p->version.version <= newhead.version) {
3614 /*
3615 * look at eversion.version here. we want to avoid a situation like:
3616 * our log: 100'10 (0'0) m 10000004d3a.00000000/head by client4225.1:18529
3617 * new log: 122'10 (0'0) m 10000004d3a.00000000/head by client4225.1:18529
3618 * lower_bound = 100'9
3619 * i.e, same request, different version. If the eversion.version is > the
3620 * lower_bound, we it is divergent.
3621 */
3622 ++p;
3623 divergent.splice(divergent.begin(), log, p, log.end());
3624 break;
3625 }
3626 assert(p->version > newhead);
3627 }
3628 head = newhead;
3629
3630 if (can_rollback_to > newhead)
3631 can_rollback_to = newhead;
3632
3633 if (rollback_info_trimmed_to > newhead)
3634 rollback_info_trimmed_to = newhead;
3635
3636 return divergent;
3637 }
3638
3639 bool empty() const {
3640 return log.empty();
3641 }
3642
3643 bool null() const {
3644 return head.version == 0 && head.epoch == 0;
3645 }
3646
3647 size_t approx_size() const {
3648 return head.version - tail.version;
3649 }
3650
3651 static void filter_log(spg_t import_pgid, const OSDMap &curmap,
3652 const string &hit_set_namespace, const pg_log_t &in,
3653 pg_log_t &out, pg_log_t &reject);
3654
3655 /**
3656 * copy entries from the tail of another pg_log_t
3657 *
3658 * @param other pg_log_t to copy from
3659 * @param from copy entries after this version
3660 */
3661 void copy_after(const pg_log_t &other, eversion_t from);
3662
3663 /**
3664 * copy a range of entries from another pg_log_t
3665 *
3666 * @param other pg_log_t to copy from
3667 * @param from copy entries after this version
3668 * @param to up to and including this version
3669 */
3670 void copy_range(const pg_log_t &other, eversion_t from, eversion_t to);
3671
3672 /**
3673 * copy up to N entries
3674 *
3675 * @param other source log
3676 * @param max max number of entries to copy
3677 */
3678 void copy_up_to(const pg_log_t &other, int max);
3679
3680 ostream& print(ostream& out) const;
3681
3682 void encode(bufferlist &bl) const;
3683 void decode(bufferlist::iterator &bl, int64_t pool = -1);
3684 void dump(Formatter *f) const;
3685 static void generate_test_instances(list<pg_log_t*>& o);
3686 };
3687 WRITE_CLASS_ENCODER(pg_log_t)
3688
3689 inline ostream& operator<<(ostream& out, const pg_log_t& log)
3690 {
3691 out << "log((" << log.tail << "," << log.head << "], crt="
3692 << log.get_can_rollback_to() << ")";
3693 return out;
3694 }
3695
3696
3697 /**
3698 * pg_missing_t - summary of missing objects.
3699 *
3700 * kept in memory, as a supplement to pg_log_t
3701 * also used to pass missing info in messages.
3702 */
3703 struct pg_missing_item {
3704 eversion_t need, have;
3705 enum missing_flags_t {
3706 FLAG_NONE = 0,
3707 FLAG_DELETE = 1,
3708 } flags;
3709 pg_missing_item() : flags(FLAG_NONE) {}
3710 explicit pg_missing_item(eversion_t n) : need(n), flags(FLAG_NONE) {} // have no old version
3711 pg_missing_item(eversion_t n, eversion_t h, bool is_delete=false) : need(n), have(h) {
3712 set_delete(is_delete);
3713 }
3714
3715 void encode(bufferlist& bl, uint64_t features) const {
3716 if (HAVE_FEATURE(features, OSD_RECOVERY_DELETES)) {
3717 // encoding a zeroed eversion_t to differentiate between this and
3718 // legacy unversioned encoding - a need value of 0'0 is not
3719 // possible. This can be replaced with the legacy encoding
3720 // macros post-luminous.
3721 eversion_t e;
3722 ::encode(e, bl);
3723 ::encode(need, bl);
3724 ::encode(have, bl);
3725 ::encode(static_cast<uint8_t>(flags), bl);
3726 } else {
3727 // legacy unversioned encoding
3728 ::encode(need, bl);
3729 ::encode(have, bl);
3730 }
3731 }
3732 void decode(bufferlist::iterator& bl) {
3733 eversion_t e;
3734 ::decode(e, bl);
3735 if (e != eversion_t()) {
3736 // legacy encoding, this is the need value
3737 need = e;
3738 ::decode(have, bl);
3739 } else {
3740 ::decode(need, bl);
3741 ::decode(have, bl);
3742 uint8_t f;
3743 ::decode(f, bl);
3744 flags = static_cast<missing_flags_t>(f);
3745 }
3746 }
3747
3748 void set_delete(bool is_delete) {
3749 flags = is_delete ? FLAG_DELETE : FLAG_NONE;
3750 }
3751
3752 bool is_delete() const {
3753 return (flags & FLAG_DELETE) == FLAG_DELETE;
3754 }
3755
3756 string flag_str() const {
3757 if (flags == FLAG_NONE) {
3758 return "none";
3759 } else {
3760 return "delete";
3761 }
3762 }
3763
3764 void dump(Formatter *f) const {
3765 f->dump_stream("need") << need;
3766 f->dump_stream("have") << have;
3767 f->dump_stream("flags") << flag_str();
3768 }
3769 static void generate_test_instances(list<pg_missing_item*>& o) {
3770 o.push_back(new pg_missing_item);
3771 o.push_back(new pg_missing_item);
3772 o.back()->need = eversion_t(1, 2);
3773 o.back()->have = eversion_t(1, 1);
3774 o.push_back(new pg_missing_item);
3775 o.back()->need = eversion_t(3, 5);
3776 o.back()->have = eversion_t(3, 4);
3777 o.back()->flags = FLAG_DELETE;
3778 }
3779 bool operator==(const pg_missing_item &rhs) const {
3780 return need == rhs.need && have == rhs.have && flags == rhs.flags;
3781 }
3782 bool operator!=(const pg_missing_item &rhs) const {
3783 return !(*this == rhs);
3784 }
3785 };
3786 WRITE_CLASS_ENCODER_FEATURES(pg_missing_item)
3787 ostream& operator<<(ostream& out, const pg_missing_item &item);
3788
3789 class pg_missing_const_i {
3790 public:
3791 virtual const map<hobject_t, pg_missing_item> &
3792 get_items() const = 0;
3793 virtual const map<version_t, hobject_t> &get_rmissing() const = 0;
3794 virtual bool get_may_include_deletes() const = 0;
3795 virtual unsigned int num_missing() const = 0;
3796 virtual bool have_missing() const = 0;
3797 virtual bool is_missing(const hobject_t& oid, pg_missing_item *out = nullptr) const = 0;
3798 virtual bool is_missing(const hobject_t& oid, eversion_t v) const = 0;
3799 virtual eversion_t have_old(const hobject_t& oid) const = 0;
3800 virtual ~pg_missing_const_i() {}
3801 };
3802
3803
3804 template <bool Track>
3805 class ChangeTracker {
3806 public:
3807 void changed(const hobject_t &obj) {}
3808 template <typename F>
3809 void get_changed(F &&f) const {}
3810 void flush() {}
3811 bool is_clean() const {
3812 return true;
3813 }
3814 };
3815 template <>
3816 class ChangeTracker<true> {
3817 set<hobject_t> _changed;
3818 public:
3819 void changed(const hobject_t &obj) {
3820 _changed.insert(obj);
3821 }
3822 template <typename F>
3823 void get_changed(F &&f) const {
3824 for (auto const &i: _changed) {
3825 f(i);
3826 }
3827 }
3828 void flush() {
3829 _changed.clear();
3830 }
3831 bool is_clean() const {
3832 return _changed.empty();
3833 }
3834 };
3835
3836 template <bool TrackChanges>
3837 class pg_missing_set : public pg_missing_const_i {
3838 using item = pg_missing_item;
3839 map<hobject_t, item> missing; // oid -> (need v, have v)
3840 map<version_t, hobject_t> rmissing; // v -> oid
3841 ChangeTracker<TrackChanges> tracker;
3842
3843 public:
3844 pg_missing_set() = default;
3845
3846 template <typename missing_type>
3847 pg_missing_set(const missing_type &m) {
3848 missing = m.get_items();
3849 rmissing = m.get_rmissing();
3850 may_include_deletes = m.get_may_include_deletes();
3851 for (auto &&i: missing)
3852 tracker.changed(i.first);
3853 }
3854
3855 bool may_include_deletes = false;
3856
3857 const map<hobject_t, item> &get_items() const override {
3858 return missing;
3859 }
3860 const map<version_t, hobject_t> &get_rmissing() const override {
3861 return rmissing;
3862 }
3863 bool get_may_include_deletes() const override {
3864 return may_include_deletes;
3865 }
3866 unsigned int num_missing() const override {
3867 return missing.size();
3868 }
3869 bool have_missing() const override {
3870 return !missing.empty();
3871 }
3872 bool is_missing(const hobject_t& oid, pg_missing_item *out = nullptr) const override {
3873 auto iter = missing.find(oid);
3874 if (iter == missing.end())
3875 return false;
3876 if (out)
3877 *out = iter->second;
3878 return true;
3879 }
3880 bool is_missing(const hobject_t& oid, eversion_t v) const override {
3881 map<hobject_t, item>::const_iterator m =
3882 missing.find(oid);
3883 if (m == missing.end())
3884 return false;
3885 const item &item(m->second);
3886 if (item.need > v)
3887 return false;
3888 return true;
3889 }
3890 eversion_t have_old(const hobject_t& oid) const override {
3891 map<hobject_t, item>::const_iterator m =
3892 missing.find(oid);
3893 if (m == missing.end())
3894 return eversion_t();
3895 const item &item(m->second);
3896 return item.have;
3897 }
3898
3899 void claim(pg_missing_set& o) {
3900 static_assert(!TrackChanges, "Can't use claim with TrackChanges");
3901 missing.swap(o.missing);
3902 rmissing.swap(o.rmissing);
3903 }
3904
3905 /*
3906 * this needs to be called in log order as we extend the log. it
3907 * assumes missing is accurate up through the previous log entry.
3908 */
3909 void add_next_event(const pg_log_entry_t& e) {
3910 map<hobject_t, item>::iterator missing_it;
3911 missing_it = missing.find(e.soid);
3912 bool is_missing_divergent_item = missing_it != missing.end();
3913 if (e.prior_version == eversion_t() || e.is_clone()) {
3914 // new object.
3915 if (is_missing_divergent_item) { // use iterator
3916 rmissing.erase((missing_it->second).need.version);
3917 missing_it->second = item(e.version, eversion_t(), e.is_delete()); // .have = nil
3918 } else // create new element in missing map
3919 missing[e.soid] = item(e.version, eversion_t(), e.is_delete()); // .have = nil
3920 } else if (is_missing_divergent_item) {
3921 // already missing (prior).
3922 rmissing.erase((missing_it->second).need.version);
3923 (missing_it->second).need = e.version; // leave .have unchanged.
3924 missing_it->second.set_delete(e.is_delete());
3925 } else if (e.is_backlog()) {
3926 // May not have prior version
3927 assert(0 == "these don't exist anymore");
3928 } else {
3929 // not missing, we must have prior_version (if any)
3930 assert(!is_missing_divergent_item);
3931 missing[e.soid] = item(e.version, e.prior_version, e.is_delete());
3932 }
3933 rmissing[e.version.version] = e.soid;
3934 tracker.changed(e.soid);
3935 }
3936
3937 void revise_need(hobject_t oid, eversion_t need, bool is_delete) {
3938 if (missing.count(oid)) {
3939 rmissing.erase(missing[oid].need.version);
3940 missing[oid].need = need; // no not adjust .have
3941 missing[oid].set_delete(is_delete);
3942 } else {
3943 missing[oid] = item(need, eversion_t(), is_delete);
3944 }
3945 rmissing[need.version] = oid;
3946
3947 tracker.changed(oid);
3948 }
3949
3950 void revise_have(hobject_t oid, eversion_t have) {
3951 if (missing.count(oid)) {
3952 tracker.changed(oid);
3953 missing[oid].have = have;
3954 }
3955 }
3956
3957 void add(const hobject_t& oid, eversion_t need, eversion_t have,
3958 bool is_delete) {
3959 missing[oid] = item(need, have, is_delete);
3960 rmissing[need.version] = oid;
3961 tracker.changed(oid);
3962 }
3963
3964 void rm(const hobject_t& oid, eversion_t v) {
3965 std::map<hobject_t, item>::iterator p = missing.find(oid);
3966 if (p != missing.end() && p->second.need <= v)
3967 rm(p);
3968 }
3969
3970 void rm(std::map<hobject_t, item>::const_iterator m) {
3971 tracker.changed(m->first);
3972 rmissing.erase(m->second.need.version);
3973 missing.erase(m);
3974 }
3975
3976 void got(const hobject_t& oid, eversion_t v) {
3977 std::map<hobject_t, item>::iterator p = missing.find(oid);
3978 assert(p != missing.end());
3979 assert(p->second.need <= v || p->second.is_delete());
3980 got(p);
3981 }
3982
3983 void got(std::map<hobject_t, item>::const_iterator m) {
3984 tracker.changed(m->first);
3985 rmissing.erase(m->second.need.version);
3986 missing.erase(m);
3987 }
3988
3989 void split_into(
3990 pg_t child_pgid,
3991 unsigned split_bits,
3992 pg_missing_set *omissing) {
3993 omissing->may_include_deletes = may_include_deletes;
3994 unsigned mask = ~((~0)<<split_bits);
3995 for (map<hobject_t, item>::iterator i = missing.begin();
3996 i != missing.end();
3997 ) {
3998 if ((i->first.get_hash() & mask) == child_pgid.m_seed) {
3999 omissing->add(i->first, i->second.need, i->second.have,
4000 i->second.is_delete());
4001 rm(i++);
4002 } else {
4003 ++i;
4004 }
4005 }
4006 }
4007
4008 void clear() {
4009 for (auto const &i: missing)
4010 tracker.changed(i.first);
4011 missing.clear();
4012 rmissing.clear();
4013 }
4014
4015 void encode(bufferlist &bl) const {
4016 ENCODE_START(4, 2, bl);
4017 ::encode(missing, bl, may_include_deletes ? CEPH_FEATURE_OSD_RECOVERY_DELETES : 0);
4018 ::encode(may_include_deletes, bl);
4019 ENCODE_FINISH(bl);
4020 }
4021 void decode(bufferlist::iterator &bl, int64_t pool = -1) {
4022 for (auto const &i: missing)
4023 tracker.changed(i.first);
4024 DECODE_START_LEGACY_COMPAT_LEN(4, 2, 2, bl);
4025 ::decode(missing, bl);
4026 if (struct_v >= 4) {
4027 ::decode(may_include_deletes, bl);
4028 }
4029 DECODE_FINISH(bl);
4030
4031 if (struct_v < 3) {
4032 // Handle hobject_t upgrade
4033 map<hobject_t, item> tmp;
4034 for (map<hobject_t, item>::iterator i =
4035 missing.begin();
4036 i != missing.end();
4037 ) {
4038 if (!i->first.is_max() && i->first.pool == -1) {
4039 hobject_t to_insert(i->first);
4040 to_insert.pool = pool;
4041 tmp[to_insert] = i->second;
4042 missing.erase(i++);
4043 } else {
4044 ++i;
4045 }
4046 }
4047 missing.insert(tmp.begin(), tmp.end());
4048 }
4049
4050 for (map<hobject_t,item>::iterator it =
4051 missing.begin();
4052 it != missing.end();
4053 ++it)
4054 rmissing[it->second.need.version] = it->first;
4055 for (auto const &i: missing)
4056 tracker.changed(i.first);
4057 }
4058 void dump(Formatter *f) const {
4059 f->open_array_section("missing");
4060 for (map<hobject_t,item>::const_iterator p =
4061 missing.begin(); p != missing.end(); ++p) {
4062 f->open_object_section("item");
4063 f->dump_stream("object") << p->first;
4064 p->second.dump(f);
4065 f->close_section();
4066 }
4067 f->close_section();
4068 f->dump_bool("may_include_deletes", may_include_deletes);
4069 }
4070 template <typename F>
4071 void filter_objects(F &&f) {
4072 for (auto i = missing.begin(); i != missing.end();) {
4073 if (f(i->first)) {
4074 rm(i++);
4075 } else {
4076 ++i;
4077 }
4078 }
4079 }
4080 static void generate_test_instances(list<pg_missing_set*>& o) {
4081 o.push_back(new pg_missing_set);
4082 o.push_back(new pg_missing_set);
4083 o.back()->add(
4084 hobject_t(object_t("foo"), "foo", 123, 456, 0, ""),
4085 eversion_t(5, 6), eversion_t(5, 1), false);
4086 o.push_back(new pg_missing_set);
4087 o.back()->add(
4088 hobject_t(object_t("foo"), "foo", 123, 456, 0, ""),
4089 eversion_t(5, 6), eversion_t(5, 1), true);
4090 o.back()->may_include_deletes = true;
4091 }
4092 template <typename F>
4093 void get_changed(F &&f) const {
4094 tracker.get_changed(f);
4095 }
4096 void flush() {
4097 tracker.flush();
4098 }
4099 bool is_clean() const {
4100 return tracker.is_clean();
4101 }
4102 template <typename missing_t>
4103 bool debug_verify_from_init(
4104 const missing_t &init_missing,
4105 ostream *oss) const {
4106 if (!TrackChanges)
4107 return true;
4108 auto check_missing(init_missing.get_items());
4109 tracker.get_changed([&](const hobject_t &hoid) {
4110 check_missing.erase(hoid);
4111 if (missing.count(hoid)) {
4112 check_missing.insert(*(missing.find(hoid)));
4113 }
4114 });
4115 bool ok = true;
4116 if (check_missing.size() != missing.size()) {
4117 if (oss) {
4118 *oss << "Size mismatch, check: " << check_missing.size()
4119 << ", actual: " << missing.size() << "\n";
4120 }
4121 ok = false;
4122 }
4123 for (auto &i: missing) {
4124 if (!check_missing.count(i.first)) {
4125 if (oss)
4126 *oss << "check_missing missing " << i.first << "\n";
4127 ok = false;
4128 } else if (check_missing[i.first] != i.second) {
4129 if (oss)
4130 *oss << "check_missing missing item mismatch on " << i.first
4131 << ", check: " << check_missing[i.first]
4132 << ", actual: " << i.second << "\n";
4133 ok = false;
4134 }
4135 }
4136 if (oss && !ok) {
4137 *oss << "check_missing: " << check_missing << "\n";
4138 set<hobject_t> changed;
4139 tracker.get_changed([&](const hobject_t &hoid) { changed.insert(hoid); });
4140 *oss << "changed: " << changed << "\n";
4141 }
4142 return ok;
4143 }
4144 };
4145 template <bool TrackChanges>
4146 void encode(
4147 const pg_missing_set<TrackChanges> &c, bufferlist &bl, uint64_t features=0) {
4148 ENCODE_DUMP_PRE();
4149 c.encode(bl);
4150 ENCODE_DUMP_POST(cl);
4151 }
4152 template <bool TrackChanges>
4153 void decode(pg_missing_set<TrackChanges> &c, bufferlist::iterator &p) {
4154 c.decode(p);
4155 }
4156 template <bool TrackChanges>
4157 ostream& operator<<(ostream& out, const pg_missing_set<TrackChanges> &missing)
4158 {
4159 out << "missing(" << missing.num_missing()
4160 << " may_include_deletes = " << missing.may_include_deletes;
4161 //if (missing.num_lost()) out << ", " << missing.num_lost() << " lost";
4162 out << ")";
4163 return out;
4164 }
4165
4166 using pg_missing_t = pg_missing_set<false>;
4167 using pg_missing_tracker_t = pg_missing_set<true>;
4168
4169
4170 /**
4171 * pg list objects response format
4172 *
4173 */
4174 struct pg_nls_response_t {
4175 collection_list_handle_t handle;
4176 list<librados::ListObjectImpl> entries;
4177
4178 void encode(bufferlist& bl) const {
4179 ENCODE_START(1, 1, bl);
4180 ::encode(handle, bl);
4181 __u32 n = (__u32)entries.size();
4182 ::encode(n, bl);
4183 for (list<librados::ListObjectImpl>::const_iterator i = entries.begin(); i != entries.end(); ++i) {
4184 ::encode(i->nspace, bl);
4185 ::encode(i->oid, bl);
4186 ::encode(i->locator, bl);
4187 }
4188 ENCODE_FINISH(bl);
4189 }
4190 void decode(bufferlist::iterator& bl) {
4191 DECODE_START(1, bl);
4192 ::decode(handle, bl);
4193 __u32 n;
4194 ::decode(n, bl);
4195 entries.clear();
4196 while (n--) {
4197 librados::ListObjectImpl i;
4198 ::decode(i.nspace, bl);
4199 ::decode(i.oid, bl);
4200 ::decode(i.locator, bl);
4201 entries.push_back(i);
4202 }
4203 DECODE_FINISH(bl);
4204 }
4205 void dump(Formatter *f) const {
4206 f->dump_stream("handle") << handle;
4207 f->open_array_section("entries");
4208 for (list<librados::ListObjectImpl>::const_iterator p = entries.begin(); p != entries.end(); ++p) {
4209 f->open_object_section("object");
4210 f->dump_string("namespace", p->nspace);
4211 f->dump_string("object", p->oid);
4212 f->dump_string("key", p->locator);
4213 f->close_section();
4214 }
4215 f->close_section();
4216 }
4217 static void generate_test_instances(list<pg_nls_response_t*>& o) {
4218 o.push_back(new pg_nls_response_t);
4219 o.push_back(new pg_nls_response_t);
4220 o.back()->handle = hobject_t(object_t("hi"), "key", 1, 2, -1, "");
4221 o.back()->entries.push_back(librados::ListObjectImpl("", "one", ""));
4222 o.back()->entries.push_back(librados::ListObjectImpl("", "two", "twokey"));
4223 o.back()->entries.push_back(librados::ListObjectImpl("", "three", ""));
4224 o.push_back(new pg_nls_response_t);
4225 o.back()->handle = hobject_t(object_t("hi"), "key", 3, 4, -1, "");
4226 o.back()->entries.push_back(librados::ListObjectImpl("n1", "n1one", ""));
4227 o.back()->entries.push_back(librados::ListObjectImpl("n1", "n1two", "n1twokey"));
4228 o.back()->entries.push_back(librados::ListObjectImpl("n1", "n1three", ""));
4229 o.push_back(new pg_nls_response_t);
4230 o.back()->handle = hobject_t(object_t("hi"), "key", 5, 6, -1, "");
4231 o.back()->entries.push_back(librados::ListObjectImpl("", "one", ""));
4232 o.back()->entries.push_back(librados::ListObjectImpl("", "two", "twokey"));
4233 o.back()->entries.push_back(librados::ListObjectImpl("", "three", ""));
4234 o.back()->entries.push_back(librados::ListObjectImpl("n1", "n1one", ""));
4235 o.back()->entries.push_back(librados::ListObjectImpl("n1", "n1two", "n1twokey"));
4236 o.back()->entries.push_back(librados::ListObjectImpl("n1", "n1three", ""));
4237 }
4238 };
4239
4240 WRITE_CLASS_ENCODER(pg_nls_response_t)
4241
4242 // For backwards compatibility with older OSD requests
4243 struct pg_ls_response_t {
4244 collection_list_handle_t handle;
4245 list<pair<object_t, string> > entries;
4246
4247 void encode(bufferlist& bl) const {
4248 __u8 v = 1;
4249 ::encode(v, bl);
4250 ::encode(handle, bl);
4251 ::encode(entries, bl);
4252 }
4253 void decode(bufferlist::iterator& bl) {
4254 __u8 v;
4255 ::decode(v, bl);
4256 assert(v == 1);
4257 ::decode(handle, bl);
4258 ::decode(entries, bl);
4259 }
4260 void dump(Formatter *f) const {
4261 f->dump_stream("handle") << handle;
4262 f->open_array_section("entries");
4263 for (list<pair<object_t, string> >::const_iterator p = entries.begin(); p != entries.end(); ++p) {
4264 f->open_object_section("object");
4265 f->dump_stream("object") << p->first;
4266 f->dump_string("key", p->second);
4267 f->close_section();
4268 }
4269 f->close_section();
4270 }
4271 static void generate_test_instances(list<pg_ls_response_t*>& o) {
4272 o.push_back(new pg_ls_response_t);
4273 o.push_back(new pg_ls_response_t);
4274 o.back()->handle = hobject_t(object_t("hi"), "key", 1, 2, -1, "");
4275 o.back()->entries.push_back(make_pair(object_t("one"), string()));
4276 o.back()->entries.push_back(make_pair(object_t("two"), string("twokey")));
4277 }
4278 };
4279
4280 WRITE_CLASS_ENCODER(pg_ls_response_t)
4281
4282 /**
4283 * object_copy_cursor_t
4284 */
4285 struct object_copy_cursor_t {
4286 uint64_t data_offset;
4287 string omap_offset;
4288 bool attr_complete;
4289 bool data_complete;
4290 bool omap_complete;
4291
4292 object_copy_cursor_t()
4293 : data_offset(0),
4294 attr_complete(false),
4295 data_complete(false),
4296 omap_complete(false)
4297 {}
4298
4299 bool is_initial() const {
4300 return !attr_complete && data_offset == 0 && omap_offset.empty();
4301 }
4302 bool is_complete() const {
4303 return attr_complete && data_complete && omap_complete;
4304 }
4305
4306 static void generate_test_instances(list<object_copy_cursor_t*>& o);
4307 void encode(bufferlist& bl) const;
4308 void decode(bufferlist::iterator &bl);
4309 void dump(Formatter *f) const;
4310 };
4311 WRITE_CLASS_ENCODER(object_copy_cursor_t)
4312
4313 /**
4314 * object_copy_data_t
4315 *
4316 * Return data from a copy request. The semantics are a little strange
4317 * as a result of the encoding's heritage.
4318 *
4319 * In particular, the sender unconditionally fills in the cursor (from what
4320 * it receives and sends), the size, and the mtime, but is responsible for
4321 * figuring out whether it should put any data in the attrs, data, or
4322 * omap members (corresponding to xattrs, object data, and the omap entries)
4323 * based on external data (the client includes a max amount to return with
4324 * the copy request). The client then looks into the attrs, data, and/or omap
4325 * based on the contents of the cursor.
4326 */
4327 struct object_copy_data_t {
4328 enum {
4329 FLAG_DATA_DIGEST = 1<<0,
4330 FLAG_OMAP_DIGEST = 1<<1,
4331 };
4332 object_copy_cursor_t cursor;
4333 uint64_t size;
4334 utime_t mtime;
4335 uint32_t data_digest, omap_digest;
4336 uint32_t flags;
4337 map<string, bufferlist> attrs;
4338 bufferlist data;
4339 bufferlist omap_header;
4340 bufferlist omap_data;
4341
4342 /// which snaps we are defined for (if a snap and not the head)
4343 vector<snapid_t> snaps;
4344 ///< latest snap seq for the object (if head)
4345 snapid_t snap_seq;
4346
4347 ///< recent reqids on this object
4348 mempool::osd_pglog::vector<pair<osd_reqid_t, version_t> > reqids;
4349
4350 uint64_t truncate_seq;
4351 uint64_t truncate_size;
4352
4353 public:
4354 object_copy_data_t() :
4355 size((uint64_t)-1), data_digest(-1),
4356 omap_digest(-1), flags(0),
4357 truncate_seq(0),
4358 truncate_size(0) {}
4359
4360 static void generate_test_instances(list<object_copy_data_t*>& o);
4361 void encode(bufferlist& bl, uint64_t features) const;
4362 void decode(bufferlist::iterator& bl);
4363 void dump(Formatter *f) const;
4364 };
4365 WRITE_CLASS_ENCODER_FEATURES(object_copy_data_t)
4366
4367 /**
4368 * pg creation info
4369 */
4370 struct pg_create_t {
4371 epoch_t created; // epoch pg created
4372 pg_t parent; // split from parent (if != pg_t())
4373 __s32 split_bits;
4374
4375 pg_create_t()
4376 : created(0), split_bits(0) {}
4377 pg_create_t(unsigned c, pg_t p, int s)
4378 : created(c), parent(p), split_bits(s) {}
4379
4380 void encode(bufferlist &bl) const;
4381 void decode(bufferlist::iterator &bl);
4382 void dump(Formatter *f) const;
4383 static void generate_test_instances(list<pg_create_t*>& o);
4384 };
4385 WRITE_CLASS_ENCODER(pg_create_t)
4386
4387 // -----------------------------------------
4388
4389 struct osd_peer_stat_t {
4390 utime_t stamp;
4391
4392 osd_peer_stat_t() { }
4393
4394 void encode(bufferlist &bl) const;
4395 void decode(bufferlist::iterator &bl);
4396 void dump(Formatter *f) const;
4397 static void generate_test_instances(list<osd_peer_stat_t*>& o);
4398 };
4399 WRITE_CLASS_ENCODER(osd_peer_stat_t)
4400
4401 ostream& operator<<(ostream& out, const osd_peer_stat_t &stat);
4402
4403
4404 // -----------------------------------------
4405
4406 class ObjectExtent {
4407 /**
4408 * ObjectExtents are used for specifying IO behavior against RADOS
4409 * objects when one is using the ObjectCacher.
4410 *
4411 * To use this in a real system, *every member* must be filled
4412 * out correctly. In particular, make sure to initialize the
4413 * oloc correctly, as its default values are deliberate poison
4414 * and will cause internal ObjectCacher asserts.
4415 *
4416 * Similarly, your buffer_extents vector *must* specify a total
4417 * size equal to your length. If the buffer_extents inadvertently
4418 * contain less space than the length member specifies, you
4419 * will get unintelligible asserts deep in the ObjectCacher.
4420 *
4421 * If you are trying to do testing and don't care about actual
4422 * RADOS function, the simplest thing to do is to initialize
4423 * the ObjectExtent (truncate_size can be 0), create a single entry
4424 * in buffer_extents matching the length, and set oloc.pool to 0.
4425 */
4426 public:
4427 object_t oid; // object id
4428 uint64_t objectno;
4429 uint64_t offset; // in object
4430 uint64_t length; // in object
4431 uint64_t truncate_size; // in object
4432
4433 object_locator_t oloc; // object locator (pool etc)
4434
4435 vector<pair<uint64_t,uint64_t> > buffer_extents; // off -> len. extents in buffer being mapped (may be fragmented bc of striping!)
4436
4437 ObjectExtent() : objectno(0), offset(0), length(0), truncate_size(0) {}
4438 ObjectExtent(object_t o, uint64_t ono, uint64_t off, uint64_t l, uint64_t ts) :
4439 oid(o), objectno(ono), offset(off), length(l), truncate_size(ts) { }
4440 };
4441
4442 inline ostream& operator<<(ostream& out, const ObjectExtent &ex)
4443 {
4444 return out << "extent("
4445 << ex.oid << " (" << ex.objectno << ") in " << ex.oloc
4446 << " " << ex.offset << "~" << ex.length
4447 << " -> " << ex.buffer_extents
4448 << ")";
4449 }
4450
4451
4452 // ---------------------------------------
4453
4454 class OSDSuperblock {
4455 public:
4456 uuid_d cluster_fsid, osd_fsid;
4457 int32_t whoami; // my role in this fs.
4458 epoch_t current_epoch; // most recent epoch
4459 epoch_t oldest_map, newest_map; // oldest/newest maps we have.
4460 double weight;
4461
4462 CompatSet compat_features;
4463
4464 // last interval over which i mounted and was then active
4465 epoch_t mounted; // last epoch i mounted
4466 epoch_t clean_thru; // epoch i was active and clean thru
4467
4468 OSDSuperblock() :
4469 whoami(-1),
4470 current_epoch(0), oldest_map(0), newest_map(0), weight(0),
4471 mounted(0), clean_thru(0) {
4472 }
4473
4474 void encode(bufferlist &bl) const;
4475 void decode(bufferlist::iterator &bl);
4476 void dump(Formatter *f) const;
4477 static void generate_test_instances(list<OSDSuperblock*>& o);
4478 };
4479 WRITE_CLASS_ENCODER(OSDSuperblock)
4480
4481 inline ostream& operator<<(ostream& out, const OSDSuperblock& sb)
4482 {
4483 return out << "sb(" << sb.cluster_fsid
4484 << " osd." << sb.whoami
4485 << " " << sb.osd_fsid
4486 << " e" << sb.current_epoch
4487 << " [" << sb.oldest_map << "," << sb.newest_map << "]"
4488 << " lci=[" << sb.mounted << "," << sb.clean_thru << "]"
4489 << ")";
4490 }
4491
4492
4493 // -------
4494
4495
4496
4497
4498
4499
4500 /*
4501 * attached to object head. describes most recent snap context, and
4502 * set of existing clones.
4503 */
4504 struct SnapSet {
4505 snapid_t seq;
4506 bool head_exists;
4507 vector<snapid_t> snaps; // descending
4508 vector<snapid_t> clones; // ascending
4509 map<snapid_t, interval_set<uint64_t> > clone_overlap; // overlap w/ next newest
4510 map<snapid_t, uint64_t> clone_size;
4511 map<snapid_t, vector<snapid_t>> clone_snaps; // descending
4512
4513 SnapSet() : seq(0), head_exists(false) {}
4514 explicit SnapSet(bufferlist& bl) {
4515 bufferlist::iterator p = bl.begin();
4516 decode(p);
4517 }
4518
4519 bool is_legacy() const {
4520 return clone_snaps.size() < clones.size() || !head_exists;
4521 }
4522
4523 /// populate SnapSet from a librados::snap_set_t
4524 void from_snap_set(const librados::snap_set_t& ss, bool legacy);
4525
4526 /// get space accounted to clone
4527 uint64_t get_clone_bytes(snapid_t clone) const;
4528
4529 void encode(bufferlist& bl) const;
4530 void decode(bufferlist::iterator& bl);
4531 void dump(Formatter *f) const;
4532 static void generate_test_instances(list<SnapSet*>& o);
4533
4534 SnapContext get_ssc_as_of(snapid_t as_of) const {
4535 SnapContext out;
4536 out.seq = as_of;
4537 for (vector<snapid_t>::const_iterator i = snaps.begin();
4538 i != snaps.end();
4539 ++i) {
4540 if (*i <= as_of)
4541 out.snaps.push_back(*i);
4542 }
4543 return out;
4544 }
4545
4546 // return min element of snaps > after, return max if no such element
4547 snapid_t get_first_snap_after(snapid_t after, snapid_t max) const {
4548 for (vector<snapid_t>::const_reverse_iterator i = snaps.rbegin();
4549 i != snaps.rend();
4550 ++i) {
4551 if (*i > after)
4552 return *i;
4553 }
4554 return max;
4555 }
4556
4557 SnapSet get_filtered(const pg_pool_t &pinfo) const;
4558 void filter(const pg_pool_t &pinfo);
4559 };
4560 WRITE_CLASS_ENCODER(SnapSet)
4561
4562 ostream& operator<<(ostream& out, const SnapSet& cs);
4563
4564
4565
4566 #define OI_ATTR "_"
4567 #define SS_ATTR "snapset"
4568
4569 struct watch_info_t {
4570 uint64_t cookie;
4571 uint32_t timeout_seconds;
4572 entity_addr_t addr;
4573
4574 watch_info_t() : cookie(0), timeout_seconds(0) { }
4575 watch_info_t(uint64_t c, uint32_t t, const entity_addr_t& a) : cookie(c), timeout_seconds(t), addr(a) {}
4576
4577 void encode(bufferlist& bl, uint64_t features) const;
4578 void decode(bufferlist::iterator& bl);
4579 void dump(Formatter *f) const;
4580 static void generate_test_instances(list<watch_info_t*>& o);
4581 };
4582 WRITE_CLASS_ENCODER_FEATURES(watch_info_t)
4583
4584 static inline bool operator==(const watch_info_t& l, const watch_info_t& r) {
4585 return l.cookie == r.cookie && l.timeout_seconds == r.timeout_seconds
4586 && l.addr == r.addr;
4587 }
4588
4589 static inline ostream& operator<<(ostream& out, const watch_info_t& w) {
4590 return out << "watch(cookie " << w.cookie << " " << w.timeout_seconds << "s"
4591 << " " << w.addr << ")";
4592 }
4593
4594 struct notify_info_t {
4595 uint64_t cookie;
4596 uint64_t notify_id;
4597 uint32_t timeout;
4598 bufferlist bl;
4599 };
4600
4601 static inline ostream& operator<<(ostream& out, const notify_info_t& n) {
4602 return out << "notify(cookie " << n.cookie
4603 << " notify" << n.notify_id
4604 << " " << n.timeout << "s)";
4605 }
4606
4607 struct object_info_t;
4608 struct object_manifest_t {
4609 enum {
4610 TYPE_NONE = 0,
4611 TYPE_REDIRECT = 1, // start with this
4612 TYPE_CHUNKED = 2, // do this later
4613 };
4614 uint8_t type; // redirect, chunked, ...
4615 hobject_t redirect_target;
4616
4617 object_manifest_t() : type(0) { }
4618 object_manifest_t(uint8_t type, const hobject_t& redirect_target)
4619 : type(type), redirect_target(redirect_target) { }
4620
4621 bool is_empty() const {
4622 return type == TYPE_NONE;
4623 }
4624 bool is_redirect() const {
4625 return type == TYPE_REDIRECT;
4626 }
4627 bool is_chunked() const {
4628 return type == TYPE_CHUNKED;
4629 }
4630 static const char *get_type_name(uint8_t m) {
4631 switch (m) {
4632 case TYPE_NONE: return "none";
4633 case TYPE_REDIRECT: return "redirect";
4634 case TYPE_CHUNKED: return "chunked";
4635 default: return "unknown";
4636 }
4637 }
4638 const char *get_type_name() const {
4639 return get_type_name(type);
4640 }
4641 static void generate_test_instances(list<object_manifest_t*>& o);
4642 void encode(bufferlist &bl) const;
4643 void decode(bufferlist::iterator &bl);
4644 void dump(Formatter *f) const;
4645 friend ostream& operator<<(ostream& out, const object_info_t& oi);
4646 };
4647 WRITE_CLASS_ENCODER(object_manifest_t)
4648 ostream& operator<<(ostream& out, const object_manifest_t& oi);
4649
4650 struct object_info_t {
4651 hobject_t soid;
4652 eversion_t version, prior_version;
4653 version_t user_version;
4654 osd_reqid_t last_reqid;
4655
4656 uint64_t size;
4657 utime_t mtime;
4658 utime_t local_mtime; // local mtime
4659
4660 // note: these are currently encoded into a total 16 bits; see
4661 // encode()/decode() for the weirdness.
4662 typedef enum {
4663 FLAG_LOST = 1<<0,
4664 FLAG_WHITEOUT = 1<<1, // object logically does not exist
4665 FLAG_DIRTY = 1<<2, // object has been modified since last flushed or undirtied
4666 FLAG_OMAP = 1 << 3, // has (or may have) some/any omap data
4667 FLAG_DATA_DIGEST = 1 << 4, // has data crc
4668 FLAG_OMAP_DIGEST = 1 << 5, // has omap crc
4669 FLAG_CACHE_PIN = 1 << 6, // pin the object in cache tier
4670 FLAG_MANIFEST = 1 << 7, // has manifest
4671 // ...
4672 FLAG_USES_TMAP = 1<<8, // deprecated; no longer used.
4673 } flag_t;
4674
4675 flag_t flags;
4676
4677 static string get_flag_string(flag_t flags) {
4678 string s;
4679 vector<string> sv = get_flag_vector(flags);
4680 for (auto ss : sv) {
4681 s += string("|") + ss;
4682 }
4683 if (s.length())
4684 return s.substr(1);
4685 return s;
4686 }
4687 static vector<string> get_flag_vector(flag_t flags) {
4688 vector<string> sv;
4689 if (flags & FLAG_LOST)
4690 sv.insert(sv.end(), "lost");
4691 if (flags & FLAG_WHITEOUT)
4692 sv.insert(sv.end(), "whiteout");
4693 if (flags & FLAG_DIRTY)
4694 sv.insert(sv.end(), "dirty");
4695 if (flags & FLAG_USES_TMAP)
4696 sv.insert(sv.end(), "uses_tmap");
4697 if (flags & FLAG_OMAP)
4698 sv.insert(sv.end(), "omap");
4699 if (flags & FLAG_DATA_DIGEST)
4700 sv.insert(sv.end(), "data_digest");
4701 if (flags & FLAG_OMAP_DIGEST)
4702 sv.insert(sv.end(), "omap_digest");
4703 if (flags & FLAG_CACHE_PIN)
4704 sv.insert(sv.end(), "cache_pin");
4705 if (flags & FLAG_MANIFEST)
4706 sv.insert(sv.end(), "manifest");
4707 return sv;
4708 }
4709 string get_flag_string() const {
4710 return get_flag_string(flags);
4711 }
4712
4713 /// [clone] descending. pre-luminous; moved to SnapSet
4714 vector<snapid_t> legacy_snaps;
4715
4716 uint64_t truncate_seq, truncate_size;
4717
4718 map<pair<uint64_t, entity_name_t>, watch_info_t> watchers;
4719
4720 // opportunistic checksums; may or may not be present
4721 __u32 data_digest; ///< data crc32c
4722 __u32 omap_digest; ///< omap crc32c
4723
4724 // alloc hint attribute
4725 uint64_t expected_object_size, expected_write_size;
4726 uint32_t alloc_hint_flags;
4727
4728 struct object_manifest_t manifest;
4729
4730 void copy_user_bits(const object_info_t& other);
4731
4732 static ps_t legacy_object_locator_to_ps(const object_t &oid,
4733 const object_locator_t &loc);
4734
4735 bool test_flag(flag_t f) const {
4736 return (flags & f) == f;
4737 }
4738 void set_flag(flag_t f) {
4739 flags = (flag_t)(flags | f);
4740 }
4741 void clear_flag(flag_t f) {
4742 flags = (flag_t)(flags & ~f);
4743 }
4744 bool is_lost() const {
4745 return test_flag(FLAG_LOST);
4746 }
4747 bool is_whiteout() const {
4748 return test_flag(FLAG_WHITEOUT);
4749 }
4750 bool is_dirty() const {
4751 return test_flag(FLAG_DIRTY);
4752 }
4753 bool is_omap() const {
4754 return test_flag(FLAG_OMAP);
4755 }
4756 bool is_data_digest() const {
4757 return test_flag(FLAG_DATA_DIGEST);
4758 }
4759 bool is_omap_digest() const {
4760 return test_flag(FLAG_OMAP_DIGEST);
4761 }
4762 bool is_cache_pinned() const {
4763 return test_flag(FLAG_CACHE_PIN);
4764 }
4765 bool has_manifest() const {
4766 return test_flag(FLAG_MANIFEST);
4767 }
4768
4769 void set_data_digest(__u32 d) {
4770 set_flag(FLAG_DATA_DIGEST);
4771 data_digest = d;
4772 }
4773 void set_omap_digest(__u32 d) {
4774 set_flag(FLAG_OMAP_DIGEST);
4775 omap_digest = d;
4776 }
4777 void clear_data_digest() {
4778 clear_flag(FLAG_DATA_DIGEST);
4779 data_digest = -1;
4780 }
4781 void clear_omap_digest() {
4782 clear_flag(FLAG_OMAP_DIGEST);
4783 omap_digest = -1;
4784 }
4785 void new_object() {
4786 clear_data_digest();
4787 clear_omap_digest();
4788 }
4789
4790 void encode(bufferlist& bl, uint64_t features) const;
4791 void decode(bufferlist::iterator& bl);
4792 void decode(bufferlist& bl) {
4793 bufferlist::iterator p = bl.begin();
4794 decode(p);
4795 }
4796 void dump(Formatter *f) const;
4797 static void generate_test_instances(list<object_info_t*>& o);
4798
4799 explicit object_info_t()
4800 : user_version(0), size(0), flags((flag_t)0),
4801 truncate_seq(0), truncate_size(0),
4802 data_digest(-1), omap_digest(-1),
4803 expected_object_size(0), expected_write_size(0),
4804 alloc_hint_flags(0)
4805 {}
4806
4807 explicit object_info_t(const hobject_t& s)
4808 : soid(s),
4809 user_version(0), size(0), flags((flag_t)0),
4810 truncate_seq(0), truncate_size(0),
4811 data_digest(-1), omap_digest(-1),
4812 expected_object_size(0), expected_write_size(0),
4813 alloc_hint_flags(0)
4814 {}
4815
4816 explicit object_info_t(bufferlist& bl) {
4817 decode(bl);
4818 }
4819 };
4820 WRITE_CLASS_ENCODER_FEATURES(object_info_t)
4821
4822 ostream& operator<<(ostream& out, const object_info_t& oi);
4823
4824
4825
4826 // Object recovery
4827 struct ObjectRecoveryInfo {
4828 hobject_t soid;
4829 eversion_t version;
4830 uint64_t size;
4831 object_info_t oi;
4832 SnapSet ss; // only populated if soid is_snap()
4833 interval_set<uint64_t> copy_subset;
4834 map<hobject_t, interval_set<uint64_t>> clone_subset;
4835
4836 ObjectRecoveryInfo() : size(0) { }
4837
4838 static void generate_test_instances(list<ObjectRecoveryInfo*>& o);
4839 void encode(bufferlist &bl, uint64_t features) const;
4840 void decode(bufferlist::iterator &bl, int64_t pool = -1);
4841 ostream &print(ostream &out) const;
4842 void dump(Formatter *f) const;
4843 };
4844 WRITE_CLASS_ENCODER_FEATURES(ObjectRecoveryInfo)
4845 ostream& operator<<(ostream& out, const ObjectRecoveryInfo &inf);
4846
4847 struct ObjectRecoveryProgress {
4848 uint64_t data_recovered_to;
4849 string omap_recovered_to;
4850 bool first;
4851 bool data_complete;
4852 bool omap_complete;
4853 bool error = false;
4854
4855 ObjectRecoveryProgress()
4856 : data_recovered_to(0),
4857 first(true),
4858 data_complete(false), omap_complete(false) { }
4859
4860 bool is_complete(const ObjectRecoveryInfo& info) const {
4861 return (data_recovered_to >= (
4862 info.copy_subset.empty() ?
4863 0 : info.copy_subset.range_end())) &&
4864 omap_complete;
4865 }
4866
4867 static void generate_test_instances(list<ObjectRecoveryProgress*>& o);
4868 void encode(bufferlist &bl) const;
4869 void decode(bufferlist::iterator &bl);
4870 ostream &print(ostream &out) const;
4871 void dump(Formatter *f) const;
4872 };
4873 WRITE_CLASS_ENCODER(ObjectRecoveryProgress)
4874 ostream& operator<<(ostream& out, const ObjectRecoveryProgress &prog);
4875
4876 struct PushReplyOp {
4877 hobject_t soid;
4878
4879 static void generate_test_instances(list<PushReplyOp*>& o);
4880 void encode(bufferlist &bl) const;
4881 void decode(bufferlist::iterator &bl);
4882 ostream &print(ostream &out) const;
4883 void dump(Formatter *f) const;
4884
4885 uint64_t cost(CephContext *cct) const;
4886 };
4887 WRITE_CLASS_ENCODER(PushReplyOp)
4888 ostream& operator<<(ostream& out, const PushReplyOp &op);
4889
4890 struct PullOp {
4891 hobject_t soid;
4892
4893 ObjectRecoveryInfo recovery_info;
4894 ObjectRecoveryProgress recovery_progress;
4895
4896 static void generate_test_instances(list<PullOp*>& o);
4897 void encode(bufferlist &bl, uint64_t features) const;
4898 void decode(bufferlist::iterator &bl);
4899 ostream &print(ostream &out) const;
4900 void dump(Formatter *f) const;
4901
4902 uint64_t cost(CephContext *cct) const;
4903 };
4904 WRITE_CLASS_ENCODER_FEATURES(PullOp)
4905 ostream& operator<<(ostream& out, const PullOp &op);
4906
4907 struct PushOp {
4908 hobject_t soid;
4909 eversion_t version;
4910 bufferlist data;
4911 interval_set<uint64_t> data_included;
4912 bufferlist omap_header;
4913 map<string, bufferlist> omap_entries;
4914 map<string, bufferlist> attrset;
4915
4916 ObjectRecoveryInfo recovery_info;
4917 ObjectRecoveryProgress before_progress;
4918 ObjectRecoveryProgress after_progress;
4919
4920 static void generate_test_instances(list<PushOp*>& o);
4921 void encode(bufferlist &bl, uint64_t features) const;
4922 void decode(bufferlist::iterator &bl);
4923 ostream &print(ostream &out) const;
4924 void dump(Formatter *f) const;
4925
4926 uint64_t cost(CephContext *cct) const;
4927 };
4928 WRITE_CLASS_ENCODER_FEATURES(PushOp)
4929 ostream& operator<<(ostream& out, const PushOp &op);
4930
4931
4932 /*
4933 * summarize pg contents for purposes of a scrub
4934 */
4935 struct ScrubMap {
4936 struct object {
4937 map<string,bufferptr> attrs;
4938 uint64_t size;
4939 __u32 omap_digest; ///< omap crc32c
4940 __u32 digest; ///< data crc32c
4941 bool negative:1;
4942 bool digest_present:1;
4943 bool omap_digest_present:1;
4944 bool read_error:1;
4945 bool stat_error:1;
4946 bool ec_hash_mismatch:1;
4947 bool ec_size_mismatch:1;
4948 bool large_omap_object_found:1;
4949 uint64_t large_omap_object_key_count = 0;
4950 uint64_t large_omap_object_value_size = 0;
4951
4952 object() :
4953 // Init invalid size so it won't match if we get a stat EIO error
4954 size(-1), omap_digest(0), digest(0),
4955 negative(false), digest_present(false), omap_digest_present(false),
4956 read_error(false), stat_error(false), ec_hash_mismatch(false),
4957 ec_size_mismatch(false), large_omap_object_found(false) {}
4958
4959 void encode(bufferlist& bl) const;
4960 void decode(bufferlist::iterator& bl);
4961 void dump(Formatter *f) const;
4962 static void generate_test_instances(list<object*>& o);
4963 };
4964 WRITE_CLASS_ENCODER(object)
4965
4966 map<hobject_t,object> objects;
4967 eversion_t valid_through;
4968 eversion_t incr_since;
4969 bool has_large_omap_object_errors:1;
4970 boost::optional<bool> has_builtin_csum;
4971
4972 void merge_incr(const ScrubMap &l);
4973 void clear_from(const hobject_t& start) {
4974 objects.erase(objects.lower_bound(start), objects.end());
4975 }
4976 void insert(const ScrubMap &r) {
4977 objects.insert(r.objects.begin(), r.objects.end());
4978 }
4979 void swap(ScrubMap &r) {
4980 using std::swap;
4981 swap(objects, r.objects);
4982 swap(valid_through, r.valid_through);
4983 swap(incr_since, r.incr_since);
4984 }
4985
4986 void encode(bufferlist& bl) const;
4987 void decode(bufferlist::iterator& bl, int64_t pool=-1);
4988 void dump(Formatter *f) const;
4989 static void generate_test_instances(list<ScrubMap*>& o);
4990 };
4991 WRITE_CLASS_ENCODER(ScrubMap::object)
4992 WRITE_CLASS_ENCODER(ScrubMap)
4993
4994 struct ScrubMapBuilder {
4995 bool deep = false;
4996 vector<hobject_t> ls;
4997 size_t pos = 0;
4998 int64_t data_pos = 0;
4999 string omap_pos;
5000 int ret = 0;
5001 bufferhash data_hash, omap_hash; ///< accumulatinng hash value
5002 uint64_t omap_keys = 0;
5003 uint64_t omap_bytes = 0;
5004
5005 bool empty() {
5006 return ls.empty();
5007 }
5008 bool done() {
5009 return pos >= ls.size();
5010 }
5011 void reset() {
5012 *this = ScrubMapBuilder();
5013 }
5014
5015 bool data_done() {
5016 return data_pos < 0;
5017 }
5018
5019 void next_object() {
5020 ++pos;
5021 data_pos = 0;
5022 omap_pos.clear();
5023 omap_keys = 0;
5024 omap_bytes = 0;
5025 }
5026
5027 friend ostream& operator<<(ostream& out, const ScrubMapBuilder& pos) {
5028 out << "(" << pos.pos << "/" << pos.ls.size();
5029 if (pos.pos < pos.ls.size()) {
5030 out << " " << pos.ls[pos.pos];
5031 }
5032 if (pos.data_pos < 0) {
5033 out << " byte " << pos.data_pos;
5034 }
5035 if (!pos.omap_pos.empty()) {
5036 out << " key " << pos.omap_pos;
5037 }
5038 if (pos.deep) {
5039 out << " deep";
5040 }
5041 if (pos.ret) {
5042 out << " ret " << pos.ret;
5043 }
5044 return out << ")";
5045 }
5046 };
5047
5048 struct OSDOp {
5049 ceph_osd_op op;
5050 sobject_t soid;
5051
5052 bufferlist indata, outdata;
5053 errorcode32_t rval;
5054
5055 OSDOp() : rval(0) {
5056 memset(&op, 0, sizeof(ceph_osd_op));
5057 }
5058
5059 /**
5060 * split a bufferlist into constituent indata members of a vector of OSDOps
5061 *
5062 * @param ops [out] vector of OSDOps
5063 * @param in [in] combined data buffer
5064 */
5065 static void split_osd_op_vector_in_data(vector<OSDOp>& ops, bufferlist& in);
5066
5067 /**
5068 * merge indata members of a vector of OSDOp into a single bufferlist
5069 *
5070 * Notably this also encodes certain other OSDOp data into the data
5071 * buffer, including the sobject_t soid.
5072 *
5073 * @param ops [in] vector of OSDOps
5074 * @param out [out] combined data buffer
5075 */
5076 static void merge_osd_op_vector_in_data(vector<OSDOp>& ops, bufferlist& out);
5077
5078 /**
5079 * split a bufferlist into constituent outdata members of a vector of OSDOps
5080 *
5081 * @param ops [out] vector of OSDOps
5082 * @param in [in] combined data buffer
5083 */
5084 static void split_osd_op_vector_out_data(vector<OSDOp>& ops, bufferlist& in);
5085
5086 /**
5087 * merge outdata members of a vector of OSDOps into a single bufferlist
5088 *
5089 * @param ops [in] vector of OSDOps
5090 * @param out [out] combined data buffer
5091 */
5092 static void merge_osd_op_vector_out_data(vector<OSDOp>& ops, bufferlist& out);
5093
5094 /**
5095 * Clear data as much as possible, leave minimal data for historical op dump
5096 *
5097 * @param ops [in] vector of OSDOps
5098 */
5099 static void clear_data(vector<OSDOp>& ops);
5100 };
5101
5102 ostream& operator<<(ostream& out, const OSDOp& op);
5103
5104 struct watch_item_t {
5105 entity_name_t name;
5106 uint64_t cookie;
5107 uint32_t timeout_seconds;
5108 entity_addr_t addr;
5109
5110 watch_item_t() : cookie(0), timeout_seconds(0) { }
5111 watch_item_t(entity_name_t name, uint64_t cookie, uint32_t timeout,
5112 const entity_addr_t& addr)
5113 : name(name), cookie(cookie), timeout_seconds(timeout),
5114 addr(addr) { }
5115
5116 void encode(bufferlist &bl, uint64_t features) const {
5117 ENCODE_START(2, 1, bl);
5118 ::encode(name, bl);
5119 ::encode(cookie, bl);
5120 ::encode(timeout_seconds, bl);
5121 ::encode(addr, bl, features);
5122 ENCODE_FINISH(bl);
5123 }
5124 void decode(bufferlist::iterator &bl) {
5125 DECODE_START(2, bl);
5126 ::decode(name, bl);
5127 ::decode(cookie, bl);
5128 ::decode(timeout_seconds, bl);
5129 if (struct_v >= 2) {
5130 ::decode(addr, bl);
5131 }
5132 DECODE_FINISH(bl);
5133 }
5134 };
5135 WRITE_CLASS_ENCODER_FEATURES(watch_item_t)
5136
5137 struct obj_watch_item_t {
5138 hobject_t obj;
5139 watch_item_t wi;
5140 };
5141
5142 /**
5143 * obj list watch response format
5144 *
5145 */
5146 struct obj_list_watch_response_t {
5147 list<watch_item_t> entries;
5148
5149 void encode(bufferlist& bl, uint64_t features) const {
5150 ENCODE_START(1, 1, bl);
5151 ::encode(entries, bl, features);
5152 ENCODE_FINISH(bl);
5153 }
5154 void decode(bufferlist::iterator& bl) {
5155 DECODE_START(1, bl);
5156 ::decode(entries, bl);
5157 DECODE_FINISH(bl);
5158 }
5159 void dump(Formatter *f) const {
5160 f->open_array_section("entries");
5161 for (list<watch_item_t>::const_iterator p = entries.begin(); p != entries.end(); ++p) {
5162 f->open_object_section("watch");
5163 f->dump_stream("watcher") << p->name;
5164 f->dump_int("cookie", p->cookie);
5165 f->dump_int("timeout", p->timeout_seconds);
5166 f->open_object_section("addr");
5167 p->addr.dump(f);
5168 f->close_section();
5169 f->close_section();
5170 }
5171 f->close_section();
5172 }
5173 static void generate_test_instances(list<obj_list_watch_response_t*>& o) {
5174 entity_addr_t ea;
5175 o.push_back(new obj_list_watch_response_t);
5176 o.push_back(new obj_list_watch_response_t);
5177 ea.set_type(entity_addr_t::TYPE_LEGACY);
5178 ea.set_nonce(1000);
5179 ea.set_family(AF_INET);
5180 ea.set_in4_quad(0, 127);
5181 ea.set_in4_quad(1, 0);
5182 ea.set_in4_quad(2, 0);
5183 ea.set_in4_quad(3, 1);
5184 ea.set_port(1024);
5185 o.back()->entries.push_back(watch_item_t(entity_name_t(entity_name_t::TYPE_CLIENT, 1), 10, 30, ea));
5186 ea.set_nonce(1001);
5187 ea.set_in4_quad(3, 2);
5188 ea.set_port(1025);
5189 o.back()->entries.push_back(watch_item_t(entity_name_t(entity_name_t::TYPE_CLIENT, 2), 20, 60, ea));
5190 }
5191 };
5192 WRITE_CLASS_ENCODER_FEATURES(obj_list_watch_response_t)
5193
5194 struct clone_info {
5195 snapid_t cloneid;
5196 vector<snapid_t> snaps; // ascending
5197 vector< pair<uint64_t,uint64_t> > overlap;
5198 uint64_t size;
5199
5200 clone_info() : cloneid(CEPH_NOSNAP), size(0) {}
5201
5202 void encode(bufferlist& bl) const {
5203 ENCODE_START(1, 1, bl);
5204 ::encode(cloneid, bl);
5205 ::encode(snaps, bl);
5206 ::encode(overlap, bl);
5207 ::encode(size, bl);
5208 ENCODE_FINISH(bl);
5209 }
5210 void decode(bufferlist::iterator& bl) {
5211 DECODE_START(1, bl);
5212 ::decode(cloneid, bl);
5213 ::decode(snaps, bl);
5214 ::decode(overlap, bl);
5215 ::decode(size, bl);
5216 DECODE_FINISH(bl);
5217 }
5218 void dump(Formatter *f) const {
5219 if (cloneid == CEPH_NOSNAP)
5220 f->dump_string("cloneid", "HEAD");
5221 else
5222 f->dump_unsigned("cloneid", cloneid.val);
5223 f->open_array_section("snapshots");
5224 for (vector<snapid_t>::const_iterator p = snaps.begin(); p != snaps.end(); ++p) {
5225 f->open_object_section("snap");
5226 f->dump_unsigned("id", p->val);
5227 f->close_section();
5228 }
5229 f->close_section();
5230 f->open_array_section("overlaps");
5231 for (vector< pair<uint64_t,uint64_t> >::const_iterator q = overlap.begin();
5232 q != overlap.end(); ++q) {
5233 f->open_object_section("overlap");
5234 f->dump_unsigned("offset", q->first);
5235 f->dump_unsigned("length", q->second);
5236 f->close_section();
5237 }
5238 f->close_section();
5239 f->dump_unsigned("size", size);
5240 }
5241 static void generate_test_instances(list<clone_info*>& o) {
5242 o.push_back(new clone_info);
5243 o.push_back(new clone_info);
5244 o.back()->cloneid = 1;
5245 o.back()->snaps.push_back(1);
5246 o.back()->overlap.push_back(pair<uint64_t,uint64_t>(0,4096));
5247 o.back()->overlap.push_back(pair<uint64_t,uint64_t>(8192,4096));
5248 o.back()->size = 16384;
5249 o.push_back(new clone_info);
5250 o.back()->cloneid = CEPH_NOSNAP;
5251 o.back()->size = 32768;
5252 }
5253 };
5254 WRITE_CLASS_ENCODER(clone_info)
5255
5256 /**
5257 * obj list snaps response format
5258 *
5259 */
5260 struct obj_list_snap_response_t {
5261 vector<clone_info> clones; // ascending
5262 snapid_t seq;
5263
5264 void encode(bufferlist& bl) const {
5265 ENCODE_START(2, 1, bl);
5266 ::encode(clones, bl);
5267 ::encode(seq, bl);
5268 ENCODE_FINISH(bl);
5269 }
5270 void decode(bufferlist::iterator& bl) {
5271 DECODE_START(2, bl);
5272 ::decode(clones, bl);
5273 if (struct_v >= 2)
5274 ::decode(seq, bl);
5275 else
5276 seq = CEPH_NOSNAP;
5277 DECODE_FINISH(bl);
5278 }
5279 void dump(Formatter *f) const {
5280 f->open_array_section("clones");
5281 for (vector<clone_info>::const_iterator p = clones.begin(); p != clones.end(); ++p) {
5282 f->open_object_section("clone");
5283 p->dump(f);
5284 f->close_section();
5285 }
5286 f->dump_unsigned("seq", seq);
5287 f->close_section();
5288 }
5289 static void generate_test_instances(list<obj_list_snap_response_t*>& o) {
5290 o.push_back(new obj_list_snap_response_t);
5291 o.push_back(new obj_list_snap_response_t);
5292 clone_info cl;
5293 cl.cloneid = 1;
5294 cl.snaps.push_back(1);
5295 cl.overlap.push_back(pair<uint64_t,uint64_t>(0,4096));
5296 cl.overlap.push_back(pair<uint64_t,uint64_t>(8192,4096));
5297 cl.size = 16384;
5298 o.back()->clones.push_back(cl);
5299 cl.cloneid = CEPH_NOSNAP;
5300 cl.snaps.clear();
5301 cl.overlap.clear();
5302 cl.size = 32768;
5303 o.back()->clones.push_back(cl);
5304 o.back()->seq = 123;
5305 }
5306 };
5307
5308 WRITE_CLASS_ENCODER(obj_list_snap_response_t)
5309
5310 // PromoteCounter
5311
5312 struct PromoteCounter {
5313 std::atomic_ullong attempts{0};
5314 std::atomic_ullong objects{0};
5315 std::atomic_ullong bytes{0};
5316
5317 void attempt() {
5318 attempts++;
5319 }
5320
5321 void finish(uint64_t size) {
5322 objects++;
5323 bytes += size;
5324 }
5325
5326 void sample_and_attenuate(uint64_t *a, uint64_t *o, uint64_t *b) {
5327 *a = attempts;
5328 *o = objects;
5329 *b = bytes;
5330 attempts = *a / 2;
5331 objects = *o / 2;
5332 bytes = *b / 2;
5333 }
5334 };
5335
5336 /** store_statfs_t
5337 * ObjectStore full statfs information
5338 */
5339 struct store_statfs_t
5340 {
5341 uint64_t total = 0; // Total bytes
5342 uint64_t available = 0; // Free bytes available
5343
5344 int64_t allocated = 0; // Bytes allocated by the store
5345 int64_t stored = 0; // Bytes actually stored by the user
5346 int64_t compressed = 0; // Bytes stored after compression
5347 int64_t compressed_allocated = 0; // Bytes allocated for compressed data
5348 int64_t compressed_original = 0; // Bytes that were successfully compressed
5349
5350 void reset() {
5351 *this = store_statfs_t();
5352 }
5353 bool operator ==(const store_statfs_t& other) const;
5354 void dump(Formatter *f) const;
5355 };
5356 ostream &operator<<(ostream &lhs, const store_statfs_t &rhs);
5357
5358 #endif