]> git.proxmox.com Git - ceph.git/blobdiff - ceph/src/boost/boost/geometry/srs/projections/proj/krovak.hpp
import new upstream nautilus stable release 14.2.8
[ceph.git] / ceph / src / boost / boost / geometry / srs / projections / proj / krovak.hpp
index 09c24772ed2fe871d6cfc1c7a5a7edfaec3140cc..d1761f63712e2616aedcd566dacd581363f352e7 100644 (file)
@@ -1,13 +1,9 @@
-#ifndef BOOST_GEOMETRY_PROJECTIONS_KROVAK_HPP
-#define BOOST_GEOMETRY_PROJECTIONS_KROVAK_HPP
-
-// Boost.Geometry - extensions-gis-projections (based on PROJ4)
-// This file is automatically generated. DO NOT EDIT.
+// Boost.Geometry - gis-projections (based on PROJ4)
 
 // Copyright (c) 2008-2015 Barend Gehrels, Amsterdam, the Netherlands.
 
-// This file was modified by Oracle on 2017.
-// Modifications copyright (c) 2017, Oracle and/or its affiliates.
+// This file was modified by Oracle on 2017, 2018, 2019.
+// Modifications copyright (c) 2017-2019, Oracle and/or its affiliates.
 // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle.
 
 // Use, modification and distribution is subject to the Boost Software License,
 // PROJ4 is maintained by Frank Warmerdam
 // PROJ4 is converted to Boost.Geometry by Barend Gehrels
 
-// Last updated version of proj: 4.9.1
+// Last updated version of proj: 5.0.0
 
 // Original copyright notice:
 
 // Purpose:  Implementation of the krovak (Krovak) projection.
-// Definition: http://www.ihsenergy.com/epsg/guid7.html#1.4.3
+//           Definition: http://www.ihsenergy.com/epsg/guid7.html#1.4.3
 // Author:   Thomas Flemming, tf@ttqv.com
 // Copyright (c) 2001, Thomas Flemming, tf@ttqv.com
 
 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 // DEALINGS IN THE SOFTWARE.
 
+#ifndef BOOST_GEOMETRY_PROJECTIONS_KROVAK_HPP
+#define BOOST_GEOMETRY_PROJECTIONS_KROVAK_HPP
+
 #include <boost/geometry/srs/projections/impl/base_static.hpp>
 #include <boost/geometry/srs/projections/impl/base_dynamic.hpp>
-#include <boost/geometry/srs/projections/impl/projects.hpp>
 #include <boost/geometry/srs/projections/impl/factory_entry.hpp>
+#include <boost/geometry/srs/projections/impl/pj_param.hpp>
+#include <boost/geometry/srs/projections/impl/projects.hpp>
 
 namespace boost { namespace geometry
 {
 
-namespace srs { namespace par4
-{
-    struct krovak {};
-
-}} //namespace srs::par4
-
 namespace projections
 {
     #ifndef DOXYGEN_NO_DETAIL
     namespace detail { namespace krovak
     {
+            static double epsilon = 1e-15;
+            static double S45 = 0.785398163397448;  /* 45 deg */
+            static double S90 = 1.570796326794896;  /* 90 deg */
+            static double UQ  = 1.04216856380474;   /* DU(2, 59, 42, 42.69689) */
+            static double S0  = 1.37008346281555;   /* Latitude of pseudo standard parallel 78deg 30'00" N */
+            /* Not sure at all of the appropriate number for max_iter... */
+            static int max_iter = 100;
+
             template <typename T>
             struct par_krovak
             {
-                T    C_x;
+                T alpha;
+                T k;
+                T n;
+                T rho0;
+                T ad;
+                int czech;
             };
 
             /**
@@ -94,167 +101,78 @@ namespace projections
 
              **/
 
-            // template class, using CRTP to implement forward/inverse
-            template <typename CalculationType, typename Parameters>
-            struct base_krovak_ellipsoid : public base_t_fi<base_krovak_ellipsoid<CalculationType, Parameters>,
-                     CalculationType, Parameters>
+            template <typename T, typename Parameters>
+            struct base_krovak_ellipsoid
             {
-
-                typedef CalculationType geographic_type;
-                typedef CalculationType cartesian_type;
-
-                par_krovak<CalculationType> m_proj_parm;
-
-                inline base_krovak_ellipsoid(const Parameters& par)
-                    : base_t_fi<base_krovak_ellipsoid<CalculationType, Parameters>,
-                     CalculationType, Parameters>(*this, par) {}
+                par_krovak<T> m_proj_parm;
 
                 // FORWARD(e_forward)  ellipsoid
                 // Project coordinates from geographic (lon, lat) to cartesian (x, y)
-                inline void fwd(geographic_type& lp_lon, geographic_type& lp_lat, cartesian_type& xy_x, cartesian_type& xy_y) const
+                inline void fwd(Parameters const& par, T const& lp_lon, T const& lp_lat, T& xy_x, T& xy_y) const
                 {
-                /* calculate xy from lat/lon */
-
-                /* Constants, identical to inverse transform function */
-                    CalculationType s45, s90, e2, e, alfa, uq, u0, g, k, k1, n0, ro0, ad, a, s0, n;
-                    CalculationType gfi, u, fi0, deltav, s, d, eps, ro;
-
-
-                    s45 = 0.785398163397448;    /* 45 DEG */
-                    s90 = 2 * s45;
-                    fi0 = this->m_par.phi0;    /* Latitude of projection centre 49 DEG 30' */
-
-                   /* Ellipsoid is used as Parameter in for.c and inv.c, therefore a must
-                      be set to 1 here.
-                      Ellipsoid Bessel 1841 a = 6377397.155m 1/f = 299.1528128,
-                      e2=0.006674372230614;
-                   */
-                    a =  1; /* 6377397.155; */
-                    /* e2 = this->m_par.es;*/       /* 0.006674372230614; */
-                    e2 = 0.006674372230614;
-                    e = sqrt(e2);
+                    T gfi, u, deltav, s, d, eps, rho;
 
-                    alfa = sqrt(1. + (e2 * pow(cos(fi0), 4)) / (1. - e2));
+                    gfi = math::pow( (T(1) + par.e * sin(lp_lat)) / (T(1) - par.e * sin(lp_lat)), this->m_proj_parm.alpha * par.e / T(2));
 
-                    uq = 1.04216856380474;      /* DU(2, 59, 42, 42.69689) */
-                    u0 = asin(sin(fi0) / alfa);
-                    g = pow(   (1. + e * sin(fi0)) / (1. - e * sin(fi0)) , alfa * e / 2.  );
+                    u = 2. * (atan(this->m_proj_parm.k * math::pow( tan(lp_lat / T(2) + S45), this->m_proj_parm.alpha) / gfi)-S45);
+                    deltav = -lp_lon * this->m_proj_parm.alpha;
 
-                    k = tan( u0 / 2. + s45) / pow  (tan(fi0 / 2. + s45) , alfa) * g;
-
-                    k1 = this->m_par.k0;
-                    n0 = a * sqrt(1. - e2) / (1. - e2 * pow(sin(fi0), 2));
-                    s0 = 1.37008346281555;       /* Latitude of pseudo standard parallel 78 DEG 30'00" N */
-                    n = sin(s0);
-                    ro0 = k1 * n0 / tan(s0);
-                    ad = s90 - uq;
-
-                /* Transformation */
-
-                    gfi =pow ( ((1. + e * sin(lp_lat)) /
-                               (1. - e * sin(lp_lat))) , (alfa * e / 2.));
+                    s = asin(cos(this->m_proj_parm.ad) * sin(u) + sin(this->m_proj_parm.ad) * cos(u) * cos(deltav));
+                    d = asin(cos(u) * sin(deltav) / cos(s));
 
-                    u= 2. * (atan(k * pow( tan(lp_lat / 2. + s45), alfa) / gfi)-s45);
+                    eps = this->m_proj_parm.n * d;
+                    rho = this->m_proj_parm.rho0 * math::pow(tan(S0 / T(2) + S45) , this->m_proj_parm.n) / math::pow(tan(s / T(2) + S45) , this->m_proj_parm.n);
 
-                    deltav = - lp_lon * alfa;
+                    xy_y = rho * cos(eps);
+                    xy_x = rho * sin(eps);
 
-                    s = asin(cos(ad) * sin(u) + sin(ad) * cos(u) * cos(deltav));
-                    d = asin(cos(u) * sin(deltav) / cos(s));
-                    eps = n * d;
-                    ro = ro0 * pow(tan(s0 / 2. + s45) , n) / pow(tan(s / 2. + s45) , n)   ;
-
-                   /* x and y are reverted! */
-                    xy_y = ro * cos(eps) / a;
-                    xy_x = ro * sin(eps) / a;
-
-                        if( !pj_param(this->m_par.params, "tczech").i )
-                      {
-                        xy_y *= -1.0;
-                        xy_x *= -1.0;
-                      }
+                    xy_y *= this->m_proj_parm.czech;
+                    xy_x *= this->m_proj_parm.czech;
                 }
 
                 // INVERSE(e_inverse)  ellipsoid
                 // Project coordinates from cartesian (x, y) to geographic (lon, lat)
-                inline void inv(cartesian_type& xy_x, cartesian_type& xy_y, geographic_type& lp_lon, geographic_type& lp_lat) const
+                inline void inv(Parameters const& par, T xy_x, T xy_y, T& lp_lon, T& lp_lat) const
                 {
-                    /* calculate lat/lon from xy */
-
-                /* Constants, identisch wie in der Umkehrfunktion */
-                    CalculationType s45, s90, fi0, e2, e, alfa, uq, u0, g, k, k1, n0, ro0, ad, a, s0, n;
-                    CalculationType u, deltav, s, d, eps, ro, fi1, xy0;
-                    int ok;
-
-                    s45 = 0.785398163397448;    /* 45 DEG */
-                    s90 = 2 * s45;
-                    fi0 = this->m_par.phi0;    /* Latitude of projection centre 49 DEG 30' */
-
-
-                   /* Ellipsoid is used as Parameter in for.c and inv.c, therefore a must
-                      be set to 1 here.
-                      Ellipsoid Bessel 1841 a = 6377397.155m 1/f = 299.1528128,
-                      e2=0.006674372230614;
-                   */
-                    a = 1; /* 6377397.155; */
-                    /* e2 = this->m_par.es; */      /* 0.006674372230614; */
-                    e2 = 0.006674372230614;
-                    e = sqrt(e2);
-
-                    alfa = sqrt(1. + (e2 * pow(cos(fi0), 4)) / (1. - e2));
-                    uq = 1.04216856380474;      /* DU(2, 59, 42, 42.69689) */
-                    u0 = asin(sin(fi0) / alfa);
-                    g = pow(   (1. + e * sin(fi0)) / (1. - e * sin(fi0)) , alfa * e / 2.  );
-
-                    k = tan( u0 / 2. + s45) / pow  (tan(fi0 / 2. + s45) , alfa) * g;
-
-                    k1 = this->m_par.k0;
-                    n0 = a * sqrt(1. - e2) / (1. - e2 * pow(sin(fi0), 2));
-                    s0 = 1.37008346281555;       /* Latitude of pseudo standard parallel 78 DEG 30'00" N */
-                    n = sin(s0);
-                    ro0 = k1 * n0 / tan(s0);
-                    ad = s90 - uq;
-
-
-                /* Transformation */
-                   /* revert y, x*/
-                    xy0=xy_x;
-                    xy_x=xy_y;
-                    xy_y=xy0;
-
-                        if( !pj_param(this->m_par.params, "tczech").i )
-                      {
-                        xy_x *= -1.0;
-                        xy_y *= -1.0;
-                      }
-
-                    ro = sqrt(xy_x * xy_x + xy_y * xy_y);
+                    T u, deltav, s, d, eps, rho, fi1, xy0;
+                    int i;
+
+                    // TODO: replace with std::swap()
+                    xy0 = xy_x;
+                    xy_x = xy_y;
+                    xy_y = xy0;
+
+                    xy_x *= this->m_proj_parm.czech;
+                    xy_y *= this->m_proj_parm.czech;
+
+                    rho = sqrt(xy_x * xy_x + xy_y * xy_y);
                     eps = atan2(xy_y, xy_x);
-                    d = eps / sin(s0);
-                    s = 2. * (atan(  pow(ro0 / ro, 1. / n) * tan(s0 / 2. + s45)) - s45);
 
-                    u = asin(cos(ad) * sin(s) - sin(ad) * cos(s) * cos(d));
-                    deltav = asin(cos(s) * sin(d) / cos(u));
+                    d = eps / sin(S0);
+                    s = T(2) * (atan(math::pow(this->m_proj_parm.rho0 / rho, T(1) / this->m_proj_parm.n) * tan(S0 / T(2) + S45)) - S45);
 
-                    lp_lon = this->m_par.lam0 - deltav / alfa;
+                    u = asin(cos(this->m_proj_parm.ad) * sin(s) - sin(this->m_proj_parm.ad) * cos(s) * cos(d));
+                    deltav = asin(cos(s) * sin(d) / cos(u));
 
-                /* ITERATION FOR lp_lat */
-                   fi1 = u;
+                    lp_lon = par.lam0 - deltav / this->m_proj_parm.alpha;
 
-                   ok = 0;
-                   do
-                   {
-                       lp_lat = 2. * ( atan( pow( k, -1. / alfa)  *
-                                            pow( tan(u / 2. + s45) , 1. / alfa)  *
-                                            pow( (1. + e * sin(fi1)) / (1. - e * sin(fi1)) , e / 2.)
-                                           )  - s45);
+                    /* ITERATION FOR lp_lat */
+                    fi1 = u;
 
-                      if (fabs(fi1 - lp_lat) < 0.000000000000001) ok=1;
-                      fi1 = lp_lat;
+                    for (i = max_iter; i ; --i) {
+                        lp_lat = T(2) * ( atan( math::pow( this->m_proj_parm.k, T(-1) / this->m_proj_parm.alpha)  *
+                                              math::pow( tan(u / T(2) + S45) , T(1) / this->m_proj_parm.alpha)  *
+                                              math::pow( (T(1) + par.e * sin(fi1)) / (T(1) - par.e * sin(fi1)) , par.e / T(2))
+                                            )  - S45);
 
-                   }
-                   while (ok==0);
+                        if (fabs(fi1 - lp_lat) < epsilon)
+                            break;
+                        fi1 = lp_lat;
+                    }
+                    if( i == 0 )
+                        BOOST_THROW_EXCEPTION( projection_exception(error_non_convergent) );
 
-                   lp_lon -= this->m_par.lam0;
+                   lp_lon -= par.lam0;
                 }
 
                 static inline std::string get_name()
@@ -265,35 +183,43 @@ namespace projections
             };
 
             // Krovak
-            template <typename Parameters, typename T>
-            inline void setup_krovak(Parameters& par, par_krovak<T>& proj_parm)
+            template <typename Params, typename Parameters, typename T>
+            inline void setup_krovak(Params const& params, Parameters& par, par_krovak<T>& proj_parm)
             {
-                T ts;
-                /* read some Parameters,
-                 * here Latitude Truescale */
-
-                ts = pj_param(par.params, "rlat_ts").f;
-                proj_parm.C_x = ts;
+                T u0, n0, g;
 
                 /* we want Bessel as fixed ellipsoid */
                 par.a = 6377397.155;
-                par.e = sqrt(par.es = 0.006674372230614);
-
-                    /* if latitude of projection center is not set, use 49d30'N */
-                if (!pj_param(par.params, "tlat_0").i)
-                        par.phi0 = 0.863937979737193;
-
-                    /* if center long is not set use 42d30'E of Ferro - 17d40' for Ferro */
-                    /* that will correspond to using longitudes relative to greenwich    */
-                    /* as input and output, instead of lat/long relative to Ferro */
-                if (!pj_param(par.params, "tlon_0").i)
-                        par.lam0 = 0.7417649320975901 - 0.308341501185665;
-
-                    /* if scale not set default to 0.9999 */
-                if (!pj_param(par.params, "tk").i)
-                        par.k0 = 0.9999;
-
-                /* always the same */
+                par.es = 0.006674372230614;
+                par.e = sqrt(par.es);
+
+                /* if latitude of projection center is not set, use 49d30'N */
+                if (!pj_param_exists<srs::spar::lat_0>(params, "lat_0", srs::dpar::lat_0))
+                    par.phi0 = 0.863937979737193;
+
+                /* if center long is not set use 42d30'E of Ferro - 17d40' for Ferro */
+                /* that will correspond to using longitudes relative to greenwich    */
+                /* as input and output, instead of lat/long relative to Ferro */
+                if (!pj_param_exists<srs::spar::lon_0>(params, "lon_0", srs::dpar::lon_0))
+                    par.lam0 = 0.7417649320975901 - 0.308341501185665;
+
+                /* if scale not set default to 0.9999 */
+                if (!pj_param_exists<srs::spar::k>(params, "k", srs::dpar::k))
+                    par.k0 = 0.9999;
+
+                proj_parm.czech = 1;
+                if( !pj_param_exists<srs::spar::czech>(params, "czech", srs::dpar::czech) )
+                    proj_parm.czech = -1;
+
+                /* Set up shared parameters between forward and inverse */
+                proj_parm.alpha = sqrt(T(1) + (par.es * math::pow(cos(par.phi0), 4)) / (T(1) - par.es));
+                u0 = asin(sin(par.phi0) / proj_parm.alpha);
+                g = math::pow( (T(1) + par.e * sin(par.phi0)) / (T(1) - par.e * sin(par.phi0)) , proj_parm.alpha * par.e / T(2) );
+                proj_parm.k = tan( u0 / 2. + S45) / math::pow(tan(par.phi0 / T(2) + S45) , proj_parm.alpha) * g;
+                n0 = sqrt(T(1) - par.es) / (T(1) - par.es * math::pow(sin(par.phi0), 2));
+                proj_parm.n = sin(S0);
+                proj_parm.rho0 = par.k0 * n0 / tan(S0);
+                proj_parm.ad = S90 - UQ;
             }
 
     }} // namespace detail::krovak
@@ -316,12 +242,13 @@ namespace projections
         \par Example
         \image html ex_krovak.gif
     */
-    template <typename CalculationType, typename Parameters>
-    struct krovak_ellipsoid : public detail::krovak::base_krovak_ellipsoid<CalculationType, Parameters>
+    template <typename T, typename Parameters>
+    struct krovak_ellipsoid : public detail::krovak::base_krovak_ellipsoid<T, Parameters>
     {
-        inline krovak_ellipsoid(const Parameters& par) : detail::krovak::base_krovak_ellipsoid<CalculationType, Parameters>(par)
+        template <typename Params>
+        inline krovak_ellipsoid(Params const& params, Parameters & par)
         {
-            detail::krovak::setup_krovak(this->m_par, this->m_proj_parm);
+            detail::krovak::setup_krovak(params, par, this->m_proj_parm);
         }
     };
 
@@ -330,23 +257,14 @@ namespace projections
     {
 
         // Static projection
-        BOOST_GEOMETRY_PROJECTIONS_DETAIL_STATIC_PROJECTION(srs::par4::krovak, krovak_ellipsoid, krovak_ellipsoid)
+        BOOST_GEOMETRY_PROJECTIONS_DETAIL_STATIC_PROJECTION_FI(srs::spar::proj_krovak, krovak_ellipsoid)
 
         // Factory entry(s)
-        template <typename CalculationType, typename Parameters>
-        class krovak_entry : public detail::factory_entry<CalculationType, Parameters>
-        {
-            public :
-                virtual base_v<CalculationType, Parameters>* create_new(const Parameters& par) const
-                {
-                    return new base_v_fi<krovak_ellipsoid<CalculationType, Parameters>, CalculationType, Parameters>(par);
-                }
-        };
-
-        template <typename CalculationType, typename Parameters>
-        inline void krovak_init(detail::base_factory<CalculationType, Parameters>& factory)
+        BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_ENTRY_FI(krovak_entry, krovak_ellipsoid)
+        
+        BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_BEGIN(krovak_init)
         {
-            factory.add_to_factory("krovak", new krovak_entry<CalculationType, Parameters>);
+            BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_ENTRY(krovak, krovak_entry)
         }
 
     } // namespace detail