]> git.proxmox.com Git - ceph.git/blobdiff - ceph/src/jaegertracing/opentelemetry-cpp/third_party/googletest/googlemock/include/gmock/gmock-actions.h
update ceph source to reef 18.1.2
[ceph.git] / ceph / src / jaegertracing / opentelemetry-cpp / third_party / googletest / googlemock / include / gmock / gmock-actions.h
diff --git a/ceph/src/jaegertracing/opentelemetry-cpp/third_party/googletest/googlemock/include/gmock/gmock-actions.h b/ceph/src/jaegertracing/opentelemetry-cpp/third_party/googletest/googlemock/include/gmock/gmock-actions.h
new file mode 100644 (file)
index 0000000..02b17c7
--- /dev/null
@@ -0,0 +1,1706 @@
+// Copyright 2007, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+//     * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//     * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+//     * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+
+// Google Mock - a framework for writing C++ mock classes.
+//
+// The ACTION* family of macros can be used in a namespace scope to
+// define custom actions easily.  The syntax:
+//
+//   ACTION(name) { statements; }
+//
+// will define an action with the given name that executes the
+// statements.  The value returned by the statements will be used as
+// the return value of the action.  Inside the statements, you can
+// refer to the K-th (0-based) argument of the mock function by
+// 'argK', and refer to its type by 'argK_type'.  For example:
+//
+//   ACTION(IncrementArg1) {
+//     arg1_type temp = arg1;
+//     return ++(*temp);
+//   }
+//
+// allows you to write
+//
+//   ...WillOnce(IncrementArg1());
+//
+// You can also refer to the entire argument tuple and its type by
+// 'args' and 'args_type', and refer to the mock function type and its
+// return type by 'function_type' and 'return_type'.
+//
+// Note that you don't need to specify the types of the mock function
+// arguments.  However rest assured that your code is still type-safe:
+// you'll get a compiler error if *arg1 doesn't support the ++
+// operator, or if the type of ++(*arg1) isn't compatible with the
+// mock function's return type, for example.
+//
+// Sometimes you'll want to parameterize the action.   For that you can use
+// another macro:
+//
+//   ACTION_P(name, param_name) { statements; }
+//
+// For example:
+//
+//   ACTION_P(Add, n) { return arg0 + n; }
+//
+// will allow you to write:
+//
+//   ...WillOnce(Add(5));
+//
+// Note that you don't need to provide the type of the parameter
+// either.  If you need to reference the type of a parameter named
+// 'foo', you can write 'foo_type'.  For example, in the body of
+// ACTION_P(Add, n) above, you can write 'n_type' to refer to the type
+// of 'n'.
+//
+// We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support
+// multi-parameter actions.
+//
+// For the purpose of typing, you can view
+//
+//   ACTION_Pk(Foo, p1, ..., pk) { ... }
+//
+// as shorthand for
+//
+//   template <typename p1_type, ..., typename pk_type>
+//   FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... }
+//
+// In particular, you can provide the template type arguments
+// explicitly when invoking Foo(), as in Foo<long, bool>(5, false);
+// although usually you can rely on the compiler to infer the types
+// for you automatically.  You can assign the result of expression
+// Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ...,
+// pk_type>.  This can be useful when composing actions.
+//
+// You can also overload actions with different numbers of parameters:
+//
+//   ACTION_P(Plus, a) { ... }
+//   ACTION_P2(Plus, a, b) { ... }
+//
+// While it's tempting to always use the ACTION* macros when defining
+// a new action, you should also consider implementing ActionInterface
+// or using MakePolymorphicAction() instead, especially if you need to
+// use the action a lot.  While these approaches require more work,
+// they give you more control on the types of the mock function
+// arguments and the action parameters, which in general leads to
+// better compiler error messages that pay off in the long run.  They
+// also allow overloading actions based on parameter types (as opposed
+// to just based on the number of parameters).
+//
+// CAVEAT:
+//
+// ACTION*() can only be used in a namespace scope as templates cannot be
+// declared inside of a local class.
+// Users can, however, define any local functors (e.g. a lambda) that
+// can be used as actions.
+//
+// MORE INFORMATION:
+//
+// To learn more about using these macros, please search for 'ACTION' on
+// https://github.com/google/googletest/blob/master/googlemock/docs/cook_book.md
+
+// GOOGLETEST_CM0002 DO NOT DELETE
+
+#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
+#define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
+
+#ifndef _WIN32_WCE
+# include <errno.h>
+#endif
+
+#include <algorithm>
+#include <functional>
+#include <memory>
+#include <string>
+#include <tuple>
+#include <type_traits>
+#include <utility>
+
+#include "gmock/internal/gmock-internal-utils.h"
+#include "gmock/internal/gmock-port.h"
+#include "gmock/internal/gmock-pp.h"
+
+#ifdef _MSC_VER
+# pragma warning(push)
+# pragma warning(disable:4100)
+#endif
+
+namespace testing {
+
+// To implement an action Foo, define:
+//   1. a class FooAction that implements the ActionInterface interface, and
+//   2. a factory function that creates an Action object from a
+//      const FooAction*.
+//
+// The two-level delegation design follows that of Matcher, providing
+// consistency for extension developers.  It also eases ownership
+// management as Action objects can now be copied like plain values.
+
+namespace internal {
+
+// BuiltInDefaultValueGetter<T, true>::Get() returns a
+// default-constructed T value.  BuiltInDefaultValueGetter<T,
+// false>::Get() crashes with an error.
+//
+// This primary template is used when kDefaultConstructible is true.
+template <typename T, bool kDefaultConstructible>
+struct BuiltInDefaultValueGetter {
+  static T Get() { return T(); }
+};
+template <typename T>
+struct BuiltInDefaultValueGetter<T, false> {
+  static T Get() {
+    Assert(false, __FILE__, __LINE__,
+           "Default action undefined for the function return type.");
+    return internal::Invalid<T>();
+    // The above statement will never be reached, but is required in
+    // order for this function to compile.
+  }
+};
+
+// BuiltInDefaultValue<T>::Get() returns the "built-in" default value
+// for type T, which is NULL when T is a raw pointer type, 0 when T is
+// a numeric type, false when T is bool, or "" when T is string or
+// std::string.  In addition, in C++11 and above, it turns a
+// default-constructed T value if T is default constructible.  For any
+// other type T, the built-in default T value is undefined, and the
+// function will abort the process.
+template <typename T>
+class BuiltInDefaultValue {
+ public:
+  // This function returns true if and only if type T has a built-in default
+  // value.
+  static bool Exists() {
+    return ::std::is_default_constructible<T>::value;
+  }
+
+  static T Get() {
+    return BuiltInDefaultValueGetter<
+        T, ::std::is_default_constructible<T>::value>::Get();
+  }
+};
+
+// This partial specialization says that we use the same built-in
+// default value for T and const T.
+template <typename T>
+class BuiltInDefaultValue<const T> {
+ public:
+  static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
+  static T Get() { return BuiltInDefaultValue<T>::Get(); }
+};
+
+// This partial specialization defines the default values for pointer
+// types.
+template <typename T>
+class BuiltInDefaultValue<T*> {
+ public:
+  static bool Exists() { return true; }
+  static T* Get() { return nullptr; }
+};
+
+// The following specializations define the default values for
+// specific types we care about.
+#define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
+  template <> \
+  class BuiltInDefaultValue<type> { \
+   public: \
+    static bool Exists() { return true; } \
+    static type Get() { return value; } \
+  }
+
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, );  // NOLINT
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
+
+// There's no need for a default action for signed wchar_t, as that
+// type is the same as wchar_t for gcc, and invalid for MSVC.
+//
+// There's also no need for a default action for unsigned wchar_t, as
+// that type is the same as unsigned int for gcc, and invalid for
+// MSVC.
+#if GMOCK_WCHAR_T_IS_NATIVE_
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U);  // NOLINT
+#endif
+
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U);  // NOLINT
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0);     // NOLINT
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL);  // NOLINT
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L);     // NOLINT
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0);  // NOLINT
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0);  // NOLINT
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
+
+#undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
+
+// Simple two-arg form of std::disjunction.
+template <typename P, typename Q>
+using disjunction = typename ::std::conditional<P::value, P, Q>::type;
+
+}  // namespace internal
+
+// When an unexpected function call is encountered, Google Mock will
+// let it return a default value if the user has specified one for its
+// return type, or if the return type has a built-in default value;
+// otherwise Google Mock won't know what value to return and will have
+// to abort the process.
+//
+// The DefaultValue<T> class allows a user to specify the
+// default value for a type T that is both copyable and publicly
+// destructible (i.e. anything that can be used as a function return
+// type).  The usage is:
+//
+//   // Sets the default value for type T to be foo.
+//   DefaultValue<T>::Set(foo);
+template <typename T>
+class DefaultValue {
+ public:
+  // Sets the default value for type T; requires T to be
+  // copy-constructable and have a public destructor.
+  static void Set(T x) {
+    delete producer_;
+    producer_ = new FixedValueProducer(x);
+  }
+
+  // Provides a factory function to be called to generate the default value.
+  // This method can be used even if T is only move-constructible, but it is not
+  // limited to that case.
+  typedef T (*FactoryFunction)();
+  static void SetFactory(FactoryFunction factory) {
+    delete producer_;
+    producer_ = new FactoryValueProducer(factory);
+  }
+
+  // Unsets the default value for type T.
+  static void Clear() {
+    delete producer_;
+    producer_ = nullptr;
+  }
+
+  // Returns true if and only if the user has set the default value for type T.
+  static bool IsSet() { return producer_ != nullptr; }
+
+  // Returns true if T has a default return value set by the user or there
+  // exists a built-in default value.
+  static bool Exists() {
+    return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
+  }
+
+  // Returns the default value for type T if the user has set one;
+  // otherwise returns the built-in default value. Requires that Exists()
+  // is true, which ensures that the return value is well-defined.
+  static T Get() {
+    return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get()
+                                : producer_->Produce();
+  }
+
+ private:
+  class ValueProducer {
+   public:
+    virtual ~ValueProducer() {}
+    virtual T Produce() = 0;
+  };
+
+  class FixedValueProducer : public ValueProducer {
+   public:
+    explicit FixedValueProducer(T value) : value_(value) {}
+    T Produce() override { return value_; }
+
+   private:
+    const T value_;
+    GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer);
+  };
+
+  class FactoryValueProducer : public ValueProducer {
+   public:
+    explicit FactoryValueProducer(FactoryFunction factory)
+        : factory_(factory) {}
+    T Produce() override { return factory_(); }
+
+   private:
+    const FactoryFunction factory_;
+    GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer);
+  };
+
+  static ValueProducer* producer_;
+};
+
+// This partial specialization allows a user to set default values for
+// reference types.
+template <typename T>
+class DefaultValue<T&> {
+ public:
+  // Sets the default value for type T&.
+  static void Set(T& x) {  // NOLINT
+    address_ = &x;
+  }
+
+  // Unsets the default value for type T&.
+  static void Clear() { address_ = nullptr; }
+
+  // Returns true if and only if the user has set the default value for type T&.
+  static bool IsSet() { return address_ != nullptr; }
+
+  // Returns true if T has a default return value set by the user or there
+  // exists a built-in default value.
+  static bool Exists() {
+    return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
+  }
+
+  // Returns the default value for type T& if the user has set one;
+  // otherwise returns the built-in default value if there is one;
+  // otherwise aborts the process.
+  static T& Get() {
+    return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get()
+                               : *address_;
+  }
+
+ private:
+  static T* address_;
+};
+
+// This specialization allows DefaultValue<void>::Get() to
+// compile.
+template <>
+class DefaultValue<void> {
+ public:
+  static bool Exists() { return true; }
+  static void Get() {}
+};
+
+// Points to the user-set default value for type T.
+template <typename T>
+typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr;
+
+// Points to the user-set default value for type T&.
+template <typename T>
+T* DefaultValue<T&>::address_ = nullptr;
+
+// Implement this interface to define an action for function type F.
+template <typename F>
+class ActionInterface {
+ public:
+  typedef typename internal::Function<F>::Result Result;
+  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
+
+  ActionInterface() {}
+  virtual ~ActionInterface() {}
+
+  // Performs the action.  This method is not const, as in general an
+  // action can have side effects and be stateful.  For example, a
+  // get-the-next-element-from-the-collection action will need to
+  // remember the current element.
+  virtual Result Perform(const ArgumentTuple& args) = 0;
+
+ private:
+  GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface);
+};
+
+// An Action<F> is a copyable and IMMUTABLE (except by assignment)
+// object that represents an action to be taken when a mock function
+// of type F is called.  The implementation of Action<T> is just a
+// std::shared_ptr to const ActionInterface<T>. Don't inherit from Action!
+// You can view an object implementing ActionInterface<F> as a
+// concrete action (including its current state), and an Action<F>
+// object as a handle to it.
+template <typename F>
+class Action {
+  // Adapter class to allow constructing Action from a legacy ActionInterface.
+  // New code should create Actions from functors instead.
+  struct ActionAdapter {
+    // Adapter must be copyable to satisfy std::function requirements.
+    ::std::shared_ptr<ActionInterface<F>> impl_;
+
+    template <typename... Args>
+    typename internal::Function<F>::Result operator()(Args&&... args) {
+      return impl_->Perform(
+          ::std::forward_as_tuple(::std::forward<Args>(args)...));
+    }
+  };
+
+  template <typename G>
+  using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>;
+
+ public:
+  typedef typename internal::Function<F>::Result Result;
+  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
+
+  // Constructs a null Action.  Needed for storing Action objects in
+  // STL containers.
+  Action() {}
+
+  // Construct an Action from a specified callable.
+  // This cannot take std::function directly, because then Action would not be
+  // directly constructible from lambda (it would require two conversions).
+  template <
+      typename G,
+      typename = typename std::enable_if<internal::disjunction<
+          IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>,
+                                                        G>>::value>::type>
+  Action(G&& fun) {  // NOLINT
+    Init(::std::forward<G>(fun), IsCompatibleFunctor<G>());
+  }
+
+  // Constructs an Action from its implementation.
+  explicit Action(ActionInterface<F>* impl)
+      : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {}
+
+  // This constructor allows us to turn an Action<Func> object into an
+  // Action<F>, as long as F's arguments can be implicitly converted
+  // to Func's and Func's return type can be implicitly converted to F's.
+  template <typename Func>
+  explicit Action(const Action<Func>& action) : fun_(action.fun_) {}
+
+  // Returns true if and only if this is the DoDefault() action.
+  bool IsDoDefault() const { return fun_ == nullptr; }
+
+  // Performs the action.  Note that this method is const even though
+  // the corresponding method in ActionInterface is not.  The reason
+  // is that a const Action<F> means that it cannot be re-bound to
+  // another concrete action, not that the concrete action it binds to
+  // cannot change state.  (Think of the difference between a const
+  // pointer and a pointer to const.)
+  Result Perform(ArgumentTuple args) const {
+    if (IsDoDefault()) {
+      internal::IllegalDoDefault(__FILE__, __LINE__);
+    }
+    return internal::Apply(fun_, ::std::move(args));
+  }
+
+ private:
+  template <typename G>
+  friend class Action;
+
+  template <typename G>
+  void Init(G&& g, ::std::true_type) {
+    fun_ = ::std::forward<G>(g);
+  }
+
+  template <typename G>
+  void Init(G&& g, ::std::false_type) {
+    fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)};
+  }
+
+  template <typename FunctionImpl>
+  struct IgnoreArgs {
+    template <typename... Args>
+    Result operator()(const Args&...) const {
+      return function_impl();
+    }
+
+    FunctionImpl function_impl;
+  };
+
+  // fun_ is an empty function if and only if this is the DoDefault() action.
+  ::std::function<F> fun_;
+};
+
+// The PolymorphicAction class template makes it easy to implement a
+// polymorphic action (i.e. an action that can be used in mock
+// functions of than one type, e.g. Return()).
+//
+// To define a polymorphic action, a user first provides a COPYABLE
+// implementation class that has a Perform() method template:
+//
+//   class FooAction {
+//    public:
+//     template <typename Result, typename ArgumentTuple>
+//     Result Perform(const ArgumentTuple& args) const {
+//       // Processes the arguments and returns a result, using
+//       // std::get<N>(args) to get the N-th (0-based) argument in the tuple.
+//     }
+//     ...
+//   };
+//
+// Then the user creates the polymorphic action using
+// MakePolymorphicAction(object) where object has type FooAction.  See
+// the definition of Return(void) and SetArgumentPointee<N>(value) for
+// complete examples.
+template <typename Impl>
+class PolymorphicAction {
+ public:
+  explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
+
+  template <typename F>
+  operator Action<F>() const {
+    return Action<F>(new MonomorphicImpl<F>(impl_));
+  }
+
+ private:
+  template <typename F>
+  class MonomorphicImpl : public ActionInterface<F> {
+   public:
+    typedef typename internal::Function<F>::Result Result;
+    typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
+
+    explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
+
+    Result Perform(const ArgumentTuple& args) override {
+      return impl_.template Perform<Result>(args);
+    }
+
+   private:
+    Impl impl_;
+  };
+
+  Impl impl_;
+};
+
+// Creates an Action from its implementation and returns it.  The
+// created Action object owns the implementation.
+template <typename F>
+Action<F> MakeAction(ActionInterface<F>* impl) {
+  return Action<F>(impl);
+}
+
+// Creates a polymorphic action from its implementation.  This is
+// easier to use than the PolymorphicAction<Impl> constructor as it
+// doesn't require you to explicitly write the template argument, e.g.
+//
+//   MakePolymorphicAction(foo);
+// vs
+//   PolymorphicAction<TypeOfFoo>(foo);
+template <typename Impl>
+inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
+  return PolymorphicAction<Impl>(impl);
+}
+
+namespace internal {
+
+// Helper struct to specialize ReturnAction to execute a move instead of a copy
+// on return. Useful for move-only types, but could be used on any type.
+template <typename T>
+struct ByMoveWrapper {
+  explicit ByMoveWrapper(T value) : payload(std::move(value)) {}
+  T payload;
+};
+
+// Implements the polymorphic Return(x) action, which can be used in
+// any function that returns the type of x, regardless of the argument
+// types.
+//
+// Note: The value passed into Return must be converted into
+// Function<F>::Result when this action is cast to Action<F> rather than
+// when that action is performed. This is important in scenarios like
+//
+// MOCK_METHOD1(Method, T(U));
+// ...
+// {
+//   Foo foo;
+//   X x(&foo);
+//   EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
+// }
+//
+// In the example above the variable x holds reference to foo which leaves
+// scope and gets destroyed.  If copying X just copies a reference to foo,
+// that copy will be left with a hanging reference.  If conversion to T
+// makes a copy of foo, the above code is safe. To support that scenario, we
+// need to make sure that the type conversion happens inside the EXPECT_CALL
+// statement, and conversion of the result of Return to Action<T(U)> is a
+// good place for that.
+//
+// The real life example of the above scenario happens when an invocation
+// of gtl::Container() is passed into Return.
+//
+template <typename R>
+class ReturnAction {
+ public:
+  // Constructs a ReturnAction object from the value to be returned.
+  // 'value' is passed by value instead of by const reference in order
+  // to allow Return("string literal") to compile.
+  explicit ReturnAction(R value) : value_(new R(std::move(value))) {}
+
+  // This template type conversion operator allows Return(x) to be
+  // used in ANY function that returns x's type.
+  template <typename F>
+  operator Action<F>() const {  // NOLINT
+    // Assert statement belongs here because this is the best place to verify
+    // conditions on F. It produces the clearest error messages
+    // in most compilers.
+    // Impl really belongs in this scope as a local class but can't
+    // because MSVC produces duplicate symbols in different translation units
+    // in this case. Until MS fixes that bug we put Impl into the class scope
+    // and put the typedef both here (for use in assert statement) and
+    // in the Impl class. But both definitions must be the same.
+    typedef typename Function<F>::Result Result;
+    GTEST_COMPILE_ASSERT_(
+        !std::is_reference<Result>::value,
+        use_ReturnRef_instead_of_Return_to_return_a_reference);
+    static_assert(!std::is_void<Result>::value,
+                  "Can't use Return() on an action expected to return `void`.");
+    return Action<F>(new Impl<R, F>(value_));
+  }
+
+ private:
+  // Implements the Return(x) action for a particular function type F.
+  template <typename R_, typename F>
+  class Impl : public ActionInterface<F> {
+   public:
+    typedef typename Function<F>::Result Result;
+    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
+
+    // The implicit cast is necessary when Result has more than one
+    // single-argument constructor (e.g. Result is std::vector<int>) and R
+    // has a type conversion operator template.  In that case, value_(value)
+    // won't compile as the compiler doesn't known which constructor of
+    // Result to call.  ImplicitCast_ forces the compiler to convert R to
+    // Result without considering explicit constructors, thus resolving the
+    // ambiguity. value_ is then initialized using its copy constructor.
+    explicit Impl(const std::shared_ptr<R>& value)
+        : value_before_cast_(*value),
+          value_(ImplicitCast_<Result>(value_before_cast_)) {}
+
+    Result Perform(const ArgumentTuple&) override { return value_; }
+
+   private:
+    GTEST_COMPILE_ASSERT_(!std::is_reference<Result>::value,
+                          Result_cannot_be_a_reference_type);
+    // We save the value before casting just in case it is being cast to a
+    // wrapper type.
+    R value_before_cast_;
+    Result value_;
+
+    GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
+  };
+
+  // Partially specialize for ByMoveWrapper. This version of ReturnAction will
+  // move its contents instead.
+  template <typename R_, typename F>
+  class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> {
+   public:
+    typedef typename Function<F>::Result Result;
+    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
+
+    explicit Impl(const std::shared_ptr<R>& wrapper)
+        : performed_(false), wrapper_(wrapper) {}
+
+    Result Perform(const ArgumentTuple&) override {
+      GTEST_CHECK_(!performed_)
+          << "A ByMove() action should only be performed once.";
+      performed_ = true;
+      return std::move(wrapper_->payload);
+    }
+
+   private:
+    bool performed_;
+    const std::shared_ptr<R> wrapper_;
+  };
+
+  const std::shared_ptr<R> value_;
+};
+
+// Implements the ReturnNull() action.
+class ReturnNullAction {
+ public:
+  // Allows ReturnNull() to be used in any pointer-returning function. In C++11
+  // this is enforced by returning nullptr, and in non-C++11 by asserting a
+  // pointer type on compile time.
+  template <typename Result, typename ArgumentTuple>
+  static Result Perform(const ArgumentTuple&) {
+    return nullptr;
+  }
+};
+
+// Implements the Return() action.
+class ReturnVoidAction {
+ public:
+  // Allows Return() to be used in any void-returning function.
+  template <typename Result, typename ArgumentTuple>
+  static void Perform(const ArgumentTuple&) {
+    static_assert(std::is_void<Result>::value, "Result should be void.");
+  }
+};
+
+// Implements the polymorphic ReturnRef(x) action, which can be used
+// in any function that returns a reference to the type of x,
+// regardless of the argument types.
+template <typename T>
+class ReturnRefAction {
+ public:
+  // Constructs a ReturnRefAction object from the reference to be returned.
+  explicit ReturnRefAction(T& ref) : ref_(ref) {}  // NOLINT
+
+  // This template type conversion operator allows ReturnRef(x) to be
+  // used in ANY function that returns a reference to x's type.
+  template <typename F>
+  operator Action<F>() const {
+    typedef typename Function<F>::Result Result;
+    // Asserts that the function return type is a reference.  This
+    // catches the user error of using ReturnRef(x) when Return(x)
+    // should be used, and generates some helpful error message.
+    GTEST_COMPILE_ASSERT_(std::is_reference<Result>::value,
+                          use_Return_instead_of_ReturnRef_to_return_a_value);
+    return Action<F>(new Impl<F>(ref_));
+  }
+
+ private:
+  // Implements the ReturnRef(x) action for a particular function type F.
+  template <typename F>
+  class Impl : public ActionInterface<F> {
+   public:
+    typedef typename Function<F>::Result Result;
+    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
+
+    explicit Impl(T& ref) : ref_(ref) {}  // NOLINT
+
+    Result Perform(const ArgumentTuple&) override { return ref_; }
+
+   private:
+    T& ref_;
+  };
+
+  T& ref_;
+};
+
+// Implements the polymorphic ReturnRefOfCopy(x) action, which can be
+// used in any function that returns a reference to the type of x,
+// regardless of the argument types.
+template <typename T>
+class ReturnRefOfCopyAction {
+ public:
+  // Constructs a ReturnRefOfCopyAction object from the reference to
+  // be returned.
+  explicit ReturnRefOfCopyAction(const T& value) : value_(value) {}  // NOLINT
+
+  // This template type conversion operator allows ReturnRefOfCopy(x) to be
+  // used in ANY function that returns a reference to x's type.
+  template <typename F>
+  operator Action<F>() const {
+    typedef typename Function<F>::Result Result;
+    // Asserts that the function return type is a reference.  This
+    // catches the user error of using ReturnRefOfCopy(x) when Return(x)
+    // should be used, and generates some helpful error message.
+    GTEST_COMPILE_ASSERT_(
+        std::is_reference<Result>::value,
+        use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
+    return Action<F>(new Impl<F>(value_));
+  }
+
+ private:
+  // Implements the ReturnRefOfCopy(x) action for a particular function type F.
+  template <typename F>
+  class Impl : public ActionInterface<F> {
+   public:
+    typedef typename Function<F>::Result Result;
+    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
+
+    explicit Impl(const T& value) : value_(value) {}  // NOLINT
+
+    Result Perform(const ArgumentTuple&) override { return value_; }
+
+   private:
+    T value_;
+  };
+
+  const T value_;
+};
+
+// Implements the polymorphic ReturnRoundRobin(v) action, which can be
+// used in any function that returns the element_type of v.
+template <typename T>
+class ReturnRoundRobinAction {
+ public:
+  explicit ReturnRoundRobinAction(std::vector<T> values) {
+    GTEST_CHECK_(!values.empty())
+        << "ReturnRoundRobin requires at least one element.";
+    state_->values = std::move(values);
+  }
+
+  template <typename... Args>
+  T operator()(Args&&...) const {
+     return state_->Next();
+  }
+
+ private:
+  struct State {
+    T Next() {
+      T ret_val = values[i++];
+      if (i == values.size()) i = 0;
+      return ret_val;
+    }
+
+    std::vector<T> values;
+    size_t i = 0;
+  };
+  std::shared_ptr<State> state_ = std::make_shared<State>();
+};
+
+// Implements the polymorphic DoDefault() action.
+class DoDefaultAction {
+ public:
+  // This template type conversion operator allows DoDefault() to be
+  // used in any function.
+  template <typename F>
+  operator Action<F>() const { return Action<F>(); }  // NOLINT
+};
+
+// Implements the Assign action to set a given pointer referent to a
+// particular value.
+template <typename T1, typename T2>
+class AssignAction {
+ public:
+  AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
+
+  template <typename Result, typename ArgumentTuple>
+  void Perform(const ArgumentTuple& /* args */) const {
+    *ptr_ = value_;
+  }
+
+ private:
+  T1* const ptr_;
+  const T2 value_;
+};
+
+#if !GTEST_OS_WINDOWS_MOBILE
+
+// Implements the SetErrnoAndReturn action to simulate return from
+// various system calls and libc functions.
+template <typename T>
+class SetErrnoAndReturnAction {
+ public:
+  SetErrnoAndReturnAction(int errno_value, T result)
+      : errno_(errno_value),
+        result_(result) {}
+  template <typename Result, typename ArgumentTuple>
+  Result Perform(const ArgumentTuple& /* args */) const {
+    errno = errno_;
+    return result_;
+  }
+
+ private:
+  const int errno_;
+  const T result_;
+};
+
+#endif  // !GTEST_OS_WINDOWS_MOBILE
+
+// Implements the SetArgumentPointee<N>(x) action for any function
+// whose N-th argument (0-based) is a pointer to x's type.
+template <size_t N, typename A, typename = void>
+struct SetArgumentPointeeAction {
+  A value;
+
+  template <typename... Args>
+  void operator()(const Args&... args) const {
+    *::std::get<N>(std::tie(args...)) = value;
+  }
+};
+
+// Implements the Invoke(object_ptr, &Class::Method) action.
+template <class Class, typename MethodPtr>
+struct InvokeMethodAction {
+  Class* const obj_ptr;
+  const MethodPtr method_ptr;
+
+  template <typename... Args>
+  auto operator()(Args&&... args) const
+      -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) {
+    return (obj_ptr->*method_ptr)(std::forward<Args>(args)...);
+  }
+};
+
+// Implements the InvokeWithoutArgs(f) action.  The template argument
+// FunctionImpl is the implementation type of f, which can be either a
+// function pointer or a functor.  InvokeWithoutArgs(f) can be used as an
+// Action<F> as long as f's type is compatible with F.
+template <typename FunctionImpl>
+struct InvokeWithoutArgsAction {
+  FunctionImpl function_impl;
+
+  // Allows InvokeWithoutArgs(f) to be used as any action whose type is
+  // compatible with f.
+  template <typename... Args>
+  auto operator()(const Args&...) -> decltype(function_impl()) {
+    return function_impl();
+  }
+};
+
+// Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
+template <class Class, typename MethodPtr>
+struct InvokeMethodWithoutArgsAction {
+  Class* const obj_ptr;
+  const MethodPtr method_ptr;
+
+  using ReturnType =
+      decltype((std::declval<Class*>()->*std::declval<MethodPtr>())());
+
+  template <typename... Args>
+  ReturnType operator()(const Args&...) const {
+    return (obj_ptr->*method_ptr)();
+  }
+};
+
+// Implements the IgnoreResult(action) action.
+template <typename A>
+class IgnoreResultAction {
+ public:
+  explicit IgnoreResultAction(const A& action) : action_(action) {}
+
+  template <typename F>
+  operator Action<F>() const {
+    // Assert statement belongs here because this is the best place to verify
+    // conditions on F. It produces the clearest error messages
+    // in most compilers.
+    // Impl really belongs in this scope as a local class but can't
+    // because MSVC produces duplicate symbols in different translation units
+    // in this case. Until MS fixes that bug we put Impl into the class scope
+    // and put the typedef both here (for use in assert statement) and
+    // in the Impl class. But both definitions must be the same.
+    typedef typename internal::Function<F>::Result Result;
+
+    // Asserts at compile time that F returns void.
+    static_assert(std::is_void<Result>::value, "Result type should be void.");
+
+    return Action<F>(new Impl<F>(action_));
+  }
+
+ private:
+  template <typename F>
+  class Impl : public ActionInterface<F> {
+   public:
+    typedef typename internal::Function<F>::Result Result;
+    typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
+
+    explicit Impl(const A& action) : action_(action) {}
+
+    void Perform(const ArgumentTuple& args) override {
+      // Performs the action and ignores its result.
+      action_.Perform(args);
+    }
+
+   private:
+    // Type OriginalFunction is the same as F except that its return
+    // type is IgnoredValue.
+    typedef typename internal::Function<F>::MakeResultIgnoredValue
+        OriginalFunction;
+
+    const Action<OriginalFunction> action_;
+  };
+
+  const A action_;
+};
+
+template <typename InnerAction, size_t... I>
+struct WithArgsAction {
+  InnerAction action;
+
+  // The inner action could be anything convertible to Action<X>.
+  // We use the conversion operator to detect the signature of the inner Action.
+  template <typename R, typename... Args>
+  operator Action<R(Args...)>() const {  // NOLINT
+    using TupleType = std::tuple<Args...>;
+    Action<R(typename std::tuple_element<I, TupleType>::type...)>
+        converted(action);
+
+    return [converted](Args... args) -> R {
+      return converted.Perform(std::forward_as_tuple(
+        std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...));
+    };
+  }
+};
+
+template <typename... Actions>
+struct DoAllAction {
+ private:
+  template <typename T>
+  using NonFinalType =
+      typename std::conditional<std::is_scalar<T>::value, T, const T&>::type;
+
+  template <typename ActionT, size_t... I>
+  std::vector<ActionT> Convert(IndexSequence<I...>) const {
+    return {ActionT(std::get<I>(actions))...};
+  }
+
+ public:
+  std::tuple<Actions...> actions;
+
+  template <typename R, typename... Args>
+  operator Action<R(Args...)>() const {  // NOLINT
+    struct Op {
+      std::vector<Action<void(NonFinalType<Args>...)>> converted;
+      Action<R(Args...)> last;
+      R operator()(Args... args) const {
+        auto tuple_args = std::forward_as_tuple(std::forward<Args>(args)...);
+        for (auto& a : converted) {
+          a.Perform(tuple_args);
+        }
+        return last.Perform(std::move(tuple_args));
+      }
+    };
+    return Op{Convert<Action<void(NonFinalType<Args>...)>>(
+                  MakeIndexSequence<sizeof...(Actions) - 1>()),
+              std::get<sizeof...(Actions) - 1>(actions)};
+  }
+};
+
+template <typename T, typename... Params>
+struct ReturnNewAction {
+  T* operator()() const {
+    return internal::Apply(
+        [](const Params&... unpacked_params) {
+          return new T(unpacked_params...);
+        },
+        params);
+  }
+  std::tuple<Params...> params;
+};
+
+template <size_t k>
+struct ReturnArgAction {
+  template <typename... Args>
+  auto operator()(const Args&... args) const ->
+      typename std::tuple_element<k, std::tuple<Args...>>::type {
+    return std::get<k>(std::tie(args...));
+  }
+};
+
+template <size_t k, typename Ptr>
+struct SaveArgAction {
+  Ptr pointer;
+
+  template <typename... Args>
+  void operator()(const Args&... args) const {
+    *pointer = std::get<k>(std::tie(args...));
+  }
+};
+
+template <size_t k, typename Ptr>
+struct SaveArgPointeeAction {
+  Ptr pointer;
+
+  template <typename... Args>
+  void operator()(const Args&... args) const {
+    *pointer = *std::get<k>(std::tie(args...));
+  }
+};
+
+template <size_t k, typename T>
+struct SetArgRefereeAction {
+  T value;
+
+  template <typename... Args>
+  void operator()(Args&&... args) const {
+    using argk_type =
+        typename ::std::tuple_element<k, std::tuple<Args...>>::type;
+    static_assert(std::is_lvalue_reference<argk_type>::value,
+                  "Argument must be a reference type.");
+    std::get<k>(std::tie(args...)) = value;
+  }
+};
+
+template <size_t k, typename I1, typename I2>
+struct SetArrayArgumentAction {
+  I1 first;
+  I2 last;
+
+  template <typename... Args>
+  void operator()(const Args&... args) const {
+    auto value = std::get<k>(std::tie(args...));
+    for (auto it = first; it != last; ++it, (void)++value) {
+      *value = *it;
+    }
+  }
+};
+
+template <size_t k>
+struct DeleteArgAction {
+  template <typename... Args>
+  void operator()(const Args&... args) const {
+    delete std::get<k>(std::tie(args...));
+  }
+};
+
+template <typename Ptr>
+struct ReturnPointeeAction {
+  Ptr pointer;
+  template <typename... Args>
+  auto operator()(const Args&...) const -> decltype(*pointer) {
+    return *pointer;
+  }
+};
+
+#if GTEST_HAS_EXCEPTIONS
+template <typename T>
+struct ThrowAction {
+  T exception;
+  // We use a conversion operator to adapt to any return type.
+  template <typename R, typename... Args>
+  operator Action<R(Args...)>() const {  // NOLINT
+    T copy = exception;
+    return [copy](Args...) -> R { throw copy; };
+  }
+};
+#endif  // GTEST_HAS_EXCEPTIONS
+
+}  // namespace internal
+
+// An Unused object can be implicitly constructed from ANY value.
+// This is handy when defining actions that ignore some or all of the
+// mock function arguments.  For example, given
+//
+//   MOCK_METHOD3(Foo, double(const string& label, double x, double y));
+//   MOCK_METHOD3(Bar, double(int index, double x, double y));
+//
+// instead of
+//
+//   double DistanceToOriginWithLabel(const string& label, double x, double y) {
+//     return sqrt(x*x + y*y);
+//   }
+//   double DistanceToOriginWithIndex(int index, double x, double y) {
+//     return sqrt(x*x + y*y);
+//   }
+//   ...
+//   EXPECT_CALL(mock, Foo("abc", _, _))
+//       .WillOnce(Invoke(DistanceToOriginWithLabel));
+//   EXPECT_CALL(mock, Bar(5, _, _))
+//       .WillOnce(Invoke(DistanceToOriginWithIndex));
+//
+// you could write
+//
+//   // We can declare any uninteresting argument as Unused.
+//   double DistanceToOrigin(Unused, double x, double y) {
+//     return sqrt(x*x + y*y);
+//   }
+//   ...
+//   EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
+//   EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
+typedef internal::IgnoredValue Unused;
+
+// Creates an action that does actions a1, a2, ..., sequentially in
+// each invocation. All but the last action will have a readonly view of the
+// arguments.
+template <typename... Action>
+internal::DoAllAction<typename std::decay<Action>::type...> DoAll(
+    Action&&... action) {
+  return {std::forward_as_tuple(std::forward<Action>(action)...)};
+}
+
+// WithArg<k>(an_action) creates an action that passes the k-th
+// (0-based) argument of the mock function to an_action and performs
+// it.  It adapts an action accepting one argument to one that accepts
+// multiple arguments.  For convenience, we also provide
+// WithArgs<k>(an_action) (defined below) as a synonym.
+template <size_t k, typename InnerAction>
+internal::WithArgsAction<typename std::decay<InnerAction>::type, k>
+WithArg(InnerAction&& action) {
+  return {std::forward<InnerAction>(action)};
+}
+
+// WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes
+// the selected arguments of the mock function to an_action and
+// performs it.  It serves as an adaptor between actions with
+// different argument lists.
+template <size_t k, size_t... ks, typename InnerAction>
+internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...>
+WithArgs(InnerAction&& action) {
+  return {std::forward<InnerAction>(action)};
+}
+
+// WithoutArgs(inner_action) can be used in a mock function with a
+// non-empty argument list to perform inner_action, which takes no
+// argument.  In other words, it adapts an action accepting no
+// argument to one that accepts (and ignores) arguments.
+template <typename InnerAction>
+internal::WithArgsAction<typename std::decay<InnerAction>::type>
+WithoutArgs(InnerAction&& action) {
+  return {std::forward<InnerAction>(action)};
+}
+
+// Creates an action that returns 'value'.  'value' is passed by value
+// instead of const reference - otherwise Return("string literal")
+// will trigger a compiler error about using array as initializer.
+template <typename R>
+internal::ReturnAction<R> Return(R value) {
+  return internal::ReturnAction<R>(std::move(value));
+}
+
+// Creates an action that returns NULL.
+inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
+  return MakePolymorphicAction(internal::ReturnNullAction());
+}
+
+// Creates an action that returns from a void function.
+inline PolymorphicAction<internal::ReturnVoidAction> Return() {
+  return MakePolymorphicAction(internal::ReturnVoidAction());
+}
+
+// Creates an action that returns the reference to a variable.
+template <typename R>
+inline internal::ReturnRefAction<R> ReturnRef(R& x) {  // NOLINT
+  return internal::ReturnRefAction<R>(x);
+}
+
+// Prevent using ReturnRef on reference to temporary.
+template <typename R, R* = nullptr>
+internal::ReturnRefAction<R> ReturnRef(R&&) = delete;
+
+// Creates an action that returns the reference to a copy of the
+// argument.  The copy is created when the action is constructed and
+// lives as long as the action.
+template <typename R>
+inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
+  return internal::ReturnRefOfCopyAction<R>(x);
+}
+
+// Modifies the parent action (a Return() action) to perform a move of the
+// argument instead of a copy.
+// Return(ByMove()) actions can only be executed once and will assert this
+// invariant.
+template <typename R>
+internal::ByMoveWrapper<R> ByMove(R x) {
+  return internal::ByMoveWrapper<R>(std::move(x));
+}
+
+// Creates an action that returns an element of `vals`. Calling this action will
+// repeatedly return the next value from `vals` until it reaches the end and
+// will restart from the beginning.
+template <typename T>
+internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) {
+  return internal::ReturnRoundRobinAction<T>(std::move(vals));
+}
+
+// Creates an action that returns an element of `vals`. Calling this action will
+// repeatedly return the next value from `vals` until it reaches the end and
+// will restart from the beginning.
+template <typename T>
+internal::ReturnRoundRobinAction<T> ReturnRoundRobin(
+    std::initializer_list<T> vals) {
+  return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals));
+}
+
+// Creates an action that does the default action for the give mock function.
+inline internal::DoDefaultAction DoDefault() {
+  return internal::DoDefaultAction();
+}
+
+// Creates an action that sets the variable pointed by the N-th
+// (0-based) function argument to 'value'.
+template <size_t N, typename T>
+internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) {
+  return {std::move(value)};
+}
+
+// The following version is DEPRECATED.
+template <size_t N, typename T>
+internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) {
+  return {std::move(value)};
+}
+
+// Creates an action that sets a pointer referent to a given value.
+template <typename T1, typename T2>
+PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
+  return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
+}
+
+#if !GTEST_OS_WINDOWS_MOBILE
+
+// Creates an action that sets errno and returns the appropriate error.
+template <typename T>
+PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
+SetErrnoAndReturn(int errval, T result) {
+  return MakePolymorphicAction(
+      internal::SetErrnoAndReturnAction<T>(errval, result));
+}
+
+#endif  // !GTEST_OS_WINDOWS_MOBILE
+
+// Various overloads for Invoke().
+
+// Legacy function.
+// Actions can now be implicitly constructed from callables. No need to create
+// wrapper objects.
+// This function exists for backwards compatibility.
+template <typename FunctionImpl>
+typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) {
+  return std::forward<FunctionImpl>(function_impl);
+}
+
+// Creates an action that invokes the given method on the given object
+// with the mock function's arguments.
+template <class Class, typename MethodPtr>
+internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr,
+                                                      MethodPtr method_ptr) {
+  return {obj_ptr, method_ptr};
+}
+
+// Creates an action that invokes 'function_impl' with no argument.
+template <typename FunctionImpl>
+internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type>
+InvokeWithoutArgs(FunctionImpl function_impl) {
+  return {std::move(function_impl)};
+}
+
+// Creates an action that invokes the given method on the given object
+// with no argument.
+template <class Class, typename MethodPtr>
+internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs(
+    Class* obj_ptr, MethodPtr method_ptr) {
+  return {obj_ptr, method_ptr};
+}
+
+// Creates an action that performs an_action and throws away its
+// result.  In other words, it changes the return type of an_action to
+// void.  an_action MUST NOT return void, or the code won't compile.
+template <typename A>
+inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
+  return internal::IgnoreResultAction<A>(an_action);
+}
+
+// Creates a reference wrapper for the given L-value.  If necessary,
+// you can explicitly specify the type of the reference.  For example,
+// suppose 'derived' is an object of type Derived, ByRef(derived)
+// would wrap a Derived&.  If you want to wrap a const Base& instead,
+// where Base is a base class of Derived, just write:
+//
+//   ByRef<const Base>(derived)
+//
+// N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper.
+// However, it may still be used for consistency with ByMove().
+template <typename T>
+inline ::std::reference_wrapper<T> ByRef(T& l_value) {  // NOLINT
+  return ::std::reference_wrapper<T>(l_value);
+}
+
+// The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new
+// instance of type T, constructed on the heap with constructor arguments
+// a1, a2, ..., and a_k. The caller assumes ownership of the returned value.
+template <typename T, typename... Params>
+internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew(
+    Params&&... params) {
+  return {std::forward_as_tuple(std::forward<Params>(params)...)};
+}
+
+// Action ReturnArg<k>() returns the k-th argument of the mock function.
+template <size_t k>
+internal::ReturnArgAction<k> ReturnArg() {
+  return {};
+}
+
+// Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the
+// mock function to *pointer.
+template <size_t k, typename Ptr>
+internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) {
+  return {pointer};
+}
+
+// Action SaveArgPointee<k>(pointer) saves the value pointed to
+// by the k-th (0-based) argument of the mock function to *pointer.
+template <size_t k, typename Ptr>
+internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) {
+  return {pointer};
+}
+
+// Action SetArgReferee<k>(value) assigns 'value' to the variable
+// referenced by the k-th (0-based) argument of the mock function.
+template <size_t k, typename T>
+internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee(
+    T&& value) {
+  return {std::forward<T>(value)};
+}
+
+// Action SetArrayArgument<k>(first, last) copies the elements in
+// source range [first, last) to the array pointed to by the k-th
+// (0-based) argument, which can be either a pointer or an
+// iterator. The action does not take ownership of the elements in the
+// source range.
+template <size_t k, typename I1, typename I2>
+internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first,
+                                                             I2 last) {
+  return {first, last};
+}
+
+// Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock
+// function.
+template <size_t k>
+internal::DeleteArgAction<k> DeleteArg() {
+  return {};
+}
+
+// This action returns the value pointed to by 'pointer'.
+template <typename Ptr>
+internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) {
+  return {pointer};
+}
+
+// Action Throw(exception) can be used in a mock function of any type
+// to throw the given exception.  Any copyable value can be thrown.
+#if GTEST_HAS_EXCEPTIONS
+template <typename T>
+internal::ThrowAction<typename std::decay<T>::type> Throw(T&& exception) {
+  return {std::forward<T>(exception)};
+}
+#endif  // GTEST_HAS_EXCEPTIONS
+
+namespace internal {
+
+// A macro from the ACTION* family (defined later in gmock-generated-actions.h)
+// defines an action that can be used in a mock function.  Typically,
+// these actions only care about a subset of the arguments of the mock
+// function.  For example, if such an action only uses the second
+// argument, it can be used in any mock function that takes >= 2
+// arguments where the type of the second argument is compatible.
+//
+// Therefore, the action implementation must be prepared to take more
+// arguments than it needs.  The ExcessiveArg type is used to
+// represent those excessive arguments.  In order to keep the compiler
+// error messages tractable, we define it in the testing namespace
+// instead of testing::internal.  However, this is an INTERNAL TYPE
+// and subject to change without notice, so a user MUST NOT USE THIS
+// TYPE DIRECTLY.
+struct ExcessiveArg {};
+
+// A helper class needed for implementing the ACTION* macros.
+template <typename Result, class Impl>
+class ActionHelper {
+ public:
+  template <typename... Ts>
+  static Result Perform(Impl* impl, const std::tuple<Ts...>& args) {
+    static constexpr size_t kMaxArgs = sizeof...(Ts) <= 10 ? sizeof...(Ts) : 10;
+    return Apply(impl, args, MakeIndexSequence<kMaxArgs>{},
+                 MakeIndexSequence<10 - kMaxArgs>{});
+  }
+
+ private:
+  template <typename... Ts, std::size_t... tuple_ids, std::size_t... rest_ids>
+  static Result Apply(Impl* impl, const std::tuple<Ts...>& args,
+                      IndexSequence<tuple_ids...>, IndexSequence<rest_ids...>) {
+    return impl->template gmock_PerformImpl<
+        typename std::tuple_element<tuple_ids, std::tuple<Ts...>>::type...>(
+        args, std::get<tuple_ids>(args)...,
+        ((void)rest_ids, ExcessiveArg())...);
+  }
+};
+
+// A helper base class needed for implementing the ACTION* macros.
+// Implements constructor and conversion operator for Action.
+//
+// Template specialization for parameterless Action.
+template <typename Derived>
+class ActionImpl {
+ public:
+  ActionImpl() = default;
+
+  template <typename F>
+  operator ::testing::Action<F>() const {  // NOLINT(runtime/explicit)
+    return ::testing::Action<F>(new typename Derived::template gmock_Impl<F>());
+  }
+};
+
+// Template specialization for parameterized Action.
+template <template <typename...> class Derived, typename... Ts>
+class ActionImpl<Derived<Ts...>> {
+ public:
+  explicit ActionImpl(Ts... params) : params_(std::forward<Ts>(params)...) {}
+
+  template <typename F>
+  operator ::testing::Action<F>() const {  // NOLINT(runtime/explicit)
+    return Apply<F>(MakeIndexSequence<sizeof...(Ts)>{});
+  }
+
+ private:
+  template <typename F, std::size_t... tuple_ids>
+  ::testing::Action<F> Apply(IndexSequence<tuple_ids...>) const {
+    return ::testing::Action<F>(new
+                                typename Derived<Ts...>::template gmock_Impl<F>(
+                                    std::get<tuple_ids>(params_)...));
+  }
+
+  std::tuple<Ts...> params_;
+};
+
+// internal::InvokeArgument - a helper for InvokeArgument action.
+// The basic overloads are provided here for generic functors.
+// Overloads for other custom-callables are provided in the
+// internal/custom/gmock-generated-actions.h header.
+template <typename F, typename... Args>
+auto InvokeArgument(F f, Args... args) -> decltype(f(args...)) {
+  return f(args...);
+}
+
+#define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \
+  , const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_
+#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_                 \
+  const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \
+      GMOCK_INTERNAL_ARG_UNUSED, , 10)
+
+#define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i
+#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \
+  const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10)
+
+#define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type
+#define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \
+  GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10))
+
+#define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type
+#define GMOCK_ACTION_TYPENAME_PARAMS_(params) \
+  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params))
+
+#define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type
+#define GMOCK_ACTION_TYPE_PARAMS_(params) \
+  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params))
+
+#define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \
+  , param##_type gmock_p##i
+#define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \
+  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params))
+
+#define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \
+  , std::forward<param##_type>(gmock_p##i)
+#define GMOCK_ACTION_GVALUE_PARAMS_(params) \
+  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params))
+
+#define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \
+  , param(::std::forward<param##_type>(gmock_p##i))
+#define GMOCK_ACTION_INIT_PARAMS_(params) \
+  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params))
+
+#define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param;
+#define GMOCK_ACTION_FIELD_PARAMS_(params) \
+  GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params)
+
+#define GMOCK_INTERNAL_ACTION(name, full_name, params)                        \
+  template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                            \
+  class full_name : public ::testing::internal::ActionImpl<                   \
+                        full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>> {       \
+    using base_type = ::testing::internal::ActionImpl<full_name>;             \
+                                                                              \
+   public:                                                                    \
+    using base_type::base_type;                                               \
+    template <typename F>                                                     \
+    class gmock_Impl : public ::testing::ActionInterface<F> {                 \
+     public:                                                                  \
+      typedef F function_type;                                                \
+      typedef typename ::testing::internal::Function<F>::Result return_type;  \
+      typedef                                                                 \
+          typename ::testing::internal::Function<F>::ArgumentTuple args_type; \
+      explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params))           \
+          : GMOCK_ACTION_INIT_PARAMS_(params) {}                              \
+      return_type Perform(const args_type& args) override {                   \
+        return ::testing::internal::ActionHelper<return_type,                 \
+                                                 gmock_Impl>::Perform(this,   \
+                                                                      args);  \
+      }                                                                       \
+      template <GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>                            \
+      return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
+      GMOCK_ACTION_FIELD_PARAMS_(params)                                      \
+    };                                                                        \
+  };                                                                          \
+  template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                            \
+  inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name(                   \
+      GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) {                             \
+    return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>(                      \
+        GMOCK_ACTION_GVALUE_PARAMS_(params));                                 \
+  }                                                                           \
+  template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                            \
+  template <typename F>                                                       \
+  template <GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>                                \
+  typename ::testing::internal::Function<F>::Result                           \
+      full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl<               \
+          F>::gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_)     \
+          const
+
+}  // namespace internal
+
+#define ACTION(name)                                                          \
+  class name##Action : public ::testing::internal::ActionImpl<name##Action> { \
+    using base_type = ::testing::internal::ActionImpl<name##Action>;          \
+                                                                              \
+   public:                                                                    \
+    using base_type::base_type;                                               \
+    name##Action() = default;                                                 \
+    /* Work around https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82134 */      \
+    name##Action(const name##Action&) { }                                     \
+    template <typename F>                                                     \
+    class gmock_Impl : public ::testing::ActionInterface<F> {                 \
+     public:                                                                  \
+      typedef F function_type;                                                \
+      typedef typename ::testing::internal::Function<F>::Result return_type;  \
+      typedef                                                                 \
+          typename ::testing::internal::Function<F>::ArgumentTuple args_type; \
+      gmock_Impl() {}                                                         \
+      return_type Perform(const args_type& args) override {                   \
+        return ::testing::internal::ActionHelper<return_type,                 \
+                                                 gmock_Impl>::Perform(this,   \
+                                                                      args);  \
+      }                                                                       \
+      template <GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>                            \
+      return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
+    };                                                                        \
+  };                                                                          \
+  inline name##Action name() GTEST_MUST_USE_RESULT_;                          \
+  inline name##Action name() { return name##Action(); }                       \
+  template <typename F>                                                       \
+  template <GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>                                \
+  typename ::testing::internal::Function<F>::Result                           \
+      name##Action::gmock_Impl<F>::gmock_PerformImpl(                         \
+          GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
+
+#define ACTION_P(name, ...) \
+  GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__))
+
+#define ACTION_P2(name, ...) \
+  GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__))
+
+#define ACTION_P3(name, ...) \
+  GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__))
+
+#define ACTION_P4(name, ...) \
+  GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__))
+
+#define ACTION_P5(name, ...) \
+  GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__))
+
+#define ACTION_P6(name, ...) \
+  GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__))
+
+#define ACTION_P7(name, ...) \
+  GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__))
+
+#define ACTION_P8(name, ...) \
+  GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__))
+
+#define ACTION_P9(name, ...) \
+  GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__))
+
+#define ACTION_P10(name, ...) \
+  GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__))
+
+}  // namespace testing
+
+#ifdef _MSC_VER
+# pragma warning(pop)
+#endif
+
+
+#endif  // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_