]> git.proxmox.com Git - mirror_edk2.git/blame - ArmPkg/Library/ArmLib/AArch64/AArch64Mmu.c
ArmPkg: Added Aarch64 support
[mirror_edk2.git] / ArmPkg / Library / ArmLib / AArch64 / AArch64Mmu.c
CommitLineData
25402f5d
HL
1/** @file\r
2* File managing the MMU for ARMv8 architecture\r
3*\r
4* Copyright (c) 2011-2013, ARM Limited. All rights reserved.\r
5*\r
6* This program and the accompanying materials\r
7* are licensed and made available under the terms and conditions of the BSD License\r
8* which accompanies this distribution. The full text of the license may be found at\r
9* http://opensource.org/licenses/bsd-license.php\r
10*\r
11* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
12* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
13*\r
14**/\r
15\r
16#include <Uefi.h>\r
17#include <Chipset/AArch64.h>\r
18#include <Library/BaseMemoryLib.h>\r
19#include <Library/MemoryAllocationLib.h>\r
20#include <Library/ArmLib.h>\r
21#include <Library/BaseLib.h>\r
22#include <Library/DebugLib.h>\r
23#include "AArch64Lib.h"\r
24#include "ArmLibPrivate.h"\r
25\r
26// We use this index definition to define an invalid block entry\r
27#define TT_ATTR_INDX_INVALID ((UINT32)~0)\r
28\r
29STATIC\r
30UINT64\r
31ArmMemoryAttributeToPageAttribute (\r
32 IN ARM_MEMORY_REGION_ATTRIBUTES Attributes\r
33 )\r
34{\r
35 switch (Attributes) {\r
36 case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK:\r
37 return TT_ATTR_INDX_MEMORY_WRITE_BACK;\r
38 case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH:\r
39 return TT_ATTR_INDX_MEMORY_WRITE_THROUGH;\r
40 case ARM_MEMORY_REGION_ATTRIBUTE_DEVICE:\r
41 return TT_ATTR_INDX_DEVICE_MEMORY;\r
42 case ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED:\r
43 return TT_ATTR_INDX_MEMORY_NON_CACHEABLE;\r
44 case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_BACK:\r
45 return TT_ATTR_INDX_MEMORY_WRITE_BACK;\r
46 case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_THROUGH:\r
47 return TT_ATTR_INDX_MEMORY_WRITE_THROUGH;\r
48 case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_DEVICE:\r
49 return TT_ATTR_INDX_DEVICE_MEMORY;\r
50 case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_UNCACHED_UNBUFFERED:\r
51 return TT_ATTR_INDX_MEMORY_NON_CACHEABLE;\r
52 default:\r
53 ASSERT(0);\r
54 return TT_ATTR_INDX_DEVICE_MEMORY;\r
55 }\r
56}\r
57\r
58UINT64\r
59PageAttributeToGcdAttribute (\r
60 IN UINT64 PageAttributes\r
61 )\r
62{\r
63 UINT64 GcdAttributes;\r
64\r
65 switch (PageAttributes & TT_ATTR_INDX_MASK) {\r
66 case TT_ATTR_INDX_DEVICE_MEMORY:\r
67 GcdAttributes = EFI_MEMORY_UC;\r
68 break;\r
69 case TT_ATTR_INDX_MEMORY_NON_CACHEABLE:\r
70 GcdAttributes = EFI_MEMORY_WC;\r
71 break;\r
72 case TT_ATTR_INDX_MEMORY_WRITE_THROUGH:\r
73 GcdAttributes = EFI_MEMORY_WT;\r
74 break;\r
75 case TT_ATTR_INDX_MEMORY_WRITE_BACK:\r
76 GcdAttributes = EFI_MEMORY_WB;\r
77 break;\r
78 default:\r
79 DEBUG ((EFI_D_ERROR, "PageAttributeToGcdAttribute: PageAttributes:0x%lX not supported.\n", PageAttributes));\r
80 ASSERT (0);\r
81 // The Global Coherency Domain (GCD) value is defined as a bit set.\r
82 // Returning 0 means no attribute has been set.\r
83 GcdAttributes = 0;\r
84 }\r
85\r
86 // Determine protection attributes\r
87 if (((PageAttributes & TT_AP_MASK) == TT_AP_NO_RO) || ((PageAttributes & TT_AP_MASK) == TT_AP_RO_RO)) {\r
88 // Read only cases map to write-protect\r
89 GcdAttributes |= EFI_MEMORY_WP;\r
90 }\r
91\r
92 // Process eXecute Never attribute\r
93 if ((PageAttributes & (TT_PXN_MASK | TT_UXN_MASK)) != 0 ) {\r
94 GcdAttributes |= EFI_MEMORY_XP;\r
95 }\r
96\r
97 return GcdAttributes;\r
98}\r
99\r
100UINT64\r
101GcdAttributeToPageAttribute (\r
102 IN UINT64 GcdAttributes\r
103 )\r
104{\r
105 UINT64 PageAttributes;\r
106\r
107 switch (GcdAttributes & 0xFF) {\r
108 case EFI_MEMORY_UC:\r
109 PageAttributes = TT_ATTR_INDX_DEVICE_MEMORY;\r
110 break;\r
111 case EFI_MEMORY_WC:\r
112 PageAttributes = TT_ATTR_INDX_MEMORY_NON_CACHEABLE;\r
113 break;\r
114 case EFI_MEMORY_WT:\r
115 PageAttributes = TT_ATTR_INDX_MEMORY_WRITE_THROUGH;\r
116 break;\r
117 case EFI_MEMORY_WB:\r
118 PageAttributes = TT_ATTR_INDX_MEMORY_WRITE_BACK;\r
119 break;\r
120 default:\r
121 DEBUG ((EFI_D_ERROR, "GcdAttributeToPageAttribute: 0x%X attributes is not supported.\n", GcdAttributes));\r
122 ASSERT (0);\r
123 // If no match has been found then we mark the memory as device memory.\r
124 // The only side effect of using device memory should be a slow down in the performance.\r
125 PageAttributes = TT_ATTR_INDX_DEVICE_MEMORY;\r
126 }\r
127\r
128 // Determine protection attributes\r
129 if (GcdAttributes & EFI_MEMORY_WP) {\r
130 // Read only cases map to write-protect\r
131 PageAttributes |= TT_AP_RO_RO;\r
132 }\r
133\r
134 // Process eXecute Never attribute\r
135 if (GcdAttributes & EFI_MEMORY_XP) {\r
136 PageAttributes |= (TT_PXN_MASK | TT_UXN_MASK);\r
137 }\r
138\r
139 return PageAttributes;\r
140}\r
141\r
142ARM_MEMORY_REGION_ATTRIBUTES\r
143GcdAttributeToArmAttribute (\r
144 IN UINT64 GcdAttributes\r
145 )\r
146{\r
147 switch (GcdAttributes & 0xFF) {\r
148 case EFI_MEMORY_UC:\r
149 return ARM_MEMORY_REGION_ATTRIBUTE_DEVICE;\r
150 case EFI_MEMORY_WC:\r
151 return ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED;\r
152 case EFI_MEMORY_WT:\r
153 return ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH;\r
154 case EFI_MEMORY_WB:\r
155 return ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK;\r
156 default:\r
157 DEBUG ((EFI_D_ERROR, "GcdAttributeToArmAttribute: 0x%lX attributes is not supported.\n", GcdAttributes));\r
158 ASSERT (0);\r
159 return ARM_MEMORY_REGION_ATTRIBUTE_DEVICE;\r
160 }\r
161}\r
162\r
163// Describe the T0SZ values for each translation table level\r
164typedef struct {\r
165 UINTN MinT0SZ;\r
166 UINTN MaxT0SZ;\r
167 UINTN LargestT0SZ; // Generally (MaxT0SZ == LargestT0SZ) but at the Level3 Table\r
168 // the MaxT0SZ is not at the boundary of the table\r
169} T0SZ_DESCRIPTION_PER_LEVEL;\r
170\r
171// Map table for the corresponding Level of Table\r
172STATIC CONST T0SZ_DESCRIPTION_PER_LEVEL T0SZPerTableLevel[] = {\r
173 { 16, 24, 24 }, // Table Level 0\r
174 { 25, 33, 33 }, // Table Level 1\r
175 { 34, 39, 42 } // Table Level 2\r
176};\r
177\r
178VOID\r
179GetRootTranslationTableInfo (\r
180 IN UINTN T0SZ,\r
181 OUT UINTN *TableLevel,\r
182 OUT UINTN *TableEntryCount\r
183 )\r
184{\r
185 UINTN Index;\r
186\r
187 // Identify the level of the root table from the given T0SZ\r
188 for (Index = 0; Index < sizeof (T0SZPerTableLevel) / sizeof (T0SZ_DESCRIPTION_PER_LEVEL); Index++) {\r
189 if (T0SZ <= T0SZPerTableLevel[Index].MaxT0SZ) {\r
190 break;\r
191 }\r
192 }\r
193\r
194 // If we have not found the corresponding maximum T0SZ then we use the last one\r
195 if (Index == sizeof (T0SZPerTableLevel) / sizeof (T0SZ_DESCRIPTION_PER_LEVEL)) {\r
196 Index--;\r
197 }\r
198\r
199 // Get the level of the root table\r
200 if (TableLevel) {\r
201 *TableLevel = Index;\r
202 }\r
203\r
204 // The Size of the Table is 2^(T0SZ-LargestT0SZ)\r
205 if (TableEntryCount) {\r
206 *TableEntryCount = 1 << (T0SZPerTableLevel[Index].LargestT0SZ - T0SZ + 1);\r
207 }\r
208}\r
209\r
210STATIC\r
211VOID\r
212LookupAddresstoRootTable (\r
213 IN UINT64 MaxAddress,\r
214 OUT UINTN *T0SZ,\r
215 OUT UINTN *TableEntryCount\r
216 )\r
217{\r
218 UINTN TopBit;\r
219\r
220 // Check the parameters are not NULL\r
221 ASSERT ((T0SZ != NULL) && (TableEntryCount != NULL));\r
222\r
223 // Look for the highest bit set in MaxAddress\r
224 for (TopBit = 63; TopBit != 0; TopBit--) {\r
225 if ((1ULL << TopBit) & MaxAddress) {\r
226 // MaxAddress top bit is found\r
227 TopBit = TopBit + 1;\r
228 break;\r
229 }\r
230 }\r
231 ASSERT (TopBit != 0);\r
232\r
233 // Calculate T0SZ from the top bit of the MaxAddress\r
234 *T0SZ = 64 - TopBit;\r
235\r
236 // Get the Table info from T0SZ\r
237 GetRootTranslationTableInfo (*T0SZ, NULL, TableEntryCount);\r
238}\r
239\r
240STATIC\r
241UINT64*\r
242GetBlockEntryListFromAddress (\r
243 IN UINT64 *RootTable,\r
244 IN UINT64 RegionStart,\r
245 OUT UINTN *TableLevel,\r
246 IN OUT UINT64 *BlockEntrySize,\r
247 IN OUT UINT64 **LastBlockEntry\r
248 )\r
249{\r
250 UINTN RootTableLevel;\r
251 UINTN RootTableEntryCount;\r
252 UINT64 *TranslationTable;\r
253 UINT64 *BlockEntry;\r
254 UINT64 BlockEntryAddress;\r
255 UINTN BaseAddressAlignment;\r
256 UINTN PageLevel;\r
257 UINTN Index;\r
258 UINTN IndexLevel;\r
259 UINTN T0SZ;\r
260 UINT64 Attributes;\r
261 UINT64 TableAttributes;\r
262\r
263 // Initialize variable\r
264 BlockEntry = NULL;\r
265\r
266 // Ensure the parameters are valid\r
267 ASSERT (TableLevel && BlockEntrySize && LastBlockEntry);\r
268\r
269 // Ensure the Region is aligned on 4KB boundary\r
270 ASSERT ((RegionStart & (SIZE_4KB - 1)) == 0);\r
271\r
272 // Ensure the required size is aligned on 4KB boundary\r
273 ASSERT ((*BlockEntrySize & (SIZE_4KB - 1)) == 0);\r
274\r
275 //\r
276 // Calculate LastBlockEntry from T0SZ\r
277 //\r
278 T0SZ = ArmGetTCR () & TCR_T0SZ_MASK;\r
279 // Get the Table info from T0SZ\r
280 GetRootTranslationTableInfo (T0SZ, &RootTableLevel, &RootTableEntryCount);\r
281 // The last block of the root table depends on the number of entry in this table\r
282 *LastBlockEntry = (UINT64*)((UINTN)RootTable + (RootTableEntryCount * sizeof(UINT64)));\r
283\r
284 // If the start address is 0x0 then we use the size of the region to identify the alignment\r
285 if (RegionStart == 0) {\r
286 // Identify the highest possible alignment for the Region Size\r
287 for (BaseAddressAlignment = 0; BaseAddressAlignment < 64; BaseAddressAlignment++) {\r
288 if ((1 << BaseAddressAlignment) & *BlockEntrySize) {\r
289 break;\r
290 }\r
291 }\r
292 } else {\r
293 // Identify the highest possible alignment for the Base Address\r
294 for (BaseAddressAlignment = 0; BaseAddressAlignment < 64; BaseAddressAlignment++) {\r
295 if ((1 << BaseAddressAlignment) & RegionStart) {\r
296 break;\r
297 }\r
298 }\r
299 }\r
300\r
301 // Identify the Page Level the RegionStart must belongs to\r
302 PageLevel = 3 - ((BaseAddressAlignment - 12) / 9);\r
303\r
304 // If the required size is smaller than the current block size then we need to go to the page bellow.\r
305 if (*BlockEntrySize < TT_ADDRESS_AT_LEVEL(PageLevel)) {\r
306 // It does not fit so we need to go a page level above\r
307 PageLevel++;\r
308 }\r
309\r
310 // Expose the found PageLevel to the caller\r
311 *TableLevel = PageLevel;\r
312\r
313 // Now, we have the Table Level we can get the Block Size associated to this table\r
314 *BlockEntrySize = TT_ADDRESS_AT_LEVEL(PageLevel);\r
315\r
316 //\r
317 // Get the Table Descriptor for the corresponding PageLevel. We need to decompose RegionStart to get appropriate entries\r
318 //\r
319\r
320 TranslationTable = RootTable;\r
321 for (IndexLevel = RootTableLevel; IndexLevel <= PageLevel; IndexLevel++) {\r
322 BlockEntry = (UINT64*)TT_GET_ENTRY_FOR_ADDRESS (TranslationTable, IndexLevel, RegionStart);\r
323\r
324 if ((IndexLevel != 3) && ((*BlockEntry & TT_TYPE_MASK) == TT_TYPE_TABLE_ENTRY)) {\r
325 // Go to the next table\r
326 TranslationTable = (UINT64*)(*BlockEntry & TT_ADDRESS_MASK_DESCRIPTION_TABLE);\r
327\r
328 // If we are at the last level then update the output\r
329 if (IndexLevel == PageLevel) {\r
330 // And get the appropriate BlockEntry at the next level\r
331 BlockEntry = (UINT64*)TT_GET_ENTRY_FOR_ADDRESS (TranslationTable, IndexLevel + 1, RegionStart);\r
332\r
333 // Set the last block for this new table\r
334 *LastBlockEntry = (UINT64*)((UINTN)TranslationTable + (TT_ENTRY_COUNT * sizeof(UINT64)));\r
335 }\r
336 } else if ((*BlockEntry & TT_TYPE_MASK) == TT_TYPE_BLOCK_ENTRY) {\r
337 // If we are not at the last level then we need to split this BlockEntry\r
338 if (IndexLevel != PageLevel) {\r
339 // Retrieve the attributes from the block entry\r
340 Attributes = *BlockEntry & TT_ATTRIBUTES_MASK;\r
341\r
342 // Convert the block entry attributes into Table descriptor attributes\r
343 TableAttributes = TT_TABLE_AP_NO_PERMISSION;\r
344 if (Attributes & TT_PXN_MASK) {\r
345 TableAttributes = TT_TABLE_PXN;\r
346 }\r
347 if (Attributes & TT_UXN_MASK) {\r
348 TableAttributes = TT_TABLE_XN;\r
349 }\r
350 if (Attributes & TT_NS) {\r
351 TableAttributes = TT_TABLE_NS;\r
352 }\r
353\r
354 // Get the address corresponding at this entry\r
355 BlockEntryAddress = RegionStart;\r
356 BlockEntryAddress = BlockEntryAddress >> TT_ADDRESS_OFFSET_AT_LEVEL(IndexLevel);\r
357 // Shift back to right to set zero before the effective address\r
358 BlockEntryAddress = BlockEntryAddress << TT_ADDRESS_OFFSET_AT_LEVEL(IndexLevel);\r
359\r
360 // Set the correct entry type\r
361 if (IndexLevel + 1 == 3) {\r
362 Attributes |= TT_TYPE_BLOCK_ENTRY_LEVEL3;\r
363 } else {\r
364 Attributes |= TT_TYPE_BLOCK_ENTRY;\r
365 }\r
366\r
367 // Create a new translation table\r
368 TranslationTable = (UINT64*)AllocatePages (EFI_SIZE_TO_PAGES((TT_ENTRY_COUNT * sizeof(UINT64)) + TT_ALIGNMENT_DESCRIPTION_TABLE));\r
369 if (TranslationTable == NULL) {\r
370 return NULL;\r
371 }\r
372 TranslationTable = (UINT64*)((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE);\r
373\r
374 // Fill the new BlockEntry with the TranslationTable\r
375 *BlockEntry = ((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE) | TableAttributes | TT_TYPE_TABLE_ENTRY;\r
376\r
377 // Populate the newly created lower level table\r
378 BlockEntry = TranslationTable;\r
379 for (Index = 0; Index < TT_ENTRY_COUNT; Index++) {\r
380 *BlockEntry = Attributes | (BlockEntryAddress + (Index << TT_ADDRESS_OFFSET_AT_LEVEL(IndexLevel + 1)));\r
381 BlockEntry++;\r
382 }\r
383 // Block Entry points at the beginning of the Translation Table\r
384 BlockEntry = TranslationTable;\r
385 }\r
386 } else {\r
387 // Case of Invalid Entry and we are at a page level above of the one targetted.\r
388 if (IndexLevel != PageLevel) {\r
389 // Create a new translation table\r
390 TranslationTable = (UINT64*)AllocatePages (EFI_SIZE_TO_PAGES((TT_ENTRY_COUNT * sizeof(UINT64)) + TT_ALIGNMENT_DESCRIPTION_TABLE));\r
391 if (TranslationTable == NULL) {\r
392 return NULL;\r
393 }\r
394 TranslationTable = (UINT64*)((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE);\r
395\r
396 ZeroMem (TranslationTable, TT_ENTRY_COUNT * sizeof(UINT64));\r
397\r
398 // Fill the new BlockEntry with the TranslationTable\r
399 *BlockEntry = ((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE) | TT_TYPE_TABLE_ENTRY;\r
400 }\r
401 }\r
402 }\r
403\r
404 return BlockEntry;\r
405}\r
406\r
407STATIC\r
408RETURN_STATUS\r
409FillTranslationTable (\r
410 IN UINT64 *RootTable,\r
411 IN ARM_MEMORY_REGION_DESCRIPTOR *MemoryRegion\r
412 )\r
413{\r
414 UINT64 Attributes;\r
415 UINT32 Type;\r
416 UINT64 RegionStart;\r
417 UINT64 RemainingRegionLength;\r
418 UINT64 *BlockEntry;\r
419 UINT64 *LastBlockEntry;\r
420 UINT64 BlockEntrySize;\r
421 UINTN TableLevel;\r
422\r
423 // Ensure the Length is aligned on 4KB boundary\r
424 ASSERT ((MemoryRegion->Length > 0) && ((MemoryRegion->Length & (SIZE_4KB - 1)) == 0));\r
425\r
426 // Variable initialization\r
427 Attributes = ArmMemoryAttributeToPageAttribute (MemoryRegion->Attributes) | TT_AF;\r
428 RemainingRegionLength = MemoryRegion->Length;\r
429 RegionStart = MemoryRegion->VirtualBase;\r
430\r
431 do {\r
432 // Get the first Block Entry that matches the Virtual Address and also the information on the Table Descriptor\r
433 // such as the the size of the Block Entry and the address of the last BlockEntry of the Table Descriptor\r
434 BlockEntrySize = RemainingRegionLength;\r
435 BlockEntry = GetBlockEntryListFromAddress (RootTable, RegionStart, &TableLevel, &BlockEntrySize, &LastBlockEntry);\r
436 if (BlockEntry == NULL) {\r
437 // GetBlockEntryListFromAddress() return NULL when it fails to allocate new pages from the Translation Tables\r
438 return RETURN_OUT_OF_RESOURCES;\r
439 }\r
440\r
441 if (TableLevel != 3) {\r
442 Type = TT_TYPE_BLOCK_ENTRY;\r
443 } else {\r
444 Type = TT_TYPE_BLOCK_ENTRY_LEVEL3;\r
445 }\r
446\r
447 do {\r
448 // Fill the Block Entry with attribute and output block address\r
449 *BlockEntry = (RegionStart & TT_ADDRESS_MASK_BLOCK_ENTRY) | Attributes | Type;\r
450\r
451 // Go to the next BlockEntry\r
452 RegionStart += BlockEntrySize;\r
453 RemainingRegionLength -= BlockEntrySize;\r
454 BlockEntry++;\r
455 } while ((RemainingRegionLength >= BlockEntrySize) && (BlockEntry <= LastBlockEntry));\r
456 } while (RemainingRegionLength != 0);\r
457\r
458 return RETURN_SUCCESS;\r
459}\r
460\r
461RETURN_STATUS\r
462SetMemoryAttributes (\r
463 IN EFI_PHYSICAL_ADDRESS BaseAddress,\r
464 IN UINT64 Length,\r
465 IN UINT64 Attributes,\r
466 IN EFI_PHYSICAL_ADDRESS VirtualMask\r
467 )\r
468{
469 RETURN_STATUS Status;\r
470 ARM_MEMORY_REGION_DESCRIPTOR MemoryRegion;\r
471 UINT64 *TranslationTable;\r
472\r
473 MemoryRegion.PhysicalBase = BaseAddress;\r
474 MemoryRegion.VirtualBase = BaseAddress;\r
475 MemoryRegion.Length = Length;\r
476 MemoryRegion.Attributes = GcdAttributeToArmAttribute (Attributes);\r
477\r
478 TranslationTable = ArmGetTTBR0BaseAddress ();\r
479\r
480 Status = FillTranslationTable (TranslationTable, &MemoryRegion);
481 if (RETURN_ERROR (Status)) {
482 return Status;
483 }\r
484\r
485 // Flush d-cache so descriptors make it back to uncached memory for subsequent table walks\r
486 // flush and invalidate pages\r
487 ArmCleanInvalidateDataCache ();\r
488\r
489 ArmInvalidateInstructionCache ();\r
490\r
491 // Invalidate all TLB entries so changes are synced\r
492 ArmInvalidateTlb ();\r
493\r
494 return RETURN_SUCCESS;\r
495}\r
496\r
497RETURN_STATUS\r
498EFIAPI\r
499ArmConfigureMmu (\r
500 IN ARM_MEMORY_REGION_DESCRIPTOR *MemoryTable,\r
501 OUT VOID **TranslationTableBase OPTIONAL,\r
502 OUT UINTN *TranslationTableSize OPTIONAL\r
503 )\r
504{\r
505 VOID* TranslationTable;\r
506 UINTN TranslationTablePageCount;\r
507 UINT32 TranslationTableAttribute;\r
508 ARM_MEMORY_REGION_DESCRIPTOR *MemoryTableEntry;\r
509 UINT64 MaxAddress;\r
510 UINT64 TopAddress;\r
511 UINTN T0SZ;\r
512 UINTN RootTableEntryCount;\r
513 UINT64 TCR;\r
514 RETURN_STATUS Status;\r
515\r
516 ASSERT (MemoryTable != NULL);\r
517\r
518 // Identify the highest address of the memory table\r
519 MaxAddress = MemoryTable->PhysicalBase + MemoryTable->Length - 1;\r
520 MemoryTableEntry = MemoryTable;\r
521 while (MemoryTableEntry->Length != 0) {\r
522 TopAddress = MemoryTableEntry->PhysicalBase + MemoryTableEntry->Length - 1;\r
523 if (TopAddress > MaxAddress) {\r
524 MaxAddress = TopAddress;\r
525 }\r
526 MemoryTableEntry++;\r
527 }\r
528\r
529 // Lookup the Table Level to get the information\r
530 LookupAddresstoRootTable (MaxAddress, &T0SZ, &RootTableEntryCount);\r
531\r
532 //\r
533 // Set TCR that allows us to retrieve T0SZ in the subsequent functions\r
534 //\r
535 if ((ArmReadCurrentEL () == AARCH64_EL2) || (ArmReadCurrentEL () == AARCH64_EL3)) {\r
536 //Note: Bits 23 and 31 are reserved bits in TCR_EL2 and TCR_EL3\r
537 TCR = T0SZ | (1UL << 31) | (1UL << 23) | TCR_TG0_4KB;\r
538\r
539 // Set the Physical Address Size using MaxAddress\r
540 if (MaxAddress < SIZE_4GB) {\r
541 TCR |= TCR_PS_4GB;\r
542 } else if (MaxAddress < SIZE_64GB) {\r
543 TCR |= TCR_PS_64GB;\r
544 } else if (MaxAddress < SIZE_1TB) {\r
545 TCR |= TCR_PS_1TB;\r
546 } else if (MaxAddress < SIZE_4TB) {\r
547 TCR |= TCR_PS_4TB;\r
548 } else if (MaxAddress < SIZE_16TB) {\r
549 TCR |= TCR_PS_16TB;\r
550 } else if (MaxAddress < SIZE_256TB) {\r
551 TCR |= TCR_PS_256TB;\r
552 } else {\r
553 DEBUG ((EFI_D_ERROR, "ArmConfigureMmu: The MaxAddress 0x%lX is not supported by this MMU support.\n", MaxAddress));\r
554 ASSERT (0); // Bigger than 48-bit memory space are not supported\r
555 return RETURN_UNSUPPORTED;\r
556 }\r
557 } else {\r
558 ASSERT (0); // Bigger than 48-bit memory space are not supported\r
559 return RETURN_UNSUPPORTED;\r
560 }\r
561\r
562 // Set TCR\r
563 ArmSetTCR (TCR);\r
564\r
565 // Allocate pages for translation table\r
566 TranslationTablePageCount = EFI_SIZE_TO_PAGES((RootTableEntryCount * sizeof(UINT64)) + TT_ALIGNMENT_DESCRIPTION_TABLE);\r
567 TranslationTable = AllocatePages (TranslationTablePageCount);\r
568 if (TranslationTable == NULL) {\r
569 return RETURN_OUT_OF_RESOURCES;\r
570 }\r
571 TranslationTable = (VOID*)((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE);\r
572 // We set TTBR0 just after allocating the table to retrieve its location from the subsequent\r
573 // functions without needing to pass this value across the functions. The MMU is only enabled\r
574 // after the translation tables are populated.\r
575 ArmSetTTBR0 (TranslationTable);\r
576\r
577 if (TranslationTableBase != NULL) {\r
578 *TranslationTableBase = TranslationTable;\r
579 }\r
580\r
581 if (TranslationTableSize != NULL) {\r
582 *TranslationTableSize = RootTableEntryCount * sizeof(UINT64);\r
583 }\r
584\r
585 ZeroMem (TranslationTable, RootTableEntryCount * sizeof(UINT64));\r
586\r
587 // Disable MMU and caches. ArmDisableMmu() also invalidates the TLBs\r
588 ArmDisableMmu ();\r
589 ArmDisableDataCache ();\r
590 ArmDisableInstructionCache ();\r
591\r
592 // Make sure nothing sneaked into the cache\r
593 ArmCleanInvalidateDataCache ();\r
594 ArmInvalidateInstructionCache ();\r
595\r
596 TranslationTableAttribute = TT_ATTR_INDX_INVALID;\r
597 while (MemoryTable->Length != 0) {\r
598 // Find the memory attribute for the Translation Table\r
599 if (((UINTN)TranslationTable >= MemoryTable->PhysicalBase) &&\r
600 ((UINTN)TranslationTable <= MemoryTable->PhysicalBase - 1 + MemoryTable->Length)) {\r
601 TranslationTableAttribute = MemoryTable->Attributes;\r
602 }\r
603\r
604 Status = FillTranslationTable (TranslationTable, MemoryTable);\r
605 if (RETURN_ERROR (Status)) {\r
606 goto FREE_TRANSLATION_TABLE;\r
607 }\r
608 MemoryTable++;\r
609 }\r
610\r
611 // Translate the Memory Attributes into Translation Table Register Attributes\r
612 if ((TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED) ||\r
613 (TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_UNCACHED_UNBUFFERED)) {\r
614 TCR |= TCR_SH_NON_SHAREABLE | TCR_RGN_OUTER_NON_CACHEABLE | TCR_RGN_INNER_NON_CACHEABLE;\r
615 } else if ((TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK) ||\r
616 (TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_BACK)) {\r
617 TCR |= TCR_SH_INNER_SHAREABLE | TCR_RGN_OUTER_WRITE_BACK_ALLOC | TCR_RGN_INNER_WRITE_BACK_ALLOC;\r
618 } else if ((TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH) ||\r
619 (TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_THROUGH)) {\r
620 TCR |= TCR_SH_NON_SHAREABLE | TCR_RGN_OUTER_WRITE_THROUGH | TCR_RGN_INNER_WRITE_THROUGH;\r
621 } else {\r
622 // If we failed to find a mapping that contains the root translation table then it probably means the translation table\r
623 // is not mapped in the given memory map.\r
624 ASSERT (0);\r
625 Status = RETURN_UNSUPPORTED;\r
626 goto FREE_TRANSLATION_TABLE;\r
627 }\r
628\r
629 ArmSetMAIR (MAIR_ATTR(TT_ATTR_INDX_DEVICE_MEMORY, MAIR_ATTR_DEVICE_MEMORY) | // mapped to EFI_MEMORY_UC\r
630 MAIR_ATTR(TT_ATTR_INDX_MEMORY_NON_CACHEABLE, MAIR_ATTR_NORMAL_MEMORY_NON_CACHEABLE) | // mapped to EFI_MEMORY_WC\r
631 MAIR_ATTR(TT_ATTR_INDX_MEMORY_WRITE_THROUGH, MAIR_ATTR_NORMAL_MEMORY_WRITE_THROUGH) | // mapped to EFI_MEMORY_WT\r
632 MAIR_ATTR(TT_ATTR_INDX_MEMORY_WRITE_BACK, MAIR_ATTR_NORMAL_MEMORY_WRITE_BACK)); // mapped to EFI_MEMORY_WB\r
633\r
634 ArmDisableAlignmentCheck ();\r
635 ArmEnableInstructionCache ();\r
636 ArmEnableDataCache ();\r
637\r
638 ArmEnableMmu ();\r
639 return RETURN_SUCCESS;\r
640\r
641FREE_TRANSLATION_TABLE:\r
642 FreePages (TranslationTable, TranslationTablePageCount);\r
643 return Status;\r
644}\r