]> git.proxmox.com Git - mirror_edk2.git/blame - ArmPkg/Library/ArmLib/AArch64/AArch64Mmu.c
ArmPkg/ArmLib/AArch64: Initialize the new N+1-level page table before registering it
[mirror_edk2.git] / ArmPkg / Library / ArmLib / AArch64 / AArch64Mmu.c
CommitLineData
25402f5d
HL
1/** @file\r
2* File managing the MMU for ARMv8 architecture\r
3*\r
19dc108b 4* Copyright (c) 2011-2014, ARM Limited. All rights reserved.\r
25402f5d
HL
5*\r
6* This program and the accompanying materials\r
7* are licensed and made available under the terms and conditions of the BSD License\r
8* which accompanies this distribution. The full text of the license may be found at\r
9* http://opensource.org/licenses/bsd-license.php\r
10*\r
11* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
12* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
13*\r
14**/\r
15\r
16#include <Uefi.h>\r
17#include <Chipset/AArch64.h>\r
18#include <Library/BaseMemoryLib.h>\r
19#include <Library/MemoryAllocationLib.h>\r
20#include <Library/ArmLib.h>\r
21#include <Library/BaseLib.h>\r
22#include <Library/DebugLib.h>\r
23#include "AArch64Lib.h"\r
24#include "ArmLibPrivate.h"\r
25\r
26// We use this index definition to define an invalid block entry\r
27#define TT_ATTR_INDX_INVALID ((UINT32)~0)\r
28\r
29STATIC\r
30UINT64\r
31ArmMemoryAttributeToPageAttribute (\r
32 IN ARM_MEMORY_REGION_ATTRIBUTES Attributes\r
33 )\r
34{\r
35 switch (Attributes) {\r
36 case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK:\r
37 return TT_ATTR_INDX_MEMORY_WRITE_BACK;\r
38 case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH:\r
39 return TT_ATTR_INDX_MEMORY_WRITE_THROUGH;\r
40 case ARM_MEMORY_REGION_ATTRIBUTE_DEVICE:\r
41 return TT_ATTR_INDX_DEVICE_MEMORY;\r
42 case ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED:\r
43 return TT_ATTR_INDX_MEMORY_NON_CACHEABLE;\r
44 case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_BACK:\r
45 return TT_ATTR_INDX_MEMORY_WRITE_BACK;\r
46 case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_THROUGH:\r
47 return TT_ATTR_INDX_MEMORY_WRITE_THROUGH;\r
48 case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_DEVICE:\r
49 return TT_ATTR_INDX_DEVICE_MEMORY;\r
50 case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_UNCACHED_UNBUFFERED:\r
51 return TT_ATTR_INDX_MEMORY_NON_CACHEABLE;\r
52 default:\r
53 ASSERT(0);\r
54 return TT_ATTR_INDX_DEVICE_MEMORY;\r
55 }\r
56}\r
57\r
58UINT64\r
59PageAttributeToGcdAttribute (\r
60 IN UINT64 PageAttributes\r
61 )\r
62{\r
63 UINT64 GcdAttributes;\r
64\r
65 switch (PageAttributes & TT_ATTR_INDX_MASK) {\r
66 case TT_ATTR_INDX_DEVICE_MEMORY:\r
67 GcdAttributes = EFI_MEMORY_UC;\r
68 break;\r
69 case TT_ATTR_INDX_MEMORY_NON_CACHEABLE:\r
70 GcdAttributes = EFI_MEMORY_WC;\r
71 break;\r
72 case TT_ATTR_INDX_MEMORY_WRITE_THROUGH:\r
73 GcdAttributes = EFI_MEMORY_WT;\r
74 break;\r
75 case TT_ATTR_INDX_MEMORY_WRITE_BACK:\r
76 GcdAttributes = EFI_MEMORY_WB;\r
77 break;\r
78 default:\r
79 DEBUG ((EFI_D_ERROR, "PageAttributeToGcdAttribute: PageAttributes:0x%lX not supported.\n", PageAttributes));\r
80 ASSERT (0);\r
81 // The Global Coherency Domain (GCD) value is defined as a bit set.\r
82 // Returning 0 means no attribute has been set.\r
83 GcdAttributes = 0;\r
84 }\r
85\r
86 // Determine protection attributes\r
87 if (((PageAttributes & TT_AP_MASK) == TT_AP_NO_RO) || ((PageAttributes & TT_AP_MASK) == TT_AP_RO_RO)) {\r
88 // Read only cases map to write-protect\r
89 GcdAttributes |= EFI_MEMORY_WP;\r
90 }\r
91\r
92 // Process eXecute Never attribute\r
93 if ((PageAttributes & (TT_PXN_MASK | TT_UXN_MASK)) != 0 ) {\r
94 GcdAttributes |= EFI_MEMORY_XP;\r
95 }\r
96\r
97 return GcdAttributes;\r
98}\r
99\r
100UINT64\r
101GcdAttributeToPageAttribute (\r
102 IN UINT64 GcdAttributes\r
103 )\r
104{\r
105 UINT64 PageAttributes;\r
106\r
107 switch (GcdAttributes & 0xFF) {\r
108 case EFI_MEMORY_UC:\r
109 PageAttributes = TT_ATTR_INDX_DEVICE_MEMORY;\r
110 break;\r
111 case EFI_MEMORY_WC:\r
112 PageAttributes = TT_ATTR_INDX_MEMORY_NON_CACHEABLE;\r
113 break;\r
114 case EFI_MEMORY_WT:\r
115 PageAttributes = TT_ATTR_INDX_MEMORY_WRITE_THROUGH;\r
116 break;\r
117 case EFI_MEMORY_WB:\r
118 PageAttributes = TT_ATTR_INDX_MEMORY_WRITE_BACK;\r
119 break;\r
120 default:\r
121 DEBUG ((EFI_D_ERROR, "GcdAttributeToPageAttribute: 0x%X attributes is not supported.\n", GcdAttributes));\r
122 ASSERT (0);\r
123 // If no match has been found then we mark the memory as device memory.\r
124 // The only side effect of using device memory should be a slow down in the performance.\r
125 PageAttributes = TT_ATTR_INDX_DEVICE_MEMORY;\r
126 }\r
127\r
128 // Determine protection attributes\r
129 if (GcdAttributes & EFI_MEMORY_WP) {\r
130 // Read only cases map to write-protect\r
131 PageAttributes |= TT_AP_RO_RO;\r
132 }\r
133\r
134 // Process eXecute Never attribute\r
135 if (GcdAttributes & EFI_MEMORY_XP) {\r
136 PageAttributes |= (TT_PXN_MASK | TT_UXN_MASK);\r
137 }\r
138\r
139 return PageAttributes;\r
140}\r
141\r
142ARM_MEMORY_REGION_ATTRIBUTES\r
143GcdAttributeToArmAttribute (\r
144 IN UINT64 GcdAttributes\r
145 )\r
146{\r
147 switch (GcdAttributes & 0xFF) {\r
148 case EFI_MEMORY_UC:\r
149 return ARM_MEMORY_REGION_ATTRIBUTE_DEVICE;\r
150 case EFI_MEMORY_WC:\r
151 return ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED;\r
152 case EFI_MEMORY_WT:\r
153 return ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH;\r
154 case EFI_MEMORY_WB:\r
155 return ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK;\r
156 default:\r
157 DEBUG ((EFI_D_ERROR, "GcdAttributeToArmAttribute: 0x%lX attributes is not supported.\n", GcdAttributes));\r
158 ASSERT (0);\r
159 return ARM_MEMORY_REGION_ATTRIBUTE_DEVICE;\r
160 }\r
161}\r
162\r
163// Describe the T0SZ values for each translation table level\r
164typedef struct {\r
165 UINTN MinT0SZ;\r
166 UINTN MaxT0SZ;\r
167 UINTN LargestT0SZ; // Generally (MaxT0SZ == LargestT0SZ) but at the Level3 Table\r
168 // the MaxT0SZ is not at the boundary of the table\r
169} T0SZ_DESCRIPTION_PER_LEVEL;\r
170\r
171// Map table for the corresponding Level of Table\r
172STATIC CONST T0SZ_DESCRIPTION_PER_LEVEL T0SZPerTableLevel[] = {\r
173 { 16, 24, 24 }, // Table Level 0\r
174 { 25, 33, 33 }, // Table Level 1\r
175 { 34, 39, 42 } // Table Level 2\r
176};\r
177\r
178VOID\r
179GetRootTranslationTableInfo (\r
180 IN UINTN T0SZ,\r
181 OUT UINTN *TableLevel,\r
182 OUT UINTN *TableEntryCount\r
183 )\r
184{\r
185 UINTN Index;\r
186\r
187 // Identify the level of the root table from the given T0SZ\r
188 for (Index = 0; Index < sizeof (T0SZPerTableLevel) / sizeof (T0SZ_DESCRIPTION_PER_LEVEL); Index++) {\r
189 if (T0SZ <= T0SZPerTableLevel[Index].MaxT0SZ) {\r
190 break;\r
191 }\r
192 }\r
193\r
194 // If we have not found the corresponding maximum T0SZ then we use the last one\r
195 if (Index == sizeof (T0SZPerTableLevel) / sizeof (T0SZ_DESCRIPTION_PER_LEVEL)) {\r
196 Index--;\r
197 }\r
198\r
199 // Get the level of the root table\r
200 if (TableLevel) {\r
201 *TableLevel = Index;\r
202 }\r
203\r
204 // The Size of the Table is 2^(T0SZ-LargestT0SZ)\r
205 if (TableEntryCount) {\r
206 *TableEntryCount = 1 << (T0SZPerTableLevel[Index].LargestT0SZ - T0SZ + 1);\r
207 }\r
208}\r
209\r
210STATIC\r
211VOID\r
212LookupAddresstoRootTable (\r
213 IN UINT64 MaxAddress,\r
214 OUT UINTN *T0SZ,\r
215 OUT UINTN *TableEntryCount\r
216 )\r
217{\r
218 UINTN TopBit;\r
219\r
220 // Check the parameters are not NULL\r
221 ASSERT ((T0SZ != NULL) && (TableEntryCount != NULL));\r
222\r
223 // Look for the highest bit set in MaxAddress\r
224 for (TopBit = 63; TopBit != 0; TopBit--) {\r
225 if ((1ULL << TopBit) & MaxAddress) {\r
226 // MaxAddress top bit is found\r
227 TopBit = TopBit + 1;\r
228 break;\r
229 }\r
230 }\r
231 ASSERT (TopBit != 0);\r
232\r
233 // Calculate T0SZ from the top bit of the MaxAddress\r
234 *T0SZ = 64 - TopBit;\r
235\r
236 // Get the Table info from T0SZ\r
237 GetRootTranslationTableInfo (*T0SZ, NULL, TableEntryCount);\r
238}\r
239\r
240STATIC\r
241UINT64*\r
242GetBlockEntryListFromAddress (\r
243 IN UINT64 *RootTable,\r
244 IN UINT64 RegionStart,\r
245 OUT UINTN *TableLevel,\r
246 IN OUT UINT64 *BlockEntrySize,\r
247 IN OUT UINT64 **LastBlockEntry\r
248 )\r
249{\r
250 UINTN RootTableLevel;\r
251 UINTN RootTableEntryCount;\r
252 UINT64 *TranslationTable;\r
253 UINT64 *BlockEntry;\r
ebb92353 254 UINT64 *SubTableBlockEntry;\r
25402f5d
HL
255 UINT64 BlockEntryAddress;\r
256 UINTN BaseAddressAlignment;\r
257 UINTN PageLevel;\r
258 UINTN Index;\r
259 UINTN IndexLevel;\r
260 UINTN T0SZ;\r
261 UINT64 Attributes;\r
262 UINT64 TableAttributes;\r
263\r
264 // Initialize variable\r
265 BlockEntry = NULL;\r
266\r
267 // Ensure the parameters are valid\r
19dc108b
OM
268 if (!(TableLevel && BlockEntrySize && LastBlockEntry)) {\r
269 ASSERT_EFI_ERROR (EFI_INVALID_PARAMETER);\r
270 return NULL;\r
271 }\r
25402f5d
HL
272\r
273 // Ensure the Region is aligned on 4KB boundary\r
19dc108b
OM
274 if ((RegionStart & (SIZE_4KB - 1)) != 0) {\r
275 ASSERT_EFI_ERROR (EFI_INVALID_PARAMETER);\r
276 return NULL;\r
277 }\r
25402f5d
HL
278\r
279 // Ensure the required size is aligned on 4KB boundary\r
19dc108b
OM
280 if ((*BlockEntrySize & (SIZE_4KB - 1)) != 0) {\r
281 ASSERT_EFI_ERROR (EFI_INVALID_PARAMETER);\r
282 return NULL;\r
283 }\r
25402f5d
HL
284\r
285 //\r
383070d3 286 // Calculate LastBlockEntry from T0SZ - this is the last block entry of the root Translation table\r
25402f5d
HL
287 //\r
288 T0SZ = ArmGetTCR () & TCR_T0SZ_MASK;\r
289 // Get the Table info from T0SZ\r
290 GetRootTranslationTableInfo (T0SZ, &RootTableLevel, &RootTableEntryCount);\r
291 // The last block of the root table depends on the number of entry in this table\r
d9680b94 292 *LastBlockEntry = TT_LAST_BLOCK_ADDRESS(RootTable, RootTableEntryCount);\r
25402f5d
HL
293\r
294 // If the start address is 0x0 then we use the size of the region to identify the alignment\r
295 if (RegionStart == 0) {\r
296 // Identify the highest possible alignment for the Region Size\r
297 for (BaseAddressAlignment = 0; BaseAddressAlignment < 64; BaseAddressAlignment++) {\r
298 if ((1 << BaseAddressAlignment) & *BlockEntrySize) {\r
299 break;\r
300 }\r
301 }\r
302 } else {\r
303 // Identify the highest possible alignment for the Base Address\r
304 for (BaseAddressAlignment = 0; BaseAddressAlignment < 64; BaseAddressAlignment++) {\r
305 if ((1 << BaseAddressAlignment) & RegionStart) {\r
306 break;\r
307 }\r
308 }\r
309 }\r
310\r
311 // Identify the Page Level the RegionStart must belongs to\r
312 PageLevel = 3 - ((BaseAddressAlignment - 12) / 9);\r
313\r
6ea162c2
OM
314 // If the required size is smaller than the current block size then we need to go to the page below.\r
315 // The PageLevel was calculated on the Base Address alignment but did not take in account the alignment\r
316 // of the allocation size\r
317 if (*BlockEntrySize < TT_BLOCK_ENTRY_SIZE_AT_LEVEL (PageLevel)) {\r
25402f5d
HL
318 // It does not fit so we need to go a page level above\r
319 PageLevel++;\r
320 }\r
321\r
322 // Expose the found PageLevel to the caller\r
323 *TableLevel = PageLevel;\r
324\r
325 // Now, we have the Table Level we can get the Block Size associated to this table\r
6ea162c2 326 *BlockEntrySize = TT_BLOCK_ENTRY_SIZE_AT_LEVEL (PageLevel);\r
25402f5d
HL
327\r
328 //\r
329 // Get the Table Descriptor for the corresponding PageLevel. We need to decompose RegionStart to get appropriate entries\r
330 //\r
331\r
332 TranslationTable = RootTable;\r
333 for (IndexLevel = RootTableLevel; IndexLevel <= PageLevel; IndexLevel++) {\r
334 BlockEntry = (UINT64*)TT_GET_ENTRY_FOR_ADDRESS (TranslationTable, IndexLevel, RegionStart);\r
335\r
336 if ((IndexLevel != 3) && ((*BlockEntry & TT_TYPE_MASK) == TT_TYPE_TABLE_ENTRY)) {\r
337 // Go to the next table\r
338 TranslationTable = (UINT64*)(*BlockEntry & TT_ADDRESS_MASK_DESCRIPTION_TABLE);\r
339\r
340 // If we are at the last level then update the output\r
341 if (IndexLevel == PageLevel) {\r
342 // And get the appropriate BlockEntry at the next level\r
343 BlockEntry = (UINT64*)TT_GET_ENTRY_FOR_ADDRESS (TranslationTable, IndexLevel + 1, RegionStart);\r
344\r
345 // Set the last block for this new table\r
d9680b94 346 *LastBlockEntry = TT_LAST_BLOCK_ADDRESS(TranslationTable, TT_ENTRY_COUNT);\r
25402f5d
HL
347 }\r
348 } else if ((*BlockEntry & TT_TYPE_MASK) == TT_TYPE_BLOCK_ENTRY) {\r
349 // If we are not at the last level then we need to split this BlockEntry\r
350 if (IndexLevel != PageLevel) {\r
351 // Retrieve the attributes from the block entry\r
352 Attributes = *BlockEntry & TT_ATTRIBUTES_MASK;\r
353\r
354 // Convert the block entry attributes into Table descriptor attributes\r
355 TableAttributes = TT_TABLE_AP_NO_PERMISSION;\r
356 if (Attributes & TT_PXN_MASK) {\r
357 TableAttributes = TT_TABLE_PXN;\r
358 }\r
359 if (Attributes & TT_UXN_MASK) {\r
360 TableAttributes = TT_TABLE_XN;\r
361 }\r
362 if (Attributes & TT_NS) {\r
363 TableAttributes = TT_TABLE_NS;\r
364 }\r
365\r
366 // Get the address corresponding at this entry\r
367 BlockEntryAddress = RegionStart;\r
368 BlockEntryAddress = BlockEntryAddress >> TT_ADDRESS_OFFSET_AT_LEVEL(IndexLevel);\r
369 // Shift back to right to set zero before the effective address\r
370 BlockEntryAddress = BlockEntryAddress << TT_ADDRESS_OFFSET_AT_LEVEL(IndexLevel);\r
371\r
6ea162c2
OM
372 // Set the correct entry type for the next page level\r
373 if ((IndexLevel + 1) == 3) {\r
25402f5d
HL
374 Attributes |= TT_TYPE_BLOCK_ENTRY_LEVEL3;\r
375 } else {\r
376 Attributes |= TT_TYPE_BLOCK_ENTRY;\r
377 }\r
378\r
379 // Create a new translation table\r
380 TranslationTable = (UINT64*)AllocatePages (EFI_SIZE_TO_PAGES((TT_ENTRY_COUNT * sizeof(UINT64)) + TT_ALIGNMENT_DESCRIPTION_TABLE));\r
381 if (TranslationTable == NULL) {\r
382 return NULL;\r
383 }\r
384 TranslationTable = (UINT64*)((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE);\r
385\r
ebb92353
OM
386 // Populate the newly created lower level table\r
387 SubTableBlockEntry = TranslationTable;\r
388 for (Index = 0; Index < TT_ENTRY_COUNT; Index++) {\r
389 *SubTableBlockEntry = Attributes | (BlockEntryAddress + (Index << TT_ADDRESS_OFFSET_AT_LEVEL(IndexLevel + 1)));\r
390 SubTableBlockEntry++;\r
391 }\r
392\r
6ea162c2 393 // Fill the BlockEntry with the new TranslationTable\r
25402f5d 394 *BlockEntry = ((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE) | TableAttributes | TT_TYPE_TABLE_ENTRY;\r
383070d3 395 // Update the last block entry with the newly created translation table\r
d9680b94 396 *LastBlockEntry = TT_LAST_BLOCK_ADDRESS(TranslationTable, TT_ENTRY_COUNT);\r
25402f5d 397\r
25402f5d
HL
398 // Block Entry points at the beginning of the Translation Table\r
399 BlockEntry = TranslationTable;\r
400 }\r
401 } else {\r
25402f5d 402 if (IndexLevel != PageLevel) {\r
8bb7f03a
OM
403 //\r
404 // Case when we have an Invalid Entry and we are at a page level above of the one targetted.\r
405 //\r
406\r
25402f5d
HL
407 // Create a new translation table\r
408 TranslationTable = (UINT64*)AllocatePages (EFI_SIZE_TO_PAGES((TT_ENTRY_COUNT * sizeof(UINT64)) + TT_ALIGNMENT_DESCRIPTION_TABLE));\r
409 if (TranslationTable == NULL) {\r
410 return NULL;\r
411 }\r
412 TranslationTable = (UINT64*)((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE);\r
413\r
414 ZeroMem (TranslationTable, TT_ENTRY_COUNT * sizeof(UINT64));\r
415\r
416 // Fill the new BlockEntry with the TranslationTable\r
417 *BlockEntry = ((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE) | TT_TYPE_TABLE_ENTRY;\r
7017c269
GK
418 // Update the last block entry with the newly created translation table\r
419 *LastBlockEntry = TT_LAST_BLOCK_ADDRESS(TranslationTable, TT_ENTRY_COUNT);\r
8bb7f03a
OM
420 } else {\r
421 //\r
422 // Case when the new region is part of an existing page table\r
423 //\r
424 *LastBlockEntry = TT_LAST_BLOCK_ADDRESS(TranslationTable, TT_ENTRY_COUNT);\r
25402f5d
HL
425 }\r
426 }\r
427 }\r
428\r
429 return BlockEntry;\r
430}\r
431\r
432STATIC\r
433RETURN_STATUS\r
434FillTranslationTable (\r
435 IN UINT64 *RootTable,\r
436 IN ARM_MEMORY_REGION_DESCRIPTOR *MemoryRegion\r
437 )\r
438{\r
439 UINT64 Attributes;\r
440 UINT32 Type;\r
441 UINT64 RegionStart;\r
442 UINT64 RemainingRegionLength;\r
443 UINT64 *BlockEntry;\r
444 UINT64 *LastBlockEntry;\r
445 UINT64 BlockEntrySize;\r
446 UINTN TableLevel;\r
447\r
448 // Ensure the Length is aligned on 4KB boundary\r
19dc108b
OM
449 if ((MemoryRegion->Length == 0) || ((MemoryRegion->Length & (SIZE_4KB - 1)) != 0)) {\r
450 ASSERT_EFI_ERROR (EFI_INVALID_PARAMETER);\r
451 return RETURN_INVALID_PARAMETER;\r
452 }\r
25402f5d
HL
453\r
454 // Variable initialization\r
455 Attributes = ArmMemoryAttributeToPageAttribute (MemoryRegion->Attributes) | TT_AF;\r
456 RemainingRegionLength = MemoryRegion->Length;\r
457 RegionStart = MemoryRegion->VirtualBase;\r
458\r
459 do {\r
460 // Get the first Block Entry that matches the Virtual Address and also the information on the Table Descriptor\r
461 // such as the the size of the Block Entry and the address of the last BlockEntry of the Table Descriptor\r
462 BlockEntrySize = RemainingRegionLength;\r
463 BlockEntry = GetBlockEntryListFromAddress (RootTable, RegionStart, &TableLevel, &BlockEntrySize, &LastBlockEntry);\r
464 if (BlockEntry == NULL) {\r
465 // GetBlockEntryListFromAddress() return NULL when it fails to allocate new pages from the Translation Tables\r
466 return RETURN_OUT_OF_RESOURCES;\r
467 }\r
468\r
469 if (TableLevel != 3) {\r
470 Type = TT_TYPE_BLOCK_ENTRY;\r
471 } else {\r
472 Type = TT_TYPE_BLOCK_ENTRY_LEVEL3;\r
473 }\r
474\r
475 do {\r
476 // Fill the Block Entry with attribute and output block address\r
477 *BlockEntry = (RegionStart & TT_ADDRESS_MASK_BLOCK_ENTRY) | Attributes | Type;\r
478\r
479 // Go to the next BlockEntry\r
480 RegionStart += BlockEntrySize;\r
481 RemainingRegionLength -= BlockEntrySize;\r
482 BlockEntry++;\r
483 } while ((RemainingRegionLength >= BlockEntrySize) && (BlockEntry <= LastBlockEntry));\r
484 } while (RemainingRegionLength != 0);\r
485\r
486 return RETURN_SUCCESS;\r
487}\r
488\r
489RETURN_STATUS\r
490SetMemoryAttributes (\r
491 IN EFI_PHYSICAL_ADDRESS BaseAddress,\r
492 IN UINT64 Length,\r
493 IN UINT64 Attributes,\r
494 IN EFI_PHYSICAL_ADDRESS VirtualMask\r
495 )\r
e6f3ed43 496{\r
25402f5d
HL
497 RETURN_STATUS Status;\r
498 ARM_MEMORY_REGION_DESCRIPTOR MemoryRegion;\r
499 UINT64 *TranslationTable;\r
500\r
501 MemoryRegion.PhysicalBase = BaseAddress;\r
502 MemoryRegion.VirtualBase = BaseAddress;\r
503 MemoryRegion.Length = Length;\r
504 MemoryRegion.Attributes = GcdAttributeToArmAttribute (Attributes);\r
505\r
506 TranslationTable = ArmGetTTBR0BaseAddress ();\r
507\r
e6f3ed43
LL
508 Status = FillTranslationTable (TranslationTable, &MemoryRegion);\r
509 if (RETURN_ERROR (Status)) {\r
510 return Status;\r
25402f5d
HL
511 }\r
512\r
513 // Flush d-cache so descriptors make it back to uncached memory for subsequent table walks\r
514 // flush and invalidate pages\r
515 ArmCleanInvalidateDataCache ();\r
516\r
517 ArmInvalidateInstructionCache ();\r
518\r
519 // Invalidate all TLB entries so changes are synced\r
520 ArmInvalidateTlb ();\r
521\r
522 return RETURN_SUCCESS;\r
523}\r
524\r
525RETURN_STATUS\r
526EFIAPI\r
527ArmConfigureMmu (\r
528 IN ARM_MEMORY_REGION_DESCRIPTOR *MemoryTable,\r
529 OUT VOID **TranslationTableBase OPTIONAL,\r
530 OUT UINTN *TranslationTableSize OPTIONAL\r
531 )\r
532{\r
533 VOID* TranslationTable;\r
534 UINTN TranslationTablePageCount;\r
535 UINT32 TranslationTableAttribute;\r
536 ARM_MEMORY_REGION_DESCRIPTOR *MemoryTableEntry;\r
537 UINT64 MaxAddress;\r
538 UINT64 TopAddress;\r
539 UINTN T0SZ;\r
540 UINTN RootTableEntryCount;\r
541 UINT64 TCR;\r
542 RETURN_STATUS Status;\r
543\r
8bb7f03a 544 if(MemoryTable == NULL) {\r
19dc108b
OM
545 ASSERT (MemoryTable != NULL);\r
546 return RETURN_INVALID_PARAMETER;\r
547 }\r
25402f5d
HL
548\r
549 // Identify the highest address of the memory table\r
550 MaxAddress = MemoryTable->PhysicalBase + MemoryTable->Length - 1;\r
551 MemoryTableEntry = MemoryTable;\r
552 while (MemoryTableEntry->Length != 0) {\r
553 TopAddress = MemoryTableEntry->PhysicalBase + MemoryTableEntry->Length - 1;\r
554 if (TopAddress > MaxAddress) {\r
555 MaxAddress = TopAddress;\r
556 }\r
557 MemoryTableEntry++;\r
558 }\r
559\r
560 // Lookup the Table Level to get the information\r
561 LookupAddresstoRootTable (MaxAddress, &T0SZ, &RootTableEntryCount);\r
562\r
563 //\r
564 // Set TCR that allows us to retrieve T0SZ in the subsequent functions\r
565 //\r
e21227c6
OM
566 // Ideally we will be running at EL2, but should support EL1 as well.\r
567 // UEFI should not run at EL3.\r
568 if (ArmReadCurrentEL () == AARCH64_EL2) {\r
569 //Note: Bits 23 and 31 are reserved(RES1) bits in TCR_EL2\r
25402f5d
HL
570 TCR = T0SZ | (1UL << 31) | (1UL << 23) | TCR_TG0_4KB;\r
571\r
572 // Set the Physical Address Size using MaxAddress\r
573 if (MaxAddress < SIZE_4GB) {\r
574 TCR |= TCR_PS_4GB;\r
575 } else if (MaxAddress < SIZE_64GB) {\r
576 TCR |= TCR_PS_64GB;\r
577 } else if (MaxAddress < SIZE_1TB) {\r
578 TCR |= TCR_PS_1TB;\r
579 } else if (MaxAddress < SIZE_4TB) {\r
580 TCR |= TCR_PS_4TB;\r
581 } else if (MaxAddress < SIZE_16TB) {\r
582 TCR |= TCR_PS_16TB;\r
583 } else if (MaxAddress < SIZE_256TB) {\r
584 TCR |= TCR_PS_256TB;\r
585 } else {\r
e21227c6
OM
586 DEBUG ((EFI_D_ERROR, "ArmConfigureMmu: The MaxAddress 0x%lX is not supported by this MMU configuration.\n", MaxAddress));\r
587 ASSERT (0); // Bigger than 48-bit memory space are not supported\r
588 return RETURN_UNSUPPORTED;\r
589 }\r
590 } else if (ArmReadCurrentEL () == AARCH64_EL1) {\r
591 TCR = T0SZ | TCR_TG0_4KB;\r
592\r
593 // Set the Physical Address Size using MaxAddress\r
594 if (MaxAddress < SIZE_4GB) {\r
595 TCR |= TCR_IPS_4GB;\r
596 } else if (MaxAddress < SIZE_64GB) {\r
597 TCR |= TCR_IPS_64GB;\r
598 } else if (MaxAddress < SIZE_1TB) {\r
599 TCR |= TCR_IPS_1TB;\r
600 } else if (MaxAddress < SIZE_4TB) {\r
601 TCR |= TCR_IPS_4TB;\r
602 } else if (MaxAddress < SIZE_16TB) {\r
603 TCR |= TCR_IPS_16TB;\r
604 } else if (MaxAddress < SIZE_256TB) {\r
605 TCR |= TCR_IPS_256TB;\r
606 } else {\r
607 DEBUG ((EFI_D_ERROR, "ArmConfigureMmu: The MaxAddress 0x%lX is not supported by this MMU configuration.\n", MaxAddress));\r
25402f5d
HL
608 ASSERT (0); // Bigger than 48-bit memory space are not supported\r
609 return RETURN_UNSUPPORTED;\r
610 }\r
611 } else {\r
e21227c6 612 ASSERT (0); // UEFI is only expected to run at EL2 and EL1, not EL3.\r
25402f5d
HL
613 return RETURN_UNSUPPORTED;\r
614 }\r
615\r
616 // Set TCR\r
617 ArmSetTCR (TCR);\r
618\r
619 // Allocate pages for translation table\r
620 TranslationTablePageCount = EFI_SIZE_TO_PAGES((RootTableEntryCount * sizeof(UINT64)) + TT_ALIGNMENT_DESCRIPTION_TABLE);\r
621 TranslationTable = AllocatePages (TranslationTablePageCount);\r
622 if (TranslationTable == NULL) {\r
623 return RETURN_OUT_OF_RESOURCES;\r
624 }\r
625 TranslationTable = (VOID*)((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE);\r
626 // We set TTBR0 just after allocating the table to retrieve its location from the subsequent\r
627 // functions without needing to pass this value across the functions. The MMU is only enabled\r
628 // after the translation tables are populated.\r
629 ArmSetTTBR0 (TranslationTable);\r
630\r
631 if (TranslationTableBase != NULL) {\r
632 *TranslationTableBase = TranslationTable;\r
633 }\r
634\r
635 if (TranslationTableSize != NULL) {\r
636 *TranslationTableSize = RootTableEntryCount * sizeof(UINT64);\r
637 }\r
638\r
639 ZeroMem (TranslationTable, RootTableEntryCount * sizeof(UINT64));\r
640\r
641 // Disable MMU and caches. ArmDisableMmu() also invalidates the TLBs\r
642 ArmDisableMmu ();\r
643 ArmDisableDataCache ();\r
644 ArmDisableInstructionCache ();\r
645\r
646 // Make sure nothing sneaked into the cache\r
647 ArmCleanInvalidateDataCache ();\r
648 ArmInvalidateInstructionCache ();\r
649\r
650 TranslationTableAttribute = TT_ATTR_INDX_INVALID;\r
651 while (MemoryTable->Length != 0) {\r
652 // Find the memory attribute for the Translation Table\r
653 if (((UINTN)TranslationTable >= MemoryTable->PhysicalBase) &&\r
654 ((UINTN)TranslationTable <= MemoryTable->PhysicalBase - 1 + MemoryTable->Length)) {\r
655 TranslationTableAttribute = MemoryTable->Attributes;\r
656 }\r
657\r
658 Status = FillTranslationTable (TranslationTable, MemoryTable);\r
659 if (RETURN_ERROR (Status)) {\r
660 goto FREE_TRANSLATION_TABLE;\r
661 }\r
662 MemoryTable++;\r
663 }\r
664\r
665 // Translate the Memory Attributes into Translation Table Register Attributes\r
666 if ((TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED) ||\r
667 (TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_UNCACHED_UNBUFFERED)) {\r
668 TCR |= TCR_SH_NON_SHAREABLE | TCR_RGN_OUTER_NON_CACHEABLE | TCR_RGN_INNER_NON_CACHEABLE;\r
669 } else if ((TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK) ||\r
670 (TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_BACK)) {\r
671 TCR |= TCR_SH_INNER_SHAREABLE | TCR_RGN_OUTER_WRITE_BACK_ALLOC | TCR_RGN_INNER_WRITE_BACK_ALLOC;\r
672 } else if ((TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH) ||\r
673 (TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_THROUGH)) {\r
674 TCR |= TCR_SH_NON_SHAREABLE | TCR_RGN_OUTER_WRITE_THROUGH | TCR_RGN_INNER_WRITE_THROUGH;\r
675 } else {\r
676 // If we failed to find a mapping that contains the root translation table then it probably means the translation table\r
677 // is not mapped in the given memory map.\r
678 ASSERT (0);\r
679 Status = RETURN_UNSUPPORTED;\r
680 goto FREE_TRANSLATION_TABLE;\r
681 }\r
682\r
1eb5b4f2
OM
683 // Set again TCR after getting the Translation Table attributes\r
684 ArmSetTCR (TCR);\r
685\r
25402f5d
HL
686 ArmSetMAIR (MAIR_ATTR(TT_ATTR_INDX_DEVICE_MEMORY, MAIR_ATTR_DEVICE_MEMORY) | // mapped to EFI_MEMORY_UC\r
687 MAIR_ATTR(TT_ATTR_INDX_MEMORY_NON_CACHEABLE, MAIR_ATTR_NORMAL_MEMORY_NON_CACHEABLE) | // mapped to EFI_MEMORY_WC\r
688 MAIR_ATTR(TT_ATTR_INDX_MEMORY_WRITE_THROUGH, MAIR_ATTR_NORMAL_MEMORY_WRITE_THROUGH) | // mapped to EFI_MEMORY_WT\r
689 MAIR_ATTR(TT_ATTR_INDX_MEMORY_WRITE_BACK, MAIR_ATTR_NORMAL_MEMORY_WRITE_BACK)); // mapped to EFI_MEMORY_WB\r
690\r
691 ArmDisableAlignmentCheck ();\r
692 ArmEnableInstructionCache ();\r
693 ArmEnableDataCache ();\r
694\r
695 ArmEnableMmu ();\r
696 return RETURN_SUCCESS;\r
697\r
698FREE_TRANSLATION_TABLE:\r
699 FreePages (TranslationTable, TranslationTablePageCount);\r
700 return Status;\r
701}\r