]> git.proxmox.com Git - mirror_edk2.git/blame - ArmPlatformPkg/Library/SP804TimerLib/SP804TimerLib.c
Check the input VaraibleName for db/dbx when appending variables with formatted as...
[mirror_edk2.git] / ArmPlatformPkg / Library / SP804TimerLib / SP804TimerLib.c
CommitLineData
1d5d0ae9 1/** @file
2
3 Copyright (c) 2008 - 2010, Apple Inc. All rights reserved.<BR>
2dde40b1 4 Copyright (c) 2011, ARM Limited. All rights reserved.
1d5d0ae9 5
6 This program and the accompanying materials
7 are licensed and made available under the terms and conditions of the BSD License
8 which accompanies this distribution. The full text of the license may be found at
9 http://opensource.org/licenses/bsd-license.php
10
11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
13
14**/
15
16#include <Base.h>
17
18#include <Library/BaseLib.h>
19#include <Library/TimerLib.h>
20#include <Library/DebugLib.h>
21#include <Library/PcdLib.h>
22#include <Library/IoLib.h>
23#include <Drivers/SP804Timer.h>
5cc45b70 24
9e4a626c 25#define SP804_TIMER_METRONOME_BASE ((UINTN)PcdGet32 (PcdSP804TimerMetronomeBase))
26#define SP804_TIMER_PERFORMANCE_BASE ((UINTN)PcdGet32 (PcdSP804TimerPerformanceBase))
1d5d0ae9 27
28// Setup SP810's Timer2 for managing delay functions. And Timer3 for Performance counter
29// Note: ArmVE's Timer0 and Timer1 are used by TimerDxe.
30RETURN_STATUS
31EFIAPI
32TimerConstructor (
33 VOID
34 )
35{
9e4a626c 36 // Check if the Metronome Timer is already initialized
5cc45b70 37 if (MmioRead32(SP804_TIMER_METRONOME_BASE + SP804_TIMER_CONTROL_REG) & SP804_TIMER_CTRL_ENABLE) {
23792dea 38 return RETURN_SUCCESS;
39 } else {
2dde40b1 40 // Configure the Metronome Timer for free running operation, 32 bits, no prescaler, and interrupt disabled
41 MmioWrite32 (SP804_TIMER_METRONOME_BASE + SP804_TIMER_CONTROL_REG, SP804_TIMER_CTRL_32BIT | SP804_PRESCALE_DIV_1);
1d5d0ae9 42
2dde40b1 43 // Start the Metronome Timer ticking
5cc45b70 44 MmioOr32 (SP804_TIMER_METRONOME_BASE + SP804_TIMER_CONTROL_REG, SP804_TIMER_CTRL_ENABLE);
23792dea 45 }
1d5d0ae9 46
9e4a626c 47 // Check if the Performance Timer is already initialized
5cc45b70 48 if (MmioRead32(SP804_TIMER_PERFORMANCE_BASE + SP804_TIMER_CONTROL_REG) & SP804_TIMER_CTRL_ENABLE) {
23792dea 49 return RETURN_SUCCESS;
50 } else {
9e4a626c 51 // Configure the Performance timer for free running operation, 32 bits, no prescaler, interrupt disabled
2dde40b1 52 MmioWrite32 (SP804_TIMER_PERFORMANCE_BASE + SP804_TIMER_CONTROL_REG, SP804_TIMER_CTRL_32BIT | SP804_PRESCALE_DIV_1);
1d5d0ae9 53
9e4a626c 54 // Start the Performance Timer ticking
5cc45b70 55 MmioOr32 (SP804_TIMER_PERFORMANCE_BASE + SP804_TIMER_CONTROL_REG, SP804_TIMER_CTRL_ENABLE);
23792dea 56 }
1d5d0ae9 57
23792dea 58 return RETURN_SUCCESS;
1d5d0ae9 59}
60
61/**
62 Stalls the CPU for at least the given number of microseconds.
63
64 Stalls the CPU for the number of microseconds specified by MicroSeconds.
2dde40b1 65 The hardware timer is 32 bits.
66 The maximum possible delay is (0xFFFFFFFF / TimerFrequencyMHz), i.e. ([32bits] / FreqInMHz)
67 For example:
68 +----------------+------------+----------+----------+
69 | TimerFrequency | MaxDelay | MaxDelay | MaxDelay |
70 | (MHz) | (us) | (s) | (min) |
71 +----------------+------------+----------+----------+
72 | 1 | 0xFFFFFFFF | 4294 | 71.5 |
73 | 5 | 0x33333333 | 859 | 14.3 |
74 | 10 | 0x19999999 | 429 | 7.2 |
75 | 50 | 0x051EB851 | 86 | 1.4 |
76 +----------------+------------+----------+----------+
77 If it becomes necessary to support higher delays, then consider using the
78 real time clock.
79
80 During this delay, the cpu is not yielded to any other process, with one exception:
81 events that are triggered off a timer and which execute at a higher TPL than
82 this function. These events may call MicroSecondDelay (or NanoSecondDelay) to
83 fulfil their own needs.
84 Therefore, this function must be re-entrant, as it may be interrupted and re-started.
1d5d0ae9 85
86 @param MicroSeconds The minimum number of microseconds to delay.
87
88 @return The value of MicroSeconds inputted.
89
90**/
91UINTN
92EFIAPI
93MicroSecondDelay (
94 IN UINTN MicroSeconds
95 )
96{
2dde40b1 97 UINT64 DelayTicks64; // Convert from microseconds to timer ticks, more bits to detect over-range conditions.
98 UINTN DelayTicks; // Convert from microseconds to timer ticks, native size for general calculations.
99 UINTN StartTicks; // Timer value snapshot at the start of the delay
100 UINTN TargetTicks; // Timer value to signal the end of the delay
101 UINTN CurrentTicks; // Current value of the 64-bit timer value at any given moment
102
103 // If we snapshot the timer at the start of the delay function then we minimise unaccounted overheads.
104 StartTicks = MmioRead32 (SP804_TIMER_METRONOME_BASE + SP804_TIMER_CURRENT_REG);
105
106 // We are operating at the limit of 32bits. For the range checking work in 64 bits to avoid overflows.
107 DelayTicks64 = MultU64x32((UINT64)MicroSeconds, PcdGet32(PcdSP804TimerFrequencyInMHz));
108
109 // We are limited to 32 bits.
110 // If the specified delay is exactly equal to the max range of the timer,
111 // then the start will be equal to the stop plus one timer overflow (wrap-around).
112 // To avoid having to check for that, reduce the maximum acceptable range by 1 tick,
113 // i.e. reject delays equal or greater than the max range of the timer.
114 if (DelayTicks64 >= (UINT64)SP804_MAX_TICKS) {
115 DEBUG((EFI_D_ERROR,"MicroSecondDelay: ERROR: MicroSeconds=%d exceed SP804 count range. Max MicroSeconds=%d\n",
116 MicroSeconds,
117 ((UINTN)SP804_MAX_TICKS/PcdGet32(PcdSP804TimerFrequencyInMHz))));
118 }
119 ASSERT(DelayTicks64 < (UINT64)SP804_MAX_TICKS);
120
121 // From now on do calculations only in native bit size.
122 DelayTicks = (UINTN)DelayTicks64;
123
124 // Calculate the target value of the timer.
125
126 //Note: SP804 timer is counting down
127 if (StartTicks >= DelayTicks) {
128 // In this case we do not expect a wrap-around of the timer to occur.
129 // CurrentTicks must be less than StartTicks and higher than TargetTicks.
130 // If this is not the case, then the delay has been reached and may even have been exceeded if this
131 // function was suspended by a higher priority interrupt.
1d5d0ae9 132
2dde40b1 133 TargetTicks = StartTicks - DelayTicks;
ce9cc403 134
2dde40b1 135 do {
136 CurrentTicks = MmioRead32 (SP804_TIMER_METRONOME_BASE + SP804_TIMER_CURRENT_REG);
137 } while ((CurrentTicks > TargetTicks) && (CurrentTicks <= StartTicks));
138
139 } else {
140 // In this case TargetTicks is larger than StartTicks.
141 // This means we expect a wrap-around of the timer to occur and we must wait for it.
142 // Before the wrap-around, CurrentTicks must be less than StartTicks and less than TargetTicks.
143 // After the wrap-around, CurrentTicks must be larger than StartTicks and larger than TargetTicks.
144 // If this is not the case, then the delay has been reached and may even have been exceeded if this
145 // function was suspended by a higher priority interrupt.
146
147 // The order of operations is essential to avoid arithmetic overflow problems
148 TargetTicks = ((UINTN)SP804_MAX_TICKS - DelayTicks) + StartTicks;
149
150 // First wait for the wrap-around to occur
151 do {
152 CurrentTicks = MmioRead32 (SP804_TIMER_METRONOME_BASE + SP804_TIMER_CURRENT_REG);
153 } while (CurrentTicks <= StartTicks);
154
155 // Then wait for the target
156 do {
157 CurrentTicks = MmioRead32 (SP804_TIMER_METRONOME_BASE + SP804_TIMER_CURRENT_REG);
158 } while (CurrentTicks > TargetTicks);
1d5d0ae9 159 }
160
161 return MicroSeconds;
162}
163
164/**
165 Stalls the CPU for at least the given number of nanoseconds.
166
167 Stalls the CPU for the number of nanoseconds specified by NanoSeconds.
168
2dde40b1 169 When the timer frequency is 1MHz, each tick corresponds to 1 microsecond.
170 Therefore, the nanosecond delay will be rounded up to the nearest 1 microsecond.
171
1d5d0ae9 172 @param NanoSeconds The minimum number of nanoseconds to delay.
173
174 @return The value of NanoSeconds inputted.
175
176**/
177UINTN
178EFIAPI
179NanoSecondDelay (
180 IN UINTN NanoSeconds
181 )
182{
2dde40b1 183 UINTN MicroSeconds;
1d5d0ae9 184
185 // Round up to 1us Tick Number
2dde40b1 186 MicroSeconds = NanoSeconds / 1000;
187 MicroSeconds += ((NanoSeconds % 1000) == 0) ? 0 : 1;
1d5d0ae9 188
2dde40b1 189 MicroSecondDelay (MicroSeconds);
1d5d0ae9 190
1d5d0ae9 191 return NanoSeconds;
192}
193
194/**
195 Retrieves the current value of a 64-bit free running performance counter.
196
197 The counter can either count up by 1 or count down by 1. If the physical
198 performance counter counts by a larger increment, then the counter values
199 must be translated. The properties of the counter can be retrieved from
200 GetPerformanceCounterProperties().
201
202 @return The current value of the free running performance counter.
203
204**/
205UINT64
206EFIAPI
207GetPerformanceCounter (
208 VOID
209 )
210{
211 // Free running 64-bit/32-bit counter is needed here.
212 // Don't think we need this to boot, just to do performance profile
23792dea 213 UINT64 Value;
5cc45b70 214 Value = MmioRead32 (SP804_TIMER_PERFORMANCE_BASE + SP804_TIMER_CURRENT_REG);
23792dea 215 return Value;
1d5d0ae9 216}
217
218
219/**
220 Retrieves the 64-bit frequency in Hz and the range of performance counter
221 values.
222
223 If StartValue is not NULL, then the value that the performance counter starts
224 with immediately after is it rolls over is returned in StartValue. If
225 EndValue is not NULL, then the value that the performance counter end with
226 immediately before it rolls over is returned in EndValue. The 64-bit
227 frequency of the performance counter in Hz is always returned. If StartValue
228 is less than EndValue, then the performance counter counts up. If StartValue
229 is greater than EndValue, then the performance counter counts down. For
230 example, a 64-bit free running counter that counts up would have a StartValue
231 of 0 and an EndValue of 0xFFFFFFFFFFFFFFFF. A 24-bit free running counter
232 that counts down would have a StartValue of 0xFFFFFF and an EndValue of 0.
233
234 @param StartValue The value the performance counter starts with when it
235 rolls over.
236 @param EndValue The value that the performance counter ends with before
237 it rolls over.
238
239 @return The frequency in Hz.
240
241**/
242UINT64
243EFIAPI
244GetPerformanceCounterProperties (
245 OUT UINT64 *StartValue, OPTIONAL
246 OUT UINT64 *EndValue OPTIONAL
247 )
248{
249 if (StartValue != NULL) {
250 // Timer starts with the reload value
bcd8fa79 251 *StartValue = 0xFFFFFFFF;
1d5d0ae9 252 }
253
254 if (EndValue != NULL) {
bcd8fa79 255 // Timer counts down to 0x0
256 *EndValue = (UINT64)0ULL;
1d5d0ae9 257 }
258
ce9cc403 259 return PcdGet64 (PcdEmbeddedPerformanceCounterFrequencyInHz);
1d5d0ae9 260}