]> git.proxmox.com Git - mirror_edk2.git/blame - MdePkg/Include/Library/BaseLib.h
Fix missing include header file and fix typo in comment.
[mirror_edk2.git] / MdePkg / Include / Library / BaseLib.h
CommitLineData
fb3df220 1/** @file
2 Memory-only library functions with no library constructor/destructor
3
4 Copyright (c) 2006 - 2007, Intel Corporation
5 All rights reserved. This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
fb3df220 13**/
14
15#ifndef __BASE_LIB__
16#define __BASE_LIB__
17
18//
19// Definitions for architecture specific types
20// These include SPIN_LOCK and BASE_LIBRARY_JUMP_BUFFER
21//
22
23//
24// SPIN_LOCK
25//
26typedef volatile UINTN SPIN_LOCK;
27
28#if defined (MDE_CPU_IA32)
29//
30// IA32 context buffer used by SetJump() and LongJump()
31//
32typedef struct {
33 UINT32 Ebx;
34 UINT32 Esi;
35 UINT32 Edi;
36 UINT32 Ebp;
37 UINT32 Esp;
38 UINT32 Eip;
39} BASE_LIBRARY_JUMP_BUFFER;
40
d7e5a9f9 41#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 4
fb3df220 42
43#elif defined (MDE_CPU_IPF)
842f5579 44
fb3df220 45//
46// IPF context buffer used by SetJump() and LongJump()
47//
48typedef struct {
49 UINT64 F2[2];
50 UINT64 F3[2];
51 UINT64 F4[2];
52 UINT64 F5[2];
53 UINT64 F16[2];
54 UINT64 F17[2];
55 UINT64 F18[2];
56 UINT64 F19[2];
57 UINT64 F20[2];
58 UINT64 F21[2];
59 UINT64 F22[2];
60 UINT64 F23[2];
61 UINT64 F24[2];
62 UINT64 F25[2];
63 UINT64 F26[2];
64 UINT64 F27[2];
65 UINT64 F28[2];
66 UINT64 F29[2];
67 UINT64 F30[2];
68 UINT64 F31[2];
69 UINT64 R4;
70 UINT64 R5;
71 UINT64 R6;
72 UINT64 R7;
73 UINT64 SP;
74 UINT64 BR0;
75 UINT64 BR1;
76 UINT64 BR2;
77 UINT64 BR3;
78 UINT64 BR4;
79 UINT64 BR5;
80 UINT64 InitialUNAT;
81 UINT64 AfterSpillUNAT;
82 UINT64 PFS;
83 UINT64 BSP;
84 UINT64 Predicates;
85 UINT64 LoopCount;
86 UINT64 FPSR;
87} BASE_LIBRARY_JUMP_BUFFER;
88
89#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 0x10
90
91#elif defined (MDE_CPU_X64)
92//
93// X64 context buffer used by SetJump() and LongJump()
94//
95typedef struct {
96 UINT64 Rbx;
97 UINT64 Rsp;
98 UINT64 Rbp;
99 UINT64 Rdi;
100 UINT64 Rsi;
101 UINT64 R12;
102 UINT64 R13;
103 UINT64 R14;
104 UINT64 R15;
105 UINT64 Rip;
106} BASE_LIBRARY_JUMP_BUFFER;
107
108#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8
109
110#elif defined (MDE_CPU_EBC)
111//
112// EBC context buffer used by SetJump() and LongJump()
113//
114typedef struct {
115 UINT64 R0;
116 UINT64 R1;
117 UINT64 R2;
118 UINT64 R3;
119 UINT64 IP;
120} BASE_LIBRARY_JUMP_BUFFER;
121
122#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8
123
124#else
125#error Unknown Processor Type
126#endif
127
128//
129// String Services
130//
131
132/**
133 Copies one Null-terminated Unicode string to another Null-terminated Unicode
134 string and returns the new Unicode string.
135
136 This function copies the contents of the Unicode string Source to the Unicode
137 string Destination, and returns Destination. If Source and Destination
138 overlap, then the results are undefined.
139
140 If Destination is NULL, then ASSERT().
141 If Destination is not aligned on a 16-bit boundary, then ASSERT().
142 If Source is NULL, then ASSERT().
143 If Source is not aligned on a 16-bit boundary, then ASSERT().
144 If Source and Destination overlap, then ASSERT().
145 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than
146 PcdMaximumUnicodeStringLength Unicode characters not including the
147 Null-terminator, then ASSERT().
148
149 @param Destination Pointer to a Null-terminated Unicode string.
150 @param Source Pointer to a Null-terminated Unicode string.
151
152 @return Destiantion
153
154**/
155CHAR16 *
156EFIAPI
157StrCpy (
158 OUT CHAR16 *Destination,
159 IN CONST CHAR16 *Source
160 );
161
162
163/**
164 Copies one Null-terminated Unicode string with a maximum length to another
165 Null-terminated Unicode string with a maximum length and returns the new
166 Unicode string.
167
168 This function copies the contents of the Unicode string Source to the Unicode
169 string Destination, and returns Destination. At most, Length Unicode
170 characters are copied from Source to Destination. If Length is 0, then
171 Destination is returned unmodified. If Length is greater that the number of
172 Unicode characters in Source, then Destination is padded with Null Unicode
173 characters. If Source and Destination overlap, then the results are
174 undefined.
175
176 If Length > 0 and Destination is NULL, then ASSERT().
177 If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().
178 If Length > 0 and Source is NULL, then ASSERT().
179 If Length > 0 and Source is not aligned on a 16-bit bounadry, then ASSERT().
180 If Source and Destination overlap, then ASSERT().
181 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than
182 PcdMaximumUnicodeStringLength Unicode characters not including the
183 Null-terminator, then ASSERT().
184
185 @param Destination Pointer to a Null-terminated Unicode string.
186 @param Source Pointer to a Null-terminated Unicode string.
187 @param Length Maximum number of Unicode characters to copy.
188
189 @return Destination
190
191**/
192CHAR16 *
193EFIAPI
194StrnCpy (
195 OUT CHAR16 *Destination,
196 IN CONST CHAR16 *Source,
197 IN UINTN Length
198 );
199
200
201/**
202 Returns the length of a Null-terminated Unicode string.
203
204 This function returns the number of Unicode characters in the Null-terminated
205 Unicode string specified by String.
206
207 If String is NULL, then ASSERT().
208 If String is not aligned on a 16-bit boundary, then ASSERT().
209 If PcdMaximumUnicodeStringLength is not zero, and String contains more than
210 PcdMaximumUnicodeStringLength Unicode characters not including the
211 Null-terminator, then ASSERT().
212
213 @param String Pointer to a Null-terminated Unicode string.
214
215 @return The length of String.
216
217**/
218UINTN
219EFIAPI
220StrLen (
221 IN CONST CHAR16 *String
222 );
223
224
225/**
226 Returns the size of a Null-terminated Unicode string in bytes, including the
227 Null terminator.
228
229 This function returns the size, in bytes, of the Null-terminated Unicode
230 string specified by String.
231
232 If String is NULL, then ASSERT().
233 If String is not aligned on a 16-bit boundary, then ASSERT().
234 If PcdMaximumUnicodeStringLength is not zero, and String contains more than
235 PcdMaximumUnicodeStringLength Unicode characters not including the
236 Null-terminator, then ASSERT().
237
238 @param String Pointer to a Null-terminated Unicode string.
239
240 @return The size of String.
241
242**/
243UINTN
244EFIAPI
245StrSize (
246 IN CONST CHAR16 *String
247 );
248
249
250/**
251 Compares two Null-terminated Unicode strings, and returns the difference
252 between the first mismatched Unicode characters.
253
254 This function compares the Null-terminated Unicode string FirstString to the
255 Null-terminated Unicode string SecondString. If FirstString is identical to
256 SecondString, then 0 is returned. Otherwise, the value returned is the first
257 mismatched Unicode character in SecondString subtracted from the first
258 mismatched Unicode character in FirstString.
259
260 If FirstString is NULL, then ASSERT().
261 If FirstString is not aligned on a 16-bit boundary, then ASSERT().
262 If SecondString is NULL, then ASSERT().
263 If SecondString is not aligned on a 16-bit boundary, then ASSERT().
264 If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more
265 than PcdMaximumUnicodeStringLength Unicode characters not including the
266 Null-terminator, then ASSERT().
267 If PcdMaximumUnicodeStringLength is not zero, and SecondString contains more
268 than PcdMaximumUnicodeStringLength Unicode characters not including the
269 Null-terminator, then ASSERT().
270
271 @param FirstString Pointer to a Null-terminated Unicode string.
272 @param SecondString Pointer to a Null-terminated Unicode string.
273
274 @retval 0 FirstString is identical to SecondString.
275 @retval !=0 FirstString is not identical to SecondString.
276
277**/
278INTN
279EFIAPI
280StrCmp (
281 IN CONST CHAR16 *FirstString,
282 IN CONST CHAR16 *SecondString
283 );
284
285
286/**
287 Compares two Null-terminated Unicode strings with maximum lengths, and
288 returns the difference between the first mismatched Unicode characters.
289
290 This function compares the Null-terminated Unicode string FirstString to the
291 Null-terminated Unicode string SecondString. At most, Length Unicode
292 characters will be compared. If Length is 0, then 0 is returned. If
293 FirstString is identical to SecondString, then 0 is returned. Otherwise, the
294 value returned is the first mismatched Unicode character in SecondString
295 subtracted from the first mismatched Unicode character in FirstString.
296
297 If Length > 0 and FirstString is NULL, then ASSERT().
298 If Length > 0 and FirstString is not aligned on a 16-bit bounadary, then ASSERT().
299 If Length > 0 and SecondString is NULL, then ASSERT().
300 If Length > 0 and SecondString is not aligned on a 16-bit bounadary, then ASSERT().
301 If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more
302 than PcdMaximumUnicodeStringLength Unicode characters not including the
303 Null-terminator, then ASSERT().
304 If PcdMaximumUnicodeStringLength is not zero, and SecondString contains more
305 than PcdMaximumUnicodeStringLength Unicode characters not including the
306 Null-terminator, then ASSERT().
307
308 @param FirstString Pointer to a Null-terminated Unicode string.
309 @param SecondString Pointer to a Null-terminated Unicode string.
310 @param Length Maximum number of Unicode characters to compare.
311
312 @retval 0 FirstString is identical to SecondString.
313 @retval !=0 FirstString is not identical to SecondString.
314
315**/
316INTN
317EFIAPI
318StrnCmp (
319 IN CONST CHAR16 *FirstString,
320 IN CONST CHAR16 *SecondString,
321 IN UINTN Length
322 );
323
324
325/**
326 Concatenates one Null-terminated Unicode string to another Null-terminated
327 Unicode string, and returns the concatenated Unicode string.
328
329 This function concatenates two Null-terminated Unicode strings. The contents
330 of Null-terminated Unicode string Source are concatenated to the end of
331 Null-terminated Unicode string Destination. The Null-terminated concatenated
332 Unicode String is returned. If Source and Destination overlap, then the
333 results are undefined.
334
335 If Destination is NULL, then ASSERT().
336 If Destination is not aligned on a 16-bit bounadary, then ASSERT().
337 If Source is NULL, then ASSERT().
338 If Source is not aligned on a 16-bit bounadary, then ASSERT().
339 If Source and Destination overlap, then ASSERT().
340 If PcdMaximumUnicodeStringLength is not zero, and Destination contains more
341 than PcdMaximumUnicodeStringLength Unicode characters not including the
342 Null-terminator, then ASSERT().
343 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than
344 PcdMaximumUnicodeStringLength Unicode characters not including the
345 Null-terminator, then ASSERT().
346 If PcdMaximumUnicodeStringLength is not zero, and concatenating Destination
347 and Source results in a Unicode string with more than
348 PcdMaximumUnicodeStringLength Unicode characters not including the
349 Null-terminator, then ASSERT().
350
351 @param Destination Pointer to a Null-terminated Unicode string.
352 @param Source Pointer to a Null-terminated Unicode string.
353
354 @return Destination
355
356**/
357CHAR16 *
358EFIAPI
359StrCat (
360 IN OUT CHAR16 *Destination,
361 IN CONST CHAR16 *Source
362 );
363
364
365/**
366 Concatenates one Null-terminated Unicode string with a maximum length to the
367 end of another Null-terminated Unicode string, and returns the concatenated
368 Unicode string.
369
370 This function concatenates two Null-terminated Unicode strings. The contents
371 of Null-terminated Unicode string Source are concatenated to the end of
372 Null-terminated Unicode string Destination, and Destination is returned. At
373 most, Length Unicode characters are concatenated from Source to the end of
374 Destination, and Destination is always Null-terminated. If Length is 0, then
375 Destination is returned unmodified. If Source and Destination overlap, then
376 the results are undefined.
377
378 If Destination is NULL, then ASSERT().
379 If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().
380 If Length > 0 and Source is NULL, then ASSERT().
381 If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT().
382 If Source and Destination overlap, then ASSERT().
383 If PcdMaximumUnicodeStringLength is not zero, and Destination contains more
384 than PcdMaximumUnicodeStringLength Unicode characters not including the
385 Null-terminator, then ASSERT().
386 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than
387 PcdMaximumUnicodeStringLength Unicode characters not including the
388 Null-terminator, then ASSERT().
389 If PcdMaximumUnicodeStringLength is not zero, and concatenating Destination
390 and Source results in a Unicode string with more than
391 PcdMaximumUnicodeStringLength Unicode characters not including the
392 Null-terminator, then ASSERT().
393
394 @param Destination Pointer to a Null-terminated Unicode string.
395 @param Source Pointer to a Null-terminated Unicode string.
396 @param Length Maximum number of Unicode characters to concatenate from
397 Source.
398
399 @return Destination
400
401**/
402CHAR16 *
403EFIAPI
404StrnCat (
405 IN OUT CHAR16 *Destination,
406 IN CONST CHAR16 *Source,
407 IN UINTN Length
408 );
409
410/**
411 Returns the first occurance of a Null-terminated Unicode sub-string
412 in a Null-terminated Unicode string.
413
414 This function scans the contents of the Null-terminated Unicode string
415 specified by String and returns the first occurrence of SearchString.
416 If SearchString is not found in String, then NULL is returned. If
417 the length of SearchString is zero, then String is
418 returned.
419
420 If String is NULL, then ASSERT().
421 If String is not aligned on a 16-bit boundary, then ASSERT().
422 If SearchString is NULL, then ASSERT().
423 If SearchString is not aligned on a 16-bit boundary, then ASSERT().
424
425 If PcdMaximumUnicodeStringLength is not zero, and SearchString
426 or String contains more than PcdMaximumUnicodeStringLength Unicode
427 characters not including the Null-terminator, then ASSERT().
428
429 @param String Pointer to a Null-terminated Unicode string.
430 @param SearchString Pointer to a Null-terminated Unicode string to search for.
431
432 @retval NULL If the SearchString does not appear in String.
433 @retval !NULL If there is a match.
434
435**/
436CHAR16 *
437EFIAPI
438StrStr (
439 IN CONST CHAR16 *String,
440 IN CONST CHAR16 *SearchString
441 );
442
443/**
444 Convert a Null-terminated Unicode decimal string to a value of
445 type UINTN.
446
447 This function returns a value of type UINTN by interpreting the contents
448 of the Unicode string specified by String as a decimal number. The format
449 of the input Unicode string String is:
450
451 [spaces] [decimal digits].
452
453 The valid decimal digit character is in the range [0-9]. The
454 function will ignore the pad space, which includes spaces or
455 tab characters, before [decimal digits]. The running zero in the
456 beginning of [decimal digits] will be ignored. Then, the function
457 stops at the first character that is a not a valid decimal character
458 or a Null-terminator, whichever one comes first.
459
460 If String is NULL, then ASSERT().
461 If String is not aligned in a 16-bit boundary, then ASSERT().
462 If String has only pad spaces, then 0 is returned.
463 If String has no pad spaces or valid decimal digits,
464 then 0 is returned.
465 If the number represented by String overflows according
466 to the range defined by UINTN, then ASSERT().
467
468 If PcdMaximumUnicodeStringLength is not zero, and String contains
469 more than PcdMaximumUnicodeStringLength Unicode characters not including
470 the Null-terminator, then ASSERT().
471
472 @param String Pointer to a Null-terminated Unicode string.
473
474 @retval UINTN
475
476**/
477UINTN
478EFIAPI
479StrDecimalToUintn (
480 IN CONST CHAR16 *String
481 );
482
483/**
484 Convert a Null-terminated Unicode decimal string to a value of
485 type UINT64.
486
487 This function returns a value of type UINT64 by interpreting the contents
488 of the Unicode string specified by String as a decimal number. The format
489 of the input Unicode string String is:
490
491 [spaces] [decimal digits].
492
493 The valid decimal digit character is in the range [0-9]. The
494 function will ignore the pad space, which includes spaces or
495 tab characters, before [decimal digits]. The running zero in the
496 beginning of [decimal digits] will be ignored. Then, the function
497 stops at the first character that is a not a valid decimal character
498 or a Null-terminator, whichever one comes first.
499
500 If String is NULL, then ASSERT().
501 If String is not aligned in a 16-bit boundary, then ASSERT().
502 If String has only pad spaces, then 0 is returned.
503 If String has no pad spaces or valid decimal digits,
504 then 0 is returned.
505 If the number represented by String overflows according
506 to the range defined by UINT64, then ASSERT().
507
508 If PcdMaximumUnicodeStringLength is not zero, and String contains
509 more than PcdMaximumUnicodeStringLength Unicode characters not including
510 the Null-terminator, then ASSERT().
511
512 @param String Pointer to a Null-terminated Unicode string.
513
514 @retval UINT64
515
516**/
517UINT64
518EFIAPI
519StrDecimalToUint64 (
520 IN CONST CHAR16 *String
521 );
522
523
524/**
525 Convert a Null-terminated Unicode hexadecimal string to a value of type UINTN.
526
527 This function returns a value of type UINTN by interpreting the contents
528 of the Unicode string specified by String as a hexadecimal number.
529 The format of the input Unicode string String is:
530
531 [spaces][zeros][x][hexadecimal digits].
532
533 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].
534 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.
535 If "x" appears in the input string, it must be prefixed with at least one 0.
536 The function will ignore the pad space, which includes spaces or tab characters,
537 before [zeros], [x] or [hexadecimal digit]. The running zero before [x] or
538 [hexadecimal digit] will be ignored. Then, the decoding starts after [x] or the
539 first valid hexadecimal digit. Then, the function stops at the first character that is
540 a not a valid hexadecimal character or NULL, whichever one comes first.
541
542 If String is NULL, then ASSERT().
543 If String is not aligned in a 16-bit boundary, then ASSERT().
544 If String has only pad spaces, then zero is returned.
545 If String has no leading pad spaces, leading zeros or valid hexadecimal digits,
546 then zero is returned.
547 If the number represented by String overflows according to the range defined by
548 UINTN, then ASSERT().
549
550 If PcdMaximumUnicodeStringLength is not zero, and String contains more than
551 PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator,
552 then ASSERT().
553
554 @param String Pointer to a Null-terminated Unicode string.
555
556 @retval UINTN
557
558**/
559UINTN
560EFIAPI
561StrHexToUintn (
562 IN CONST CHAR16 *String
563 );
564
565
566/**
567 Convert a Null-terminated Unicode hexadecimal string to a value of type UINT64.
568
569 This function returns a value of type UINT64 by interpreting the contents
570 of the Unicode string specified by String as a hexadecimal number.
571 The format of the input Unicode string String is
572
573 [spaces][zeros][x][hexadecimal digits].
574
575 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].
576 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.
577 If "x" appears in the input string, it must be prefixed with at least one 0.
578 The function will ignore the pad space, which includes spaces or tab characters,
579 before [zeros], [x] or [hexadecimal digit]. The running zero before [x] or
580 [hexadecimal digit] will be ignored. Then, the decoding starts after [x] or the
581 first valid hexadecimal digit. Then, the function stops at the first character that is
582 a not a valid hexadecimal character or NULL, whichever one comes first.
583
584 If String is NULL, then ASSERT().
585 If String is not aligned in a 16-bit boundary, then ASSERT().
586 If String has only pad spaces, then zero is returned.
587 If String has no leading pad spaces, leading zeros or valid hexadecimal digits,
588 then zero is returned.
589 If the number represented by String overflows according to the range defined by
590 UINT64, then ASSERT().
591
592 If PcdMaximumUnicodeStringLength is not zero, and String contains more than
593 PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator,
594 then ASSERT().
595
596 @param String Pointer to a Null-terminated Unicode string.
597
598 @retval UINT64
599
600**/
601UINT64
602EFIAPI
603StrHexToUint64 (
604 IN CONST CHAR16 *String
605 );
606
607
608/**
609 Convert one Null-terminated Unicode string to a Null-terminated
610 ASCII string and returns the ASCII string.
611
612 This function converts the content of the Unicode string Source
613 to the ASCII string Destination by copying the lower 8 bits of
614 each Unicode character. It returns Destination.
615
616 If any Unicode characters in Source contain non-zero value in
617 the upper 8 bits, then ASSERT().
618
619 If Destination is NULL, then ASSERT().
620 If Source is NULL, then ASSERT().
621 If Source is not aligned on a 16-bit boundary, then ASSERT().
622 If Source and Destination overlap, then ASSERT().
623
624 If PcdMaximumUnicodeStringLength is not zero, and Source contains
625 more than PcdMaximumUnicodeStringLength Unicode characters not including
626 the Null-terminator, then ASSERT().
627
628 If PcdMaximumAsciiStringLength is not zero, and Source contains more
629 than PcdMaximumAsciiStringLength Unicode characters not including the
630 Null-terminator, then ASSERT().
631
632 @param Source Pointer to a Null-terminated Unicode string.
633 @param Destination Pointer to a Null-terminated ASCII string.
634
2a254b90 635 @return Destination
fb3df220 636
637**/
638CHAR8 *
639EFIAPI
640UnicodeStrToAsciiStr (
641 IN CONST CHAR16 *Source,
642 OUT CHAR8 *Destination
643 );
644
645
646/**
647 Copies one Null-terminated ASCII string to another Null-terminated ASCII
648 string and returns the new ASCII string.
649
650 This function copies the contents of the ASCII string Source to the ASCII
651 string Destination, and returns Destination. If Source and Destination
652 overlap, then the results are undefined.
653
654 If Destination is NULL, then ASSERT().
655 If Source is NULL, then ASSERT().
656 If Source and Destination overlap, then ASSERT().
657 If PcdMaximumAsciiStringLength is not zero and Source contains more than
658 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
659 then ASSERT().
660
661 @param Destination Pointer to a Null-terminated ASCII string.
662 @param Source Pointer to a Null-terminated ASCII string.
663
664 @return Destination
665
666**/
667CHAR8 *
668EFIAPI
669AsciiStrCpy (
670 OUT CHAR8 *Destination,
671 IN CONST CHAR8 *Source
672 );
673
674
675/**
676 Copies one Null-terminated ASCII string with a maximum length to another
677 Null-terminated ASCII string with a maximum length and returns the new ASCII
678 string.
679
680 This function copies the contents of the ASCII string Source to the ASCII
681 string Destination, and returns Destination. At most, Length ASCII characters
682 are copied from Source to Destination. If Length is 0, then Destination is
683 returned unmodified. If Length is greater that the number of ASCII characters
684 in Source, then Destination is padded with Null ASCII characters. If Source
685 and Destination overlap, then the results are undefined.
686
687 If Destination is NULL, then ASSERT().
688 If Source is NULL, then ASSERT().
689 If Source and Destination overlap, then ASSERT().
690 If PcdMaximumAsciiStringLength is not zero, and Source contains more than
691 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
692 then ASSERT().
693
694 @param Destination Pointer to a Null-terminated ASCII string.
695 @param Source Pointer to a Null-terminated ASCII string.
696 @param Length Maximum number of ASCII characters to copy.
697
698 @return Destination
699
700**/
701CHAR8 *
702EFIAPI
703AsciiStrnCpy (
704 OUT CHAR8 *Destination,
705 IN CONST CHAR8 *Source,
706 IN UINTN Length
707 );
708
709
710/**
711 Returns the length of a Null-terminated ASCII string.
712
713 This function returns the number of ASCII characters in the Null-terminated
714 ASCII string specified by String.
715
716 If Length > 0 and Destination is NULL, then ASSERT().
717 If Length > 0 and Source is NULL, then ASSERT().
718 If PcdMaximumAsciiStringLength is not zero and String contains more than
719 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
720 then ASSERT().
721
722 @param String Pointer to a Null-terminated ASCII string.
723
724 @return The length of String.
725
726**/
727UINTN
728EFIAPI
729AsciiStrLen (
730 IN CONST CHAR8 *String
731 );
732
733
734/**
735 Returns the size of a Null-terminated ASCII string in bytes, including the
736 Null terminator.
737
738 This function returns the size, in bytes, of the Null-terminated ASCII string
739 specified by String.
740
741 If String is NULL, then ASSERT().
742 If PcdMaximumAsciiStringLength is not zero and String contains more than
743 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
744 then ASSERT().
745
746 @param String Pointer to a Null-terminated ASCII string.
747
748 @return The size of String.
749
750**/
751UINTN
752EFIAPI
753AsciiStrSize (
754 IN CONST CHAR8 *String
755 );
756
757
758/**
759 Compares two Null-terminated ASCII strings, and returns the difference
760 between the first mismatched ASCII characters.
761
762 This function compares the Null-terminated ASCII string FirstString to the
763 Null-terminated ASCII string SecondString. If FirstString is identical to
764 SecondString, then 0 is returned. Otherwise, the value returned is the first
765 mismatched ASCII character in SecondString subtracted from the first
766 mismatched ASCII character in FirstString.
767
768 If FirstString is NULL, then ASSERT().
769 If SecondString is NULL, then ASSERT().
770 If PcdMaximumAsciiStringLength is not zero and FirstString contains more than
771 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
772 then ASSERT().
773 If PcdMaximumAsciiStringLength is not zero and SecondString contains more
774 than PcdMaximumAsciiStringLength ASCII characters not including the
775 Null-terminator, then ASSERT().
776
777 @param FirstString Pointer to a Null-terminated ASCII string.
778 @param SecondString Pointer to a Null-terminated ASCII string.
779
780 @retval 0 FirstString is identical to SecondString.
781 @retval !=0 FirstString is not identical to SecondString.
782
783**/
784INTN
785EFIAPI
786AsciiStrCmp (
787 IN CONST CHAR8 *FirstString,
788 IN CONST CHAR8 *SecondString
789 );
790
791
792/**
793 Performs a case insensitive comparison of two Null-terminated ASCII strings,
794 and returns the difference between the first mismatched ASCII characters.
795
796 This function performs a case insensitive comparison of the Null-terminated
797 ASCII string FirstString to the Null-terminated ASCII string SecondString. If
798 FirstString is identical to SecondString, then 0 is returned. Otherwise, the
799 value returned is the first mismatched lower case ASCII character in
800 SecondString subtracted from the first mismatched lower case ASCII character
801 in FirstString.
802
803 If FirstString is NULL, then ASSERT().
804 If SecondString is NULL, then ASSERT().
805 If PcdMaximumAsciiStringLength is not zero and FirstString contains more than
806 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
807 then ASSERT().
808 If PcdMaximumAsciiStringLength is not zero and SecondString contains more
809 than PcdMaximumAsciiStringLength ASCII characters not including the
810 Null-terminator, then ASSERT().
811
812 @param FirstString Pointer to a Null-terminated ASCII string.
813 @param SecondString Pointer to a Null-terminated ASCII string.
814
815 @retval 0 FirstString is identical to SecondString using case insensitive
816 comparisons.
817 @retval !=0 FirstString is not identical to SecondString using case
818 insensitive comparisons.
819
820**/
821INTN
822EFIAPI
823AsciiStriCmp (
824 IN CONST CHAR8 *FirstString,
825 IN CONST CHAR8 *SecondString
826 );
827
828
829/**
830 Compares two Null-terminated ASCII strings with maximum lengths, and returns
831 the difference between the first mismatched ASCII characters.
832
833 This function compares the Null-terminated ASCII string FirstString to the
834 Null-terminated ASCII string SecondString. At most, Length ASCII characters
835 will be compared. If Length is 0, then 0 is returned. If FirstString is
836 identical to SecondString, then 0 is returned. Otherwise, the value returned
837 is the first mismatched ASCII character in SecondString subtracted from the
838 first mismatched ASCII character in FirstString.
839
840 If Length > 0 and FirstString is NULL, then ASSERT().
841 If Length > 0 and SecondString is NULL, then ASSERT().
842 If PcdMaximumAsciiStringLength is not zero and FirstString contains more than
843 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
844 then ASSERT().
845 If PcdMaximumAsciiStringLength is not zero and SecondString contains more than
846 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
847 then ASSERT().
848
849 @param FirstString Pointer to a Null-terminated ASCII string.
850 @param SecondString Pointer to a Null-terminated ASCII string.
7dd8b919 851 @param Length Maximum number of ASCII characters for compare.
852
fb3df220 853 @retval 0 FirstString is identical to SecondString.
854 @retval !=0 FirstString is not identical to SecondString.
855
856**/
857INTN
858EFIAPI
859AsciiStrnCmp (
860 IN CONST CHAR8 *FirstString,
861 IN CONST CHAR8 *SecondString,
862 IN UINTN Length
863 );
864
865
866/**
867 Concatenates one Null-terminated ASCII string to another Null-terminated
868 ASCII string, and returns the concatenated ASCII string.
869
870 This function concatenates two Null-terminated ASCII strings. The contents of
871 Null-terminated ASCII string Source are concatenated to the end of Null-
872 terminated ASCII string Destination. The Null-terminated concatenated ASCII
873 String is returned.
874
875 If Destination is NULL, then ASSERT().
876 If Source is NULL, then ASSERT().
877 If PcdMaximumAsciiStringLength is not zero and Destination contains more than
878 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
879 then ASSERT().
880 If PcdMaximumAsciiStringLength is not zero and Source contains more than
881 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
882 then ASSERT().
883 If PcdMaximumAsciiStringLength is not zero and concatenating Destination and
884 Source results in a ASCII string with more than PcdMaximumAsciiStringLength
885 ASCII characters, then ASSERT().
886
887 @param Destination Pointer to a Null-terminated ASCII string.
888 @param Source Pointer to a Null-terminated ASCII string.
889
890 @return Destination
891
892**/
893CHAR8 *
894EFIAPI
895AsciiStrCat (
896 IN OUT CHAR8 *Destination,
897 IN CONST CHAR8 *Source
898 );
899
900
901/**
902 Concatenates one Null-terminated ASCII string with a maximum length to the
903 end of another Null-terminated ASCII string, and returns the concatenated
904 ASCII string.
905
906 This function concatenates two Null-terminated ASCII strings. The contents
907 of Null-terminated ASCII string Source are concatenated to the end of Null-
908 terminated ASCII string Destination, and Destination is returned. At most,
909 Length ASCII characters are concatenated from Source to the end of
910 Destination, and Destination is always Null-terminated. If Length is 0, then
911 Destination is returned unmodified. If Source and Destination overlap, then
912 the results are undefined.
913
914 If Length > 0 and Destination is NULL, then ASSERT().
915 If Length > 0 and Source is NULL, then ASSERT().
916 If Source and Destination overlap, then ASSERT().
917 If PcdMaximumAsciiStringLength is not zero, and Destination contains more than
918 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
919 then ASSERT().
920 If PcdMaximumAsciiStringLength is not zero, and Source contains more than
921 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
922 then ASSERT().
923 If PcdMaximumAsciiStringLength is not zero, and concatenating Destination and
924 Source results in a ASCII string with more than PcdMaximumAsciiStringLength
925 ASCII characters not including the Null-terminator, then ASSERT().
926
927 @param Destination Pointer to a Null-terminated ASCII string.
928 @param Source Pointer to a Null-terminated ASCII string.
929 @param Length Maximum number of ASCII characters to concatenate from
930 Source.
931
932 @return Destination
933
934**/
935CHAR8 *
936EFIAPI
937AsciiStrnCat (
938 IN OUT CHAR8 *Destination,
939 IN CONST CHAR8 *Source,
940 IN UINTN Length
941 );
942
943
944/**
945 Returns the first occurance of a Null-terminated ASCII sub-string
946 in a Null-terminated ASCII string.
947
948 This function scans the contents of the ASCII string specified by String
949 and returns the first occurrence of SearchString. If SearchString is not
950 found in String, then NULL is returned. If the length of SearchString is zero,
951 then String is returned.
952
953 If String is NULL, then ASSERT().
954 If SearchString is NULL, then ASSERT().
955
956 If PcdMaximumAsciiStringLength is not zero, and SearchString or
957 String contains more than PcdMaximumAsciiStringLength Unicode characters
958 not including the Null-terminator, then ASSERT().
959
960 @param String Pointer to a Null-terminated ASCII string.
961 @param SearchString Pointer to a Null-terminated ASCII string to search for.
962
963 @retval NULL If the SearchString does not appear in String.
964 @retval !NULL If there is a match.
965
966**/
967CHAR8 *
968EFIAPI
969AsciiStrStr (
970 IN CONST CHAR8 *String,
971 IN CONST CHAR8 *SearchString
972 );
973
974
975/**
976 Convert a Null-terminated ASCII decimal string to a value of type
977 UINTN.
978
979 This function returns a value of type UINTN by interpreting the contents
980 of the ASCII string String as a decimal number. The format of the input
981 ASCII string String is:
982
983 [spaces] [decimal digits].
984
985 The valid decimal digit character is in the range [0-9]. The function will
986 ignore the pad space, which includes spaces or tab characters, before the digits.
987 The running zero in the beginning of [decimal digits] will be ignored. Then, the
988 function stops at the first character that is a not a valid decimal character or
989 Null-terminator, whichever on comes first.
990
991 If String has only pad spaces, then 0 is returned.
992 If String has no pad spaces or valid decimal digits, then 0 is returned.
993 If the number represented by String overflows according to the range defined by
994 UINTN, then ASSERT().
995 If String is NULL, then ASSERT().
996 If PcdMaximumAsciiStringLength is not zero, and String contains more than
997 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
998 then ASSERT().
999
1000 @param String Pointer to a Null-terminated ASCII string.
1001
1002 @retval UINTN
1003
1004**/
1005UINTN
1006EFIAPI
1007AsciiStrDecimalToUintn (
1008 IN CONST CHAR8 *String
1009 );
1010
1011
1012/**
1013 Convert a Null-terminated ASCII decimal string to a value of type
1014 UINT64.
1015
1016 This function returns a value of type UINT64 by interpreting the contents
1017 of the ASCII string String as a decimal number. The format of the input
1018 ASCII string String is:
1019
1020 [spaces] [decimal digits].
1021
1022 The valid decimal digit character is in the range [0-9]. The function will
1023 ignore the pad space, which includes spaces or tab characters, before the digits.
1024 The running zero in the beginning of [decimal digits] will be ignored. Then, the
1025 function stops at the first character that is a not a valid decimal character or
1026 Null-terminator, whichever on comes first.
1027
1028 If String has only pad spaces, then 0 is returned.
1029 If String has no pad spaces or valid decimal digits, then 0 is returned.
1030 If the number represented by String overflows according to the range defined by
1031 UINT64, then ASSERT().
1032 If String is NULL, then ASSERT().
1033 If PcdMaximumAsciiStringLength is not zero, and String contains more than
1034 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
1035 then ASSERT().
1036
1037 @param String Pointer to a Null-terminated ASCII string.
1038
1039 @retval UINT64
1040
1041**/
1042UINT64
1043EFIAPI
1044AsciiStrDecimalToUint64 (
1045 IN CONST CHAR8 *String
1046 );
1047
1048
1049/**
1050 Convert a Null-terminated ASCII hexadecimal string to a value of type UINTN.
1051
1052 This function returns a value of type UINTN by interpreting the contents of
1053 the ASCII string String as a hexadecimal number. The format of the input ASCII
1054 string String is:
1055
1056 [spaces][zeros][x][hexadecimal digits].
1057
1058 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].
1059 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x"
1060 appears in the input string, it must be prefixed with at least one 0. The function
1061 will ignore the pad space, which includes spaces or tab characters, before [zeros],
1062 [x] or [hexadecimal digits]. The running zero before [x] or [hexadecimal digits]
1063 will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal
1064 digit. Then, the function stops at the first character that is a not a valid
1065 hexadecimal character or Null-terminator, whichever on comes first.
1066
1067 If String has only pad spaces, then 0 is returned.
1068 If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then
1069 0 is returned.
1070
1071 If the number represented by String overflows according to the range defined by UINTN,
1072 then ASSERT().
1073 If String is NULL, then ASSERT().
1074 If PcdMaximumAsciiStringLength is not zero,
1075 and String contains more than PcdMaximumAsciiStringLength ASCII characters not including
1076 the Null-terminator, then ASSERT().
1077
1078 @param String Pointer to a Null-terminated ASCII string.
1079
1080 @retval UINTN
1081
1082**/
1083UINTN
1084EFIAPI
1085AsciiStrHexToUintn (
1086 IN CONST CHAR8 *String
1087 );
1088
1089
1090/**
1091 Convert a Null-terminated ASCII hexadecimal string to a value of type UINT64.
1092
1093 This function returns a value of type UINT64 by interpreting the contents of
1094 the ASCII string String as a hexadecimal number. The format of the input ASCII
1095 string String is:
1096
1097 [spaces][zeros][x][hexadecimal digits].
1098
1099 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].
1100 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x"
1101 appears in the input string, it must be prefixed with at least one 0. The function
1102 will ignore the pad space, which includes spaces or tab characters, before [zeros],
1103 [x] or [hexadecimal digits]. The running zero before [x] or [hexadecimal digits]
1104 will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal
1105 digit. Then, the function stops at the first character that is a not a valid
1106 hexadecimal character or Null-terminator, whichever on comes first.
1107
1108 If String has only pad spaces, then 0 is returned.
1109 If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then
1110 0 is returned.
1111
1112 If the number represented by String overflows according to the range defined by UINT64,
1113 then ASSERT().
1114 If String is NULL, then ASSERT().
1115 If PcdMaximumAsciiStringLength is not zero,
1116 and String contains more than PcdMaximumAsciiStringLength ASCII characters not including
1117 the Null-terminator, then ASSERT().
1118
1119 @param String Pointer to a Null-terminated ASCII string.
1120
1121 @retval UINT64
1122
1123**/
1124UINT64
1125EFIAPI
1126AsciiStrHexToUint64 (
1127 IN CONST CHAR8 *String
1128 );
1129
1130
1131/**
1132 Convert one Null-terminated ASCII string to a Null-terminated
1133 Unicode string and returns the Unicode string.
1134
1135 This function converts the contents of the ASCII string Source to the Unicode
1136 string Destination, and returns Destination. The function terminates the
1137 Unicode string Destination by appending a Null-terminator character at the end.
1138 The caller is responsible to make sure Destination points to a buffer with size
1139 equal or greater than ((AsciiStrLen (Source) + 1) * sizeof (CHAR16)) in bytes.
1140
1141 If Destination is NULL, then ASSERT().
1142 If Destination is not aligned on a 16-bit boundary, then ASSERT().
1143 If Source is NULL, then ASSERT().
1144 If Source and Destination overlap, then ASSERT().
1145 If PcdMaximumAsciiStringLength is not zero, and Source contains more than
1146 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
1147 then ASSERT().
1148 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than
1149 PcdMaximumUnicodeStringLength ASCII characters not including the
1150 Null-terminator, then ASSERT().
1151
1152 @param Source Pointer to a Null-terminated ASCII string.
1153 @param Destination Pointer to a Null-terminated Unicode string.
1154
7dd8b919 1155 @return Destination
fb3df220 1156
1157**/
1158CHAR16 *
1159EFIAPI
1160AsciiStrToUnicodeStr (
1161 IN CONST CHAR8 *Source,
1162 OUT CHAR16 *Destination
1163 );
1164
1165
1166/**
1167 Converts an 8-bit value to an 8-bit BCD value.
1168
1169 Converts the 8-bit value specified by Value to BCD. The BCD value is
1170 returned.
1171
1172 If Value >= 100, then ASSERT().
1173
1174 @param Value The 8-bit value to convert to BCD. Range 0..99.
1175
1176 @return The BCD value
1177
1178**/
1179UINT8
1180EFIAPI
1181DecimalToBcd8 (
1182 IN UINT8 Value
1183 );
1184
1185
1186/**
1187 Converts an 8-bit BCD value to an 8-bit value.
1188
1189 Converts the 8-bit BCD value specified by Value to an 8-bit value. The 8-bit
1190 value is returned.
1191
1192 If Value >= 0xA0, then ASSERT().
1193 If (Value & 0x0F) >= 0x0A, then ASSERT().
1194
1195 @param Value The 8-bit BCD value to convert to an 8-bit value.
1196
1197 @return The 8-bit value is returned.
1198
1199**/
1200UINT8
1201EFIAPI
1202BcdToDecimal8 (
1203 IN UINT8 Value
1204 );
1205
1206
1207//
1208// Linked List Functions and Macros
1209//
1210
1211/**
1212 Initializes the head node of a doubly linked list that is declared as a
1213 global variable in a module.
1214
1215 Initializes the forward and backward links of a new linked list. After
1216 initializing a linked list with this macro, the other linked list functions
1217 may be used to add and remove nodes from the linked list. This macro results
1218 in smaller executables by initializing the linked list in the data section,
1219 instead if calling the InitializeListHead() function to perform the
1220 equivalent operation.
1221
1222 @param ListHead The head note of a list to initiailize.
1223
1224**/
1225#define INITIALIZE_LIST_HEAD_VARIABLE(ListHead) {&ListHead, &ListHead}
1226
1227
1228/**
1229 Initializes the head node of a doubly linked list, and returns the pointer to
1230 the head node of the doubly linked list.
1231
1232 Initializes the forward and backward links of a new linked list. After
1233 initializing a linked list with this function, the other linked list
1234 functions may be used to add and remove nodes from the linked list. It is up
1235 to the caller of this function to allocate the memory for ListHead.
1236
1237 If ListHead is NULL, then ASSERT().
1238
1239 @param ListHead A pointer to the head node of a new doubly linked list.
1240
1241 @return ListHead
1242
1243**/
1244LIST_ENTRY *
1245EFIAPI
1246InitializeListHead (
1247 IN LIST_ENTRY *ListHead
1248 );
1249
1250
1251/**
1252 Adds a node to the beginning of a doubly linked list, and returns the pointer
1253 to the head node of the doubly linked list.
1254
1255 Adds the node Entry at the beginning of the doubly linked list denoted by
1256 ListHead, and returns ListHead.
1257
1258 If ListHead is NULL, then ASSERT().
1259 If Entry is NULL, then ASSERT().
1260 If ListHead was not initialized with InitializeListHead(), then ASSERT().
1261 If PcdMaximumLinkedListLenth is not zero, and prior to insertion the number
1262 of nodes in ListHead, including the ListHead node, is greater than or
1263 equal to PcdMaximumLinkedListLength, then ASSERT().
1264
1265 @param ListHead A pointer to the head node of a doubly linked list.
1266 @param Entry A pointer to a node that is to be inserted at the beginning
1267 of a doubly linked list.
1268
1269 @return ListHead
1270
1271**/
1272LIST_ENTRY *
1273EFIAPI
1274InsertHeadList (
1275 IN LIST_ENTRY *ListHead,
1276 IN LIST_ENTRY *Entry
1277 );
1278
1279
1280/**
1281 Adds a node to the end of a doubly linked list, and returns the pointer to
1282 the head node of the doubly linked list.
1283
1284 Adds the node Entry to the end of the doubly linked list denoted by ListHead,
1285 and returns ListHead.
1286
1287 If ListHead is NULL, then ASSERT().
1288 If Entry is NULL, then ASSERT().
1289 If ListHead was not initialized with InitializeListHead(), then ASSERT().
1290 If PcdMaximumLinkedListLenth is not zero, and prior to insertion the number
1291 of nodes in ListHead, including the ListHead node, is greater than or
1292 equal to PcdMaximumLinkedListLength, then ASSERT().
1293
1294 @param ListHead A pointer to the head node of a doubly linked list.
1295 @param Entry A pointer to a node that is to be added at the end of the
1296 doubly linked list.
1297
1298 @return ListHead
1299
1300**/
1301LIST_ENTRY *
1302EFIAPI
1303InsertTailList (
1304 IN LIST_ENTRY *ListHead,
1305 IN LIST_ENTRY *Entry
1306 );
1307
1308
1309/**
1310 Retrieves the first node of a doubly linked list.
1311
1312 Returns the first node of a doubly linked list. List must have been
1313 initialized with InitializeListHead(). If List is empty, then NULL is
1314 returned.
1315
1316 If List is NULL, then ASSERT().
1317 If List was not initialized with InitializeListHead(), then ASSERT().
1318 If PcdMaximumLinkedListLenth is not zero, and the number of nodes
1319 in List, including the List node, is greater than or equal to
1320 PcdMaximumLinkedListLength, then ASSERT().
1321
1322 @param List A pointer to the head node of a doubly linked list.
1323
1324 @return The first node of a doubly linked list.
1325 @retval NULL The list is empty.
1326
1327**/
1328LIST_ENTRY *
1329EFIAPI
1330GetFirstNode (
1331 IN CONST LIST_ENTRY *List
1332 );
1333
1334
1335/**
1336 Retrieves the next node of a doubly linked list.
1337
1338 Returns the node of a doubly linked list that follows Node. List must have
1339 been initialized with InitializeListHead(). If List is empty, then List is
1340 returned.
1341
1342 If List is NULL, then ASSERT().
1343 If Node is NULL, then ASSERT().
1344 If List was not initialized with InitializeListHead(), then ASSERT().
1345 If PcdMaximumLinkedListLenth is not zero, and List contains more than
1346 PcdMaximumLinkedListLenth nodes, then ASSERT().
1347 If Node is not a node in List, then ASSERT().
1348
1349 @param List A pointer to the head node of a doubly linked list.
1350 @param Node A pointer to a node in the doubly linked list.
1351
1352 @return Pointer to the next node if one exists. Otherwise a null value which
1353 is actually List is returned.
1354
1355**/
1356LIST_ENTRY *
1357EFIAPI
1358GetNextNode (
1359 IN CONST LIST_ENTRY *List,
1360 IN CONST LIST_ENTRY *Node
1361 );
1362
1363
1364/**
1365 Checks to see if a doubly linked list is empty or not.
1366
1367 Checks to see if the doubly linked list is empty. If the linked list contains
1368 zero nodes, this function returns TRUE. Otherwise, it returns FALSE.
1369
1370 If ListHead is NULL, then ASSERT().
1371 If ListHead was not initialized with InitializeListHead(), then ASSERT().
1372 If PcdMaximumLinkedListLenth is not zero, and the number of nodes
1373 in List, including the List node, is greater than or equal to
1374 PcdMaximumLinkedListLength, then ASSERT().
1375
1376 @param ListHead A pointer to the head node of a doubly linked list.
1377
1378 @retval TRUE The linked list is empty.
1379 @retval FALSE The linked list is not empty.
1380
1381**/
1382BOOLEAN
1383EFIAPI
1384IsListEmpty (
1385 IN CONST LIST_ENTRY *ListHead
1386 );
1387
1388
1389/**
1390 Determines if a node in a doubly linked list is null.
1391
1392 Returns FALSE if Node is one of the nodes in the doubly linked list specified
1393 by List. Otherwise, TRUE is returned. List must have been initialized with
1394 InitializeListHead().
1395
1396 If List is NULL, then ASSERT().
1397 If Node is NULL, then ASSERT().
1398 If List was not initialized with InitializeListHead(), then ASSERT().
1399 If PcdMaximumLinkedListLenth is not zero, and the number of nodes
1400 in List, including the List node, is greater than or equal to
1401 PcdMaximumLinkedListLength, then ASSERT().
1402 If Node is not a node in List and Node is not equal to List, then ASSERT().
1403
1404 @param List A pointer to the head node of a doubly linked list.
1405 @param Node A pointer to a node in the doubly linked list.
1406
1407 @retval TRUE Node is one of the nodes in the doubly linked list.
1408 @retval FALSE Node is not one of the nodes in the doubly linked list.
1409
1410**/
1411BOOLEAN
1412EFIAPI
1413IsNull (
1414 IN CONST LIST_ENTRY *List,
1415 IN CONST LIST_ENTRY *Node
1416 );
1417
1418
1419/**
1420 Determines if a node the last node in a doubly linked list.
1421
1422 Returns TRUE if Node is the last node in the doubly linked list specified by
1423 List. Otherwise, FALSE is returned. List must have been initialized with
1424 InitializeListHead().
1425
1426 If List is NULL, then ASSERT().
1427 If Node is NULL, then ASSERT().
1428 If List was not initialized with InitializeListHead(), then ASSERT().
1429 If PcdMaximumLinkedListLenth is not zero, and the number of nodes
1430 in List, including the List node, is greater than or equal to
1431 PcdMaximumLinkedListLength, then ASSERT().
1432 If Node is not a node in List, then ASSERT().
1433
1434 @param List A pointer to the head node of a doubly linked list.
1435 @param Node A pointer to a node in the doubly linked list.
1436
1437 @retval TRUE Node is the last node in the linked list.
1438 @retval FALSE Node is not the last node in the linked list.
1439
1440**/
1441BOOLEAN
1442EFIAPI
1443IsNodeAtEnd (
1444 IN CONST LIST_ENTRY *List,
1445 IN CONST LIST_ENTRY *Node
1446 );
1447
1448
1449/**
1450 Swaps the location of two nodes in a doubly linked list, and returns the
1451 first node after the swap.
1452
1453 If FirstEntry is identical to SecondEntry, then SecondEntry is returned.
1454 Otherwise, the location of the FirstEntry node is swapped with the location
1455 of the SecondEntry node in a doubly linked list. SecondEntry must be in the
1456 same double linked list as FirstEntry and that double linked list must have
1457 been initialized with InitializeListHead(). SecondEntry is returned after the
1458 nodes are swapped.
1459
1460 If FirstEntry is NULL, then ASSERT().
1461 If SecondEntry is NULL, then ASSERT().
1462 If SecondEntry and FirstEntry are not in the same linked list, then ASSERT().
1463 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
1464 linked list containing the FirstEntry and SecondEntry nodes, including
1465 the FirstEntry and SecondEntry nodes, is greater than or equal to
1466 PcdMaximumLinkedListLength, then ASSERT().
1467
1468 @param FirstEntry A pointer to a node in a linked list.
1469 @param SecondEntry A pointer to another node in the same linked list.
1470
1471**/
1472LIST_ENTRY *
1473EFIAPI
1474SwapListEntries (
1475 IN LIST_ENTRY *FirstEntry,
1476 IN LIST_ENTRY *SecondEntry
1477 );
1478
1479
1480/**
1481 Removes a node from a doubly linked list, and returns the node that follows
1482 the removed node.
1483
1484 Removes the node Entry from a doubly linked list. It is up to the caller of
1485 this function to release the memory used by this node if that is required. On
1486 exit, the node following Entry in the doubly linked list is returned. If
1487 Entry is the only node in the linked list, then the head node of the linked
1488 list is returned.
1489
1490 If Entry is NULL, then ASSERT().
1491 If Entry is the head node of an empty list, then ASSERT().
1492 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
1493 linked list containing Entry, including the Entry node, is greater than
1494 or equal to PcdMaximumLinkedListLength, then ASSERT().
1495
1496 @param Entry A pointer to a node in a linked list
1497
1498 @return Entry
1499
1500**/
1501LIST_ENTRY *
1502EFIAPI
1503RemoveEntryList (
1504 IN CONST LIST_ENTRY *Entry
1505 );
1506
1507//
1508// Math Services
1509//
1510
1511/**
1512 Shifts a 64-bit integer left between 0 and 63 bits. The low bits are filled
1513 with zeros. The shifted value is returned.
1514
1515 This function shifts the 64-bit value Operand to the left by Count bits. The
1516 low Count bits are set to zero. The shifted value is returned.
1517
1518 If Count is greater than 63, then ASSERT().
1519
1520 @param Operand The 64-bit operand to shift left.
1521 @param Count The number of bits to shift left.
1522
1523 @return Operand << Count
1524
1525**/
1526UINT64
1527EFIAPI
1528LShiftU64 (
1529 IN UINT64 Operand,
1530 IN UINTN Count
1531 );
1532
1533
1534/**
1535 Shifts a 64-bit integer right between 0 and 63 bits. This high bits are
1536 filled with zeros. The shifted value is returned.
1537
1538 This function shifts the 64-bit value Operand to the right by Count bits. The
1539 high Count bits are set to zero. The shifted value is returned.
1540
1541 If Count is greater than 63, then ASSERT().
1542
1543 @param Operand The 64-bit operand to shift right.
1544 @param Count The number of bits to shift right.
1545
1546 @return Operand >> Count
1547
1548**/
1549UINT64
1550EFIAPI
1551RShiftU64 (
1552 IN UINT64 Operand,
1553 IN UINTN Count
1554 );
1555
1556
1557/**
1558 Shifts a 64-bit integer right between 0 and 63 bits. The high bits are filled
1559 with original integer's bit 63. The shifted value is returned.
1560
1561 This function shifts the 64-bit value Operand to the right by Count bits. The
1562 high Count bits are set to bit 63 of Operand. The shifted value is returned.
1563
1564 If Count is greater than 63, then ASSERT().
1565
1566 @param Operand The 64-bit operand to shift right.
1567 @param Count The number of bits to shift right.
1568
1569 @return Operand >> Count
1570
1571**/
1572UINT64
1573EFIAPI
1574ARShiftU64 (
1575 IN UINT64 Operand,
1576 IN UINTN Count
1577 );
1578
1579
1580/**
1581 Rotates a 32-bit integer left between 0 and 31 bits, filling the low bits
1582 with the high bits that were rotated.
1583
1584 This function rotates the 32-bit value Operand to the left by Count bits. The
1585 low Count bits are fill with the high Count bits of Operand. The rotated
1586 value is returned.
1587
1588 If Count is greater than 31, then ASSERT().
1589
1590 @param Operand The 32-bit operand to rotate left.
1591 @param Count The number of bits to rotate left.
1592
1593 @return Operand <<< Count
1594
1595**/
1596UINT32
1597EFIAPI
1598LRotU32 (
1599 IN UINT32 Operand,
1600 IN UINTN Count
1601 );
1602
1603
1604/**
1605 Rotates a 32-bit integer right between 0 and 31 bits, filling the high bits
1606 with the low bits that were rotated.
1607
1608 This function rotates the 32-bit value Operand to the right by Count bits.
1609 The high Count bits are fill with the low Count bits of Operand. The rotated
1610 value is returned.
1611
1612 If Count is greater than 31, then ASSERT().
1613
1614 @param Operand The 32-bit operand to rotate right.
1615 @param Count The number of bits to rotate right.
1616
1617 @return Operand >>> Count
1618
1619**/
1620UINT32
1621EFIAPI
1622RRotU32 (
1623 IN UINT32 Operand,
1624 IN UINTN Count
1625 );
1626
1627
1628/**
1629 Rotates a 64-bit integer left between 0 and 63 bits, filling the low bits
1630 with the high bits that were rotated.
1631
1632 This function rotates the 64-bit value Operand to the left by Count bits. The
1633 low Count bits are fill with the high Count bits of Operand. The rotated
1634 value is returned.
1635
1636 If Count is greater than 63, then ASSERT().
1637
1638 @param Operand The 64-bit operand to rotate left.
1639 @param Count The number of bits to rotate left.
1640
1641 @return Operand <<< Count
1642
1643**/
1644UINT64
1645EFIAPI
1646LRotU64 (
1647 IN UINT64 Operand,
1648 IN UINTN Count
1649 );
1650
1651
1652/**
1653 Rotates a 64-bit integer right between 0 and 63 bits, filling the high bits
1654 with the high low bits that were rotated.
1655
1656 This function rotates the 64-bit value Operand to the right by Count bits.
1657 The high Count bits are fill with the low Count bits of Operand. The rotated
1658 value is returned.
1659
1660 If Count is greater than 63, then ASSERT().
1661
1662 @param Operand The 64-bit operand to rotate right.
1663 @param Count The number of bits to rotate right.
1664
1665 @return Operand >>> Count
1666
1667**/
1668UINT64
1669EFIAPI
1670RRotU64 (
1671 IN UINT64 Operand,
1672 IN UINTN Count
1673 );
1674
1675
1676/**
1677 Returns the bit position of the lowest bit set in a 32-bit value.
1678
1679 This function computes the bit position of the lowest bit set in the 32-bit
1680 value specified by Operand. If Operand is zero, then -1 is returned.
1681 Otherwise, a value between 0 and 31 is returned.
1682
1683 @param Operand The 32-bit operand to evaluate.
1684
1685 @return Position of the lowest bit set in Operand if found.
1686 @retval -1 Operand is zero.
1687
1688**/
1689INTN
1690EFIAPI
1691LowBitSet32 (
1692 IN UINT32 Operand
1693 );
1694
1695
1696/**
1697 Returns the bit position of the lowest bit set in a 64-bit value.
1698
1699 This function computes the bit position of the lowest bit set in the 64-bit
1700 value specified by Operand. If Operand is zero, then -1 is returned.
1701 Otherwise, a value between 0 and 63 is returned.
1702
1703 @param Operand The 64-bit operand to evaluate.
1704
1705 @return Position of the lowest bit set in Operand if found.
1706 @retval -1 Operand is zero.
1707
1708**/
1709INTN
1710EFIAPI
1711LowBitSet64 (
1712 IN UINT64 Operand
1713 );
1714
1715
1716/**
1717 Returns the bit position of the highest bit set in a 32-bit value. Equivalent
1718 to log2(x).
1719
1720 This function computes the bit position of the highest bit set in the 32-bit
1721 value specified by Operand. If Operand is zero, then -1 is returned.
1722 Otherwise, a value between 0 and 31 is returned.
1723
1724 @param Operand The 32-bit operand to evaluate.
1725
1726 @return Position of the highest bit set in Operand if found.
1727 @retval -1 Operand is zero.
1728
1729**/
1730INTN
1731EFIAPI
1732HighBitSet32 (
1733 IN UINT32 Operand
1734 );
1735
1736
1737/**
1738 Returns the bit position of the highest bit set in a 64-bit value. Equivalent
1739 to log2(x).
1740
1741 This function computes the bit position of the highest bit set in the 64-bit
1742 value specified by Operand. If Operand is zero, then -1 is returned.
1743 Otherwise, a value between 0 and 63 is returned.
1744
1745 @param Operand The 64-bit operand to evaluate.
1746
1747 @return Position of the highest bit set in Operand if found.
1748 @retval -1 Operand is zero.
1749
1750**/
1751INTN
1752EFIAPI
1753HighBitSet64 (
1754 IN UINT64 Operand
1755 );
1756
1757
1758/**
1759 Returns the value of the highest bit set in a 32-bit value. Equivalent to
1760 1 << HighBitSet32(x).
1761
1762 This function computes the value of the highest bit set in the 32-bit value
1763 specified by Operand. If Operand is zero, then zero is returned.
1764
1765 @param Operand The 32-bit operand to evaluate.
1766
1767 @return 1 << HighBitSet32(Operand)
1768 @retval 0 Operand is zero.
1769
1770**/
1771UINT32
1772EFIAPI
1773GetPowerOfTwo32 (
1774 IN UINT32 Operand
1775 );
1776
1777
1778/**
1779 Returns the value of the highest bit set in a 64-bit value. Equivalent to
1780 1 << HighBitSet64(x).
1781
1782 This function computes the value of the highest bit set in the 64-bit value
1783 specified by Operand. If Operand is zero, then zero is returned.
1784
1785 @param Operand The 64-bit operand to evaluate.
1786
1787 @return 1 << HighBitSet64(Operand)
1788 @retval 0 Operand is zero.
1789
1790**/
1791UINT64
1792EFIAPI
1793GetPowerOfTwo64 (
1794 IN UINT64 Operand
1795 );
1796
1797
1798/**
1799 Switches the endianess of a 16-bit integer.
1800
1801 This function swaps the bytes in a 16-bit unsigned value to switch the value
1802 from little endian to big endian or vice versa. The byte swapped value is
1803 returned.
1804
2a254b90 1805 @param Value Operand A 16-bit unsigned value.
fb3df220 1806
1807 @return The byte swaped Operand.
1808
1809**/
1810UINT16
1811EFIAPI
1812SwapBytes16 (
1813 IN UINT16 Value
1814 );
1815
1816
1817/**
1818 Switches the endianess of a 32-bit integer.
1819
1820 This function swaps the bytes in a 32-bit unsigned value to switch the value
1821 from little endian to big endian or vice versa. The byte swapped value is
1822 returned.
1823
2a254b90 1824 @param Value Operand A 32-bit unsigned value.
fb3df220 1825
1826 @return The byte swaped Operand.
1827
1828**/
1829UINT32
1830EFIAPI
1831SwapBytes32 (
1832 IN UINT32 Value
1833 );
1834
1835
1836/**
1837 Switches the endianess of a 64-bit integer.
1838
1839 This function swaps the bytes in a 64-bit unsigned value to switch the value
1840 from little endian to big endian or vice versa. The byte swapped value is
1841 returned.
1842
2a254b90 1843 @param Value Operand A 64-bit unsigned value.
fb3df220 1844
1845 @return The byte swaped Operand.
1846
1847**/
1848UINT64
1849EFIAPI
1850SwapBytes64 (
1851 IN UINT64 Value
1852 );
1853
1854
1855/**
1856 Multiples a 64-bit unsigned integer by a 32-bit unsigned integer and
1857 generates a 64-bit unsigned result.
1858
1859 This function multiples the 64-bit unsigned value Multiplicand by the 32-bit
1860 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-
1861 bit unsigned result is returned.
1862
1863 If the result overflows, then ASSERT().
1864
1865 @param Multiplicand A 64-bit unsigned value.
1866 @param Multiplier A 32-bit unsigned value.
1867
1868 @return Multiplicand * Multiplier
1869
1870**/
1871UINT64
1872EFIAPI
1873MultU64x32 (
1874 IN UINT64 Multiplicand,
1875 IN UINT32 Multiplier
1876 );
1877
1878
1879/**
1880 Multiples a 64-bit unsigned integer by a 64-bit unsigned integer and
1881 generates a 64-bit unsigned result.
1882
1883 This function multiples the 64-bit unsigned value Multiplicand by the 64-bit
1884 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-
1885 bit unsigned result is returned.
1886
1887 If the result overflows, then ASSERT().
1888
1889 @param Multiplicand A 64-bit unsigned value.
1890 @param Multiplier A 64-bit unsigned value.
1891
1892 @return Multiplicand * Multiplier
1893
1894**/
1895UINT64
1896EFIAPI
1897MultU64x64 (
1898 IN UINT64 Multiplicand,
1899 IN UINT64 Multiplier
1900 );
1901
1902
1903/**
1904 Multiples a 64-bit signed integer by a 64-bit signed integer and generates a
1905 64-bit signed result.
1906
1907 This function multiples the 64-bit signed value Multiplicand by the 64-bit
1908 signed value Multiplier and generates a 64-bit signed result. This 64-bit
1909 signed result is returned.
1910
1911 If the result overflows, then ASSERT().
1912
1913 @param Multiplicand A 64-bit signed value.
1914 @param Multiplier A 64-bit signed value.
1915
1916 @return Multiplicand * Multiplier
1917
1918**/
1919INT64
1920EFIAPI
1921MultS64x64 (
1922 IN INT64 Multiplicand,
1923 IN INT64 Multiplier
1924 );
1925
1926
1927/**
1928 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates
1929 a 64-bit unsigned result.
1930
1931 This function divides the 64-bit unsigned value Dividend by the 32-bit
1932 unsigned value Divisor and generates a 64-bit unsigned quotient. This
1933 function returns the 64-bit unsigned quotient.
1934
1935 If Divisor is 0, then ASSERT().
1936
1937 @param Dividend A 64-bit unsigned value.
1938 @param Divisor A 32-bit unsigned value.
1939
1940 @return Dividend / Divisor
1941
1942**/
1943UINT64
1944EFIAPI
1945DivU64x32 (
1946 IN UINT64 Dividend,
1947 IN UINT32 Divisor
1948 );
1949
1950
1951/**
1952 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates
1953 a 32-bit unsigned remainder.
1954
1955 This function divides the 64-bit unsigned value Dividend by the 32-bit
1956 unsigned value Divisor and generates a 32-bit remainder. This function
1957 returns the 32-bit unsigned remainder.
1958
1959 If Divisor is 0, then ASSERT().
1960
1961 @param Dividend A 64-bit unsigned value.
1962 @param Divisor A 32-bit unsigned value.
1963
1964 @return Dividend % Divisor
1965
1966**/
1967UINT32
1968EFIAPI
1969ModU64x32 (
1970 IN UINT64 Dividend,
1971 IN UINT32 Divisor
1972 );
1973
1974
1975/**
1976 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates
1977 a 64-bit unsigned result and an optional 32-bit unsigned remainder.
1978
1979 This function divides the 64-bit unsigned value Dividend by the 32-bit
1980 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder
1981 is not NULL, then the 32-bit unsigned remainder is returned in Remainder.
1982 This function returns the 64-bit unsigned quotient.
1983
1984 If Divisor is 0, then ASSERT().
1985
1986 @param Dividend A 64-bit unsigned value.
1987 @param Divisor A 32-bit unsigned value.
1988 @param Remainder A pointer to a 32-bit unsigned value. This parameter is
1989 optional and may be NULL.
1990
1991 @return Dividend / Divisor
1992
1993**/
1994UINT64
1995EFIAPI
1996DivU64x32Remainder (
1997 IN UINT64 Dividend,
1998 IN UINT32 Divisor,
1999 OUT UINT32 *Remainder OPTIONAL
2000 );
2001
2002
2003/**
2004 Divides a 64-bit unsigned integer by a 64-bit unsigned integer and generates
2005 a 64-bit unsigned result and an optional 64-bit unsigned remainder.
2006
2007 This function divides the 64-bit unsigned value Dividend by the 64-bit
2008 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder
2009 is not NULL, then the 64-bit unsigned remainder is returned in Remainder.
2010 This function returns the 64-bit unsigned quotient.
2011
2012 If Divisor is 0, then ASSERT().
2013
2014 @param Dividend A 64-bit unsigned value.
2015 @param Divisor A 64-bit unsigned value.
2016 @param Remainder A pointer to a 64-bit unsigned value. This parameter is
2017 optional and may be NULL.
2018
2019 @return Dividend / Divisor
2020
2021**/
2022UINT64
2023EFIAPI
2024DivU64x64Remainder (
2025 IN UINT64 Dividend,
2026 IN UINT64 Divisor,
2027 OUT UINT64 *Remainder OPTIONAL
2028 );
2029
2030
2031/**
2032 Divides a 64-bit signed integer by a 64-bit signed integer and generates a
2033 64-bit signed result and a optional 64-bit signed remainder.
2034
2035 This function divides the 64-bit signed value Dividend by the 64-bit signed
2036 value Divisor and generates a 64-bit signed quotient. If Remainder is not
2037 NULL, then the 64-bit signed remainder is returned in Remainder. This
2038 function returns the 64-bit signed quotient.
2039
2040 If Divisor is 0, then ASSERT().
2041
2042 @param Dividend A 64-bit signed value.
2043 @param Divisor A 64-bit signed value.
2044 @param Remainder A pointer to a 64-bit signed value. This parameter is
2045 optional and may be NULL.
2046
2047 @return Dividend / Divisor
2048
2049**/
2050INT64
2051EFIAPI
2052DivS64x64Remainder (
2053 IN INT64 Dividend,
2054 IN INT64 Divisor,
2055 OUT INT64 *Remainder OPTIONAL
2056 );
2057
2058
2059/**
2060 Reads a 16-bit value from memory that may be unaligned.
2061
2062 This function returns the 16-bit value pointed to by Buffer. The function
2063 guarantees that the read operation does not produce an alignment fault.
2064
2065 If the Buffer is NULL, then ASSERT().
2066
01aef47b 2067 @param Uint16 Pointer to a 16-bit value that may be unaligned.
fb3df220 2068
2069 @return *Uint16
2070
2071**/
2072UINT16
2073EFIAPI
2074ReadUnaligned16 (
2075 IN CONST UINT16 *Uint16
2076 );
2077
2078
2079/**
2080 Writes a 16-bit value to memory that may be unaligned.
2081
2082 This function writes the 16-bit value specified by Value to Buffer. Value is
2083 returned. The function guarantees that the write operation does not produce
2084 an alignment fault.
2085
2086 If the Buffer is NULL, then ASSERT().
2087
01aef47b 2088 @param Uint16 Pointer to a 16-bit value that may be unaligned.
fb3df220 2089 @param Value 16-bit value to write to Buffer.
2090
2091 @return Value
2092
2093**/
2094UINT16
2095EFIAPI
2096WriteUnaligned16 (
2097 OUT UINT16 *Uint16,
2098 IN UINT16 Value
2099 );
2100
2101
2102/**
2103 Reads a 24-bit value from memory that may be unaligned.
2104
2105 This function returns the 24-bit value pointed to by Buffer. The function
2106 guarantees that the read operation does not produce an alignment fault.
2107
2108 If the Buffer is NULL, then ASSERT().
2109
2110 @param Buffer Pointer to a 24-bit value that may be unaligned.
2111
2112 @return The value read.
2113
2114**/
2115UINT32
2116EFIAPI
2117ReadUnaligned24 (
2118 IN CONST UINT32 *Buffer
2119 );
2120
2121
2122/**
2123 Writes a 24-bit value to memory that may be unaligned.
2124
2125 This function writes the 24-bit value specified by Value to Buffer. Value is
2126 returned. The function guarantees that the write operation does not produce
2127 an alignment fault.
2128
2129 If the Buffer is NULL, then ASSERT().
2130
2131 @param Buffer Pointer to a 24-bit value that may be unaligned.
2132 @param Value 24-bit value to write to Buffer.
2133
2134 @return The value written.
2135
2136**/
2137UINT32
2138EFIAPI
2139WriteUnaligned24 (
2140 OUT UINT32 *Buffer,
2141 IN UINT32 Value
2142 );
2143
2144
2145/**
2146 Reads a 32-bit value from memory that may be unaligned.
2147
2148 This function returns the 32-bit value pointed to by Buffer. The function
2149 guarantees that the read operation does not produce an alignment fault.
2150
2151 If the Buffer is NULL, then ASSERT().
2152
01aef47b 2153 @param Uint32 Pointer to a 32-bit value that may be unaligned.
fb3df220 2154
2155 @return *Uint32
2156
2157**/
2158UINT32
2159EFIAPI
2160ReadUnaligned32 (
2161 IN CONST UINT32 *Uint32
2162 );
2163
2164
2165/**
2166 Writes a 32-bit value to memory that may be unaligned.
2167
2168 This function writes the 32-bit value specified by Value to Buffer. Value is
2169 returned. The function guarantees that the write operation does not produce
2170 an alignment fault.
2171
2172 If the Buffer is NULL, then ASSERT().
2173
01aef47b 2174 @param Uint32 Pointer to a 32-bit value that may be unaligned.
fb3df220 2175 @param Value 32-bit value to write to Buffer.
2176
2177 @return Value
2178
2179**/
2180UINT32
2181EFIAPI
2182WriteUnaligned32 (
2183 OUT UINT32 *Uint32,
2184 IN UINT32 Value
2185 );
2186
2187
2188/**
2189 Reads a 64-bit value from memory that may be unaligned.
2190
2191 This function returns the 64-bit value pointed to by Buffer. The function
2192 guarantees that the read operation does not produce an alignment fault.
2193
2194 If the Buffer is NULL, then ASSERT().
2195
01aef47b 2196 @param Uint64 Pointer to a 64-bit value that may be unaligned.
fb3df220 2197
2198 @return *Uint64
2199
2200**/
2201UINT64
2202EFIAPI
2203ReadUnaligned64 (
2204 IN CONST UINT64 *Uint64
2205 );
2206
2207
2208/**
2209 Writes a 64-bit value to memory that may be unaligned.
2210
2211 This function writes the 64-bit value specified by Value to Buffer. Value is
2212 returned. The function guarantees that the write operation does not produce
2213 an alignment fault.
2214
2215 If the Buffer is NULL, then ASSERT().
2216
01aef47b 2217 @param Uint64 Pointer to a 64-bit value that may be unaligned.
fb3df220 2218 @param Value 64-bit value to write to Buffer.
2219
2220 @return Value
2221
2222**/
2223UINT64
2224EFIAPI
2225WriteUnaligned64 (
2226 OUT UINT64 *Uint64,
2227 IN UINT64 Value
2228 );
2229
2230
2231//
2232// Bit Field Functions
2233//
2234
2235/**
2236 Returns a bit field from an 8-bit value.
2237
2238 Returns the bitfield specified by the StartBit and the EndBit from Operand.
2239
2240 If 8-bit operations are not supported, then ASSERT().
2241 If StartBit is greater than 7, then ASSERT().
2242 If EndBit is greater than 7, then ASSERT().
2243 If EndBit is less than StartBit, then ASSERT().
2244
2245 @param Operand Operand on which to perform the bitfield operation.
2246 @param StartBit The ordinal of the least significant bit in the bit field.
2247 Range 0..7.
2248 @param EndBit The ordinal of the most significant bit in the bit field.
2249 Range 0..7.
2250
2251 @return The bit field read.
2252
2253**/
2254UINT8
2255EFIAPI
2256BitFieldRead8 (
2257 IN UINT8 Operand,
2258 IN UINTN StartBit,
2259 IN UINTN EndBit
2260 );
2261
2262
2263/**
2264 Writes a bit field to an 8-bit value, and returns the result.
2265
2266 Writes Value to the bit field specified by the StartBit and the EndBit in
2267 Operand. All other bits in Operand are preserved. The new 8-bit value is
2268 returned.
2269
2270 If 8-bit operations are not supported, then ASSERT().
2271 If StartBit is greater than 7, then ASSERT().
2272 If EndBit is greater than 7, then ASSERT().
2273 If EndBit is less than StartBit, then ASSERT().
2274
2275 @param Operand Operand on which to perform the bitfield operation.
2276 @param StartBit The ordinal of the least significant bit in the bit field.
2277 Range 0..7.
2278 @param EndBit The ordinal of the most significant bit in the bit field.
2279 Range 0..7.
2280 @param Value New value of the bit field.
2281
2282 @return The new 8-bit value.
2283
2284**/
2285UINT8
2286EFIAPI
2287BitFieldWrite8 (
2288 IN UINT8 Operand,
2289 IN UINTN StartBit,
2290 IN UINTN EndBit,
2291 IN UINT8 Value
2292 );
2293
2294
2295/**
2296 Reads a bit field from an 8-bit value, performs a bitwise OR, and returns the
2297 result.
2298
2299 Performs a bitwise inclusive OR between the bit field specified by StartBit
2300 and EndBit in Operand and the value specified by OrData. All other bits in
2301 Operand are preserved. The new 8-bit value is returned.
2302
2303 If 8-bit operations are not supported, then ASSERT().
2304 If StartBit is greater than 7, then ASSERT().
2305 If EndBit is greater than 7, then ASSERT().
2306 If EndBit is less than StartBit, then ASSERT().
2307
2308 @param Operand Operand on which to perform the bitfield operation.
2309 @param StartBit The ordinal of the least significant bit in the bit field.
2310 Range 0..7.
2311 @param EndBit The ordinal of the most significant bit in the bit field.
2312 Range 0..7.
2313 @param OrData The value to OR with the read value from the value
2314
2315 @return The new 8-bit value.
2316
2317**/
2318UINT8
2319EFIAPI
2320BitFieldOr8 (
2321 IN UINT8 Operand,
2322 IN UINTN StartBit,
2323 IN UINTN EndBit,
2324 IN UINT8 OrData
2325 );
2326
2327
2328/**
2329 Reads a bit field from an 8-bit value, performs a bitwise AND, and returns
2330 the result.
2331
2332 Performs a bitwise AND between the bit field specified by StartBit and EndBit
2333 in Operand and the value specified by AndData. All other bits in Operand are
2334 preserved. The new 8-bit value is returned.
2335
2336 If 8-bit operations are not supported, then ASSERT().
2337 If StartBit is greater than 7, then ASSERT().
2338 If EndBit is greater than 7, then ASSERT().
2339 If EndBit is less than StartBit, then ASSERT().
2340
2341 @param Operand Operand on which to perform the bitfield operation.
2342 @param StartBit The ordinal of the least significant bit in the bit field.
2343 Range 0..7.
2344 @param EndBit The ordinal of the most significant bit in the bit field.
2345 Range 0..7.
2346 @param AndData The value to AND with the read value from the value.
2347
2348 @return The new 8-bit value.
2349
2350**/
2351UINT8
2352EFIAPI
2353BitFieldAnd8 (
2354 IN UINT8 Operand,
2355 IN UINTN StartBit,
2356 IN UINTN EndBit,
2357 IN UINT8 AndData
2358 );
2359
2360
2361/**
2362 Reads a bit field from an 8-bit value, performs a bitwise AND followed by a
2363 bitwise OR, and returns the result.
2364
2365 Performs a bitwise AND between the bit field specified by StartBit and EndBit
2366 in Operand and the value specified by AndData, followed by a bitwise
2367 inclusive OR with value specified by OrData. All other bits in Operand are
2368 preserved. The new 8-bit value is returned.
2369
2370 If 8-bit operations are not supported, then ASSERT().
2371 If StartBit is greater than 7, then ASSERT().
2372 If EndBit is greater than 7, then ASSERT().
2373 If EndBit is less than StartBit, then ASSERT().
2374
2375 @param Operand Operand on which to perform the bitfield operation.
2376 @param StartBit The ordinal of the least significant bit in the bit field.
2377 Range 0..7.
2378 @param EndBit The ordinal of the most significant bit in the bit field.
2379 Range 0..7.
2380 @param AndData The value to AND with the read value from the value.
2381 @param OrData The value to OR with the result of the AND operation.
2382
2383 @return The new 8-bit value.
2384
2385**/
2386UINT8
2387EFIAPI
2388BitFieldAndThenOr8 (
2389 IN UINT8 Operand,
2390 IN UINTN StartBit,
2391 IN UINTN EndBit,
2392 IN UINT8 AndData,
2393 IN UINT8 OrData
2394 );
2395
2396
2397/**
2398 Returns a bit field from a 16-bit value.
2399
2400 Returns the bitfield specified by the StartBit and the EndBit from Operand.
2401
2402 If 16-bit operations are not supported, then ASSERT().
2403 If StartBit is greater than 15, then ASSERT().
2404 If EndBit is greater than 15, then ASSERT().
2405 If EndBit is less than StartBit, then ASSERT().
2406
2407 @param Operand Operand on which to perform the bitfield operation.
2408 @param StartBit The ordinal of the least significant bit in the bit field.
2409 Range 0..15.
2410 @param EndBit The ordinal of the most significant bit in the bit field.
2411 Range 0..15.
2412
2413 @return The bit field read.
2414
2415**/
2416UINT16
2417EFIAPI
2418BitFieldRead16 (
2419 IN UINT16 Operand,
2420 IN UINTN StartBit,
2421 IN UINTN EndBit
2422 );
2423
2424
2425/**
2426 Writes a bit field to a 16-bit value, and returns the result.
2427
2428 Writes Value to the bit field specified by the StartBit and the EndBit in
2429 Operand. All other bits in Operand are preserved. The new 16-bit value is
2430 returned.
2431
2432 If 16-bit operations are not supported, then ASSERT().
2433 If StartBit is greater than 15, then ASSERT().
2434 If EndBit is greater than 15, then ASSERT().
2435 If EndBit is less than StartBit, then ASSERT().
2436
2437 @param Operand Operand on which to perform the bitfield operation.
2438 @param StartBit The ordinal of the least significant bit in the bit field.
2439 Range 0..15.
2440 @param EndBit The ordinal of the most significant bit in the bit field.
2441 Range 0..15.
2442 @param Value New value of the bit field.
2443
2444 @return The new 16-bit value.
2445
2446**/
2447UINT16
2448EFIAPI
2449BitFieldWrite16 (
2450 IN UINT16 Operand,
2451 IN UINTN StartBit,
2452 IN UINTN EndBit,
2453 IN UINT16 Value
2454 );
2455
2456
2457/**
2458 Reads a bit field from a 16-bit value, performs a bitwise OR, and returns the
2459 result.
2460
2461 Performs a bitwise inclusive OR between the bit field specified by StartBit
2462 and EndBit in Operand and the value specified by OrData. All other bits in
2463 Operand are preserved. The new 16-bit value is returned.
2464
2465 If 16-bit operations are not supported, then ASSERT().
2466 If StartBit is greater than 15, then ASSERT().
2467 If EndBit is greater than 15, then ASSERT().
2468 If EndBit is less than StartBit, then ASSERT().
2469
2470 @param Operand Operand on which to perform the bitfield operation.
2471 @param StartBit The ordinal of the least significant bit in the bit field.
2472 Range 0..15.
2473 @param EndBit The ordinal of the most significant bit in the bit field.
2474 Range 0..15.
2475 @param OrData The value to OR with the read value from the value
2476
2477 @return The new 16-bit value.
2478
2479**/
2480UINT16
2481EFIAPI
2482BitFieldOr16 (
2483 IN UINT16 Operand,
2484 IN UINTN StartBit,
2485 IN UINTN EndBit,
2486 IN UINT16 OrData
2487 );
2488
2489
2490/**
2491 Reads a bit field from a 16-bit value, performs a bitwise AND, and returns
2492 the result.
2493
2494 Performs a bitwise AND between the bit field specified by StartBit and EndBit
2495 in Operand and the value specified by AndData. All other bits in Operand are
2496 preserved. The new 16-bit value is returned.
2497
2498 If 16-bit operations are not supported, then ASSERT().
2499 If StartBit is greater than 15, then ASSERT().
2500 If EndBit is greater than 15, then ASSERT().
2501 If EndBit is less than StartBit, then ASSERT().
2502
2503 @param Operand Operand on which to perform the bitfield operation.
2504 @param StartBit The ordinal of the least significant bit in the bit field.
2505 Range 0..15.
2506 @param EndBit The ordinal of the most significant bit in the bit field.
2507 Range 0..15.
2508 @param AndData The value to AND with the read value from the value
2509
2510 @return The new 16-bit value.
2511
2512**/
2513UINT16
2514EFIAPI
2515BitFieldAnd16 (
2516 IN UINT16 Operand,
2517 IN UINTN StartBit,
2518 IN UINTN EndBit,
2519 IN UINT16 AndData
2520 );
2521
2522
2523/**
2524 Reads a bit field from a 16-bit value, performs a bitwise AND followed by a
2525 bitwise OR, and returns the result.
2526
2527 Performs a bitwise AND between the bit field specified by StartBit and EndBit
2528 in Operand and the value specified by AndData, followed by a bitwise
2529 inclusive OR with value specified by OrData. All other bits in Operand are
2530 preserved. The new 16-bit value is returned.
2531
2532 If 16-bit operations are not supported, then ASSERT().
2533 If StartBit is greater than 15, then ASSERT().
2534 If EndBit is greater than 15, then ASSERT().
2535 If EndBit is less than StartBit, then ASSERT().
2536
2537 @param Operand Operand on which to perform the bitfield operation.
2538 @param StartBit The ordinal of the least significant bit in the bit field.
2539 Range 0..15.
2540 @param EndBit The ordinal of the most significant bit in the bit field.
2541 Range 0..15.
2542 @param AndData The value to AND with the read value from the value.
2543 @param OrData The value to OR with the result of the AND operation.
2544
2545 @return The new 16-bit value.
2546
2547**/
2548UINT16
2549EFIAPI
2550BitFieldAndThenOr16 (
2551 IN UINT16 Operand,
2552 IN UINTN StartBit,
2553 IN UINTN EndBit,
2554 IN UINT16 AndData,
2555 IN UINT16 OrData
2556 );
2557
2558
2559/**
2560 Returns a bit field from a 32-bit value.
2561
2562 Returns the bitfield specified by the StartBit and the EndBit from Operand.
2563
2564 If 32-bit operations are not supported, then ASSERT().
2565 If StartBit is greater than 31, then ASSERT().
2566 If EndBit is greater than 31, then ASSERT().
2567 If EndBit is less than StartBit, then ASSERT().
2568
2569 @param Operand Operand on which to perform the bitfield operation.
2570 @param StartBit The ordinal of the least significant bit in the bit field.
2571 Range 0..31.
2572 @param EndBit The ordinal of the most significant bit in the bit field.
2573 Range 0..31.
2574
2575 @return The bit field read.
2576
2577**/
2578UINT32
2579EFIAPI
2580BitFieldRead32 (
2581 IN UINT32 Operand,
2582 IN UINTN StartBit,
2583 IN UINTN EndBit
2584 );
2585
2586
2587/**
2588 Writes a bit field to a 32-bit value, and returns the result.
2589
2590 Writes Value to the bit field specified by the StartBit and the EndBit in
2591 Operand. All other bits in Operand are preserved. The new 32-bit value is
2592 returned.
2593
2594 If 32-bit operations are not supported, then ASSERT().
2595 If StartBit is greater than 31, then ASSERT().
2596 If EndBit is greater than 31, then ASSERT().
2597 If EndBit is less than StartBit, then ASSERT().
2598
2599 @param Operand Operand on which to perform the bitfield operation.
2600 @param StartBit The ordinal of the least significant bit in the bit field.
2601 Range 0..31.
2602 @param EndBit The ordinal of the most significant bit in the bit field.
2603 Range 0..31.
2604 @param Value New value of the bit field.
2605
2606 @return The new 32-bit value.
2607
2608**/
2609UINT32
2610EFIAPI
2611BitFieldWrite32 (
2612 IN UINT32 Operand,
2613 IN UINTN StartBit,
2614 IN UINTN EndBit,
2615 IN UINT32 Value
2616 );
2617
2618
2619/**
2620 Reads a bit field from a 32-bit value, performs a bitwise OR, and returns the
2621 result.
2622
2623 Performs a bitwise inclusive OR between the bit field specified by StartBit
2624 and EndBit in Operand and the value specified by OrData. All other bits in
2625 Operand are preserved. The new 32-bit value is returned.
2626
2627 If 32-bit operations are not supported, then ASSERT().
2628 If StartBit is greater than 31, then ASSERT().
2629 If EndBit is greater than 31, then ASSERT().
2630 If EndBit is less than StartBit, then ASSERT().
2631
2632 @param Operand Operand on which to perform the bitfield operation.
2633 @param StartBit The ordinal of the least significant bit in the bit field.
2634 Range 0..31.
2635 @param EndBit The ordinal of the most significant bit in the bit field.
2636 Range 0..31.
2637 @param OrData The value to OR with the read value from the value
2638
2639 @return The new 32-bit value.
2640
2641**/
2642UINT32
2643EFIAPI
2644BitFieldOr32 (
2645 IN UINT32 Operand,
2646 IN UINTN StartBit,
2647 IN UINTN EndBit,
2648 IN UINT32 OrData
2649 );
2650
2651
2652/**
2653 Reads a bit field from a 32-bit value, performs a bitwise AND, and returns
2654 the result.
2655
2656 Performs a bitwise AND between the bit field specified by StartBit and EndBit
2657 in Operand and the value specified by AndData. All other bits in Operand are
2658 preserved. The new 32-bit value is returned.
2659
2660 If 32-bit operations are not supported, then ASSERT().
2661 If StartBit is greater than 31, then ASSERT().
2662 If EndBit is greater than 31, then ASSERT().
2663 If EndBit is less than StartBit, then ASSERT().
2664
2665 @param Operand Operand on which to perform the bitfield operation.
2666 @param StartBit The ordinal of the least significant bit in the bit field.
2667 Range 0..31.
2668 @param EndBit The ordinal of the most significant bit in the bit field.
2669 Range 0..31.
2670 @param AndData The value to AND with the read value from the value
2671
2672 @return The new 32-bit value.
2673
2674**/
2675UINT32
2676EFIAPI
2677BitFieldAnd32 (
2678 IN UINT32 Operand,
2679 IN UINTN StartBit,
2680 IN UINTN EndBit,
2681 IN UINT32 AndData
2682 );
2683
2684
2685/**
2686 Reads a bit field from a 32-bit value, performs a bitwise AND followed by a
2687 bitwise OR, and returns the result.
2688
2689 Performs a bitwise AND between the bit field specified by StartBit and EndBit
2690 in Operand and the value specified by AndData, followed by a bitwise
2691 inclusive OR with value specified by OrData. All other bits in Operand are
2692 preserved. The new 32-bit value is returned.
2693
2694 If 32-bit operations are not supported, then ASSERT().
2695 If StartBit is greater than 31, then ASSERT().
2696 If EndBit is greater than 31, then ASSERT().
2697 If EndBit is less than StartBit, then ASSERT().
2698
2699 @param Operand Operand on which to perform the bitfield operation.
2700 @param StartBit The ordinal of the least significant bit in the bit field.
2701 Range 0..31.
2702 @param EndBit The ordinal of the most significant bit in the bit field.
2703 Range 0..31.
2704 @param AndData The value to AND with the read value from the value.
2705 @param OrData The value to OR with the result of the AND operation.
2706
2707 @return The new 32-bit value.
2708
2709**/
2710UINT32
2711EFIAPI
2712BitFieldAndThenOr32 (
2713 IN UINT32 Operand,
2714 IN UINTN StartBit,
2715 IN UINTN EndBit,
2716 IN UINT32 AndData,
2717 IN UINT32 OrData
2718 );
2719
2720
2721/**
2722 Returns a bit field from a 64-bit value.
2723
2724 Returns the bitfield specified by the StartBit and the EndBit from Operand.
2725
2726 If 64-bit operations are not supported, then ASSERT().
2727 If StartBit is greater than 63, then ASSERT().
2728 If EndBit is greater than 63, then ASSERT().
2729 If EndBit is less than StartBit, then ASSERT().
2730
2731 @param Operand Operand on which to perform the bitfield operation.
2732 @param StartBit The ordinal of the least significant bit in the bit field.
2733 Range 0..63.
2734 @param EndBit The ordinal of the most significant bit in the bit field.
2735 Range 0..63.
2736
2737 @return The bit field read.
2738
2739**/
2740UINT64
2741EFIAPI
2742BitFieldRead64 (
2743 IN UINT64 Operand,
2744 IN UINTN StartBit,
2745 IN UINTN EndBit
2746 );
2747
2748
2749/**
2750 Writes a bit field to a 64-bit value, and returns the result.
2751
2752 Writes Value to the bit field specified by the StartBit and the EndBit in
2753 Operand. All other bits in Operand are preserved. The new 64-bit value is
2754 returned.
2755
2756 If 64-bit operations are not supported, then ASSERT().
2757 If StartBit is greater than 63, then ASSERT().
2758 If EndBit is greater than 63, then ASSERT().
2759 If EndBit is less than StartBit, then ASSERT().
2760
2761 @param Operand Operand on which to perform the bitfield operation.
2762 @param StartBit The ordinal of the least significant bit in the bit field.
2763 Range 0..63.
2764 @param EndBit The ordinal of the most significant bit in the bit field.
2765 Range 0..63.
2766 @param Value New value of the bit field.
2767
2768 @return The new 64-bit value.
2769
2770**/
2771UINT64
2772EFIAPI
2773BitFieldWrite64 (
2774 IN UINT64 Operand,
2775 IN UINTN StartBit,
2776 IN UINTN EndBit,
2777 IN UINT64 Value
2778 );
2779
2780
2781/**
2782 Reads a bit field from a 64-bit value, performs a bitwise OR, and returns the
2783 result.
2784
2785 Performs a bitwise inclusive OR between the bit field specified by StartBit
2786 and EndBit in Operand and the value specified by OrData. All other bits in
2787 Operand are preserved. The new 64-bit value is returned.
2788
2789 If 64-bit operations are not supported, then ASSERT().
2790 If StartBit is greater than 63, then ASSERT().
2791 If EndBit is greater than 63, then ASSERT().
2792 If EndBit is less than StartBit, then ASSERT().
2793
2794 @param Operand Operand on which to perform the bitfield operation.
2795 @param StartBit The ordinal of the least significant bit in the bit field.
2796 Range 0..63.
2797 @param EndBit The ordinal of the most significant bit in the bit field.
2798 Range 0..63.
2799 @param OrData The value to OR with the read value from the value
2800
2801 @return The new 64-bit value.
2802
2803**/
2804UINT64
2805EFIAPI
2806BitFieldOr64 (
2807 IN UINT64 Operand,
2808 IN UINTN StartBit,
2809 IN UINTN EndBit,
2810 IN UINT64 OrData
2811 );
2812
2813
2814/**
2815 Reads a bit field from a 64-bit value, performs a bitwise AND, and returns
2816 the result.
2817
2818 Performs a bitwise AND between the bit field specified by StartBit and EndBit
2819 in Operand and the value specified by AndData. All other bits in Operand are
2820 preserved. The new 64-bit value is returned.
2821
2822 If 64-bit operations are not supported, then ASSERT().
2823 If StartBit is greater than 63, then ASSERT().
2824 If EndBit is greater than 63, then ASSERT().
2825 If EndBit is less than StartBit, then ASSERT().
2826
2827 @param Operand Operand on which to perform the bitfield operation.
2828 @param StartBit The ordinal of the least significant bit in the bit field.
2829 Range 0..63.
2830 @param EndBit The ordinal of the most significant bit in the bit field.
2831 Range 0..63.
2832 @param AndData The value to AND with the read value from the value
2833
2834 @return The new 64-bit value.
2835
2836**/
2837UINT64
2838EFIAPI
2839BitFieldAnd64 (
2840 IN UINT64 Operand,
2841 IN UINTN StartBit,
2842 IN UINTN EndBit,
2843 IN UINT64 AndData
2844 );
2845
2846
2847/**
2848 Reads a bit field from a 64-bit value, performs a bitwise AND followed by a
2849 bitwise OR, and returns the result.
2850
2851 Performs a bitwise AND between the bit field specified by StartBit and EndBit
2852 in Operand and the value specified by AndData, followed by a bitwise
2853 inclusive OR with value specified by OrData. All other bits in Operand are
2854 preserved. The new 64-bit value is returned.
2855
2856 If 64-bit operations are not supported, then ASSERT().
2857 If StartBit is greater than 63, then ASSERT().
2858 If EndBit is greater than 63, then ASSERT().
2859 If EndBit is less than StartBit, then ASSERT().
2860
2861 @param Operand Operand on which to perform the bitfield operation.
2862 @param StartBit The ordinal of the least significant bit in the bit field.
2863 Range 0..63.
2864 @param EndBit The ordinal of the most significant bit in the bit field.
2865 Range 0..63.
2866 @param AndData The value to AND with the read value from the value.
2867 @param OrData The value to OR with the result of the AND operation.
2868
2869 @return The new 64-bit value.
2870
2871**/
2872UINT64
2873EFIAPI
2874BitFieldAndThenOr64 (
2875 IN UINT64 Operand,
2876 IN UINTN StartBit,
2877 IN UINTN EndBit,
2878 IN UINT64 AndData,
2879 IN UINT64 OrData
2880 );
2881
2882
2883//
2884// Base Library Synchronization Functions
2885//
2886
2887/**
2888 Retrieves the architecture specific spin lock alignment requirements for
2889 optimal spin lock performance.
2890
2891 This function retrieves the spin lock alignment requirements for optimal
2892 performance on a given CPU architecture. The spin lock alignment must be a
2893 power of two and is returned by this function. If there are no alignment
2894 requirements, then 1 must be returned. The spin lock synchronization
2895 functions must function correctly if the spin lock size and alignment values
2896 returned by this function are not used at all. These values are hints to the
2897 consumers of the spin lock synchronization functions to obtain optimal spin
2898 lock performance.
2899
2900 @return The architecture specific spin lock alignment.
2901
2902**/
2903UINTN
2904EFIAPI
2905GetSpinLockProperties (
2906 VOID
2907 );
2908
2909
2910/**
2911 Initializes a spin lock to the released state and returns the spin lock.
2912
2913 This function initializes the spin lock specified by SpinLock to the released
2914 state, and returns SpinLock. Optimal performance can be achieved by calling
2915 GetSpinLockProperties() to determine the size and alignment requirements for
2916 SpinLock.
2917
2918 If SpinLock is NULL, then ASSERT().
2919
2920 @param SpinLock A pointer to the spin lock to initialize to the released
2921 state.
2922
2923 @return SpinLock
2924
2925**/
2926SPIN_LOCK *
2927EFIAPI
2928InitializeSpinLock (
2929 IN SPIN_LOCK *SpinLock
2930 );
2931
2932
2933/**
2934 Waits until a spin lock can be placed in the acquired state.
2935
2936 This function checks the state of the spin lock specified by SpinLock. If
2937 SpinLock is in the released state, then this function places SpinLock in the
2938 acquired state and returns SpinLock. Otherwise, this function waits
2939 indefinitely for the spin lock to be released, and then places it in the
2940 acquired state and returns SpinLock. All state transitions of SpinLock must
2941 be performed using MP safe mechanisms.
2942
2943 If SpinLock is NULL, then ASSERT().
2944 If SpinLock was not initialized with InitializeSpinLock(), then ASSERT().
2945 If PcdSpinLockTimeout is not zero, and SpinLock is can not be acquired in
2946 PcdSpinLockTimeout microseconds, then ASSERT().
2947
2948 @param SpinLock A pointer to the spin lock to place in the acquired state.
2949
2950 @return SpinLock
2951
2952**/
2953SPIN_LOCK *
2954EFIAPI
2955AcquireSpinLock (
2956 IN SPIN_LOCK *SpinLock
2957 );
2958
2959
2960/**
2961 Attempts to place a spin lock in the acquired state.
2962
2963 This function checks the state of the spin lock specified by SpinLock. If
2964 SpinLock is in the released state, then this function places SpinLock in the
2965 acquired state and returns TRUE. Otherwise, FALSE is returned. All state
2966 transitions of SpinLock must be performed using MP safe mechanisms.
2967
2968 If SpinLock is NULL, then ASSERT().
2969 If SpinLock was not initialized with InitializeSpinLock(), then ASSERT().
2970
2971 @param SpinLock A pointer to the spin lock to place in the acquired state.
2972
2973 @retval TRUE SpinLock was placed in the acquired state.
2974 @retval FALSE SpinLock could not be acquired.
2975
2976**/
2977BOOLEAN
2978EFIAPI
2979AcquireSpinLockOrFail (
2980 IN SPIN_LOCK *SpinLock
2981 );
2982
2983
2984/**
2985 Releases a spin lock.
2986
2987 This function places the spin lock specified by SpinLock in the release state
2988 and returns SpinLock.
2989
2990 If SpinLock is NULL, then ASSERT().
2991 If SpinLock was not initialized with InitializeSpinLock(), then ASSERT().
2992
2993 @param SpinLock A pointer to the spin lock to release.
2994
2995 @return SpinLock
2996
2997**/
2998SPIN_LOCK *
2999EFIAPI
3000ReleaseSpinLock (
3001 IN SPIN_LOCK *SpinLock
3002 );
3003
3004
3005/**
3006 Performs an atomic increment of an 32-bit unsigned integer.
3007
3008 Performs an atomic increment of the 32-bit unsigned integer specified by
3009 Value and returns the incremented value. The increment operation must be
3010 performed using MP safe mechanisms. The state of the return value is not
3011 guaranteed to be MP safe.
3012
3013 If Value is NULL, then ASSERT().
3014
3015 @param Value A pointer to the 32-bit value to increment.
3016
3017 @return The incremented value.
3018
3019**/
3020UINT32
3021EFIAPI
3022InterlockedIncrement (
3023 IN UINT32 *Value
3024 );
3025
3026
3027/**
3028 Performs an atomic decrement of an 32-bit unsigned integer.
3029
3030 Performs an atomic decrement of the 32-bit unsigned integer specified by
3031 Value and returns the decremented value. The decrement operation must be
3032 performed using MP safe mechanisms. The state of the return value is not
3033 guaranteed to be MP safe.
3034
3035 If Value is NULL, then ASSERT().
3036
3037 @param Value A pointer to the 32-bit value to decrement.
3038
3039 @return The decremented value.
3040
3041**/
3042UINT32
3043EFIAPI
3044InterlockedDecrement (
3045 IN UINT32 *Value
3046 );
3047
3048
3049/**
3050 Performs an atomic compare exchange operation on a 32-bit unsigned integer.
3051
3052 Performs an atomic compare exchange operation on the 32-bit unsigned integer
3053 specified by Value. If Value is equal to CompareValue, then Value is set to
3054 ExchangeValue and CompareValue is returned. If Value is not equal to CompareValue,
3055 then Value is returned. The compare exchange operation must be performed using
3056 MP safe mechanisms.
3057
3058 If Value is NULL, then ASSERT().
3059
3060 @param Value A pointer to the 32-bit value for the compare exchange
3061 operation.
3062 @param CompareValue 32-bit value used in compare operation.
3063 @param ExchangeValue 32-bit value used in exchange operation.
3064
3065 @return The original *Value before exchange.
3066
3067**/
3068UINT32
3069EFIAPI
3070InterlockedCompareExchange32 (
3071 IN OUT UINT32 *Value,
3072 IN UINT32 CompareValue,
3073 IN UINT32 ExchangeValue
3074 );
3075
3076
3077/**
3078 Performs an atomic compare exchange operation on a 64-bit unsigned integer.
3079
3080 Performs an atomic compare exchange operation on the 64-bit unsigned integer specified
3081 by Value. If Value is equal to CompareValue, then Value is set to ExchangeValue and
3082 CompareValue is returned. If Value is not equal to CompareValue, then Value is returned.
3083 The compare exchange operation must be performed using MP safe mechanisms.
3084
3085 If Value is NULL, then ASSERT().
3086
3087 @param Value A pointer to the 64-bit value for the compare exchange
3088 operation.
3089 @param CompareValue 64-bit value used in compare operation.
3090 @param ExchangeValue 64-bit value used in exchange operation.
3091
3092 @return The original *Value before exchange.
3093
3094**/
3095UINT64
3096EFIAPI
3097InterlockedCompareExchange64 (
3098 IN OUT UINT64 *Value,
3099 IN UINT64 CompareValue,
3100 IN UINT64 ExchangeValue
3101 );
3102
3103
3104/**
3105 Performs an atomic compare exchange operation on a pointer value.
3106
3107 Performs an atomic compare exchange operation on the pointer value specified
3108 by Value. If Value is equal to CompareValue, then Value is set to
3109 ExchangeValue and CompareValue is returned. If Value is not equal to
3110 CompareValue, then Value is returned. The compare exchange operation must be
3111 performed using MP safe mechanisms.
3112
3113 If Value is NULL, then ASSERT().
3114
3115 @param Value A pointer to the pointer value for the compare exchange
3116 operation.
3117 @param CompareValue Pointer value used in compare operation.
3118 @param ExchangeValue Pointer value used in exchange operation.
3119
3120**/
3121VOID *
3122EFIAPI
3123InterlockedCompareExchangePointer (
3124 IN OUT VOID **Value,
3125 IN VOID *CompareValue,
3126 IN VOID *ExchangeValue
3127 );
3128
3129
3130//
3131// Base Library Checksum Functions
3132//
3133
3134/**
3135 Calculate the sum of all elements in a buffer in unit of UINT8.
3136 During calculation, the carry bits are dropped.
3137
3138 This function calculates the sum of all elements in a buffer
3139 in unit of UINT8. The carry bits in result of addition are dropped.
3140 The result is returned as UINT8. If Length is Zero, then Zero is
3141 returned.
3142
3143 If Buffer is NULL, then ASSERT().
3144 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
3145
3146 @param Buffer Pointer to the buffer to carry out the sum operation.
3147 @param Length The size, in bytes, of Buffer .
3148
3149 @return Sum The sum of Buffer with carry bits dropped during additions.
3150
3151**/
3152UINT8
3153EFIAPI
3154CalculateSum8 (
3155 IN CONST UINT8 *Buffer,
3156 IN UINTN Length
3157 );
3158
3159
3160/**
3161 Returns the two's complement checksum of all elements in a buffer
3162 of 8-bit values.
3163
3164 This function first calculates the sum of the 8-bit values in the
3165 buffer specified by Buffer and Length. The carry bits in the result
3166 of addition are dropped. Then, the two's complement of the sum is
3167 returned. If Length is 0, then 0 is returned.
3168
3169 If Buffer is NULL, then ASSERT().
3170 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
3171
3172
3173 @param Buffer Pointer to the buffer to carry out the checksum operation.
3174 @param Length The size, in bytes, of Buffer.
3175
3176 @return Checksum The 2's complement checksum of Buffer.
3177
3178**/
3179UINT8
3180EFIAPI
3181CalculateCheckSum8 (
3182 IN CONST UINT8 *Buffer,
3183 IN UINTN Length
3184 );
3185
3186
3187/**
3188 Returns the sum of all elements in a buffer of 16-bit values. During
3189 calculation, the carry bits are dropped.
3190
3191 This function calculates the sum of the 16-bit values in the buffer
3192 specified by Buffer and Length. The carry bits in result of addition are dropped.
3193 The 16-bit result is returned. If Length is 0, then 0 is returned.
3194
3195 If Buffer is NULL, then ASSERT().
3196 If Buffer is not aligned on a 16-bit boundary, then ASSERT().
3197 If Length is not aligned on a 16-bit boundary, then ASSERT().
3198 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
3199
3200 @param Buffer Pointer to the buffer to carry out the sum operation.
3201 @param Length The size, in bytes, of Buffer.
3202
3203 @return Sum The sum of Buffer with carry bits dropped during additions.
3204
3205**/
3206UINT16
3207EFIAPI
3208CalculateSum16 (
3209 IN CONST UINT16 *Buffer,
3210 IN UINTN Length
3211 );
3212
3213
3214/**
3215 Returns the two's complement checksum of all elements in a buffer of
3216 16-bit values.
3217
3218 This function first calculates the sum of the 16-bit values in the buffer
3219 specified by Buffer and Length. The carry bits in the result of addition
3220 are dropped. Then, the two's complement of the sum is returned. If Length
3221 is 0, then 0 is returned.
3222
3223 If Buffer is NULL, then ASSERT().
3224 If Buffer is not aligned on a 16-bit boundary, then ASSERT().
3225 If Length is not aligned on a 16-bit boundary, then ASSERT().
3226 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
3227
3228 @param Buffer Pointer to the buffer to carry out the checksum operation.
3229 @param Length The size, in bytes, of Buffer.
3230
3231 @return Checksum The 2's complement checksum of Buffer.
3232
3233**/
3234UINT16
3235EFIAPI
3236CalculateCheckSum16 (
3237 IN CONST UINT16 *Buffer,
3238 IN UINTN Length
3239 );
3240
3241
3242/**
3243 Returns the sum of all elements in a buffer of 32-bit values. During
3244 calculation, the carry bits are dropped.
3245
3246 This function calculates the sum of the 32-bit values in the buffer
3247 specified by Buffer and Length. The carry bits in result of addition are dropped.
3248 The 32-bit result is returned. If Length is 0, then 0 is returned.
3249
3250 If Buffer is NULL, then ASSERT().
3251 If Buffer is not aligned on a 32-bit boundary, then ASSERT().
3252 If Length is not aligned on a 32-bit boundary, then ASSERT().
3253 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
3254
3255 @param Buffer Pointer to the buffer to carry out the sum operation.
3256 @param Length The size, in bytes, of Buffer.
3257
3258 @return Sum The sum of Buffer with carry bits dropped during additions.
3259
3260**/
3261UINT32
3262EFIAPI
3263CalculateSum32 (
3264 IN CONST UINT32 *Buffer,
3265 IN UINTN Length
3266 );
3267
3268
3269/**
3270 Returns the two's complement checksum of all elements in a buffer of
3271 32-bit values.
3272
3273 This function first calculates the sum of the 32-bit values in the buffer
3274 specified by Buffer and Length. The carry bits in the result of addition
3275 are dropped. Then, the two's complement of the sum is returned. If Length
3276 is 0, then 0 is returned.
3277
3278 If Buffer is NULL, then ASSERT().
3279 If Buffer is not aligned on a 32-bit boundary, then ASSERT().
3280 If Length is not aligned on a 32-bit boundary, then ASSERT().
3281 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
3282
3283 @param Buffer Pointer to the buffer to carry out the checksum operation.
3284 @param Length The size, in bytes, of Buffer.
3285
3286 @return Checksum The 2's complement checksum of Buffer.
3287
3288**/
3289UINT32
3290EFIAPI
3291CalculateCheckSum32 (
3292 IN CONST UINT32 *Buffer,
3293 IN UINTN Length
3294 );
3295
3296
3297/**
3298 Returns the sum of all elements in a buffer of 64-bit values. During
3299 calculation, the carry bits are dropped.
3300
3301 This function calculates the sum of the 64-bit values in the buffer
3302 specified by Buffer and Length. The carry bits in result of addition are dropped.
3303 The 64-bit result is returned. If Length is 0, then 0 is returned.
3304
3305 If Buffer is NULL, then ASSERT().
3306 If Buffer is not aligned on a 64-bit boundary, then ASSERT().
3307 If Length is not aligned on a 64-bit boundary, then ASSERT().
3308 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
3309
3310 @param Buffer Pointer to the buffer to carry out the sum operation.
3311 @param Length The size, in bytes, of Buffer.
3312
3313 @return Sum The sum of Buffer with carry bits dropped during additions.
3314
3315**/
3316UINT64
3317EFIAPI
3318CalculateSum64 (
3319 IN CONST UINT64 *Buffer,
3320 IN UINTN Length
3321 );
3322
3323
3324/**
3325 Returns the two's complement checksum of all elements in a buffer of
3326 64-bit values.
3327
3328 This function first calculates the sum of the 64-bit values in the buffer
3329 specified by Buffer and Length. The carry bits in the result of addition
3330 are dropped. Then, the two's complement of the sum is returned. If Length
3331 is 0, then 0 is returned.
3332
3333 If Buffer is NULL, then ASSERT().
3334 If Buffer is not aligned on a 64-bit boundary, then ASSERT().
3335 If Length is not aligned on a 64-bit boundary, then ASSERT().
3336 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
3337
3338 @param Buffer Pointer to the buffer to carry out the checksum operation.
3339 @param Length The size, in bytes, of Buffer.
3340
3341 @return Checksum The 2's complement checksum of Buffer.
3342
3343**/
3344UINT64
3345EFIAPI
3346CalculateCheckSum64 (
3347 IN CONST UINT64 *Buffer,
3348 IN UINTN Length
3349 );
3350
3351
3352//
3353// Base Library CPU Functions
3354//
3355typedef
3356VOID
3357(EFIAPI *SWITCH_STACK_ENTRY_POINT) (
3358 IN VOID *Context1, OPTIONAL
3359 IN VOID *Context2 OPTIONAL
3360 );
3361
3362
3363/**
3364 Used to serialize load and store operations.
3365
3366 All loads and stores that proceed calls to this function are guaranteed to be
3367 globally visible when this function returns.
3368
3369**/
3370VOID
3371EFIAPI
3372MemoryFence (
3373 VOID
3374 );
3375
3376
3377/**
3378 Saves the current CPU context that can be restored with a call to LongJump()
3379 and returns 0.
3380
3381 Saves the current CPU context in the buffer specified by JumpBuffer and
3382 returns 0. The initial call to SetJump() must always return 0. Subsequent
3383 calls to LongJump() cause a non-zero value to be returned by SetJump().
3384
3385 If JumpBuffer is NULL, then ASSERT().
3386 For IPF CPUs, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().
3387
3388 @param JumpBuffer A pointer to CPU context buffer.
3389
3390 @retval 0 Indicates a return from SetJump().
3391
3392**/
3393UINTN
3394EFIAPI
3395SetJump (
3396 OUT BASE_LIBRARY_JUMP_BUFFER *JumpBuffer
3397 );
3398
3399
3400/**
3401 Restores the CPU context that was saved with SetJump().
3402
3403 Restores the CPU context from the buffer specified by JumpBuffer. This
3404 function never returns to the caller. Instead is resumes execution based on
3405 the state of JumpBuffer.
3406
3407 If JumpBuffer is NULL, then ASSERT().
3408 For IPF CPUs, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().
3409 If Value is 0, then ASSERT().
3410
3411 @param JumpBuffer A pointer to CPU context buffer.
3412 @param Value The value to return when the SetJump() context is
3413 restored and must be non-zero.
3414
3415**/
3416VOID
3417EFIAPI
3418LongJump (
3419 IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer,
3420 IN UINTN Value
3421 );
3422
3423
3424/**
3425 Enables CPU interrupts.
3426
3427 Enables CPU interrupts.
3428
3429**/
3430VOID
3431EFIAPI
3432EnableInterrupts (
3433 VOID
3434 );
3435
3436
3437/**
3438 Disables CPU interrupts.
3439
3440 Disables CPU interrupts.
3441
3442**/
3443VOID
3444EFIAPI
3445DisableInterrupts (
3446 VOID
3447 );
3448
3449
3450/**
3451 Disables CPU interrupts and returns the interrupt state prior to the disable
3452 operation.
3453
3454 Disables CPU interrupts and returns the interrupt state prior to the disable
3455 operation.
3456
3457 @retval TRUE CPU interrupts were enabled on entry to this call.
3458 @retval FALSE CPU interrupts were disabled on entry to this call.
3459
3460**/
3461BOOLEAN
3462EFIAPI
3463SaveAndDisableInterrupts (
3464 VOID
3465 );
3466
3467
3468/**
3469 Enables CPU interrupts for the smallest window required to capture any
3470 pending interrupts.
3471
3472 Enables CPU interrupts for the smallest window required to capture any
3473 pending interrupts.
3474
3475**/
3476VOID
3477EFIAPI
3478EnableDisableInterrupts (
3479 VOID
3480 );
3481
3482
3483/**
3484 Retrieves the current CPU interrupt state.
3485
3486 Retrieves the current CPU interrupt state. Returns TRUE is interrupts are
3487 currently enabled. Otherwise returns FALSE.
3488
3489 @retval TRUE CPU interrupts are enabled.
3490 @retval FALSE CPU interrupts are disabled.
3491
3492**/
3493BOOLEAN
3494EFIAPI
3495GetInterruptState (
3496 VOID
3497 );
3498
3499
3500/**
3501 Set the current CPU interrupt state.
3502
3503 Sets the current CPU interrupt state to the state specified by
3504 InterruptState. If InterruptState is TRUE, then interrupts are enabled. If
3505 InterruptState is FALSE, then interrupts are disabled. InterruptState is
3506 returned.
3507
3508 @param InterruptState TRUE if interrupts should enabled. FALSE if
3509 interrupts should be disabled.
3510
3511 @return InterruptState
3512
3513**/
3514BOOLEAN
3515EFIAPI
3516SetInterruptState (
3517 IN BOOLEAN InterruptState
3518 );
3519
3520
fb3df220 3521/**
3522 Requests CPU to pause for a short period of time.
3523
3524 Requests CPU to pause for a short period of time. Typically used in MP
3525 systems to prevent memory starvation while waiting for a spin lock.
3526
3527**/
3528VOID
3529EFIAPI
3530CpuPause (
3531 VOID
3532 );
3533
3534
fb3df220 3535/**
3536 Transfers control to a function starting with a new stack.
3537
3538 Transfers control to the function specified by EntryPoint using the
3539 new stack specified by NewStack and passing in the parameters specified
3540 by Context1 and Context2. Context1 and Context2 are optional and may
3541 be NULL. The function EntryPoint must never return. This function
3542 supports a variable number of arguments following the NewStack parameter.
3543 These additional arguments are ignored on IA-32, x64, and EBC.
3544 IPF CPUs expect one additional parameter of type VOID * that specifies
3545 the new backing store pointer.
3546
3547 If EntryPoint is NULL, then ASSERT().
3548 If NewStack is NULL, then ASSERT().
3549
3550 @param EntryPoint A pointer to function to call with the new stack.
3551 @param Context1 A pointer to the context to pass into the EntryPoint
3552 function.
3553 @param Context2 A pointer to the context to pass into the EntryPoint
3554 function.
3555 @param NewStack A pointer to the new stack to use for the EntryPoint
3556 function.
3557
3558**/
3559VOID
3560EFIAPI
3561SwitchStack (
3562 IN SWITCH_STACK_ENTRY_POINT EntryPoint,
3563 IN VOID *Context1, OPTIONAL
3564 IN VOID *Context2, OPTIONAL
3565 IN VOID *NewStack,
3566 ...
3567 );
3568
3569
3570/**
3571 Generates a breakpoint on the CPU.
3572
3573 Generates a breakpoint on the CPU. The breakpoint must be implemented such
3574 that code can resume normal execution after the breakpoint.
3575
3576**/
3577VOID
3578EFIAPI
3579CpuBreakpoint (
3580 VOID
3581 );
3582
3583
3584/**
3585 Executes an infinite loop.
3586
3587 Forces the CPU to execute an infinite loop. A debugger may be used to skip
3588 past the loop and the code that follows the loop must execute properly. This
3589 implies that the infinite loop must not cause the code that follow it to be
3590 optimized away.
3591
3592**/
3593VOID
3594EFIAPI
3595CpuDeadLoop (
3596 VOID
3597 );
3598
3599
3600#if defined (MDE_CPU_IPF)
3601
3602/**
3603 Flush a range of cache lines in the cache coherency domain of the calling
3604 CPU.
3605
3606 Invalidates the cache lines specified by Address and Length. If Address is
3607 not aligned on a cache line boundary, then entire cache line containing
3608 Address is invalidated. If Address + Length is not aligned on a cache line
3609 boundary, then the entire instruction cache line containing Address + Length
3610 -1 is invalidated. This function may choose to invalidate the entire
3611 instruction cache if that is more efficient than invalidating the specified
3612 range. If Length is 0, the no instruction cache lines are invalidated.
3613 Address is returned.
3614
3615 If Length is greater than (MAX_ADDRESS - Address + 1), then ASSERT().
3616
3617 @param Address The base address of the instruction lines to invalidate. If
3618 the CPU is in a physical addressing mode, then Address is a
3619 physical address. If the CPU is in a virtual addressing mode,
3620 then Address is a virtual address.
3621
3622 @param Length The number of bytes to invalidate from the instruction cache.
3623
3624 @return Address
3625
3626**/
3627VOID *
3628EFIAPI
3629IpfFlushCacheRange (
3630 IN VOID *Address,
3631 IN UINTN Length
3632 );
3633
3634
3635/**
3636 Executes a FC instruction
3637 Executes a FC instruction on the cache line specified by Address.
3638 The cache line size affected is at least 32-bytes (aligned on a 32-byte boundary).
3639 An implementation may flush a larger region. This function is only available on IPF.
3640
3641 @param Address The Address of cache line to be flushed.
3642
3643 @return The address of FC instruction executed.
3644
3645**/
3646UINT64
3647EFIAPI
3648AsmFc (
3649 IN UINT64 Address
3650 );
3651
3652
3653/**
3654 Executes a FC.I instruction.
3655 Executes a FC.I instruction on the cache line specified by Address.
3656 The cache line size affected is at least 32-bytes (aligned on a 32-byte boundary).
3657 An implementation may flush a larger region. This function is only available on IPF.
3658
3659 @param Address The Address of cache line to be flushed.
3660
3661 @return The address of FC.I instruction executed.
3662
3663**/
3664UINT64
3665EFIAPI
3666AsmFci (
3667 IN UINT64 Address
3668 );
3669
3670
3671/**
3672 Reads the current value of a Processor Identifier Register (CPUID).
3673 The Index of largest implemented CPUID (One less than the number of implemented CPUID
3674 registers) is determined by CPUID [3] bits {7:0}.
3675 No parameter checking is performed on Index. If the Index value is beyond the
3676 implemented CPUID register range, a Reserved Register/Field fault may occur. The caller
3677 must either guarantee that Index is valid, or the caller must set up fault handlers to
3678 catch the faults. This function is only available on IPF.
3679
3680 @param Index The 8-bit Processor Identifier Register index to read.
3681
3682 @return The current value of Processor Identifier Register specified by Index.
3683
3684**/
3685UINT64
3686EFIAPI
3687AsmReadCpuid (
3688 IN UINT8 Index
3689 );
3690
3691
3692/**
3693 Reads the current value of 64-bit Processor Status Register (PSR).
3694 This function is only available on IPF.
3695
3696 @return The current value of PSR.
3697
3698**/
3699UINT64
3700EFIAPI
3701AsmReadPsr (
3702 VOID
3703 );
3704
3705
3706/**
3707 Writes the current value of 64-bit Processor Status Register (PSR).
3708 No parameter checking is performed on Value. All bits of Value corresponding to
3709 reserved fields of PSR must be 0 or a Reserved Register/Field fault may occur. The caller must either guarantee that Value is valid, or the caller must set up fault handlers to catch the faults.
3710 This function is only available on IPF.
3711
3712 @param Value The 64-bit value to write to PSR.
3713
3714 @return The 64-bit value written to the PSR.
3715
3716**/
3717UINT64
3718EFIAPI
3719AsmWritePsr (
3720 IN UINT64 Value
3721 );
3722
3723
3724/**
3725 Reads the current value of 64-bit Kernel Register #0 (KR0).
3726 This function is only available on IPF.
3727
3728 @return The current value of KR0.
3729
3730**/
3731UINT64
3732EFIAPI
3733AsmReadKr0 (
3734 VOID
3735 );
3736
3737
3738/**
3739 Reads the current value of 64-bit Kernel Register #1 (KR1).
3740 This function is only available on IPF.
3741
3742 @return The current value of KR1.
3743
3744**/
3745UINT64
3746EFIAPI
3747AsmReadKr1 (
3748 VOID
3749 );
3750
3751
3752/**
3753 Reads the current value of 64-bit Kernel Register #2 (KR2).
3754 This function is only available on IPF.
3755
3756 @return The current value of KR2.
3757
3758**/
3759UINT64
3760EFIAPI
3761AsmReadKr2 (
3762 VOID
3763 );
3764
3765
3766/**
3767 Reads the current value of 64-bit Kernel Register #3 (KR3).
3768 This function is only available on IPF.
3769
3770 @return The current value of KR3.
3771
3772**/
3773UINT64
3774EFIAPI
3775AsmReadKr3 (
3776 VOID
3777 );
3778
3779
3780/**
3781 Reads the current value of 64-bit Kernel Register #4 (KR4).
3782 This function is only available on IPF.
3783
3784 @return The current value of KR4.
3785
3786**/
3787UINT64
3788EFIAPI
3789AsmReadKr4 (
3790 VOID
3791 );
3792
3793
3794/**
3795 Reads the current value of 64-bit Kernel Register #5 (KR5).
3796 This function is only available on IPF.
3797
3798 @return The current value of KR5.
3799
3800**/
3801UINT64
3802EFIAPI
3803AsmReadKr5 (
3804 VOID
3805 );
3806
3807
3808/**
3809 Reads the current value of 64-bit Kernel Register #6 (KR6).
3810 This function is only available on IPF.
3811
3812 @return The current value of KR6.
3813
3814**/
3815UINT64
3816EFIAPI
3817AsmReadKr6 (
3818 VOID
3819 );
3820
3821
3822/**
3823 Reads the current value of 64-bit Kernel Register #7 (KR7).
3824 This function is only available on IPF.
3825
3826 @return The current value of KR7.
3827
3828**/
3829UINT64
3830EFIAPI
3831AsmReadKr7 (
3832 VOID
3833 );
3834
3835
3836/**
3837 Write the current value of 64-bit Kernel Register #0 (KR0).
3838 This function is only available on IPF.
3839
3840 @param Value The 64-bit value to write to KR0.
3841
3842 @return The 64-bit value written to the KR0.
3843
3844**/
3845UINT64
3846EFIAPI
3847AsmWriteKr0 (
3848 IN UINT64 Value
3849 );
3850
3851
3852/**
3853 Write the current value of 64-bit Kernel Register #1 (KR1).
3854 This function is only available on IPF.
3855
3856 @param Value The 64-bit value to write to KR1.
3857
3858 @return The 64-bit value written to the KR1.
3859
3860**/
3861UINT64
3862EFIAPI
3863AsmWriteKr1 (
3864 IN UINT64 Value
3865 );
3866
3867
3868/**
3869 Write the current value of 64-bit Kernel Register #2 (KR2).
3870 This function is only available on IPF.
3871
3872 @param Value The 64-bit value to write to KR2.
3873
3874 @return The 64-bit value written to the KR2.
3875
3876**/
3877UINT64
3878EFIAPI
3879AsmWriteKr2 (
3880 IN UINT64 Value
3881 );
3882
3883
3884/**
3885 Write the current value of 64-bit Kernel Register #3 (KR3).
3886 This function is only available on IPF.
3887
3888 @param Value The 64-bit value to write to KR3.
3889
3890 @return The 64-bit value written to the KR3.
3891
3892**/
3893UINT64
3894EFIAPI
3895AsmWriteKr3 (
3896 IN UINT64 Value
3897 );
3898
3899
3900/**
3901 Write the current value of 64-bit Kernel Register #4 (KR4).
3902 This function is only available on IPF.
3903
3904 @param Value The 64-bit value to write to KR4.
3905
3906 @return The 64-bit value written to the KR4.
3907
3908**/
3909UINT64
3910EFIAPI
3911AsmWriteKr4 (
3912 IN UINT64 Value
3913 );
3914
3915
3916/**
3917 Write the current value of 64-bit Kernel Register #5 (KR5).
3918 This function is only available on IPF.
3919
3920 @param Value The 64-bit value to write to KR5.
3921
3922 @return The 64-bit value written to the KR5.
3923
3924**/
3925UINT64
3926EFIAPI
3927AsmWriteKr5 (
3928 IN UINT64 Value
3929 );
3930
3931
3932/**
3933 Write the current value of 64-bit Kernel Register #6 (KR6).
3934 This function is only available on IPF.
3935
3936 @param Value The 64-bit value to write to KR6.
3937
3938 @return The 64-bit value written to the KR6.
3939
3940**/
3941UINT64
3942EFIAPI
3943AsmWriteKr6 (
3944 IN UINT64 Value
3945 );
3946
3947
3948/**
3949 Write the current value of 64-bit Kernel Register #7 (KR7).
3950 This function is only available on IPF.
3951
3952 @param Value The 64-bit value to write to KR7.
3953
3954 @return The 64-bit value written to the KR7.
3955
3956**/
3957UINT64
3958EFIAPI
3959AsmWriteKr7 (
3960 IN UINT64 Value
3961 );
3962
3963
3964/**
3965 Reads the current value of Interval Timer Counter Register (ITC).
3966 This function is only available on IPF.
3967
3968 @return The current value of ITC.
3969
3970**/
3971UINT64
3972EFIAPI
3973AsmReadItc (
3974 VOID
3975 );
3976
3977
3978/**
3979 Reads the current value of Interval Timer Vector Register (ITV).
3980 This function is only available on IPF.
3981
3982 @return The current value of ITV.
3983
3984**/
3985UINT64
3986EFIAPI
3987AsmReadItv (
3988 VOID
3989 );
3990
3991
3992/**
3993 Reads the current value of Interval Timer Match Register (ITM).
3994 This function is only available on IPF.
3995
3996 @return The current value of ITM.
3997**/
3998UINT64
3999EFIAPI
4000AsmReadItm (
4001 VOID
4002 );
4003
4004
4005/**
4006 Writes the current value of 64-bit Interval Timer Counter Register (ITC).
4007 This function is only available on IPF.
4008
4009 @param Value The 64-bit value to write to ITC.
4010
4011 @return The 64-bit value written to the ITC.
4012
4013**/
4014UINT64
4015EFIAPI
4016AsmWriteItc (
4017 IN UINT64 Value
4018 );
4019
4020
4021/**
4022 Writes the current value of 64-bit Interval Timer Match Register (ITM).
4023 This function is only available on IPF.
4024
4025 @param Value The 64-bit value to write to ITM.
4026
4027 @return The 64-bit value written to the ITM.
4028
4029**/
4030UINT64
4031EFIAPI
4032AsmWriteItm (
4033 IN UINT64 Value
4034 );
4035
4036
4037/**
4038 Writes the current value of 64-bit Interval Timer Vector Register (ITV).
4039 No parameter checking is performed on Value. All bits of Value corresponding to
4040 reserved fields of ITV must be 0 or a Reserved Register/Field fault may occur.
4041 The caller must either guarantee that Value is valid, or the caller must set up
4042 fault handlers to catch the faults.
4043 This function is only available on IPF.
4044
4045 @param Value The 64-bit value to write to ITV.
4046
4047 @return The 64-bit value written to the ITV.
4048
4049**/
4050UINT64
4051EFIAPI
4052AsmWriteItv (
4053 IN UINT64 Value
4054 );
4055
4056
4057/**
4058 Reads the current value of Default Control Register (DCR).
4059 This function is only available on IPF.
4060
4061 @return The current value of DCR.
4062
4063**/
4064UINT64
4065EFIAPI
4066AsmReadDcr (
4067 VOID
4068 );
4069
4070
4071/**
4072 Reads the current value of Interruption Vector Address Register (IVA).
4073 This function is only available on IPF.
4074
4075 @return The current value of IVA.
4076**/
4077UINT64
4078EFIAPI
4079AsmReadIva (
4080 VOID
4081 );
4082
4083
4084/**
4085 Reads the current value of Page Table Address Register (PTA).
4086 This function is only available on IPF.
4087
4088 @return The current value of PTA.
4089
4090**/
4091UINT64
4092EFIAPI
4093AsmReadPta (
4094 VOID
4095 );
4096
4097
4098/**
4099 Writes the current value of 64-bit Default Control Register (DCR).
4100 No parameter checking is performed on Value. All bits of Value corresponding to
4101 reserved fields of DCR must be 0 or a Reserved Register/Field fault may occur.
4102 The caller must either guarantee that Value is valid, or the caller must set up
4103 fault handlers to catch the faults.
4104 This function is only available on IPF.
4105
4106 @param Value The 64-bit value to write to DCR.
4107
4108 @return The 64-bit value written to the DCR.
4109
4110**/
4111UINT64
4112EFIAPI
4113AsmWriteDcr (
4114 IN UINT64 Value
4115 );
4116
4117
4118/**
4119 Writes the current value of 64-bit Interruption Vector Address Register (IVA).
4120 The size of vector table is 32 K bytes and is 32 K bytes aligned
4121 the low 15 bits of Value is ignored when written.
4122 This function is only available on IPF.
4123
4124 @param Value The 64-bit value to write to IVA.
4125
4126 @return The 64-bit value written to the IVA.
4127
4128**/
4129UINT64
4130EFIAPI
4131AsmWriteIva (
4132 IN UINT64 Value
4133 );
4134
4135
4136/**
4137 Writes the current value of 64-bit Page Table Address Register (PTA).
4138 No parameter checking is performed on Value. All bits of Value corresponding to
4139 reserved fields of DCR must be 0 or a Reserved Register/Field fault may occur.
4140 The caller must either guarantee that Value is valid, or the caller must set up
4141 fault handlers to catch the faults.
4142 This function is only available on IPF.
4143
4144 @param Value The 64-bit value to write to PTA.
4145
4146 @return The 64-bit value written to the PTA.
4147**/
4148UINT64
4149EFIAPI
4150AsmWritePta (
4151 IN UINT64 Value
4152 );
4153
4154
4155/**
4156 Reads the current value of Local Interrupt ID Register (LID).
4157 This function is only available on IPF.
4158
4159 @return The current value of LID.
4160
4161**/
4162UINT64
4163EFIAPI
4164AsmReadLid (
4165 VOID
4166 );
4167
4168
4169/**
4170 Reads the current value of External Interrupt Vector Register (IVR).
4171 This function is only available on IPF.
4172
4173 @return The current value of IVR.
4174
4175**/
4176UINT64
4177EFIAPI
4178AsmReadIvr (
4179 VOID
4180 );
4181
4182
4183/**
4184 Reads the current value of Task Priority Register (TPR).
4185 This function is only available on IPF.
4186
4187 @return The current value of TPR.
4188
4189**/
4190UINT64
4191EFIAPI
4192AsmReadTpr (
4193 VOID
4194 );
4195
4196
4197/**
4198 Reads the current value of External Interrupt Request Register #0 (IRR0).
4199 This function is only available on IPF.
4200
4201 @return The current value of IRR0.
4202
4203**/
4204UINT64
4205EFIAPI
4206AsmReadIrr0 (
4207 VOID
4208 );
4209
4210
4211/**
4212 Reads the current value of External Interrupt Request Register #1 (IRR1).
4213 This function is only available on IPF.
4214
4215 @return The current value of IRR1.
4216
4217**/
4218UINT64
4219EFIAPI
4220AsmReadIrr1 (
4221 VOID
4222 );
4223
4224
4225/**
4226 Reads the current value of External Interrupt Request Register #2 (IRR2).
4227 This function is only available on IPF.
4228
4229 @return The current value of IRR2.
4230
4231**/
4232UINT64
4233EFIAPI
4234AsmReadIrr2 (
4235 VOID
4236 );
4237
4238
4239/**
4240 Reads the current value of External Interrupt Request Register #3 (IRR3).
4241 This function is only available on IPF.
4242
4243 @return The current value of IRR3.
4244
4245**/
4246UINT64
4247EFIAPI
4248AsmReadIrr3 (
4249 VOID
4250 );
4251
4252
4253/**
4254 Reads the current value of Performance Monitor Vector Register (PMV).
4255 This function is only available on IPF.
4256
4257 @return The current value of PMV.
4258
4259**/
4260UINT64
4261EFIAPI
4262AsmReadPmv (
4263 VOID
4264 );
4265
4266
4267/**
4268 Reads the current value of Corrected Machine Check Vector Register (CMCV).
4269 This function is only available on IPF.
4270
4271 @return The current value of CMCV.
4272
4273**/
4274UINT64
4275EFIAPI
4276AsmReadCmcv (
4277 VOID
4278 );
4279
4280
4281/**
4282 Reads the current value of Local Redirection Register #0 (LRR0).
4283 This function is only available on IPF.
4284
4285 @return The current value of LRR0.
4286
4287**/
4288UINT64
4289EFIAPI
4290AsmReadLrr0 (
4291 VOID
4292 );
4293
4294
4295/**
4296 Reads the current value of Local Redirection Register #1 (LRR1).
4297 This function is only available on IPF.
4298
4299 @return The current value of LRR1.
4300
4301**/
4302UINT64
4303EFIAPI
4304AsmReadLrr1 (
4305 VOID
4306 );
4307
4308
4309/**
4310 Writes the current value of 64-bit Page Local Interrupt ID Register (LID).
4311 No parameter checking is performed on Value. All bits of Value corresponding to
4312 reserved fields of LID must be 0 or a Reserved Register/Field fault may occur.
4313 The caller must either guarantee that Value is valid, or the caller must set up
4314 fault handlers to catch the faults.
4315 This function is only available on IPF.
4316
4317 @param Value The 64-bit value to write to LID.
4318
4319 @return The 64-bit value written to the LID.
4320
4321**/
4322UINT64
4323EFIAPI
4324AsmWriteLid (
4325 IN UINT64 Value
4326 );
4327
4328
4329/**
4330 Writes the current value of 64-bit Task Priority Register (TPR).
4331 No parameter checking is performed on Value. All bits of Value corresponding to
4332 reserved fields of TPR must be 0 or a Reserved Register/Field fault may occur.
4333 The caller must either guarantee that Value is valid, or the caller must set up
4334 fault handlers to catch the faults.
4335 This function is only available on IPF.
4336
4337 @param Value The 64-bit value to write to TPR.
4338
4339 @return The 64-bit value written to the TPR.
4340
4341**/
4342UINT64
4343EFIAPI
4344AsmWriteTpr (
4345 IN UINT64 Value
4346 );
4347
4348
4349/**
4350 Performs a write operation on End OF External Interrupt Register (EOI).
4351 Writes a value of 0 to the EOI Register. This function is only available on IPF.
4352
4353**/
4354VOID
4355EFIAPI
4356AsmWriteEoi (
4357 VOID
4358 );
4359
4360
4361/**
4362 Writes the current value of 64-bit Performance Monitor Vector Register (PMV).
4363 No parameter checking is performed on Value. All bits of Value corresponding
4364 to reserved fields of PMV must be 0 or a Reserved Register/Field fault may occur.
4365 The caller must either guarantee that Value is valid, or the caller must set up
4366 fault handlers to catch the faults.
4367 This function is only available on IPF.
4368
4369 @param Value The 64-bit value to write to PMV.
4370
4371 @return The 64-bit value written to the PMV.
4372
4373**/
4374UINT64
4375EFIAPI
4376AsmWritePmv (
4377 IN UINT64 Value
4378 );
4379
4380
4381/**
4382 Writes the current value of 64-bit Corrected Machine Check Vector Register (CMCV).
4383 No parameter checking is performed on Value. All bits of Value corresponding
4384 to reserved fields of CMCV must be 0 or a Reserved Register/Field fault may occur.
4385 The caller must either guarantee that Value is valid, or the caller must set up
4386 fault handlers to catch the faults.
4387 This function is only available on IPF.
4388
4389 @param Value The 64-bit value to write to CMCV.
4390
4391 @return The 64-bit value written to the CMCV.
4392
4393**/
4394UINT64
4395EFIAPI
4396AsmWriteCmcv (
4397 IN UINT64 Value
4398 );
4399
4400
4401/**
4402 Writes the current value of 64-bit Local Redirection Register #0 (LRR0).
4403 No parameter checking is performed on Value. All bits of Value corresponding
4404 to reserved fields of LRR0 must be 0 or a Reserved Register/Field fault may occur.
4405 The caller must either guarantee that Value is valid, or the caller must set up
4406 fault handlers to catch the faults.
4407 This function is only available on IPF.
4408
4409 @param Value The 64-bit value to write to LRR0.
4410
4411 @return The 64-bit value written to the LRR0.
4412
4413**/
4414UINT64
4415EFIAPI
4416AsmWriteLrr0 (
4417 IN UINT64 Value
4418 );
4419
4420
4421/**
4422 Writes the current value of 64-bit Local Redirection Register #1 (LRR1).
4423 No parameter checking is performed on Value. All bits of Value corresponding
4424 to reserved fields of LRR1 must be 0 or a Reserved Register/Field fault may occur.
4425 The caller must either guarantee that Value is valid, or the caller must
4426 set up fault handlers to catch the faults.
4427 This function is only available on IPF.
4428
4429 @param Value The 64-bit value to write to LRR1.
4430
4431 @return The 64-bit value written to the LRR1.
4432
4433**/
4434UINT64
4435EFIAPI
4436AsmWriteLrr1 (
4437 IN UINT64 Value
4438 );
4439
4440
4441/**
4442 Reads the current value of Instruction Breakpoint Register (IBR).
4443
4444 The Instruction Breakpoint Registers are used in pairs. The even numbered
4445 registers contain breakpoint addresses, and the odd numbered registers contain
4446 breakpoint mask conditions. At least 4 instruction registers pairs are implemented
4447 on all processor models. Implemented registers are contiguous starting with
4448 register 0. No parameter checking is performed on Index, and if the Index value
4449 is beyond the implemented IBR register range, a Reserved Register/Field fault may
4450 occur. The caller must either guarantee that Index is valid, or the caller must
4451 set up fault handlers to catch the faults.
4452 This function is only available on IPF.
4453
4454 @param Index The 8-bit Instruction Breakpoint Register index to read.
4455
4456 @return The current value of Instruction Breakpoint Register specified by Index.
4457
4458**/
4459UINT64
4460EFIAPI
4461AsmReadIbr (
4462 IN UINT8 Index
4463 );
4464
4465
4466/**
4467 Reads the current value of Data Breakpoint Register (DBR).
4468
4469 The Data Breakpoint Registers are used in pairs. The even numbered registers
4470 contain breakpoint addresses, and odd numbered registers contain breakpoint
4471 mask conditions. At least 4 data registers pairs are implemented on all processor
4472 models. Implemented registers are contiguous starting with register 0.
4473 No parameter checking is performed on Index. If the Index value is beyond
4474 the implemented DBR register range, a Reserved Register/Field fault may occur.
4475 The caller must either guarantee that Index is valid, or the caller must set up
4476 fault handlers to catch the faults.
4477 This function is only available on IPF.
4478
4479 @param Index The 8-bit Data Breakpoint Register index to read.
4480
4481 @return The current value of Data Breakpoint Register specified by Index.
4482
4483**/
4484UINT64
4485EFIAPI
4486AsmReadDbr (
4487 IN UINT8 Index
4488 );
4489
4490
4491/**
4492 Reads the current value of Performance Monitor Configuration Register (PMC).
4493
4494 All processor implementations provide at least 4 performance counters
4495 (PMC/PMD [4]...PMC/PMD [7] pairs), and 4 performance monitor counter overflow
4496