]> git.proxmox.com Git - mirror_edk2.git/blame - MdePkg/Include/Library/BaseLib.h
edk2/EdkCompatibilityPkg/Foundation/Protocol/Performance/Performance.h:
[mirror_edk2.git] / MdePkg / Include / Library / BaseLib.h
CommitLineData
fb3df220 1/** @file
2 Memory-only library functions with no library constructor/destructor
3
4 Copyright (c) 2006 - 2007, Intel Corporation
5 All rights reserved. This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
fb3df220 13**/
14
15#ifndef __BASE_LIB__
16#define __BASE_LIB__
17
18//
19// Definitions for architecture specific types
20// These include SPIN_LOCK and BASE_LIBRARY_JUMP_BUFFER
21//
22
23//
24// SPIN_LOCK
25//
26typedef volatile UINTN SPIN_LOCK;
27
28#if defined (MDE_CPU_IA32)
29//
30// IA32 context buffer used by SetJump() and LongJump()
31//
32typedef struct {
33 UINT32 Ebx;
34 UINT32 Esi;
35 UINT32 Edi;
36 UINT32 Ebp;
37 UINT32 Esp;
38 UINT32 Eip;
39} BASE_LIBRARY_JUMP_BUFFER;
40
d7e5a9f9 41#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 4
fb3df220 42
43#elif defined (MDE_CPU_IPF)
842f5579 44
fb3df220 45//
46// IPF context buffer used by SetJump() and LongJump()
47//
48typedef struct {
49 UINT64 F2[2];
50 UINT64 F3[2];
51 UINT64 F4[2];
52 UINT64 F5[2];
53 UINT64 F16[2];
54 UINT64 F17[2];
55 UINT64 F18[2];
56 UINT64 F19[2];
57 UINT64 F20[2];
58 UINT64 F21[2];
59 UINT64 F22[2];
60 UINT64 F23[2];
61 UINT64 F24[2];
62 UINT64 F25[2];
63 UINT64 F26[2];
64 UINT64 F27[2];
65 UINT64 F28[2];
66 UINT64 F29[2];
67 UINT64 F30[2];
68 UINT64 F31[2];
69 UINT64 R4;
70 UINT64 R5;
71 UINT64 R6;
72 UINT64 R7;
73 UINT64 SP;
74 UINT64 BR0;
75 UINT64 BR1;
76 UINT64 BR2;
77 UINT64 BR3;
78 UINT64 BR4;
79 UINT64 BR5;
80 UINT64 InitialUNAT;
81 UINT64 AfterSpillUNAT;
82 UINT64 PFS;
83 UINT64 BSP;
84 UINT64 Predicates;
85 UINT64 LoopCount;
86 UINT64 FPSR;
87} BASE_LIBRARY_JUMP_BUFFER;
88
89#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 0x10
90
91#elif defined (MDE_CPU_X64)
92//
93// X64 context buffer used by SetJump() and LongJump()
94//
95typedef struct {
96 UINT64 Rbx;
97 UINT64 Rsp;
98 UINT64 Rbp;
99 UINT64 Rdi;
100 UINT64 Rsi;
101 UINT64 R12;
102 UINT64 R13;
103 UINT64 R14;
104 UINT64 R15;
105 UINT64 Rip;
106} BASE_LIBRARY_JUMP_BUFFER;
107
108#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8
109
110#elif defined (MDE_CPU_EBC)
111//
112// EBC context buffer used by SetJump() and LongJump()
113//
114typedef struct {
115 UINT64 R0;
116 UINT64 R1;
117 UINT64 R2;
118 UINT64 R3;
119 UINT64 IP;
120} BASE_LIBRARY_JUMP_BUFFER;
121
122#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8
123
124#else
125#error Unknown Processor Type
126#endif
127
128//
129// String Services
130//
131
132/**
133 Copies one Null-terminated Unicode string to another Null-terminated Unicode
134 string and returns the new Unicode string.
135
136 This function copies the contents of the Unicode string Source to the Unicode
137 string Destination, and returns Destination. If Source and Destination
138 overlap, then the results are undefined.
139
140 If Destination is NULL, then ASSERT().
141 If Destination is not aligned on a 16-bit boundary, then ASSERT().
142 If Source is NULL, then ASSERT().
143 If Source is not aligned on a 16-bit boundary, then ASSERT().
144 If Source and Destination overlap, then ASSERT().
145 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than
146 PcdMaximumUnicodeStringLength Unicode characters not including the
147 Null-terminator, then ASSERT().
148
149 @param Destination Pointer to a Null-terminated Unicode string.
150 @param Source Pointer to a Null-terminated Unicode string.
151
152 @return Destiantion
153
154**/
155CHAR16 *
156EFIAPI
157StrCpy (
158 OUT CHAR16 *Destination,
159 IN CONST CHAR16 *Source
160 );
161
162
163/**
164 Copies one Null-terminated Unicode string with a maximum length to another
165 Null-terminated Unicode string with a maximum length and returns the new
166 Unicode string.
167
168 This function copies the contents of the Unicode string Source to the Unicode
169 string Destination, and returns Destination. At most, Length Unicode
170 characters are copied from Source to Destination. If Length is 0, then
171 Destination is returned unmodified. If Length is greater that the number of
172 Unicode characters in Source, then Destination is padded with Null Unicode
173 characters. If Source and Destination overlap, then the results are
174 undefined.
175
176 If Length > 0 and Destination is NULL, then ASSERT().
177 If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().
178 If Length > 0 and Source is NULL, then ASSERT().
179 If Length > 0 and Source is not aligned on a 16-bit bounadry, then ASSERT().
180 If Source and Destination overlap, then ASSERT().
181 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than
182 PcdMaximumUnicodeStringLength Unicode characters not including the
183 Null-terminator, then ASSERT().
184
185 @param Destination Pointer to a Null-terminated Unicode string.
186 @param Source Pointer to a Null-terminated Unicode string.
187 @param Length Maximum number of Unicode characters to copy.
188
189 @return Destination
190
191**/
192CHAR16 *
193EFIAPI
194StrnCpy (
195 OUT CHAR16 *Destination,
196 IN CONST CHAR16 *Source,
197 IN UINTN Length
198 );
199
200
201/**
202 Returns the length of a Null-terminated Unicode string.
203
204 This function returns the number of Unicode characters in the Null-terminated
205 Unicode string specified by String.
206
207 If String is NULL, then ASSERT().
208 If String is not aligned on a 16-bit boundary, then ASSERT().
209 If PcdMaximumUnicodeStringLength is not zero, and String contains more than
210 PcdMaximumUnicodeStringLength Unicode characters not including the
211 Null-terminator, then ASSERT().
212
213 @param String Pointer to a Null-terminated Unicode string.
214
215 @return The length of String.
216
217**/
218UINTN
219EFIAPI
220StrLen (
221 IN CONST CHAR16 *String
222 );
223
224
225/**
226 Returns the size of a Null-terminated Unicode string in bytes, including the
227 Null terminator.
228
229 This function returns the size, in bytes, of the Null-terminated Unicode
230 string specified by String.
231
232 If String is NULL, then ASSERT().
233 If String is not aligned on a 16-bit boundary, then ASSERT().
234 If PcdMaximumUnicodeStringLength is not zero, and String contains more than
235 PcdMaximumUnicodeStringLength Unicode characters not including the
236 Null-terminator, then ASSERT().
237
238 @param String Pointer to a Null-terminated Unicode string.
239
240 @return The size of String.
241
242**/
243UINTN
244EFIAPI
245StrSize (
246 IN CONST CHAR16 *String
247 );
248
249
250/**
251 Compares two Null-terminated Unicode strings, and returns the difference
252 between the first mismatched Unicode characters.
253
254 This function compares the Null-terminated Unicode string FirstString to the
255 Null-terminated Unicode string SecondString. If FirstString is identical to
256 SecondString, then 0 is returned. Otherwise, the value returned is the first
257 mismatched Unicode character in SecondString subtracted from the first
258 mismatched Unicode character in FirstString.
259
260 If FirstString is NULL, then ASSERT().
261 If FirstString is not aligned on a 16-bit boundary, then ASSERT().
262 If SecondString is NULL, then ASSERT().
263 If SecondString is not aligned on a 16-bit boundary, then ASSERT().
264 If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more
265 than PcdMaximumUnicodeStringLength Unicode characters not including the
266 Null-terminator, then ASSERT().
267 If PcdMaximumUnicodeStringLength is not zero, and SecondString contains more
268 than PcdMaximumUnicodeStringLength Unicode characters not including the
269 Null-terminator, then ASSERT().
270
271 @param FirstString Pointer to a Null-terminated Unicode string.
272 @param SecondString Pointer to a Null-terminated Unicode string.
273
274 @retval 0 FirstString is identical to SecondString.
275 @retval !=0 FirstString is not identical to SecondString.
276
277**/
278INTN
279EFIAPI
280StrCmp (
281 IN CONST CHAR16 *FirstString,
282 IN CONST CHAR16 *SecondString
283 );
284
285
286/**
287 Compares two Null-terminated Unicode strings with maximum lengths, and
288 returns the difference between the first mismatched Unicode characters.
289
290 This function compares the Null-terminated Unicode string FirstString to the
291 Null-terminated Unicode string SecondString. At most, Length Unicode
292 characters will be compared. If Length is 0, then 0 is returned. If
293 FirstString is identical to SecondString, then 0 is returned. Otherwise, the
294 value returned is the first mismatched Unicode character in SecondString
295 subtracted from the first mismatched Unicode character in FirstString.
296
297 If Length > 0 and FirstString is NULL, then ASSERT().
298 If Length > 0 and FirstString is not aligned on a 16-bit bounadary, then ASSERT().
299 If Length > 0 and SecondString is NULL, then ASSERT().
300 If Length > 0 and SecondString is not aligned on a 16-bit bounadary, then ASSERT().
301 If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more
302 than PcdMaximumUnicodeStringLength Unicode characters not including the
303 Null-terminator, then ASSERT().
304 If PcdMaximumUnicodeStringLength is not zero, and SecondString contains more
305 than PcdMaximumUnicodeStringLength Unicode characters not including the
306 Null-terminator, then ASSERT().
307
308 @param FirstString Pointer to a Null-terminated Unicode string.
309 @param SecondString Pointer to a Null-terminated Unicode string.
310 @param Length Maximum number of Unicode characters to compare.
311
312 @retval 0 FirstString is identical to SecondString.
313 @retval !=0 FirstString is not identical to SecondString.
314
315**/
316INTN
317EFIAPI
318StrnCmp (
319 IN CONST CHAR16 *FirstString,
320 IN CONST CHAR16 *SecondString,
321 IN UINTN Length
322 );
323
324
325/**
326 Concatenates one Null-terminated Unicode string to another Null-terminated
327 Unicode string, and returns the concatenated Unicode string.
328
329 This function concatenates two Null-terminated Unicode strings. The contents
330 of Null-terminated Unicode string Source are concatenated to the end of
331 Null-terminated Unicode string Destination. The Null-terminated concatenated
332 Unicode String is returned. If Source and Destination overlap, then the
333 results are undefined.
334
335 If Destination is NULL, then ASSERT().
336 If Destination is not aligned on a 16-bit bounadary, then ASSERT().
337 If Source is NULL, then ASSERT().
338 If Source is not aligned on a 16-bit bounadary, then ASSERT().
339 If Source and Destination overlap, then ASSERT().
340 If PcdMaximumUnicodeStringLength is not zero, and Destination contains more
341 than PcdMaximumUnicodeStringLength Unicode characters not including the
342 Null-terminator, then ASSERT().
343 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than
344 PcdMaximumUnicodeStringLength Unicode characters not including the
345 Null-terminator, then ASSERT().
346 If PcdMaximumUnicodeStringLength is not zero, and concatenating Destination
347 and Source results in a Unicode string with more than
348 PcdMaximumUnicodeStringLength Unicode characters not including the
349 Null-terminator, then ASSERT().
350
351 @param Destination Pointer to a Null-terminated Unicode string.
352 @param Source Pointer to a Null-terminated Unicode string.
353
354 @return Destination
355
356**/
357CHAR16 *
358EFIAPI
359StrCat (
360 IN OUT CHAR16 *Destination,
361 IN CONST CHAR16 *Source
362 );
363
364
365/**
366 Concatenates one Null-terminated Unicode string with a maximum length to the
367 end of another Null-terminated Unicode string, and returns the concatenated
368 Unicode string.
369
370 This function concatenates two Null-terminated Unicode strings. The contents
371 of Null-terminated Unicode string Source are concatenated to the end of
372 Null-terminated Unicode string Destination, and Destination is returned. At
373 most, Length Unicode characters are concatenated from Source to the end of
374 Destination, and Destination is always Null-terminated. If Length is 0, then
375 Destination is returned unmodified. If Source and Destination overlap, then
376 the results are undefined.
377
378 If Destination is NULL, then ASSERT().
379 If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().
380 If Length > 0 and Source is NULL, then ASSERT().
381 If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT().
382 If Source and Destination overlap, then ASSERT().
383 If PcdMaximumUnicodeStringLength is not zero, and Destination contains more
384 than PcdMaximumUnicodeStringLength Unicode characters not including the
385 Null-terminator, then ASSERT().
386 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than
387 PcdMaximumUnicodeStringLength Unicode characters not including the
388 Null-terminator, then ASSERT().
389 If PcdMaximumUnicodeStringLength is not zero, and concatenating Destination
390 and Source results in a Unicode string with more than
391 PcdMaximumUnicodeStringLength Unicode characters not including the
392 Null-terminator, then ASSERT().
393
394 @param Destination Pointer to a Null-terminated Unicode string.
395 @param Source Pointer to a Null-terminated Unicode string.
396 @param Length Maximum number of Unicode characters to concatenate from
397 Source.
398
399 @return Destination
400
401**/
402CHAR16 *
403EFIAPI
404StrnCat (
405 IN OUT CHAR16 *Destination,
406 IN CONST CHAR16 *Source,
407 IN UINTN Length
408 );
409
410/**
411 Returns the first occurance of a Null-terminated Unicode sub-string
412 in a Null-terminated Unicode string.
413
414 This function scans the contents of the Null-terminated Unicode string
415 specified by String and returns the first occurrence of SearchString.
416 If SearchString is not found in String, then NULL is returned. If
417 the length of SearchString is zero, then String is
418 returned.
419
420 If String is NULL, then ASSERT().
421 If String is not aligned on a 16-bit boundary, then ASSERT().
422 If SearchString is NULL, then ASSERT().
423 If SearchString is not aligned on a 16-bit boundary, then ASSERT().
424
425 If PcdMaximumUnicodeStringLength is not zero, and SearchString
426 or String contains more than PcdMaximumUnicodeStringLength Unicode
427 characters not including the Null-terminator, then ASSERT().
428
429 @param String Pointer to a Null-terminated Unicode string.
430 @param SearchString Pointer to a Null-terminated Unicode string to search for.
431
432 @retval NULL If the SearchString does not appear in String.
433 @retval !NULL If there is a match.
434
435**/
436CHAR16 *
437EFIAPI
438StrStr (
439 IN CONST CHAR16 *String,
440 IN CONST CHAR16 *SearchString
441 );
442
443/**
444 Convert a Null-terminated Unicode decimal string to a value of
445 type UINTN.
446
447 This function returns a value of type UINTN by interpreting the contents
448 of the Unicode string specified by String as a decimal number. The format
449 of the input Unicode string String is:
450
451 [spaces] [decimal digits].
452
453 The valid decimal digit character is in the range [0-9]. The
454 function will ignore the pad space, which includes spaces or
455 tab characters, before [decimal digits]. The running zero in the
456 beginning of [decimal digits] will be ignored. Then, the function
457 stops at the first character that is a not a valid decimal character
458 or a Null-terminator, whichever one comes first.
459
460 If String is NULL, then ASSERT().
461 If String is not aligned in a 16-bit boundary, then ASSERT().
462 If String has only pad spaces, then 0 is returned.
463 If String has no pad spaces or valid decimal digits,
464 then 0 is returned.
465 If the number represented by String overflows according
466 to the range defined by UINTN, then ASSERT().
467
468 If PcdMaximumUnicodeStringLength is not zero, and String contains
469 more than PcdMaximumUnicodeStringLength Unicode characters not including
470 the Null-terminator, then ASSERT().
471
472 @param String Pointer to a Null-terminated Unicode string.
473
474 @retval UINTN
475
476**/
477UINTN
478EFIAPI
479StrDecimalToUintn (
480 IN CONST CHAR16 *String
481 );
482
483/**
484 Convert a Null-terminated Unicode decimal string to a value of
485 type UINT64.
486
487 This function returns a value of type UINT64 by interpreting the contents
488 of the Unicode string specified by String as a decimal number. The format
489 of the input Unicode string String is:
490
491 [spaces] [decimal digits].
492
493 The valid decimal digit character is in the range [0-9]. The
494 function will ignore the pad space, which includes spaces or
495 tab characters, before [decimal digits]. The running zero in the
496 beginning of [decimal digits] will be ignored. Then, the function
497 stops at the first character that is a not a valid decimal character
498 or a Null-terminator, whichever one comes first.
499
500 If String is NULL, then ASSERT().
501 If String is not aligned in a 16-bit boundary, then ASSERT().
502 If String has only pad spaces, then 0 is returned.
503 If String has no pad spaces or valid decimal digits,
504 then 0 is returned.
505 If the number represented by String overflows according
506 to the range defined by UINT64, then ASSERT().
507
508 If PcdMaximumUnicodeStringLength is not zero, and String contains
509 more than PcdMaximumUnicodeStringLength Unicode characters not including
510 the Null-terminator, then ASSERT().
511
512 @param String Pointer to a Null-terminated Unicode string.
513
514 @retval UINT64
515
516**/
517UINT64
518EFIAPI
519StrDecimalToUint64 (
520 IN CONST CHAR16 *String
521 );
522
523
524/**
525 Convert a Null-terminated Unicode hexadecimal string to a value of type UINTN.
526
527 This function returns a value of type UINTN by interpreting the contents
528 of the Unicode string specified by String as a hexadecimal number.
529 The format of the input Unicode string String is:
530
531 [spaces][zeros][x][hexadecimal digits].
532
533 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].
534 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.
535 If "x" appears in the input string, it must be prefixed with at least one 0.
536 The function will ignore the pad space, which includes spaces or tab characters,
537 before [zeros], [x] or [hexadecimal digit]. The running zero before [x] or
538 [hexadecimal digit] will be ignored. Then, the decoding starts after [x] or the
539 first valid hexadecimal digit. Then, the function stops at the first character that is
540 a not a valid hexadecimal character or NULL, whichever one comes first.
541
542 If String is NULL, then ASSERT().
543 If String is not aligned in a 16-bit boundary, then ASSERT().
544 If String has only pad spaces, then zero is returned.
545 If String has no leading pad spaces, leading zeros or valid hexadecimal digits,
546 then zero is returned.
547 If the number represented by String overflows according to the range defined by
548 UINTN, then ASSERT().
549
550 If PcdMaximumUnicodeStringLength is not zero, and String contains more than
551 PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator,
552 then ASSERT().
553
554 @param String Pointer to a Null-terminated Unicode string.
555
556 @retval UINTN
557
558**/
559UINTN
560EFIAPI
561StrHexToUintn (
562 IN CONST CHAR16 *String
563 );
564
565
566/**
567 Convert a Null-terminated Unicode hexadecimal string to a value of type UINT64.
568
569 This function returns a value of type UINT64 by interpreting the contents
570 of the Unicode string specified by String as a hexadecimal number.
571 The format of the input Unicode string String is
572
573 [spaces][zeros][x][hexadecimal digits].
574
575 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].
576 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.
577 If "x" appears in the input string, it must be prefixed with at least one 0.
578 The function will ignore the pad space, which includes spaces or tab characters,
579 before [zeros], [x] or [hexadecimal digit]. The running zero before [x] or
580 [hexadecimal digit] will be ignored. Then, the decoding starts after [x] or the
581 first valid hexadecimal digit. Then, the function stops at the first character that is
582 a not a valid hexadecimal character or NULL, whichever one comes first.
583
584 If String is NULL, then ASSERT().
585 If String is not aligned in a 16-bit boundary, then ASSERT().
586 If String has only pad spaces, then zero is returned.
587 If String has no leading pad spaces, leading zeros or valid hexadecimal digits,
588 then zero is returned.
589 If the number represented by String overflows according to the range defined by
590 UINT64, then ASSERT().
591
592 If PcdMaximumUnicodeStringLength is not zero, and String contains more than
593 PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator,
594 then ASSERT().
595
596 @param String Pointer to a Null-terminated Unicode string.
597
598 @retval UINT64
599
600**/
601UINT64
602EFIAPI
603StrHexToUint64 (
604 IN CONST CHAR16 *String
605 );
606
d9e5c1ff 607/**
608 Convert a nibble in the low 4 bits of a byte to a Unicode hexadecimal character.
609
610 This function converts a nibble in the low 4 bits of a byte to a Unicode hexadecimal
611 character For example, the nibble 0x01 and 0x0A will converted to L'1' and L'A'
612 respectively.
613
614 The upper nibble in the input byte will be masked off.
615
616 @param Nibble The nibble which is in the low 4 bits of the input byte.
617
618 @retval CHAR16 The Unicode hexadecimal character.
619
620**/
621CHAR16
622EFIAPI
623NibbleToHexChar (
624 IN UINT8 Nibble
625 )
626;
627
628/**
629 Convert binary buffer to a Unicode String in a specified sequence.
630
631 This function converts bytes in the binary Buffer Buf to a Unicode String Str.
632 Each byte will be represented by two Unicode characters. For example, byte 0xA1 will
633 be converted into two Unicode character L'A' and L'1'. In the output String, the Unicode Character
634 for the Most Significant Nibble will be put before the Unicode Character for the Least Significant
635 Nibble. The output string for the buffer containing a single byte 0xA1 will be L"A1".
636 For a buffer with multiple bytes, the Unicode character produced by the first byte will be put into the
637 the last character in the output string. The one next to first byte will be put into the
638 character before the last character. This rules applies to the rest of the bytes. The Unicode
639 character by the last byte will be put into the first character in the output string. For example,
640 the input buffer for a 64-bits unsigned integrer 0x12345678abcdef1234 will be converted to
641 a Unicode string equal to L"12345678abcdef1234".
642
643 @param String On input, String is pointed to the buffer allocated for the convertion.
644 @param StringLen The Length of String buffer to hold the output String. The length must include the tailing '\0' character.
645 The StringLen required to convert a N bytes Buffer will be a least equal to or greater
646 than 2*N + 1.
647 @param Buffer The pointer to a input buffer.
648 @param BufferSizeInBytes Lenth in bytes of the input buffer.
649
650
651 @retval EFI_SUCCESS The convertion is successfull. All bytes in Buffer has been convert to the corresponding
652 Unicode character and placed into the right place in String.
653 @retval EFI_BUFFER_TOO_SMALL StringSizeInBytes is smaller than 2 * N + 1the number of bytes required to
654 complete the convertion.
655**/
656RETURN_STATUS
657EFIAPI
658BufToHexString (
659 IN OUT CHAR16 *String,
660 IN OUT UINTN *StringLen,
661 IN CONST UINT8 *Buffer,
662 IN UINTN BufferSizeInBytes
663 )
664;
665
666
667/**
668 Convert a Unicode string consisting of hexadecimal characters to a output byte buffer.
669
670 This function converts a Unicode string consisting of characters in the range of Hexadecimal
671 character (L'0' to L'9', L'A' to L'F' and L'a' to L'f') to a output byte buffer. The function will stop
672 at the first non-hexadecimal character or the NULL character. The convertion process can be
673 simply viewed as the reverse operations defined by BufToHexString. Two Unicode characters will be
674 converted into one byte. The first Unicode character represents the Most Significant Nibble and the
675 second Unicode character represents the Least Significant Nibble in the output byte.
676 The first pair of Unicode characters represents the last byte in the output buffer. The second pair of Unicode
677 characters represent the the byte preceding the last byte. This rule applies to the rest pairs of bytes.
678 The last pair represent the first byte in the output buffer.
679
680 For example, a Unciode String L"12345678" will be converted into a buffer wil the following bytes
681 (first byte is the byte in the lowest memory address): "0x78, 0x56, 0x34, 0x12".
682
683 If String has N valid hexadecimal characters for conversion, the caller must make sure Buffer is at least
684 N/2 (if N is even) or (N+1)/2 (if N if odd) bytes.
685
686 @param Buffer The output buffer allocated by the caller.
687 @param BufferSizeInBytes On input, the size in bytes of Buffer. On output, it is updated to
688 contain the size of the Buffer which is actually used for the converstion.
689 For Unicode string with 2*N hexadecimal characters (not including the
690 tailing NULL character), N bytes of Buffer will be used for the output.
691 @param String The input hexadecimal string.
692 @param ConvertedStrLen The number of hexadecimal characters used to produce content in output
693 buffer Buffer.
694
695 @retval RETURN_BUFFER_TOO_SMALL The input BufferSizeInBytes is too small to hold the output. BufferSizeInBytes
696 will be updated to the size required for the converstion.
697 @retval RETURN_SUCCESS The convertion is successful or the first Unicode character from String
698 is hexadecimal. If ConvertedStrLen is not NULL, it is updated
699 to the number of hexadecimal character used for the converstion.
700**/
701RETURN_STATUS
702EFIAPI
703HexStringToBuf (
704 OUT UINT8 *Buffer,
705 IN OUT UINTN *BufferSizeInBytes,
706 IN CONST CHAR16 *String,
707 OUT UINTN *ConvertedStrLen OPTIONAL
708 )
709;
710
711
712/**
713 Test if a Unicode character is a hexadecimal digit. If true, the input
714 Unicode character is converted to a byte.
715
716 This function tests if a Unicode character is a hexadecimal digit. If true, the input
717 Unicode character is converted to a byte. For example, Unicode character
718 L'A' will be converted to 0x0A.
719
720 If Digit is NULL, then ASSERT.
721
722 @retval TRUE Char is in the range of Hexadecimal number. Digit is updated
723 to the byte value of the number.
724 @retval FALSE Char is not in the range of Hexadecimal number. Digit is keep
725 intact.
726
727**/
728BOOLEAN
729EFIAPI
730IsHexDigit (
731 OUT UINT8 *Digit,
732 IN CHAR16 Char
733 )
734;
fb3df220 735
736/**
737 Convert one Null-terminated Unicode string to a Null-terminated
738 ASCII string and returns the ASCII string.
739
740 This function converts the content of the Unicode string Source
741 to the ASCII string Destination by copying the lower 8 bits of
742 each Unicode character. It returns Destination.
743
744 If any Unicode characters in Source contain non-zero value in
745 the upper 8 bits, then ASSERT().
746
747 If Destination is NULL, then ASSERT().
748 If Source is NULL, then ASSERT().
749 If Source is not aligned on a 16-bit boundary, then ASSERT().
750 If Source and Destination overlap, then ASSERT().
751
752 If PcdMaximumUnicodeStringLength is not zero, and Source contains
753 more than PcdMaximumUnicodeStringLength Unicode characters not including
754 the Null-terminator, then ASSERT().
755
756 If PcdMaximumAsciiStringLength is not zero, and Source contains more
757 than PcdMaximumAsciiStringLength Unicode characters not including the
758 Null-terminator, then ASSERT().
759
760 @param Source Pointer to a Null-terminated Unicode string.
761 @param Destination Pointer to a Null-terminated ASCII string.
762
2a254b90 763 @return Destination
fb3df220 764
765**/
766CHAR8 *
767EFIAPI
768UnicodeStrToAsciiStr (
769 IN CONST CHAR16 *Source,
770 OUT CHAR8 *Destination
771 );
772
773
774/**
775 Copies one Null-terminated ASCII string to another Null-terminated ASCII
776 string and returns the new ASCII string.
777
778 This function copies the contents of the ASCII string Source to the ASCII
779 string Destination, and returns Destination. If Source and Destination
780 overlap, then the results are undefined.
781
782 If Destination is NULL, then ASSERT().
783 If Source is NULL, then ASSERT().
784 If Source and Destination overlap, then ASSERT().
785 If PcdMaximumAsciiStringLength is not zero and Source contains more than
786 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
787 then ASSERT().
788
789 @param Destination Pointer to a Null-terminated ASCII string.
790 @param Source Pointer to a Null-terminated ASCII string.
791
792 @return Destination
793
794**/
795CHAR8 *
796EFIAPI
797AsciiStrCpy (
798 OUT CHAR8 *Destination,
799 IN CONST CHAR8 *Source
800 );
801
802
803/**
804 Copies one Null-terminated ASCII string with a maximum length to another
805 Null-terminated ASCII string with a maximum length and returns the new ASCII
806 string.
807
808 This function copies the contents of the ASCII string Source to the ASCII
809 string Destination, and returns Destination. At most, Length ASCII characters
810 are copied from Source to Destination. If Length is 0, then Destination is
811 returned unmodified. If Length is greater that the number of ASCII characters
812 in Source, then Destination is padded with Null ASCII characters. If Source
813 and Destination overlap, then the results are undefined.
814
815 If Destination is NULL, then ASSERT().
816 If Source is NULL, then ASSERT().
817 If Source and Destination overlap, then ASSERT().
818 If PcdMaximumAsciiStringLength is not zero, and Source contains more than
819 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
820 then ASSERT().
821
822 @param Destination Pointer to a Null-terminated ASCII string.
823 @param Source Pointer to a Null-terminated ASCII string.
824 @param Length Maximum number of ASCII characters to copy.
825
826 @return Destination
827
828**/
829CHAR8 *
830EFIAPI
831AsciiStrnCpy (
832 OUT CHAR8 *Destination,
833 IN CONST CHAR8 *Source,
834 IN UINTN Length
835 );
836
837
838/**
839 Returns the length of a Null-terminated ASCII string.
840
841 This function returns the number of ASCII characters in the Null-terminated
842 ASCII string specified by String.
843
844 If Length > 0 and Destination is NULL, then ASSERT().
845 If Length > 0 and Source is NULL, then ASSERT().
846 If PcdMaximumAsciiStringLength is not zero and String contains more than
847 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
848 then ASSERT().
849
850 @param String Pointer to a Null-terminated ASCII string.
851
852 @return The length of String.
853
854**/
855UINTN
856EFIAPI
857AsciiStrLen (
858 IN CONST CHAR8 *String
859 );
860
861
862/**
863 Returns the size of a Null-terminated ASCII string in bytes, including the
864 Null terminator.
865
866 This function returns the size, in bytes, of the Null-terminated ASCII string
867 specified by String.
868
869 If String is NULL, then ASSERT().
870 If PcdMaximumAsciiStringLength is not zero and String contains more than
871 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
872 then ASSERT().
873
874 @param String Pointer to a Null-terminated ASCII string.
875
876 @return The size of String.
877
878**/
879UINTN
880EFIAPI
881AsciiStrSize (
882 IN CONST CHAR8 *String
883 );
884
885
886/**
887 Compares two Null-terminated ASCII strings, and returns the difference
888 between the first mismatched ASCII characters.
889
890 This function compares the Null-terminated ASCII string FirstString to the
891 Null-terminated ASCII string SecondString. If FirstString is identical to
892 SecondString, then 0 is returned. Otherwise, the value returned is the first
893 mismatched ASCII character in SecondString subtracted from the first
894 mismatched ASCII character in FirstString.
895
896 If FirstString is NULL, then ASSERT().
897 If SecondString is NULL, then ASSERT().
898 If PcdMaximumAsciiStringLength is not zero and FirstString contains more than
899 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
900 then ASSERT().
901 If PcdMaximumAsciiStringLength is not zero and SecondString contains more
902 than PcdMaximumAsciiStringLength ASCII characters not including the
903 Null-terminator, then ASSERT().
904
905 @param FirstString Pointer to a Null-terminated ASCII string.
906 @param SecondString Pointer to a Null-terminated ASCII string.
907
908 @retval 0 FirstString is identical to SecondString.
909 @retval !=0 FirstString is not identical to SecondString.
910
911**/
912INTN
913EFIAPI
914AsciiStrCmp (
915 IN CONST CHAR8 *FirstString,
916 IN CONST CHAR8 *SecondString
917 );
918
919
920/**
921 Performs a case insensitive comparison of two Null-terminated ASCII strings,
922 and returns the difference between the first mismatched ASCII characters.
923
924 This function performs a case insensitive comparison of the Null-terminated
925 ASCII string FirstString to the Null-terminated ASCII string SecondString. If
926 FirstString is identical to SecondString, then 0 is returned. Otherwise, the
927 value returned is the first mismatched lower case ASCII character in
928 SecondString subtracted from the first mismatched lower case ASCII character
929 in FirstString.
930
931 If FirstString is NULL, then ASSERT().
932 If SecondString is NULL, then ASSERT().
933 If PcdMaximumAsciiStringLength is not zero and FirstString contains more than
934 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
935 then ASSERT().
936 If PcdMaximumAsciiStringLength is not zero and SecondString contains more
937 than PcdMaximumAsciiStringLength ASCII characters not including the
938 Null-terminator, then ASSERT().
939
940 @param FirstString Pointer to a Null-terminated ASCII string.
941 @param SecondString Pointer to a Null-terminated ASCII string.
942
943 @retval 0 FirstString is identical to SecondString using case insensitive
944 comparisons.
945 @retval !=0 FirstString is not identical to SecondString using case
946 insensitive comparisons.
947
948**/
949INTN
950EFIAPI
951AsciiStriCmp (
952 IN CONST CHAR8 *FirstString,
953 IN CONST CHAR8 *SecondString
954 );
955
956
957/**
958 Compares two Null-terminated ASCII strings with maximum lengths, and returns
959 the difference between the first mismatched ASCII characters.
960
961 This function compares the Null-terminated ASCII string FirstString to the
962 Null-terminated ASCII string SecondString. At most, Length ASCII characters
963 will be compared. If Length is 0, then 0 is returned. If FirstString is
964 identical to SecondString, then 0 is returned. Otherwise, the value returned
965 is the first mismatched ASCII character in SecondString subtracted from the
966 first mismatched ASCII character in FirstString.
967
968 If Length > 0 and FirstString is NULL, then ASSERT().
969 If Length > 0 and SecondString is NULL, then ASSERT().
970 If PcdMaximumAsciiStringLength is not zero and FirstString contains more than
971 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
972 then ASSERT().
973 If PcdMaximumAsciiStringLength is not zero and SecondString contains more than
974 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
975 then ASSERT().
976
977 @param FirstString Pointer to a Null-terminated ASCII string.
978 @param SecondString Pointer to a Null-terminated ASCII string.
7dd8b919 979 @param Length Maximum number of ASCII characters for compare.
980
fb3df220 981 @retval 0 FirstString is identical to SecondString.
982 @retval !=0 FirstString is not identical to SecondString.
983
984**/
985INTN
986EFIAPI
987AsciiStrnCmp (
988 IN CONST CHAR8 *FirstString,
989 IN CONST CHAR8 *SecondString,
990 IN UINTN Length
991 );
992
993
994/**
995 Concatenates one Null-terminated ASCII string to another Null-terminated
996 ASCII string, and returns the concatenated ASCII string.
997
998 This function concatenates two Null-terminated ASCII strings. The contents of
999 Null-terminated ASCII string Source are concatenated to the end of Null-
1000 terminated ASCII string Destination. The Null-terminated concatenated ASCII
1001 String is returned.
1002
1003 If Destination is NULL, then ASSERT().
1004 If Source is NULL, then ASSERT().
1005 If PcdMaximumAsciiStringLength is not zero and Destination contains more than
1006 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
1007 then ASSERT().
1008 If PcdMaximumAsciiStringLength is not zero and Source contains more than
1009 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
1010 then ASSERT().
1011 If PcdMaximumAsciiStringLength is not zero and concatenating Destination and
1012 Source results in a ASCII string with more than PcdMaximumAsciiStringLength
1013 ASCII characters, then ASSERT().
1014
1015 @param Destination Pointer to a Null-terminated ASCII string.
1016 @param Source Pointer to a Null-terminated ASCII string.
1017
1018 @return Destination
1019
1020**/
1021CHAR8 *
1022EFIAPI
1023AsciiStrCat (
1024 IN OUT CHAR8 *Destination,
1025 IN CONST CHAR8 *Source
1026 );
1027
1028
1029/**
1030 Concatenates one Null-terminated ASCII string with a maximum length to the
1031 end of another Null-terminated ASCII string, and returns the concatenated
1032 ASCII string.
1033
1034 This function concatenates two Null-terminated ASCII strings. The contents
1035 of Null-terminated ASCII string Source are concatenated to the end of Null-
1036 terminated ASCII string Destination, and Destination is returned. At most,
1037 Length ASCII characters are concatenated from Source to the end of
1038 Destination, and Destination is always Null-terminated. If Length is 0, then
1039 Destination is returned unmodified. If Source and Destination overlap, then
1040 the results are undefined.
1041
1042 If Length > 0 and Destination is NULL, then ASSERT().
1043 If Length > 0 and Source is NULL, then ASSERT().
1044 If Source and Destination overlap, then ASSERT().
1045 If PcdMaximumAsciiStringLength is not zero, and Destination contains more than
1046 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
1047 then ASSERT().
1048 If PcdMaximumAsciiStringLength is not zero, and Source contains more than
1049 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
1050 then ASSERT().
1051 If PcdMaximumAsciiStringLength is not zero, and concatenating Destination and
1052 Source results in a ASCII string with more than PcdMaximumAsciiStringLength
1053 ASCII characters not including the Null-terminator, then ASSERT().
1054
1055 @param Destination Pointer to a Null-terminated ASCII string.
1056 @param Source Pointer to a Null-terminated ASCII string.
1057 @param Length Maximum number of ASCII characters to concatenate from
1058 Source.
1059
1060 @return Destination
1061
1062**/
1063CHAR8 *
1064EFIAPI
1065AsciiStrnCat (
1066 IN OUT CHAR8 *Destination,
1067 IN CONST CHAR8 *Source,
1068 IN UINTN Length
1069 );
1070
1071
1072/**
1073 Returns the first occurance of a Null-terminated ASCII sub-string
1074 in a Null-terminated ASCII string.
1075
1076 This function scans the contents of the ASCII string specified by String
1077 and returns the first occurrence of SearchString. If SearchString is not
1078 found in String, then NULL is returned. If the length of SearchString is zero,
1079 then String is returned.
1080
1081 If String is NULL, then ASSERT().
1082 If SearchString is NULL, then ASSERT().
1083
1084 If PcdMaximumAsciiStringLength is not zero, and SearchString or
1085 String contains more than PcdMaximumAsciiStringLength Unicode characters
1086 not including the Null-terminator, then ASSERT().
1087
1088 @param String Pointer to a Null-terminated ASCII string.
1089 @param SearchString Pointer to a Null-terminated ASCII string to search for.
1090
1091 @retval NULL If the SearchString does not appear in String.
1092 @retval !NULL If there is a match.
1093
1094**/
1095CHAR8 *
1096EFIAPI
1097AsciiStrStr (
1098 IN CONST CHAR8 *String,
1099 IN CONST CHAR8 *SearchString
1100 );
1101
1102
1103/**
1104 Convert a Null-terminated ASCII decimal string to a value of type
1105 UINTN.
1106
1107 This function returns a value of type UINTN by interpreting the contents
1108 of the ASCII string String as a decimal number. The format of the input
1109 ASCII string String is:
1110
1111 [spaces] [decimal digits].
1112
1113 The valid decimal digit character is in the range [0-9]. The function will
1114 ignore the pad space, which includes spaces or tab characters, before the digits.
1115 The running zero in the beginning of [decimal digits] will be ignored. Then, the
1116 function stops at the first character that is a not a valid decimal character or
1117 Null-terminator, whichever on comes first.
1118
1119 If String has only pad spaces, then 0 is returned.
1120 If String has no pad spaces or valid decimal digits, then 0 is returned.
1121 If the number represented by String overflows according to the range defined by
1122 UINTN, then ASSERT().
1123 If String is NULL, then ASSERT().
1124 If PcdMaximumAsciiStringLength is not zero, and String contains more than
1125 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
1126 then ASSERT().
1127
1128 @param String Pointer to a Null-terminated ASCII string.
1129
1130 @retval UINTN
1131
1132**/
1133UINTN
1134EFIAPI
1135AsciiStrDecimalToUintn (
1136 IN CONST CHAR8 *String
1137 );
1138
1139
1140/**
1141 Convert a Null-terminated ASCII decimal string to a value of type
1142 UINT64.
1143
1144 This function returns a value of type UINT64 by interpreting the contents
1145 of the ASCII string String as a decimal number. The format of the input
1146 ASCII string String is:
1147
1148 [spaces] [decimal digits].
1149
1150 The valid decimal digit character is in the range [0-9]. The function will
1151 ignore the pad space, which includes spaces or tab characters, before the digits.
1152 The running zero in the beginning of [decimal digits] will be ignored. Then, the
1153 function stops at the first character that is a not a valid decimal character or
1154 Null-terminator, whichever on comes first.
1155
1156 If String has only pad spaces, then 0 is returned.
1157 If String has no pad spaces or valid decimal digits, then 0 is returned.
1158 If the number represented by String overflows according to the range defined by
1159 UINT64, then ASSERT().
1160 If String is NULL, then ASSERT().
1161 If PcdMaximumAsciiStringLength is not zero, and String contains more than
1162 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
1163 then ASSERT().
1164
1165 @param String Pointer to a Null-terminated ASCII string.
1166
1167 @retval UINT64
1168
1169**/
1170UINT64
1171EFIAPI
1172AsciiStrDecimalToUint64 (
1173 IN CONST CHAR8 *String
1174 );
1175
1176
1177/**
1178 Convert a Null-terminated ASCII hexadecimal string to a value of type UINTN.
1179
1180 This function returns a value of type UINTN by interpreting the contents of
1181 the ASCII string String as a hexadecimal number. The format of the input ASCII
1182 string String is:
1183
1184 [spaces][zeros][x][hexadecimal digits].
1185
1186 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].
1187 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x"
1188 appears in the input string, it must be prefixed with at least one 0. The function
1189 will ignore the pad space, which includes spaces or tab characters, before [zeros],
1190 [x] or [hexadecimal digits]. The running zero before [x] or [hexadecimal digits]
1191 will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal
1192 digit. Then, the function stops at the first character that is a not a valid
1193 hexadecimal character or Null-terminator, whichever on comes first.
1194
1195 If String has only pad spaces, then 0 is returned.
1196 If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then
1197 0 is returned.
1198
1199 If the number represented by String overflows according to the range defined by UINTN,
1200 then ASSERT().
1201 If String is NULL, then ASSERT().
1202 If PcdMaximumAsciiStringLength is not zero,
1203 and String contains more than PcdMaximumAsciiStringLength ASCII characters not including
1204 the Null-terminator, then ASSERT().
1205
1206 @param String Pointer to a Null-terminated ASCII string.
1207
1208 @retval UINTN
1209
1210**/
1211UINTN
1212EFIAPI
1213AsciiStrHexToUintn (
1214 IN CONST CHAR8 *String
1215 );
1216
1217
1218/**
1219 Convert a Null-terminated ASCII hexadecimal string to a value of type UINT64.
1220
1221 This function returns a value of type UINT64 by interpreting the contents of
1222 the ASCII string String as a hexadecimal number. The format of the input ASCII
1223 string String is:
1224
1225 [spaces][zeros][x][hexadecimal digits].
1226
1227 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].
1228 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x"
1229 appears in the input string, it must be prefixed with at least one 0. The function
1230 will ignore the pad space, which includes spaces or tab characters, before [zeros],
1231 [x] or [hexadecimal digits]. The running zero before [x] or [hexadecimal digits]
1232 will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal
1233 digit. Then, the function stops at the first character that is a not a valid
1234 hexadecimal character or Null-terminator, whichever on comes first.
1235
1236 If String has only pad spaces, then 0 is returned.
1237 If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then
1238 0 is returned.
1239
1240 If the number represented by String overflows according to the range defined by UINT64,
1241 then ASSERT().
1242 If String is NULL, then ASSERT().
1243 If PcdMaximumAsciiStringLength is not zero,
1244 and String contains more than PcdMaximumAsciiStringLength ASCII characters not including
1245 the Null-terminator, then ASSERT().
1246
1247 @param String Pointer to a Null-terminated ASCII string.
1248
1249 @retval UINT64
1250
1251**/
1252UINT64
1253EFIAPI
1254AsciiStrHexToUint64 (
1255 IN CONST CHAR8 *String
1256 );
1257
1258
1259/**
1260 Convert one Null-terminated ASCII string to a Null-terminated
1261 Unicode string and returns the Unicode string.
1262
1263 This function converts the contents of the ASCII string Source to the Unicode
1264 string Destination, and returns Destination. The function terminates the
1265 Unicode string Destination by appending a Null-terminator character at the end.
1266 The caller is responsible to make sure Destination points to a buffer with size
1267 equal or greater than ((AsciiStrLen (Source) + 1) * sizeof (CHAR16)) in bytes.
1268
1269 If Destination is NULL, then ASSERT().
1270 If Destination is not aligned on a 16-bit boundary, then ASSERT().
1271 If Source is NULL, then ASSERT().
1272 If Source and Destination overlap, then ASSERT().
1273 If PcdMaximumAsciiStringLength is not zero, and Source contains more than
1274 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
1275 then ASSERT().
1276 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than
1277 PcdMaximumUnicodeStringLength ASCII characters not including the
1278 Null-terminator, then ASSERT().
1279
1280 @param Source Pointer to a Null-terminated ASCII string.
1281 @param Destination Pointer to a Null-terminated Unicode string.
1282
7dd8b919 1283 @return Destination
fb3df220 1284
1285**/
1286CHAR16 *
1287EFIAPI
1288AsciiStrToUnicodeStr (
1289 IN CONST CHAR8 *Source,
1290 OUT CHAR16 *Destination
1291 );
1292
1293
1294/**
1295 Converts an 8-bit value to an 8-bit BCD value.
1296
1297 Converts the 8-bit value specified by Value to BCD. The BCD value is
1298 returned.
1299
1300 If Value >= 100, then ASSERT().
1301
1302 @param Value The 8-bit value to convert to BCD. Range 0..99.
1303
1304 @return The BCD value
1305
1306**/
1307UINT8
1308EFIAPI
1309DecimalToBcd8 (
1310 IN UINT8 Value
1311 );
1312
1313
1314/**
1315 Converts an 8-bit BCD value to an 8-bit value.
1316
1317 Converts the 8-bit BCD value specified by Value to an 8-bit value. The 8-bit
1318 value is returned.
1319
1320 If Value >= 0xA0, then ASSERT().
1321 If (Value & 0x0F) >= 0x0A, then ASSERT().
1322
1323 @param Value The 8-bit BCD value to convert to an 8-bit value.
1324
1325 @return The 8-bit value is returned.
1326
1327**/
1328UINT8
1329EFIAPI
1330BcdToDecimal8 (
1331 IN UINT8 Value
1332 );
1333
1334
1335//
1336// Linked List Functions and Macros
1337//
1338
1339/**
1340 Initializes the head node of a doubly linked list that is declared as a
1341 global variable in a module.
1342
1343 Initializes the forward and backward links of a new linked list. After
1344 initializing a linked list with this macro, the other linked list functions
1345 may be used to add and remove nodes from the linked list. This macro results
1346 in smaller executables by initializing the linked list in the data section,
1347 instead if calling the InitializeListHead() function to perform the
1348 equivalent operation.
1349
1350 @param ListHead The head note of a list to initiailize.
1351
1352**/
1353#define INITIALIZE_LIST_HEAD_VARIABLE(ListHead) {&ListHead, &ListHead}
1354
1355
1356/**
1357 Initializes the head node of a doubly linked list, and returns the pointer to
1358 the head node of the doubly linked list.
1359
1360 Initializes the forward and backward links of a new linked list. After
1361 initializing a linked list with this function, the other linked list
1362 functions may be used to add and remove nodes from the linked list. It is up
1363 to the caller of this function to allocate the memory for ListHead.
1364
1365 If ListHead is NULL, then ASSERT().
1366
1367 @param ListHead A pointer to the head node of a new doubly linked list.
1368
1369 @return ListHead
1370
1371**/
1372LIST_ENTRY *
1373EFIAPI
1374InitializeListHead (
1375 IN LIST_ENTRY *ListHead
1376 );
1377
1378
1379/**
1380 Adds a node to the beginning of a doubly linked list, and returns the pointer
1381 to the head node of the doubly linked list.
1382
1383 Adds the node Entry at the beginning of the doubly linked list denoted by
1384 ListHead, and returns ListHead.
1385
1386 If ListHead is NULL, then ASSERT().
1387 If Entry is NULL, then ASSERT().
1388 If ListHead was not initialized with InitializeListHead(), then ASSERT().
1389 If PcdMaximumLinkedListLenth is not zero, and prior to insertion the number
1390 of nodes in ListHead, including the ListHead node, is greater than or
1391 equal to PcdMaximumLinkedListLength, then ASSERT().
1392
1393 @param ListHead A pointer to the head node of a doubly linked list.
1394 @param Entry A pointer to a node that is to be inserted at the beginning
1395 of a doubly linked list.
1396
1397 @return ListHead
1398
1399**/
1400LIST_ENTRY *
1401EFIAPI
1402InsertHeadList (
1403 IN LIST_ENTRY *ListHead,
1404 IN LIST_ENTRY *Entry
1405 );
1406
1407
1408/**
1409 Adds a node to the end of a doubly linked list, and returns the pointer to
1410 the head node of the doubly linked list.
1411
1412 Adds the node Entry to the end of the doubly linked list denoted by ListHead,
1413 and returns ListHead.
1414
1415 If ListHead is NULL, then ASSERT().
1416 If Entry is NULL, then ASSERT().
1417 If ListHead was not initialized with InitializeListHead(), then ASSERT().
1418 If PcdMaximumLinkedListLenth is not zero, and prior to insertion the number
1419 of nodes in ListHead, including the ListHead node, is greater than or
1420 equal to PcdMaximumLinkedListLength, then ASSERT().
1421
1422 @param ListHead A pointer to the head node of a doubly linked list.
1423 @param Entry A pointer to a node that is to be added at the end of the
1424 doubly linked list.
1425
1426 @return ListHead
1427
1428**/
1429LIST_ENTRY *
1430EFIAPI
1431InsertTailList (
1432 IN LIST_ENTRY *ListHead,
1433 IN LIST_ENTRY *Entry
1434 );
1435
1436
1437/**
1438 Retrieves the first node of a doubly linked list.
1439
1440 Returns the first node of a doubly linked list. List must have been
1441 initialized with InitializeListHead(). If List is empty, then NULL is
1442 returned.
1443
1444 If List is NULL, then ASSERT().
1445 If List was not initialized with InitializeListHead(), then ASSERT().
1446 If PcdMaximumLinkedListLenth is not zero, and the number of nodes
1447 in List, including the List node, is greater than or equal to
1448 PcdMaximumLinkedListLength, then ASSERT().
1449
1450 @param List A pointer to the head node of a doubly linked list.
1451
1452 @return The first node of a doubly linked list.
1453 @retval NULL The list is empty.
1454
1455**/
1456LIST_ENTRY *
1457EFIAPI
1458GetFirstNode (
1459 IN CONST LIST_ENTRY *List
1460 );
1461
1462
1463/**
1464 Retrieves the next node of a doubly linked list.
1465
1466 Returns the node of a doubly linked list that follows Node. List must have
1467 been initialized with InitializeListHead(). If List is empty, then List is
1468 returned.
1469
1470 If List is NULL, then ASSERT().
1471 If Node is NULL, then ASSERT().
1472 If List was not initialized with InitializeListHead(), then ASSERT().
1473 If PcdMaximumLinkedListLenth is not zero, and List contains more than
1474 PcdMaximumLinkedListLenth nodes, then ASSERT().
1475 If Node is not a node in List, then ASSERT().
1476
1477 @param List A pointer to the head node of a doubly linked list.
1478 @param Node A pointer to a node in the doubly linked list.
1479
1480 @return Pointer to the next node if one exists. Otherwise a null value which
1481 is actually List is returned.
1482
1483**/
1484LIST_ENTRY *
1485EFIAPI
1486GetNextNode (
1487 IN CONST LIST_ENTRY *List,
1488 IN CONST LIST_ENTRY *Node
1489 );
1490
1491
1492/**
1493 Checks to see if a doubly linked list is empty or not.
1494
1495 Checks to see if the doubly linked list is empty. If the linked list contains
1496 zero nodes, this function returns TRUE. Otherwise, it returns FALSE.
1497
1498 If ListHead is NULL, then ASSERT().
1499 If ListHead was not initialized with InitializeListHead(), then ASSERT().
1500 If PcdMaximumLinkedListLenth is not zero, and the number of nodes
1501 in List, including the List node, is greater than or equal to
1502 PcdMaximumLinkedListLength, then ASSERT().
1503
1504 @param ListHead A pointer to the head node of a doubly linked list.
1505
1506 @retval TRUE The linked list is empty.
1507 @retval FALSE The linked list is not empty.
1508
1509**/
1510BOOLEAN
1511EFIAPI
1512IsListEmpty (
1513 IN CONST LIST_ENTRY *ListHead
1514 );
1515
1516
1517/**
1518 Determines if a node in a doubly linked list is null.
1519
1520 Returns FALSE if Node is one of the nodes in the doubly linked list specified
1521 by List. Otherwise, TRUE is returned. List must have been initialized with
1522 InitializeListHead().
1523
1524 If List is NULL, then ASSERT().
1525 If Node is NULL, then ASSERT().
1526 If List was not initialized with InitializeListHead(), then ASSERT().
1527 If PcdMaximumLinkedListLenth is not zero, and the number of nodes
1528 in List, including the List node, is greater than or equal to
1529 PcdMaximumLinkedListLength, then ASSERT().
1530 If Node is not a node in List and Node is not equal to List, then ASSERT().
1531
1532 @param List A pointer to the head node of a doubly linked list.
1533 @param Node A pointer to a node in the doubly linked list.
1534
1535 @retval TRUE Node is one of the nodes in the doubly linked list.
1536 @retval FALSE Node is not one of the nodes in the doubly linked list.
1537
1538**/
1539BOOLEAN
1540EFIAPI
1541IsNull (
1542 IN CONST LIST_ENTRY *List,
1543 IN CONST LIST_ENTRY *Node
1544 );
1545
1546
1547/**
1548 Determines if a node the last node in a doubly linked list.
1549
1550 Returns TRUE if Node is the last node in the doubly linked list specified by
1551 List. Otherwise, FALSE is returned. List must have been initialized with
1552 InitializeListHead().
1553
1554 If List is NULL, then ASSERT().
1555 If Node is NULL, then ASSERT().
1556 If List was not initialized with InitializeListHead(), then ASSERT().
1557 If PcdMaximumLinkedListLenth is not zero, and the number of nodes
1558 in List, including the List node, is greater than or equal to
1559 PcdMaximumLinkedListLength, then ASSERT().
1560 If Node is not a node in List, then ASSERT().
1561
1562 @param List A pointer to the head node of a doubly linked list.
1563 @param Node A pointer to a node in the doubly linked list.
1564
1565 @retval TRUE Node is the last node in the linked list.
1566 @retval FALSE Node is not the last node in the linked list.
1567
1568**/
1569BOOLEAN
1570EFIAPI
1571IsNodeAtEnd (
1572 IN CONST LIST_ENTRY *List,
1573 IN CONST LIST_ENTRY *Node
1574 );
1575
1576
1577/**
1578 Swaps the location of two nodes in a doubly linked list, and returns the
1579 first node after the swap.
1580
1581 If FirstEntry is identical to SecondEntry, then SecondEntry is returned.
1582 Otherwise, the location of the FirstEntry node is swapped with the location
1583 of the SecondEntry node in a doubly linked list. SecondEntry must be in the
1584 same double linked list as FirstEntry and that double linked list must have
1585 been initialized with InitializeListHead(). SecondEntry is returned after the
1586 nodes are swapped.
1587
1588 If FirstEntry is NULL, then ASSERT().
1589 If SecondEntry is NULL, then ASSERT().
1590 If SecondEntry and FirstEntry are not in the same linked list, then ASSERT().
1591 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
1592 linked list containing the FirstEntry and SecondEntry nodes, including
1593 the FirstEntry and SecondEntry nodes, is greater than or equal to
1594 PcdMaximumLinkedListLength, then ASSERT().
1595
1596 @param FirstEntry A pointer to a node in a linked list.
1597 @param SecondEntry A pointer to another node in the same linked list.
1598
1599**/
1600LIST_ENTRY *
1601EFIAPI
1602SwapListEntries (
1603 IN LIST_ENTRY *FirstEntry,
1604 IN LIST_ENTRY *SecondEntry
1605 );
1606
1607
1608/**
1609 Removes a node from a doubly linked list, and returns the node that follows
1610 the removed node.
1611
1612 Removes the node Entry from a doubly linked list. It is up to the caller of
1613 this function to release the memory used by this node if that is required. On
1614 exit, the node following Entry in the doubly linked list is returned. If
1615 Entry is the only node in the linked list, then the head node of the linked
1616 list is returned.
1617
1618 If Entry is NULL, then ASSERT().
1619 If Entry is the head node of an empty list, then ASSERT().
1620 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
1621 linked list containing Entry, including the Entry node, is greater than
1622 or equal to PcdMaximumLinkedListLength, then ASSERT().
1623
1624 @param Entry A pointer to a node in a linked list
1625
1626 @return Entry
1627
1628**/
1629LIST_ENTRY *
1630EFIAPI
1631RemoveEntryList (
1632 IN CONST LIST_ENTRY *Entry
1633 );
1634
1635//
1636// Math Services
1637//
1638
1639/**
1640 Shifts a 64-bit integer left between 0 and 63 bits. The low bits are filled
1641 with zeros. The shifted value is returned.
1642
1643 This function shifts the 64-bit value Operand to the left by Count bits. The
1644 low Count bits are set to zero. The shifted value is returned.
1645
1646 If Count is greater than 63, then ASSERT().
1647
1648 @param Operand The 64-bit operand to shift left.
1649 @param Count The number of bits to shift left.
1650
1651 @return Operand << Count
1652
1653**/
1654UINT64
1655EFIAPI
1656LShiftU64 (
1657 IN UINT64 Operand,
1658 IN UINTN Count
1659 );
1660
1661
1662/**
1663 Shifts a 64-bit integer right between 0 and 63 bits. This high bits are
1664 filled with zeros. The shifted value is returned.
1665
1666 This function shifts the 64-bit value Operand to the right by Count bits. The
1667 high Count bits are set to zero. The shifted value is returned.
1668
1669 If Count is greater than 63, then ASSERT().
1670
1671 @param Operand The 64-bit operand to shift right.
1672 @param Count The number of bits to shift right.
1673
1674 @return Operand >> Count
1675
1676**/
1677UINT64
1678EFIAPI
1679RShiftU64 (
1680 IN UINT64 Operand,
1681 IN UINTN Count
1682 );
1683
1684
1685/**
1686 Shifts a 64-bit integer right between 0 and 63 bits. The high bits are filled
1687 with original integer's bit 63. The shifted value is returned.
1688
1689 This function shifts the 64-bit value Operand to the right by Count bits. The
1690 high Count bits are set to bit 63 of Operand. The shifted value is returned.
1691
1692 If Count is greater than 63, then ASSERT().
1693
1694 @param Operand The 64-bit operand to shift right.
1695 @param Count The number of bits to shift right.
1696
1697 @return Operand >> Count
1698
1699**/
1700UINT64
1701EFIAPI
1702ARShiftU64 (
1703 IN UINT64 Operand,
1704 IN UINTN Count
1705 );
1706
1707
1708/**
1709 Rotates a 32-bit integer left between 0 and 31 bits, filling the low bits
1710 with the high bits that were rotated.
1711
1712 This function rotates the 32-bit value Operand to the left by Count bits. The
1713 low Count bits are fill with the high Count bits of Operand. The rotated
1714 value is returned.
1715
1716 If Count is greater than 31, then ASSERT().
1717
1718 @param Operand The 32-bit operand to rotate left.
1719 @param Count The number of bits to rotate left.
1720
1721 @return Operand <<< Count
1722
1723**/
1724UINT32
1725EFIAPI
1726LRotU32 (
1727 IN UINT32 Operand,
1728 IN UINTN Count
1729 );
1730
1731
1732/**
1733 Rotates a 32-bit integer right between 0 and 31 bits, filling the high bits
1734 with the low bits that were rotated.
1735
1736 This function rotates the 32-bit value Operand to the right by Count bits.
1737 The high Count bits are fill with the low Count bits of Operand. The rotated
1738 value is returned.
1739
1740 If Count is greater than 31, then ASSERT().
1741
1742 @param Operand The 32-bit operand to rotate right.
1743 @param Count The number of bits to rotate right.
1744
1745 @return Operand >>> Count
1746
1747**/
1748UINT32
1749EFIAPI
1750RRotU32 (
1751 IN UINT32 Operand,
1752 IN UINTN Count
1753 );
1754
1755
1756/**
1757 Rotates a 64-bit integer left between 0 and 63 bits, filling the low bits
1758 with the high bits that were rotated.
1759
1760 This function rotates the 64-bit value Operand to the left by Count bits. The
1761 low Count bits are fill with the high Count bits of Operand. The rotated
1762 value is returned.
1763
1764 If Count is greater than 63, then ASSERT().
1765
1766 @param Operand The 64-bit operand to rotate left.
1767 @param Count The number of bits to rotate left.
1768
1769 @return Operand <<< Count
1770
1771**/
1772UINT64
1773EFIAPI
1774LRotU64 (
1775 IN UINT64 Operand,
1776 IN UINTN Count
1777 );
1778
1779
1780/**
1781 Rotates a 64-bit integer right between 0 and 63 bits, filling the high bits
1782 with the high low bits that were rotated.
1783
1784 This function rotates the 64-bit value Operand to the right by Count bits.
1785 The high Count bits are fill with the low Count bits of Operand. The rotated
1786 value is returned.
1787
1788 If Count is greater than 63, then ASSERT().
1789
1790 @param Operand The 64-bit operand to rotate right.
1791 @param Count The number of bits to rotate right.
1792
1793 @return Operand >>> Count
1794
1795**/
1796UINT64
1797EFIAPI
1798RRotU64 (
1799 IN UINT64 Operand,
1800 IN UINTN Count
1801 );
1802
1803
1804/**
1805 Returns the bit position of the lowest bit set in a 32-bit value.
1806
1807 This function computes the bit position of the lowest bit set in the 32-bit
1808 value specified by Operand. If Operand is zero, then -1 is returned.
1809 Otherwise, a value between 0 and 31 is returned.
1810
1811 @param Operand The 32-bit operand to evaluate.
1812
1813 @return Position of the lowest bit set in Operand if found.
1814 @retval -1 Operand is zero.
1815
1816**/
1817INTN
1818EFIAPI
1819LowBitSet32 (
1820 IN UINT32 Operand
1821 );
1822
1823
1824/**
1825 Returns the bit position of the lowest bit set in a 64-bit value.
1826
1827 This function computes the bit position of the lowest bit set in the 64-bit
1828 value specified by Operand. If Operand is zero, then -1 is returned.
1829 Otherwise, a value between 0 and 63 is returned.
1830
1831 @param Operand The 64-bit operand to evaluate.
1832
1833 @return Position of the lowest bit set in Operand if found.
1834 @retval -1 Operand is zero.
1835
1836**/
1837INTN
1838EFIAPI
1839LowBitSet64 (
1840 IN UINT64 Operand
1841 );
1842
1843
1844/**
1845 Returns the bit position of the highest bit set in a 32-bit value. Equivalent
1846 to log2(x).
1847
1848 This function computes the bit position of the highest bit set in the 32-bit
1849 value specified by Operand. If Operand is zero, then -1 is returned.
1850 Otherwise, a value between 0 and 31 is returned.
1851
1852 @param Operand The 32-bit operand to evaluate.
1853
1854 @return Position of the highest bit set in Operand if found.
1855 @retval -1 Operand is zero.
1856
1857**/
1858INTN
1859EFIAPI
1860HighBitSet32 (
1861 IN UINT32 Operand
1862 );
1863
1864
1865/**
1866 Returns the bit position of the highest bit set in a 64-bit value. Equivalent
1867 to log2(x).
1868
1869 This function computes the bit position of the highest bit set in the 64-bit
1870 value specified by Operand. If Operand is zero, then -1 is returned.
1871 Otherwise, a value between 0 and 63 is returned.
1872
1873 @param Operand The 64-bit operand to evaluate.
1874
1875 @return Position of the highest bit set in Operand if found.
1876 @retval -1 Operand is zero.
1877
1878**/
1879INTN
1880EFIAPI
1881HighBitSet64 (
1882 IN UINT64 Operand
1883 );
1884
1885
1886/**
1887 Returns the value of the highest bit set in a 32-bit value. Equivalent to
1888 1 << HighBitSet32(x).
1889
1890 This function computes the value of the highest bit set in the 32-bit value
1891 specified by Operand. If Operand is zero, then zero is returned.
1892
1893 @param Operand The 32-bit operand to evaluate.
1894
1895 @return 1 << HighBitSet32(Operand)
1896 @retval 0 Operand is zero.
1897
1898**/
1899UINT32
1900EFIAPI
1901GetPowerOfTwo32 (
1902 IN UINT32 Operand
1903 );
1904
1905
1906/**
1907 Returns the value of the highest bit set in a 64-bit value. Equivalent to
1908 1 << HighBitSet64(x).
1909
1910 This function computes the value of the highest bit set in the 64-bit value
1911 specified by Operand. If Operand is zero, then zero is returned.
1912
1913 @param Operand The 64-bit operand to evaluate.
1914
1915 @return 1 << HighBitSet64(Operand)
1916 @retval 0 Operand is zero.
1917
1918**/
1919UINT64
1920EFIAPI
1921GetPowerOfTwo64 (
1922 IN UINT64 Operand
1923 );
1924
1925
1926/**
1927 Switches the endianess of a 16-bit integer.
1928
1929 This function swaps the bytes in a 16-bit unsigned value to switch the value
1930 from little endian to big endian or vice versa. The byte swapped value is
1931 returned.
1932
2a254b90 1933 @param Value Operand A 16-bit unsigned value.
fb3df220 1934
1935 @return The byte swaped Operand.
1936
1937**/
1938UINT16
1939EFIAPI
1940SwapBytes16 (
1941 IN UINT16 Value
1942 );
1943
1944
1945/**
1946 Switches the endianess of a 32-bit integer.
1947
1948 This function swaps the bytes in a 32-bit unsigned value to switch the value
1949 from little endian to big endian or vice versa. The byte swapped value is
1950 returned.
1951
2a254b90 1952 @param Value Operand A 32-bit unsigned value.
fb3df220 1953
1954 @return The byte swaped Operand.
1955
1956**/
1957UINT32
1958EFIAPI
1959SwapBytes32 (
1960 IN UINT32 Value
1961 );
1962
1963
1964/**
1965 Switches the endianess of a 64-bit integer.
1966
1967 This function swaps the bytes in a 64-bit unsigned value to switch the value
1968 from little endian to big endian or vice versa. The byte swapped value is
1969 returned.
1970
2a254b90 1971 @param Value Operand A 64-bit unsigned value.
fb3df220 1972
1973 @return The byte swaped Operand.
1974
1975**/
1976UINT64
1977EFIAPI
1978SwapBytes64 (
1979 IN UINT64 Value
1980 );
1981
1982
1983/**
1984 Multiples a 64-bit unsigned integer by a 32-bit unsigned integer and
1985 generates a 64-bit unsigned result.
1986
1987 This function multiples the 64-bit unsigned value Multiplicand by the 32-bit
1988 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-
1989 bit unsigned result is returned.
1990
1991 If the result overflows, then ASSERT().
1992
1993 @param Multiplicand A 64-bit unsigned value.
1994 @param Multiplier A 32-bit unsigned value.
1995
1996 @return Multiplicand * Multiplier
1997
1998**/
1999UINT64
2000EFIAPI
2001MultU64x32 (
2002 IN UINT64 Multiplicand,
2003 IN UINT32 Multiplier
2004 );
2005
2006
2007/**
2008 Multiples a 64-bit unsigned integer by a 64-bit unsigned integer and
2009 generates a 64-bit unsigned result.
2010
2011 This function multiples the 64-bit unsigned value Multiplicand by the 64-bit
2012 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-
2013 bit unsigned result is returned.
2014
2015 If the result overflows, then ASSERT().
2016
2017 @param Multiplicand A 64-bit unsigned value.
2018 @param Multiplier A 64-bit unsigned value.
2019
2020 @return Multiplicand * Multiplier
2021
2022**/
2023UINT64
2024EFIAPI
2025MultU64x64 (
2026 IN UINT64 Multiplicand,
2027 IN UINT64 Multiplier
2028 );
2029
2030
2031/**
2032 Multiples a 64-bit signed integer by a 64-bit signed integer and generates a
2033 64-bit signed result.
2034
2035 This function multiples the 64-bit signed value Multiplicand by the 64-bit
2036 signed value Multiplier and generates a 64-bit signed result. This 64-bit
2037 signed result is returned.
2038
2039 If the result overflows, then ASSERT().
2040
2041 @param Multiplicand A 64-bit signed value.
2042 @param Multiplier A 64-bit signed value.
2043
2044 @return Multiplicand * Multiplier
2045
2046**/
2047INT64
2048EFIAPI
2049MultS64x64 (
2050 IN INT64 Multiplicand,
2051 IN INT64 Multiplier
2052 );
2053
2054
2055/**
2056 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates
2057 a 64-bit unsigned result.
2058
2059 This function divides the 64-bit unsigned value Dividend by the 32-bit
2060 unsigned value Divisor and generates a 64-bit unsigned quotient. This
2061 function returns the 64-bit unsigned quotient.
2062
2063 If Divisor is 0, then ASSERT().
2064
2065 @param Dividend A 64-bit unsigned value.
2066 @param Divisor A 32-bit unsigned value.
2067
2068 @return Dividend / Divisor
2069
2070**/
2071UINT64
2072EFIAPI
2073DivU64x32 (
2074 IN UINT64 Dividend,
2075 IN UINT32 Divisor
2076 );
2077
2078
2079/**
2080 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates
2081 a 32-bit unsigned remainder.
2082
2083 This function divides the 64-bit unsigned value Dividend by the 32-bit
2084 unsigned value Divisor and generates a 32-bit remainder. This function
2085 returns the 32-bit unsigned remainder.
2086
2087 If Divisor is 0, then ASSERT().
2088
2089 @param Dividend A 64-bit unsigned value.
2090 @param Divisor A 32-bit unsigned value.
2091
2092 @return Dividend % Divisor
2093
2094**/
2095UINT32
2096EFIAPI
2097ModU64x32 (
2098 IN UINT64 Dividend,
2099 IN UINT32 Divisor
2100 );
2101
2102
2103/**
2104 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates
2105 a 64-bit unsigned result and an optional 32-bit unsigned remainder.
2106
2107 This function divides the 64-bit unsigned value Dividend by the 32-bit
2108 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder
2109 is not NULL, then the 32-bit unsigned remainder is returned in Remainder.
2110 This function returns the 64-bit unsigned quotient.
2111
2112 If Divisor is 0, then ASSERT().
2113
2114 @param Dividend A 64-bit unsigned value.
2115 @param Divisor A 32-bit unsigned value.
2116 @param Remainder A pointer to a 32-bit unsigned value. This parameter is
2117 optional and may be NULL.
2118
2119 @return Dividend / Divisor
2120
2121**/
2122UINT64
2123EFIAPI
2124DivU64x32Remainder (
2125 IN UINT64 Dividend,
2126 IN UINT32 Divisor,
2127 OUT UINT32 *Remainder OPTIONAL
2128 );
2129
2130
2131/**
2132 Divides a 64-bit unsigned integer by a 64-bit unsigned integer and generates
2133 a 64-bit unsigned result and an optional 64-bit unsigned remainder.
2134
2135 This function divides the 64-bit unsigned value Dividend by the 64-bit
2136 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder
2137 is not NULL, then the 64-bit unsigned remainder is returned in Remainder.
2138 This function returns the 64-bit unsigned quotient.
2139
2140 If Divisor is 0, then ASSERT().
2141
2142 @param Dividend A 64-bit unsigned value.
2143 @param Divisor A 64-bit unsigned value.
2144 @param Remainder A pointer to a 64-bit unsigned value. This parameter is
2145 optional and may be NULL.
2146
2147 @return Dividend / Divisor
2148
2149**/
2150UINT64
2151EFIAPI
2152DivU64x64Remainder (
2153 IN UINT64 Dividend,
2154 IN UINT64 Divisor,
2155 OUT UINT64 *Remainder OPTIONAL
2156 );
2157
2158
2159/**
2160 Divides a 64-bit signed integer by a 64-bit signed integer and generates a
2161 64-bit signed result and a optional 64-bit signed remainder.
2162
2163 This function divides the 64-bit signed value Dividend by the 64-bit signed
2164 value Divisor and generates a 64-bit signed quotient. If Remainder is not
2165 NULL, then the 64-bit signed remainder is returned in Remainder. This
2166 function returns the 64-bit signed quotient.
2167
2168 If Divisor is 0, then ASSERT().
2169
2170 @param Dividend A 64-bit signed value.
2171 @param Divisor A 64-bit signed value.
2172 @param Remainder A pointer to a 64-bit signed value. This parameter is
2173 optional and may be NULL.
2174
2175 @return Dividend / Divisor
2176
2177**/
2178INT64
2179EFIAPI
2180DivS64x64Remainder (
2181 IN INT64 Dividend,
2182 IN INT64 Divisor,
2183 OUT INT64 *Remainder OPTIONAL
2184 );
2185
2186
2187/**
2188 Reads a 16-bit value from memory that may be unaligned.
2189
2190 This function returns the 16-bit value pointed to by Buffer. The function
2191 guarantees that the read operation does not produce an alignment fault.
2192
2193 If the Buffer is NULL, then ASSERT().
2194
01aef47b 2195 @param Uint16 Pointer to a 16-bit value that may be unaligned.
fb3df220 2196
2197 @return *Uint16
2198
2199**/
2200UINT16
2201EFIAPI
2202ReadUnaligned16 (
2203 IN CONST UINT16 *Uint16
2204 );
2205
2206
2207/**
2208 Writes a 16-bit value to memory that may be unaligned.
2209
2210 This function writes the 16-bit value specified by Value to Buffer. Value is
2211 returned. The function guarantees that the write operation does not produce
2212 an alignment fault.
2213
2214 If the Buffer is NULL, then ASSERT().
2215
01aef47b 2216 @param Uint16 Pointer to a 16-bit value that may be unaligned.
fb3df220 2217 @param Value 16-bit value to write to Buffer.
2218
2219 @return Value
2220
2221**/
2222UINT16
2223EFIAPI
2224WriteUnaligned16 (
2225 OUT UINT16 *Uint16,
2226 IN UINT16 Value
2227 );
2228
2229
2230/**
2231 Reads a 24-bit value from memory that may be unaligned.
2232
2233 This function returns the 24-bit value pointed to by Buffer. The function
2234 guarantees that the read operation does not produce an alignment fault.
2235
2236 If the Buffer is NULL, then ASSERT().
2237
2238 @param Buffer Pointer to a 24-bit value that may be unaligned.
2239
2240 @return The value read.
2241
2242**/
2243UINT32
2244EFIAPI
2245ReadUnaligned24 (
2246 IN CONST UINT32 *Buffer
2247 );
2248
2249
2250/**
2251 Writes a 24-bit value to memory that may be unaligned.
2252
2253 This function writes the 24-bit value specified by Value to Buffer. Value is
2254 returned. The function guarantees that the write operation does not produce
2255 an alignment fault.
2256
2257 If the Buffer is NULL, then ASSERT().
2258
2259 @param Buffer Pointer to a 24-bit value that may be unaligned.
2260 @param Value 24-bit value to write to Buffer.
2261
2262 @return The value written.
2263
2264**/
2265UINT32
2266EFIAPI
2267WriteUnaligned24 (
2268 OUT UINT32 *Buffer,
2269 IN UINT32 Value
2270 );
2271
2272
2273/**
2274 Reads a 32-bit value from memory that may be unaligned.
2275
2276 This function returns the 32-bit value pointed to by Buffer. The function
2277 guarantees that the read operation does not produce an alignment fault.
2278
2279 If the Buffer is NULL, then ASSERT().
2280
01aef47b 2281 @param Uint32 Pointer to a 32-bit value that may be unaligned.
fb3df220 2282
2283 @return *Uint32
2284
2285**/
2286UINT32
2287EFIAPI
2288ReadUnaligned32 (
2289 IN CONST UINT32 *Uint32
2290 );
2291
2292
2293/**
2294 Writes a 32-bit value to memory that may be unaligned.
2295
2296 This function writes the 32-bit value specified by Value to Buffer. Value is
2297 returned. The function guarantees that the write operation does not produce
2298 an alignment fault.
2299
2300 If the Buffer is NULL, then ASSERT().
2301
01aef47b 2302 @param Uint32 Pointer to a 32-bit value that may be unaligned.
fb3df220 2303 @param Value 32-bit value to write to Buffer.
2304
2305 @return Value
2306
2307**/
2308UINT32
2309EFIAPI
2310WriteUnaligned32 (
2311 OUT UINT32 *Uint32,
2312 IN UINT32 Value
2313 );
2314
2315
2316/**
2317 Reads a 64-bit value from memory that may be unaligned.
2318
2319 This function returns the 64-bit value pointed to by Buffer. The function
2320 guarantees that the read operation does not produce an alignment fault.
2321
2322 If the Buffer is NULL, then ASSERT().
2323
01aef47b 2324 @param Uint64 Pointer to a 64-bit value that may be unaligned.
fb3df220 2325
2326 @return *Uint64
2327
2328**/
2329UINT64
2330EFIAPI
2331ReadUnaligned64 (
2332 IN CONST UINT64 *Uint64
2333 );
2334
2335
2336/**
2337 Writes a 64-bit value to memory that may be unaligned.
2338
2339 This function writes the 64-bit value specified by Value to Buffer. Value is
2340 returned. The function guarantees that the write operation does not produce
2341 an alignment fault.
2342
2343 If the Buffer is NULL, then ASSERT().
2344
01aef47b 2345 @param Uint64 Pointer to a 64-bit value that may be unaligned.
fb3df220 2346 @param Value 64-bit value to write to Buffer.
2347
2348 @return Value
2349
2350**/
2351UINT64
2352EFIAPI
2353WriteUnaligned64 (
2354 OUT UINT64 *Uint64,
2355 IN UINT64 Value
2356 );
2357
2358
2359//
2360// Bit Field Functions
2361//
2362
2363/**
2364 Returns a bit field from an 8-bit value.
2365
2366 Returns the bitfield specified by the StartBit and the EndBit from Operand.
2367
2368 If 8-bit operations are not supported, then ASSERT().
2369 If StartBit is greater than 7, then ASSERT().
2370 If EndBit is greater than 7, then ASSERT().
2371 If EndBit is less than StartBit, then ASSERT().
2372
2373 @param Operand Operand on which to perform the bitfield operation.
2374 @param StartBit The ordinal of the least significant bit in the bit field.
2375 Range 0..7.
2376 @param EndBit The ordinal of the most significant bit in the bit field.
2377 Range 0..7.
2378
2379 @return The bit field read.
2380
2381**/
2382UINT8
2383EFIAPI
2384BitFieldRead8 (
2385 IN UINT8 Operand,
2386 IN UINTN StartBit,
2387 IN UINTN EndBit
2388 );
2389
2390
2391/**
2392 Writes a bit field to an 8-bit value, and returns the result.
2393
2394 Writes Value to the bit field specified by the StartBit and the EndBit in
2395 Operand. All other bits in Operand are preserved. The new 8-bit value is
2396 returned.
2397
2398 If 8-bit operations are not supported, then ASSERT().
2399 If StartBit is greater than 7, then ASSERT().
2400 If EndBit is greater than 7, then ASSERT().
2401 If EndBit is less than StartBit, then ASSERT().
2402
2403 @param Operand Operand on which to perform the bitfield operation.
2404 @param StartBit The ordinal of the least significant bit in the bit field.
2405 Range 0..7.
2406 @param EndBit The ordinal of the most significant bit in the bit field.
2407 Range 0..7.
2408 @param Value New value of the bit field.
2409
2410 @return The new 8-bit value.
2411
2412**/
2413UINT8
2414EFIAPI
2415BitFieldWrite8 (
2416 IN UINT8 Operand,
2417 IN UINTN StartBit,
2418 IN UINTN EndBit,
2419 IN UINT8 Value
2420 );
2421
2422
2423/**
2424 Reads a bit field from an 8-bit value, performs a bitwise OR, and returns the
2425 result.
2426
2427 Performs a bitwise inclusive OR between the bit field specified by StartBit
2428 and EndBit in Operand and the value specified by OrData. All other bits in
2429 Operand are preserved. The new 8-bit value is returned.
2430
2431 If 8-bit operations are not supported, then ASSERT().
2432 If StartBit is greater than 7, then ASSERT().
2433 If EndBit is greater than 7, then ASSERT().
2434 If EndBit is less than StartBit, then ASSERT().
2435
2436 @param Operand Operand on which to perform the bitfield operation.
2437 @param StartBit The ordinal of the least significant bit in the bit field.
2438 Range 0..7.
2439 @param EndBit The ordinal of the most significant bit in the bit field.
2440 Range 0..7.
2441 @param OrData The value to OR with the read value from the value
2442
2443 @return The new 8-bit value.
2444
2445**/
2446UINT8
2447EFIAPI
2448BitFieldOr8 (
2449 IN UINT8 Operand,
2450 IN UINTN StartBit,
2451 IN UINTN EndBit,
2452 IN UINT8 OrData
2453 );
2454
2455
2456/**
2457 Reads a bit field from an 8-bit value, performs a bitwise AND, and returns
2458 the result.
2459
2460 Performs a bitwise AND between the bit field specified by StartBit and EndBit
2461 in Operand and the value specified by AndData. All other bits in Operand are
2462 preserved. The new 8-bit value is returned.
2463
2464 If 8-bit operations are not supported, then ASSERT().
2465 If StartBit is greater than 7, then ASSERT().
2466 If EndBit is greater than 7, then ASSERT().
2467 If EndBit is less than StartBit, then ASSERT().
2468
2469 @param Operand Operand on which to perform the bitfield operation.
2470 @param StartBit The ordinal of the least significant bit in the bit field.
2471 Range 0..7.
2472 @param EndBit The ordinal of the most significant bit in the bit field.
2473 Range 0..7.
2474 @param AndData The value to AND with the read value from the value.
2475
2476 @return The new 8-bit value.
2477
2478**/
2479UINT8
2480EFIAPI
2481BitFieldAnd8 (
2482 IN UINT8 Operand,
2483 IN UINTN StartBit,
2484 IN UINTN EndBit,
2485 IN UINT8 AndData
2486 );
2487
2488
2489/**
2490 Reads a bit field from an 8-bit value, performs a bitwise AND followed by a
2491 bitwise OR, and returns the result.
2492
2493 Performs a bitwise AND between the bit field specified by StartBit and EndBit
2494 in Operand and the value specified by AndData, followed by a bitwise
2495 inclusive OR with value specified by OrData. All other bits in Operand are
2496 preserved. The new 8-bit value is returned.
2497
2498 If 8-bit operations are not supported, then ASSERT().
2499 If StartBit is greater than 7, then ASSERT().
2500 If EndBit is greater than 7, then ASSERT().
2501 If EndBit is less than StartBit, then ASSERT().
2502
2503 @param Operand Operand on which to perform the bitfield operation.
2504 @param StartBit The ordinal of the least significant bit in the bit field.
2505 Range 0..7.
2506 @param EndBit The ordinal of the most significant bit in the bit field.
2507 Range 0..7.
2508 @param AndData The value to AND with the read value from the value.
2509 @param OrData The value to OR with the result of the AND operation.
2510
2511 @return The new 8-bit value.
2512
2513**/
2514UINT8
2515EFIAPI
2516BitFieldAndThenOr8 (
2517 IN UINT8 Operand,
2518 IN UINTN StartBit,
2519 IN UINTN EndBit,
2520 IN UINT8 AndData,
2521 IN UINT8 OrData
2522 );
2523
2524
2525/**
2526 Returns a bit field from a 16-bit value.
2527
2528 Returns the bitfield specified by the StartBit and the EndBit from Operand.
2529
2530 If 16-bit operations are not supported, then ASSERT().
2531 If StartBit is greater than 15, then ASSERT().
2532 If EndBit is greater than 15, then ASSERT().
2533 If EndBit is less than StartBit, then ASSERT().
2534
2535 @param Operand Operand on which to perform the bitfield operation.
2536 @param StartBit The ordinal of the least significant bit in the bit field.
2537 Range 0..15.
2538 @param EndBit The ordinal of the most significant bit in the bit field.
2539 Range 0..15.
2540
2541 @return The bit field read.
2542
2543**/
2544UINT16
2545EFIAPI
2546BitFieldRead16 (
2547 IN UINT16 Operand,
2548 IN UINTN StartBit,
2549 IN UINTN EndBit
2550 );
2551
2552
2553/**
2554 Writes a bit field to a 16-bit value, and returns the result.
2555
2556 Writes Value to the bit field specified by the StartBit and the EndBit in
2557 Operand. All other bits in Operand are preserved. The new 16-bit value is
2558 returned.
2559
2560 If 16-bit operations are not supported, then ASSERT().
2561 If StartBit is greater than 15, then ASSERT().
2562 If EndBit is greater than 15, then ASSERT().
2563 If EndBit is less than StartBit, then ASSERT().
2564
2565 @param Operand Operand on which to perform the bitfield operation.
2566 @param StartBit The ordinal of the least significant bit in the bit field.
2567 Range 0..15.
2568 @param EndBit The ordinal of the most significant bit in the bit field.
2569 Range 0..15.
2570 @param Value New value of the bit field.
2571
2572 @return The new 16-bit value.
2573
2574**/
2575UINT16
2576EFIAPI
2577BitFieldWrite16 (
2578 IN UINT16 Operand,
2579 IN UINTN StartBit,
2580 IN UINTN EndBit,
2581 IN UINT16 Value
2582 );
2583
2584
2585/**
2586 Reads a bit field from a 16-bit value, performs a bitwise OR, and returns the
2587 result.
2588
2589 Performs a bitwise inclusive OR between the bit field specified by StartBit
2590 and EndBit in Operand and the value specified by OrData. All other bits in
2591 Operand are preserved. The new 16-bit value is returned.
2592
2593 If 16-bit operations are not supported, then ASSERT().
2594 If StartBit is greater than 15, then ASSERT().
2595 If EndBit is greater than 15, then ASSERT().
2596 If EndBit is less than StartBit, then ASSERT().
2597
2598 @param Operand Operand on which to perform the bitfield operation.
2599 @param StartBit The ordinal of the least significant bit in the bit field.
2600 Range 0..15.
2601 @param EndBit The ordinal of the most significant bit in the bit field.
2602 Range 0..15.
2603 @param OrData The value to OR with the read value from the value
2604
2605 @return The new 16-bit value.
2606
2607**/
2608UINT16
2609EFIAPI
2610BitFieldOr16 (
2611 IN UINT16 Operand,
2612 IN UINTN StartBit,
2613 IN UINTN EndBit,
2614 IN UINT16 OrData
2615 );
2616
2617
2618/**
2619 Reads a bit field from a 16-bit value, performs a bitwise AND, and returns
2620 the result.
2621
2622 Performs a bitwise AND between the bit field specified by StartBit and EndBit
2623 in Operand and the value specified by AndData. All other bits in Operand are
2624 preserved. The new 16-bit value is returned.
2625
2626 If 16-bit operations are not supported, then ASSERT().
2627 If StartBit is greater than 15, then ASSERT().
2628 If EndBit is greater than 15, then ASSERT().
2629 If EndBit is less than StartBit, then ASSERT().
2630
2631 @param Operand Operand on which to perform the bitfield operation.
2632 @param StartBit The ordinal of the least significant bit in the bit field.
2633 Range 0..15.
2634 @param EndBit The ordinal of the most significant bit in the bit field.
2635 Range 0..15.
2636 @param AndData The value to AND with the read value from the value
2637
2638 @return The new 16-bit value.
2639
2640**/
2641UINT16
2642EFIAPI
2643BitFieldAnd16 (
2644 IN UINT16 Operand,
2645 IN UINTN StartBit,
2646 IN UINTN EndBit,
2647 IN UINT16 AndData
2648 );
2649
2650
2651/**
2652 Reads a bit field from a 16-bit value, performs a bitwise AND followed by a
2653 bitwise OR, and returns the result.
2654
2655 Performs a bitwise AND between the bit field specified by StartBit and EndBit
2656 in Operand and the value specified by AndData, followed by a bitwise
2657 inclusive OR with value specified by OrData. All other bits in Operand are
2658 preserved. The new 16-bit value is returned.
2659
2660 If 16-bit operations are not supported, then ASSERT().
2661 If StartBit is greater than 15, then ASSERT().
2662 If EndBit is greater than 15, then ASSERT().
2663 If EndBit is less than StartBit, then ASSERT().
2664
2665 @param Operand Operand on which to perform the bitfield operation.
2666 @param StartBit The ordinal of the least significant bit in the bit field.
2667 Range 0..15.
2668 @param EndBit The ordinal of the most significant bit in the bit field.
2669 Range 0..15.
2670 @param AndData The value to AND with the read value from the value.
2671 @param OrData The value to OR with the result of the AND operation.
2672
2673 @return The new 16-bit value.
2674
2675**/
2676UINT16
2677EFIAPI
2678BitFieldAndThenOr16 (
2679 IN UINT16 Operand,
2680 IN UINTN StartBit,
2681 IN UINTN EndBit,
2682 IN UINT16 AndData,
2683 IN UINT16 OrData
2684 );
2685
2686
2687/**
2688 Returns a bit field from a 32-bit value.
2689
2690 Returns the bitfield specified by the StartBit and the EndBit from Operand.
2691
2692 If 32-bit operations are not supported, then ASSERT().
2693 If StartBit is greater than 31, then ASSERT().
2694 If EndBit is greater than 31, then ASSERT().
2695 If EndBit is less than StartBit, then ASSERT().
2696
2697 @param Operand Operand on which to perform the bitfield operation.
2698 @param StartBit The ordinal of the least significant bit in the bit field.
2699 Range 0..31.
2700 @param EndBit The ordinal of the most significant bit in the bit field.
2701 Range 0..31.
2702
2703 @return The bit field read.
2704
2705**/
2706UINT32
2707EFIAPI
2708BitFieldRead32 (
2709 IN UINT32 Operand,
2710 IN UINTN StartBit,
2711 IN UINTN EndBit
2712 );
2713
2714
2715/**
2716 Writes a bit field to a 32-bit value, and returns the result.
2717
2718 Writes Value to the bit field specified by the StartBit and the EndBit in
2719 Operand. All other bits in Operand are preserved. The new 32-bit value is
2720 returned.
2721
2722 If 32-bit operations are not supported, then ASSERT().
2723 If StartBit is greater than 31, then ASSERT().
2724 If EndBit is greater than 31, then ASSERT().
2725 If EndBit is less than StartBit, then ASSERT().
2726
2727 @param Operand Operand on which to perform the bitfield operation.
2728 @param StartBit The ordinal of the least significant bit in the bit field.
2729 Range 0..31.
2730 @param EndBit The ordinal of the most significant bit in the bit field.
2731 Range 0..31.
2732 @param Value New value of the bit field.
2733
2734 @return The new 32-bit value.
2735
2736**/
2737UINT32
2738EFIAPI
2739BitFieldWrite32 (
2740 IN UINT32 Operand,
2741 IN UINTN StartBit,
2742 IN UINTN EndBit,
2743 IN UINT32 Value
2744 );
2745
2746
2747/**
2748 Reads a bit field from a 32-bit value, performs a bitwise OR, and returns the
2749 result.
2750
2751 Performs a bitwise inclusive OR between the bit field specified by StartBit
2752 and EndBit in Operand and the value specified by OrData. All other bits in
2753 Operand are preserved. The new 32-bit value is returned.
2754
2755 If 32-bit operations are not supported, then ASSERT().
2756 If StartBit is greater than 31, then ASSERT().
2757 If EndBit is greater than 31, then ASSERT().
2758 If EndBit is less than StartBit, then ASSERT().
2759
2760 @param Operand Operand on which to perform the bitfield operation.
2761 @param StartBit The ordinal of the least significant bit in the bit field.
2762 Range 0..31.
2763 @param EndBit The ordinal of the most significant bit in the bit field.
2764 Range 0..31.
2765 @param OrData The value to OR with the read value from the value
2766
2767 @return The new 32-bit value.
2768
2769**/
2770UINT32
2771EFIAPI
2772BitFieldOr32 (
2773 IN UINT32 Operand,
2774 IN UINTN StartBit,
2775 IN UINTN EndBit,
2776 IN UINT32 OrData
2777 );
2778
2779
2780/**
2781 Reads a bit field from a 32-bit value, performs a bitwise AND, and returns
2782 the result.
2783
2784 Performs a bitwise AND between the bit field specified by StartBit and EndBit
2785 in Operand and the value specified by AndData. All other bits in Operand are
2786 preserved. The new 32-bit value is returned.
2787
2788 If 32-bit operations are not supported, then ASSERT().
2789 If StartBit is greater than 31, then ASSERT().
2790 If EndBit is greater than 31, then ASSERT().
2791 If EndBit is less than StartBit, then ASSERT().
2792
2793 @param Operand Operand on which to perform the bitfield operation.
2794 @param StartBit The ordinal of the least significant bit in the bit field.
2795 Range 0..31.
2796 @param EndBit The ordinal of the most significant bit in the bit field.
2797 Range 0..31.
2798 @param AndData The value to AND with the read value from the value
2799
2800 @return The new 32-bit value.
2801
2802**/
2803UINT32
2804EFIAPI
2805BitFieldAnd32 (
2806 IN UINT32 Operand,
2807 IN UINTN StartBit,
2808 IN UINTN EndBit,
2809 IN UINT32 AndData
2810 );
2811
2812
2813/**
2814 Reads a bit field from a 32-bit value, performs a bitwise AND followed by a
2815 bitwise OR, and returns the result.
2816
2817 Performs a bitwise AND between the bit field specified by StartBit and EndBit
2818 in Operand and the value specified by AndData, followed by a bitwise
2819 inclusive OR with value specified by OrData. All other bits in Operand are
2820 preserved. The new 32-bit value is returned.
2821
2822 If 32-bit operations are not supported, then ASSERT().
2823 If StartBit is greater than 31, then ASSERT().
2824 If EndBit is greater than 31, then ASSERT().
2825 If EndBit is less than StartBit, then ASSERT().
2826
2827 @param Operand Operand on which to perform the bitfield operation.
2828 @param StartBit The ordinal of the least significant bit in the bit field.
2829 Range 0..31.
2830 @param EndBit The ordinal of the most significant bit in the bit field.
2831 Range 0..31.
2832 @param AndData The value to AND with the read value from the value.
2833 @param OrData The value to OR with the result of the AND operation.
2834
2835 @return The new 32-bit value.
2836
2837**/
2838UINT32
2839EFIAPI
2840BitFieldAndThenOr32 (
2841 IN UINT32 Operand,
2842 IN UINTN StartBit,
2843 IN UINTN EndBit,
2844 IN UINT32 AndData,
2845 IN UINT32 OrData
2846 );
2847
2848
2849/**
2850 Returns a bit field from a 64-bit value.
2851
2852 Returns the bitfield specified by the StartBit and the EndBit from Operand.
2853
2854 If 64-bit operations are not supported, then ASSERT().
2855 If StartBit is greater than 63, then ASSERT().
2856 If EndBit is greater than 63, then ASSERT().
2857 If EndBit is less than StartBit, then ASSERT().
2858
2859 @param Operand Operand on which to perform the bitfield operation.
2860 @param StartBit The ordinal of the least significant bit in the bit field.
2861 Range 0..63.
2862 @param EndBit The ordinal of the most significant bit in the bit field.
2863 Range 0..63.
2864
2865 @return The bit field read.
2866
2867**/
2868UINT64
2869EFIAPI
2870BitFieldRead64 (
2871 IN UINT64 Operand,
2872 IN UINTN StartBit,
2873 IN UINTN EndBit
2874 );
2875
2876
2877/**
2878 Writes a bit field to a 64-bit value, and returns the result.
2879
2880 Writes Value to the bit field specified by the StartBit and the EndBit in
2881 Operand. All other bits in Operand are preserved. The new 64-bit value is
2882 returned.
2883
2884 If 64-bit operations are not supported, then ASSERT().
2885 If StartBit is greater than 63, then ASSERT().
2886 If EndBit is greater than 63, then ASSERT().
2887 If EndBit is less than StartBit, then ASSERT().
2888
2889 @param Operand Operand on which to perform the bitfield operation.
2890 @param StartBit The ordinal of the least significant bit in the bit field.
2891 Range 0..63.
2892 @param EndBit The ordinal of the most significant bit in the bit field.
2893 Range 0..63.
2894 @param Value New value of the bit field.
2895
2896 @return The new 64-bit value.
2897
2898**/
2899UINT64
2900EFIAPI
2901BitFieldWrite64 (
2902 IN UINT64 Operand,
2903 IN UINTN StartBit,
2904 IN UINTN EndBit,
2905 IN UINT64 Value
2906 );
2907
2908
2909/**
2910 Reads a bit field from a 64-bit value, performs a bitwise OR, and returns the
2911 result.
2912
2913 Performs a bitwise inclusive OR between the bit field specified by StartBit
2914 and EndBit in Operand and the value specified by OrData. All other bits in
2915 Operand are preserved. The new 64-bit value is returned.
2916
2917 If 64-bit operations are not supported, then ASSERT().
2918 If StartBit is greater than 63, then ASSERT().
2919 If EndBit is greater than 63, then ASSERT().
2920 If EndBit is less than StartBit, then ASSERT().
2921
2922 @param Operand Operand on which to perform the bitfield operation.
2923 @param StartBit The ordinal of the least significant bit in the bit field.
2924 Range 0..63.
2925 @param EndBit The ordinal of the most significant bit in the bit field.
2926 Range 0..63.
2927 @param OrData The value to OR with the read value from the value
2928
2929 @return The new 64-bit value.
2930
2931**/
2932UINT64
2933EFIAPI
2934BitFieldOr64 (
2935 IN UINT64 Operand,
2936 IN UINTN StartBit,
2937 IN UINTN EndBit,
2938 IN UINT64 OrData
2939 );
2940
2941
2942/**
2943 Reads a bit field from a 64-bit value, performs a bitwise AND, and returns
2944 the result.
2945
2946 Performs a bitwise AND between the bit field specified by StartBit and EndBit
2947 in Operand and the value specified by AndData. All other bits in Operand are
2948 preserved. The new 64-bit value is returned.
2949
2950 If 64-bit operations are not supported, then ASSERT().
2951 If StartBit is greater than 63, then ASSERT().
2952 If EndBit is greater than 63, then ASSERT().
2953 If EndBit is less than StartBit, then ASSERT().
2954
2955 @param Operand Operand on which to perform the bitfield operation.
2956 @param StartBit The ordinal of the least significant bit in the bit field.
2957 Range 0..63.
2958 @param EndBit The ordinal of the most significant bit in the bit field.
2959 Range 0..63.
2960 @param AndData The value to AND with the read value from the value
2961
2962 @return The new 64-bit value.
2963
2964**/
2965UINT64
2966EFIAPI
2967BitFieldAnd64 (
2968 IN UINT64 Operand,
2969 IN UINTN StartBit,
2970 IN UINTN EndBit,
2971 IN UINT64 AndData
2972 );
2973
2974
2975/**
2976 Reads a bit field from a 64-bit value, performs a bitwise AND followed by a
2977 bitwise OR, and returns the result.
2978
2979 Performs a bitwise AND between the bit field specified by StartBit and EndBit
2980 in Operand and the value specified by AndData, followed by a bitwise
2981 inclusive OR with value specified by OrData. All other bits in Operand are
2982 preserved. The new 64-bit value is returned.
2983
2984 If 64-bit operations are not supported, then ASSERT().
2985 If StartBit is greater than 63, then ASSERT().
2986 If EndBit is greater than 63, then ASSERT().
2987 If EndBit is less than StartBit, then ASSERT().
2988
2989 @param Operand Operand on which to perform the bitfield operation.
2990 @param StartBit The ordinal of the least significant bit in the bit field.
2991 Range 0..63.
2992 @param EndBit The ordinal of the most significant bit in the bit field.
2993 Range 0..63.
2994 @param AndData The value to AND with the read value from the value.
2995 @param OrData The value to OR with the result of the AND operation.
2996
2997 @return The new 64-bit value.
2998
2999**/
3000UINT64
3001EFIAPI
3002BitFieldAndThenOr64 (
3003 IN UINT64 Operand,
3004 IN UINTN StartBit,
3005 IN UINTN EndBit,
3006 IN UINT64 AndData,
3007 IN UINT64 OrData
3008 );
3009
3010
3011//
3012// Base Library Synchronization Functions
3013//
3014
3015/**
3016 Retrieves the architecture specific spin lock alignment requirements for
3017 optimal spin lock performance.
3018
3019 This function retrieves the spin lock alignment requirements for optimal
3020 performance on a given CPU architecture. The spin lock alignment must be a
3021 power of two and is returned by this function. If there are no alignment
3022 requirements, then 1 must be returned. The spin lock synchronization
3023 functions must function correctly if the spin lock size and alignment values
3024 returned by this function are not used at all. These values are hints to the
3025 consumers of the spin lock synchronization functions to obtain optimal spin
3026 lock performance.
3027
3028 @return The architecture specific spin lock alignment.
3029
3030**/
3031UINTN
3032EFIAPI
3033GetSpinLockProperties (
3034 VOID
3035 );
3036
3037
3038/**
3039 Initializes a spin lock to the released state and returns the spin lock.
3040
3041 This function initializes the spin lock specified by SpinLock to the released
3042 state, and returns SpinLock. Optimal performance can be achieved by calling
3043 GetSpinLockProperties() to determine the size and alignment requirements for
3044 SpinLock.
3045
3046 If SpinLock is NULL, then ASSERT().
3047
3048 @param SpinLock A pointer to the spin lock to initialize to the released
3049 state.
3050
3051 @return SpinLock
3052
3053**/
3054SPIN_LOCK *
3055EFIAPI
3056InitializeSpinLock (
3057 IN SPIN_LOCK *SpinLock
3058 );
3059
3060
3061/**
3062 Waits until a spin lock can be placed in the acquired state.
3063
3064 This function checks the state of the spin lock specified by SpinLock. If
3065 SpinLock is in the released state, then this function places SpinLock in the
3066 acquired state and returns SpinLock. Otherwise, this function waits
3067 indefinitely for the spin lock to be released, and then places it in the
3068 acquired state and returns SpinLock. All state transitions of SpinLock must
3069 be performed using MP safe mechanisms.
3070
3071 If SpinLock is NULL, then ASSERT().
3072 If SpinLock was not initialized with InitializeSpinLock(), then ASSERT().
3073 If PcdSpinLockTimeout is not zero, and SpinLock is can not be acquired in
3074 PcdSpinLockTimeout microseconds, then ASSERT().
3075
3076 @param SpinLock A pointer to the spin lock to place in the acquired state.
3077
3078 @return SpinLock
3079
3080**/
3081SPIN_LOCK *
3082EFIAPI
3083AcquireSpinLock (
3084 IN SPIN_LOCK *SpinLock
3085 );
3086
3087
3088/**
3089 Attempts to place a spin lock in the acquired state.
3090
3091 This function checks the state of the spin lock specified by SpinLock. If
3092 SpinLock is in the released state, then this function places SpinLock in the
3093 acquired state and returns TRUE. Otherwise, FALSE is returned. All state
3094 transitions of SpinLock must be performed using MP safe mechanisms.
3095
3096 If SpinLock is NULL, then ASSERT().
3097 If SpinLock was not initialized with InitializeSpinLock(), then ASSERT().
3098
3099 @param SpinLock A pointer to the spin lock to place in the acquired state.
3100
3101 @retval TRUE SpinLock was placed in the acquired state.
3102 @retval FALSE SpinLock could not be acquired.
3103
3104**/
3105BOOLEAN
3106EFIAPI
3107AcquireSpinLockOrFail (
3108 IN SPIN_LOCK *SpinLock
3109 );
3110
3111
3112/**
3113 Releases a spin lock.
3114
3115 This function places the spin lock specified by SpinLock in the release state
3116 and returns SpinLock.
3117
3118 If SpinLock is NULL, then ASSERT().
3119 If SpinLock was not initialized with InitializeSpinLock(), then ASSERT().
3120
3121 @param SpinLock A pointer to the spin lock to release.
3122
3123 @return SpinLock
3124
3125**/
3126SPIN_LOCK *
3127EFIAPI
3128ReleaseSpinLock (
3129 IN SPIN_LOCK *SpinLock
3130 );
3131
3132
3133/**
3134 Performs an atomic increment of an 32-bit unsigned integer.
3135
3136 Performs an atomic increment of the 32-bit unsigned integer specified by
3137 Value and returns the incremented value. The increment operation must be
3138 performed using MP safe mechanisms. The state of the return value is not
3139 guaranteed to be MP safe.
3140
3141 If Value is NULL, then ASSERT().
3142
3143 @param Value A pointer to the 32-bit value to increment.
3144
3145 @return The incremented value.
3146
3147**/
3148UINT32
3149EFIAPI
3150InterlockedIncrement (
3151 IN UINT32 *Value
3152 );
3153
3154
3155/**
3156 Performs an atomic decrement of an 32-bit unsigned integer.
3157
3158 Performs an atomic decrement of the 32-bit unsigned integer specified by
3159 Value and returns the decremented value. The decrement operation must be
3160 performed using MP safe mechanisms. The state of the return value is not
3161 guaranteed to be MP safe.
3162
3163 If Value is NULL, then ASSERT().
3164
3165 @param Value A pointer to the 32-bit value to decrement.
3166
3167 @return The decremented value.
3168
3169**/
3170UINT32
3171EFIAPI
3172InterlockedDecrement (
3173 IN UINT32 *Value
3174 );
3175
3176
3177/**
3178 Performs an atomic compare exchange operation on a 32-bit unsigned integer.
3179
3180 Performs an atomic compare exchange operation on the 32-bit unsigned integer
3181 specified by Value. If Value is equal to CompareValue, then Value is set to
3182 ExchangeValue and CompareValue is returned. If Value is not equal to CompareValue,
3183 then Value is returned. The compare exchange operation must be performed using
3184 MP safe mechanisms.
3185
3186 If Value is NULL, then ASSERT().
3187
3188 @param Value A pointer to the 32-bit value for the compare exchange
3189 operation.
3190 @param CompareValue 32-bit value used in compare operation.
3191 @param ExchangeValue 32-bit value used in exchange operation.
3192
3193 @return The original *Value before exchange.
3194
3195**/
3196UINT32
3197EFIAPI
3198InterlockedCompareExchange32 (
3199 IN OUT UINT32 *Value,
3200 IN UINT32 CompareValue,
3201 IN UINT32 ExchangeValue
3202 );
3203
3204
3205/**
3206 Performs an atomic compare exchange operation on a 64-bit unsigned integer.
3207
3208 Performs an atomic compare exchange operation on the 64-bit unsigned integer specified
3209 by Value. If Value is equal to CompareValue, then Value is set to ExchangeValue and
3210 CompareValue is returned. If Value is not equal to CompareValue, then Value is returned.
3211 The compare exchange operation must be performed using MP safe mechanisms.
3212
3213 If Value is NULL, then ASSERT().
3214
3215 @param Value A pointer to the 64-bit value for the compare exchange
3216 operation.
3217 @param CompareValue 64-bit value used in compare operation.
3218 @param ExchangeValue 64-bit value used in exchange operation.
3219
3220 @return The original *Value before exchange.
3221
3222**/
3223UINT64
3224EFIAPI
3225InterlockedCompareExchange64 (
3226 IN OUT UINT64 *Value,
3227 IN UINT64 CompareValue,
3228 IN UINT64 ExchangeValue
3229 );
3230
3231
3232/**
3233 Performs an atomic compare exchange operation on a pointer value.
3234
3235 Performs an atomic compare exchange operation on the pointer value specified
3236 by Value. If Value is equal to CompareValue, then Value is set to
3237 ExchangeValue and CompareValue is returned. If Value is not equal to
3238 CompareValue, then Value is returned. The compare exchange operation must be
3239 performed using MP safe mechanisms.
3240
3241 If Value is NULL, then ASSERT().
3242
3243 @param Value A pointer to the pointer value for the compare exchange
3244 operation.
3245 @param CompareValue Pointer value used in compare operation.
3246 @param ExchangeValue Pointer value used in exchange operation.
3247
3248**/
3249VOID *
3250EFIAPI
3251InterlockedCompareExchangePointer (
3252 IN OUT VOID **Value,
3253 IN VOID *CompareValue,
3254 IN VOID *ExchangeValue
3255 );
3256
3257
3258//
3259// Base Library Checksum Functions
3260//
3261
3262/**
3263 Calculate the sum of all elements in a buffer in unit of UINT8.
3264 During calculation, the carry bits are dropped.
3265
3266 This function calculates the sum of all elements in a buffer
3267 in unit of UINT8. The carry bits in result of addition are dropped.
3268 The result is returned as UINT8. If Length is Zero, then Zero is
3269 returned.
3270
3271 If Buffer is NULL, then ASSERT().
3272 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
3273
3274 @param Buffer Pointer to the buffer to carry out the sum operation.
3275 @param Length The size, in bytes, of Buffer .
3276
3277 @return Sum The sum of Buffer with carry bits dropped during additions.
3278
3279**/
3280UINT8
3281EFIAPI
3282CalculateSum8 (
3283 IN CONST UINT8 *Buffer,
3284 IN UINTN Length
3285 );
3286
3287
3288/**
3289 Returns the two's complement checksum of all elements in a buffer
3290 of 8-bit values.
3291
3292 This function first calculates the sum of the 8-bit values in the
3293 buffer specified by Buffer and Length. The carry bits in the result
3294 of addition are dropped. Then, the two's complement of the sum is
3295 returned. If Length is 0, then 0 is returned.
3296
3297 If Buffer is NULL, then ASSERT().
3298 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
3299
3300
3301 @param Buffer Pointer to the buffer to carry out the checksum operation.
3302 @param Length The size, in bytes, of Buffer.
3303
3304 @return Checksum The 2's complement checksum of Buffer.
3305
3306**/
3307UINT8
3308EFIAPI
3309CalculateCheckSum8 (
3310 IN CONST UINT8 *Buffer,
3311 IN UINTN Length
3312 );
3313
3314
3315/**
3316 Returns the sum of all elements in a buffer of 16-bit values. During
3317 calculation, the carry bits are dropped.
3318
3319 This function calculates the sum of the 16-bit values in the buffer
3320 specified by Buffer and Length. The carry bits in result of addition are dropped.
3321 The 16-bit result is returned. If Length is 0, then 0 is returned.
3322
3323 If Buffer is NULL, then ASSERT().
3324 If Buffer is not aligned on a 16-bit boundary, then ASSERT().
3325 If Length is not aligned on a 16-bit boundary, then ASSERT().
3326 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
3327
3328 @param Buffer Pointer to the buffer to carry out the sum operation.
3329 @param Length The size, in bytes, of Buffer.
3330
3331 @return Sum The sum of Buffer with carry bits dropped during additions.
3332
3333**/
3334UINT16
3335EFIAPI
3336CalculateSum16 (
3337 IN CONST UINT16 *Buffer,
3338 IN UINTN Length
3339 );
3340
3341
3342/**
3343 Returns the two's complement checksum of all elements in a buffer of
3344 16-bit values.
3345
3346 This function first calculates the sum of the 16-bit values in the buffer
3347 specified by Buffer and Length. The carry bits in the result of addition
3348 are dropped. Then, the two's complement of the sum is returned. If Length
3349 is 0, then 0 is returned.
3350
3351 If Buffer is NULL, then ASSERT().
3352 If Buffer is not aligned on a 16-bit boundary, then ASSERT().
3353 If Length is not aligned on a 16-bit boundary, then ASSERT().
3354 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
3355
3356 @param Buffer Pointer to the buffer to carry out the checksum operation.
3357 @param Length The size, in bytes, of Buffer.
3358
3359 @return Checksum The 2's complement checksum of Buffer.
3360
3361**/
3362UINT16
3363EFIAPI
3364CalculateCheckSum16 (
3365 IN CONST UINT16 *Buffer,
3366 IN UINTN Length
3367 );
3368
3369
3370/**
3371 Returns the sum of all elements in a buffer of 32-bit values. During
3372 calculation, the carry bits are dropped.
3373
3374 This function calculates the sum of the 32-bit values in the buffer
3375 specified by Buffer and Length. The carry bits in result of addition are dropped.
3376 The 32-bit result is returned. If Length is 0, then 0 is returned.
3377
3378 If Buffer is NULL, then ASSERT().
3379 If Buffer is not aligned on a 32-bit boundary, then ASSERT().
3380 If Length is not aligned on a 32-bit boundary, then ASSERT().
3381 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
3382
3383 @param Buffer Pointer to the buffer to carry out the sum operation.
3384 @param Length The size, in bytes, of Buffer.
3385
3386 @return Sum The sum of Buffer with carry bits dropped during additions.
3387
3388**/
3389UINT32
3390EFIAPI
3391CalculateSum32 (
3392 IN CONST UINT32 *Buffer,
3393 IN UINTN Length
3394 );
3395
3396
3397/**
3398 Returns the two's complement checksum of all elements in a buffer of
3399 32-bit values.
3400
3401 This function first calculates the sum of the 32-bit values in the buffer
3402 specified by Buffer and Length. The carry bits in the result of addition
3403 are dropped. Then, the two's complement of the sum is returned. If Length
3404 is 0, then 0 is returned.
3405
3406 If Buffer is NULL, then ASSERT().
3407 If Buffer is not aligned on a 32-bit boundary, then ASSERT().
3408 If Length is not aligned on a 32-bit boundary, then ASSERT().
3409 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
3410
3411 @param Buffer Pointer to the buffer to carry out the checksum operation.
3412 @param Length The size, in bytes, of Buffer.
3413
3414 @return Checksum The 2's complement checksum of Buffer.
3415
3416**/
3417UINT32
3418EFIAPI
3419CalculateCheckSum32 (
3420 IN CONST UINT32 *Buffer,
3421 IN UINTN Length
3422 );
3423
3424
3425/**
3426 Returns the sum of all elements in a buffer of 64-bit values. During
3427 calculation, the carry bits are dropped.
3428
3429 This function calculates the sum of the 64-bit values in the buffer
3430 specified by Buffer and Length. The carry bits in result of addition are dropped.
3431 The 64-bit result is returned. If Length is 0, then 0 is returned.
3432
3433 If Buffer is NULL, then ASSERT().
3434 If Buffer is not aligned on a 64-bit boundary, then ASSERT().
3435 If Length is not aligned on a 64-bit boundary, then ASSERT().
3436 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
3437
3438 @param Buffer Pointer to the buffer to carry out the sum operation.
3439 @param Length The size, in bytes, of Buffer.
3440
3441 @return Sum The sum of Buffer with carry bits dropped during additions.
3442
3443**/
3444UINT64
3445EFIAPI
3446CalculateSum64 (
3447 IN CONST UINT64 *Buffer,
3448 IN UINTN Length
3449 );
3450
3451
3452/**
3453 Returns the two's complement checksum of all elements in a buffer of
3454 64-bit values.
3455
3456 This function first calculates the sum of the 64-bit values in the buffer
3457 specified by Buffer and Length. The carry bits in the result of addition
3458 are dropped. Then, the two's complement of the sum is returned. If Length
3459 is 0, then 0 is returned.
3460
3461 If Buffer is NULL, then ASSERT().
3462 If Buffer is not aligned on a 64-bit boundary, then ASSERT().
3463 If Length is not aligned on a 64-bit boundary, then ASSERT().
3464 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
3465
3466 @param Buffer Pointer to the buffer to carry out the checksum operation.
3467 @param Length The size, in bytes, of Buffer.
3468
3469 @return Checksum The 2's complement checksum of Buffer.
3470
3471**/
3472UINT64
3473EFIAPI
3474CalculateCheckSum64 (
3475 IN CONST UINT64 *Buffer,
3476 IN UINTN Length
3477 );
3478
3479
3480//
3481// Base Library CPU Functions
3482//
3483typedef
3484VOID
3485(EFIAPI *SWITCH_STACK_ENTRY_POINT) (
3486 IN VOID *Context1, OPTIONAL
3487 IN VOID *Context2 OPTIONAL
3488 );
3489
3490
3491/**
3492 Used to serialize load and store operations.
3493
3494 All loads and stores that proceed calls to this function are guaranteed to be
3495 globally visible when this function returns.
3496
3497**/
3498VOID
3499EFIAPI
3500MemoryFence (
3501 VOID
3502 );
3503
3504
3505/**
3506 Saves the current CPU context that can be restored with a call to LongJump()
3507 and returns 0.
3508
3509 Saves the current CPU context in the buffer specified by JumpBuffer and
3510 returns 0. The initial call to SetJump() must always return 0. Subsequent
3511 calls to LongJump() cause a non-zero value to be returned by SetJump().
3512
3513 If JumpBuffer is NULL, then ASSERT().
3514 For IPF CPUs, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().
3515
3516 @param JumpBuffer A pointer to CPU context buffer.
3517
3518 @retval 0 Indicates a return from SetJump().
3519
3520**/
3521UINTN
3522EFIAPI
3523SetJump (
3524 OUT BASE_LIBRARY_JUMP_BUFFER *JumpBuffer
3525 );
3526
3527
3528/**
3529 Restores the CPU context that was saved with SetJump().
3530
3531 Restores the CPU context from the buffer specified by JumpBuffer. This
3532 function never returns to the caller. Instead is resumes execution based on
3533 the state of JumpBuffer.
3534
3535 If JumpBuffer is NULL, then ASSERT().
3536 For IPF CPUs, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().
3537 If Value is 0, then ASSERT().
3538
3539 @param JumpBuffer A pointer to CPU context buffer.
3540 @param Value The value to return when the SetJump() context is
3541 restored and must be non-zero.
3542
3543**/
3544VOID
3545EFIAPI
3546LongJump (
3547 IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer,
3548 IN UINTN Value
3549 );
3550
3551
3552/**
3553 Enables CPU interrupts.
3554
3555 Enables CPU interrupts.
3556
3557**/
3558VOID
3559EFIAPI
3560EnableInterrupts (
3561 VOID
3562 );
3563
3564
3565/**
3566 Disables CPU interrupts.
3567
3568 Disables CPU interrupts.
3569
3570**/
3571VOID
3572EFIAPI
3573DisableInterrupts (
3574 VOID
3575 );
3576
3577
3578/**
3579 Disables CPU interrupts and returns the interrupt state prior to the disable
3580 operation.
3581
3582 Disables CPU interrupts and returns the interrupt state prior to the disable
3583 operation.
3584
3585 @retval TRUE CPU interrupts were enabled on entry to this call.
3586 @retval FALSE CPU interrupts were disabled on entry to this call.
3587
3588**/
3589BOOLEAN
3590EFIAPI
3591SaveAndDisableInterrupts (
3592 VOID
3593 );
3594
3595
3596/**
3597 Enables CPU interrupts for the smallest window required to capture any
3598 pending interrupts.
3599
3600 Enables CPU interrupts for the smallest window required to capture any
3601 pending interrupts.
3602
3603**/
3604VOID
3605EFIAPI
3606EnableDisableInterrupts (
3607 VOID
3608 );
3609
3610
3611/**
3612 Retrieves the current CPU interrupt state.
3613
3614 Retrieves the current CPU interrupt state. Returns TRUE is interrupts are
3615 currently enabled. Otherwise returns FALSE.
3616
3617 @retval TRUE CPU interrupts are enabled.
3618 @retval FALSE CPU interrupts are disabled.
3619
3620**/
3621BOOLEAN
3622EFIAPI
3623GetInterruptState (
3624 VOID
3625 );
3626
3627
3628/**
3629 Set the current CPU interrupt state.
3630
3631 Sets the current CPU interrupt state to the state specified by
3632 InterruptState. If InterruptState is TRUE, then interrupts are enabled. If
3633 InterruptState is FALSE, then interrupts are disabled. InterruptState is
3634 returned.
3635
3636 @param InterruptState TRUE if interrupts should enabled. FALSE if
3637 interrupts should be disabled.
3638
3639 @return InterruptState
3640
3641**/
3642BOOLEAN
3643EFIAPI
3644SetInterruptState (
3645 IN BOOLEAN InterruptState
3646 );
3647
3648
fb3df220 3649/**
3650 Requests CPU to pause for a short period of time.
3651
3652 Requests CPU to pause for a short period of time. Typically used in MP
3653 systems to prevent memory starvation while waiting for a spin lock.
3654
3655**/
3656VOID
3657EFIAPI
3658CpuPause (
3659 VOID
3660 );
3661
3662
fb3df220 3663/**
3664 Transfers control to a function starting with a new stack.
3665
3666 Transfers control to the function specified by EntryPoint using the
3667 new stack specified by NewStack and passing in the parameters specified
3668 by Context1 and Context2. Context1 and Context2 are optional and may
3669 be NULL. The function EntryPoint must never return. This function
3670 supports a variable number of arguments following the NewStack parameter.
3671 These additional arguments are ignored on IA-32, x64, and EBC.
3672 IPF CPUs expect one additional parameter of type VOID * that specifies
3673 the new backing store pointer.
3674
3675 If EntryPoint is NULL, then ASSERT().
3676 If NewStack is NULL, then ASSERT().
3677
3678 @param EntryPoint A pointer to function to call with the new stack.
3679 @param Context1 A pointer to the context to pass into the EntryPoint
3680 function.
3681 @param Context2 A pointer to the context to pass into the EntryPoint
3682 function.
3683 @param NewStack A pointer to the new stack to use for the EntryPoint
3684 function.
3685
3686**/
3687VOID
3688EFIAPI
3689SwitchStack (
3690 IN SWITCH_STACK_ENTRY_POINT EntryPoint,
3691 IN VOID *Context1, OPTIONAL
3692 IN VOID *Context2, OPTIONAL
3693 IN VOID *NewStack,
3694 ...
3695 );
3696
3697
3698/**
3699 Generates a breakpoint on the CPU.
3700
3701 Generates a breakpoint on the CPU. The breakpoint must be implemented such
3702 that code can resume normal execution after the breakpoint.
3703
3704**/
3705VOID
3706EFIAPI
3707CpuBreakpoint (
3708 VOID
3709 );
3710
3711
3712/**
3713 Executes an infinite loop.
3714
3715 Forces the CPU to execute an infinite loop. A debugger may be used to skip
3716 past the loop and the code that follows the loop must execute properly. This
3717 implies that the infinite loop must not cause the code that follow it to be
3718 optimized away.
3719
3720**/
3721VOID
3722EFIAPI
3723CpuDeadLoop (
3724 VOID
3725 );
3726
3727
3728#if defined (MDE_CPU_IPF)
3729
3730/**
3731 Flush a range of cache lines in the cache coherency domain of the calling
3732 CPU.
3733
3734 Invalidates the cache lines specified by Address and Length. If Address is
3735 not aligned on a cache line boundary, then entire cache line containing
3736 Address is invalidated. If Address + Length is not aligned on a cache line
3737 boundary, then the entire instruction cache line containing Address + Length
3738 -1 is invalidated. This function may choose to invalidate the entire
3739 instruction cache if that is more efficient than invalidating the specified
3740 range. If Length is 0, the no instruction cache lines are invalidated.
3741 Address is returned.
3742
3743 If Length is greater than (MAX_ADDRESS - Address + 1), then ASSERT().
3744
3745 @param Address The base address of the instruction lines to invalidate. If
3746 the CPU is in a physical addressing mode, then Address is a
3747 physical address. If the CPU is in a virtual addressing mode,
3748 then Address is a virtual address.
3749
3750 @param Length The number of bytes to invalidate from the instruction cache.
3751
3752 @return Address
3753
3754**/
3755VOID *
3756EFIAPI
3757IpfFlushCacheRange (
3758 IN VOID *Address,
3759 IN UINTN Length
3760 );
3761
3762
3763/**
3764 Executes a FC instruction
3765 Executes a FC instruction on the cache line specified by Address.
3766 The cache line size affected is at least 32-bytes (aligned on a 32-byte boundary).
3767 An implementation may flush a larger region. This function is only available on IPF.
3768
3769 @param Address The Address of cache line to be flushed.
3770
3771 @return The address of FC instruction executed.
3772
3773**/
3774UINT64
3775EFIAPI
3776AsmFc (
3777 IN UINT64 Address
3778 );
3779
3780
3781/**
3782 Executes a FC.I instruction.
3783 Executes a FC.I instruction on the cache line specified by Address.
3784 The cache line size affected is at least 32-bytes (aligned on a 32-byte boundary).
3785 An implementation may flush a larger region. This function is only available on IPF.
3786
3787 @param Address The Address of cache line to be flushed.
3788
3789 @return The address of FC.I instruction executed.
3790
3791**/
3792UINT64
3793EFIAPI
3794AsmFci (
3795 IN UINT64 Address
3796 );
3797
3798
3799/**
3800 Reads the current value of a Processor Identifier Register (CPUID).
3801 The Index of largest implemented CPUID (One less than the number of implemented CPUID
3802 registers) is determined by CPUID [3] bits {7:0}.
3803 No parameter checking is performed on Index. If the Index value is beyond the
3804 implemented CPUID register range, a Reserved Register/Field fault may occur. The caller
3805 must either guarantee that Index is valid, or the caller must set up fault handlers to
3806 catch the faults. This function is only available on IPF.
3807
3808 @param Index The 8-bit Processor Identifier Register index to read.
3809
3810 @return The current value of Processor Identifier Register specified by Index.
3811
3812**/
3813UINT64
3814EFIAPI
3815AsmReadCpuid (
3816 IN UINT8 Index
3817 );
3818
3819
3820/**
3821 Reads the current value of 64-bit Processor Status Register (PSR).
3822 This function is only available on IPF.
3823
3824 @return The current value of PSR.
3825
3826**/
3827UINT64
3828EFIAPI
3829AsmReadPsr (
3830 VOID
3831 );
3832
3833
3834/**
3835 Writes the current value of 64-bit Processor Status Register (PSR).
3836 No parameter checking is performed on Value. All bits of Value corresponding to
3837 reserved fields of PSR must be 0 or a Reserved Register/Field fault may occur. The caller must either guarantee that Value is valid, or the caller must set up fault handlers to catch the faults.
3838 This function is only available on IPF.
3839
3840 @param Value The 64-bit value to write to PSR.
3841
3842 @return The 64-bit value written to the PSR.
3843
3844**/
3845UINT64
3846EFIAPI
3847AsmWritePsr (
3848 IN UINT64 Value
3849 );
3850
3851
3852/**
3853 Reads the current value of 64-bit Kernel Register #0 (KR0).
3854 This function is only available on IPF.
3855
3856 @return The current value of KR0.
3857
3858**/
3859UINT64
3860EFIAPI
3861AsmReadKr0 (
3862 VOID
3863 );
3864
3865
3866/**
3867 Reads the current value of 64-bit Kernel Register #1 (KR1).
3868 This function is only available on IPF.
3869
3870 @return The current value of KR1.
3871
3872**/
3873UINT64
3874EFIAPI
3875AsmReadKr1 (
3876 VOID
3877 );
3878
3879
3880/**
3881 Reads the current value of 64-bit Kernel Register #2 (KR2).
3882 This function is only available on IPF.
3883
3884 @return The current value of KR2.
3885
3886**/
3887UINT64
3888EFIAPI
3889AsmReadKr2 (
3890 VOID
3891 );
3892
3893
3894/**
3895 Reads the current value of 64-bit Kernel Register #3 (KR3).
3896 This function is only available on IPF.
3897
3898 @return The current value of KR3.
3899
3900**/
3901UINT64
3902EFIAPI
3903AsmReadKr3 (
3904 VOID
3905 );
3906
3907
3908/**
3909 Reads the current value of 64-bit Kernel Register #4 (KR4).
3910 This function is only available on IPF.
3911
3912 @return The current value of KR4.
3913
3914**/
3915UINT64
3916EFIAPI
3917AsmReadKr4 (
3918 VOID
3919 );
3920
3921
3922/**
3923 Reads the current value of 64-bit Kernel Register #5 (KR5).
3924 This function is only available on IPF.
3925
3926 @return The current value of KR5.
3927
3928**/
3929UINT64
3930EFIAPI
3931AsmReadKr5 (
3932 VOID
3933 );
3934
3935
3936/**
3937 Reads the current value of 64-bit Kernel Register #6 (KR6).
3938 This function is only available on IPF.
3939
3940 @return The current value of KR6.
3941
3942**/
3943UINT64
3944EFIAPI
3945AsmReadKr6 (
3946 VOID
3947 );
3948
3949
3950/**
3951 Reads the current value of 64-bit Kernel Register #7 (KR7).
3952 This function is only available on IPF.
3953
3954 @return The current value of KR7.
3955
3956**/
3957UINT64
3958EFIAPI
3959AsmReadKr7 (
3960 VOID
3961 );
3962
3963
3964/**
3965 Write the current value of 64-bit Kernel Register #0 (KR0).
3966 This function is only available on IPF.
3967
3968 @param Value The 64-bit value to write to KR0.
3969
3970 @return The 64-bit value written to the KR0.
3971
3972**/
3973UINT64
3974EFIAPI
3975AsmWriteKr0 (
3976 IN UINT64 Value
3977 );
3978
3979
3980/**
3981 Write the current value of 64-bit Kernel Register #1 (KR1).
3982 This function is only available on IPF.
3983
3984 @param Value The 64-bit value to write to KR1.
3985
3986 @return The 64-bit value written to the KR1.
3987
3988**/
3989UINT64
3990EFIAPI
3991AsmWriteKr1 (
3992 IN UINT64 Value
3993 );
3994
3995
3996/**
3997 Write the current value of 64-bit Kernel Register #2 (KR2).
3998 This function is only available on IPF.
3999
4000 @param Value The 64-bit value to write to KR2.
4001
4002 @return The 64-bit value written to the KR2.
4003
4004**/
4005UINT64
4006EFIAPI
4007AsmWriteKr2 (
4008 IN UINT64 Value
4009 );
4010
4011
4012/**
4013 Write the current value of 64-bit Kernel Register #3 (KR3).
4014 This function is only available on IPF.
4015
4016 @param Value The 64-bit value to write to KR3.
4017
4018 @return The 64-bit value written to the KR3.
4019
4020**/
4021UINT64
4022EFIAPI
4023AsmWriteKr3 (
4024 IN UINT64 Value
4025 );
4026
4027
4028/**
4029 Write the current value of 64-bit Kernel Register #4 (KR4).
4030 This function is only available on IPF.
4031
4032 @param Value The 64-bit value to write to KR4.
4033
4034 @return The 64-bit value written to the KR4.
4035
4036**/
4037UINT64
4038EFIAPI
4039AsmWriteKr4 (
4040 IN UINT64 Value
4041 );
4042
4043
4044/**
4045 Write the current value of 64-bit Kernel Register #5 (KR5).
4046 This function is only available on IPF.
4047
4048 @param Value The 64-bit value to write to KR5.
4049
4050 @return The 64-bit value written to the KR5.
4051
4052**/
4053UINT64
4054EFIAPI
4055AsmWriteKr5 (
4056 IN UINT64 Value
4057 );
4058
4059
4060/**
4061 Write the current value of 64-bit Kernel Register #6 (KR6).
4062 This function is only available on IPF.
4063
4064 @param Value The 64-bit value to write to KR6.
4065
4066 @return The 64-bit value written to the KR6.
4067
4068**/
4069UINT64
4070EFIAPI
4071AsmWriteKr6 (
4072 IN UINT64 Value
4073 );
4074
4075
4076/**
4077 Write the current value of 64-bit Kernel Register #7 (KR7).
4078 This function is only available on IPF.
4079
4080 @param Value The 64-bit value to write to KR7.
4081
4082 @return The 64-bit value written to the KR7.
4083
4084**/
4085UINT64
4086EFIAPI
4087AsmWriteKr7 (
4088 IN UINT64 Value
4089 );
4090
4091
4092/**
4093 Reads the current value of Interval Timer Counter Register (ITC).
4094 This function is only available on IPF.
4095
4096 @return The current value of ITC.
4097
4098**/
4099UINT64
4100EFIAPI
4101AsmReadItc (
4102 VOID
4103 );
4104
4105
4106/**
4107 Reads the current value of Interval Timer Vector Register (ITV).
4108 This function is only available on IPF.
4109
4110 @return The current value of ITV.
4111
4112**/
4113UINT64
4114EFIAPI
4115AsmReadItv (
4116 VOID
4117 );
4118
4119
4120/**
4121 Reads the current value of Interval Timer Match Register (ITM).
4122 This function is only available on IPF.
4123
4124 @return The current value of ITM.
4125**/
4126UINT64
4127EFIAPI
4128AsmReadItm (
4129 VOID
4130 );
4131
4132
4133/**
4134 Writes the current value of 64-bit Interval Timer Counter Register (ITC).
4135 This function is only available on IPF.
4136
4137 @param Value The 64-bit value to write to ITC.
4138
4139 @return The 64-bit value written to the ITC.
4140
4141**/
4142UINT64
4143EFIAPI
4144AsmWriteItc (
4145 IN UINT64 Value
4146 );
4147
4148
4149/**
4150 Writes the current value of 64-bit Interval Timer Match Register (ITM).
4151 This function is only available on IPF.
4152
4153 @param Value The 64-bit value to write to ITM.
4154
4155 @return The 64-bit value written to the ITM.
4156
4157**/
4158UINT64
4159EFIAPI
4160AsmWriteItm (
4161 IN UINT64 Value
4162 );
4163
4164
4165/**
4166 Writes the current value of 64-bit Interval Timer Vector Register (ITV).
4167 No parameter checking is performed on Value. All bits of Value corresponding to
4168 reserved fields of ITV must be 0 or a Reserved Register/Field fault may occur.
4169 The caller must either guarantee that Value is valid, or the caller must set up
4170 fault handlers to catch the faults.
4171 This function is only available on IPF.
4172
4173 @param Value The 64-bit value to write to ITV.
4174
4175 @return The 64-bit value written to the ITV.
4176
4177**/
4178UINT64
4179EFIAPI
4180AsmWriteItv (
4181 IN UINT64 Value
4182 );
4183
4184
4185/**
4186 Reads the current value of Default Control Register (DCR).
4187 This function is only available on IPF.
4188
4189 @return The current value of DCR.
4190
4191**/
4192UINT64
4193EFIAPI
4194AsmReadDcr (
4195 VOID
4196 );
4197
4198
4199/**
4200 Reads the current value of Interruption Vector Address Register (IVA).
4201 This function is only available on IPF.
4202
4203 @return The current value of IVA.
4204**/
4205UINT64
4206EFIAPI
4207AsmReadIva (
4208 VOID
4209 );
4210
4211
4212/**
4213 Reads the current value of Page Table Address Register (PTA).
4214 This function is only available on IPF.
4215
4216 @return The current value of PTA.
4217
4218**/
4219UINT64
4220EFIAPI
4221AsmReadPta (
4222 VOID
4223 );
4224
4225
4226/**
4227 Writes the current value of 64-bit Default Control Register (DCR).
4228 No parameter checking is performed on Value. All bits of Value corresponding to
4229 reserved fields of DCR must be 0 or a Reserved Register/Field fault may occur.
4230 The caller must either guarantee that Value is valid, or the caller must set up
4231 fault handlers to catch the faults.
4232 This function is only available on IPF.
4233
4234 @param Value The 64-bit value to write to DCR.
4235
4236 @return The 64-bit value written to the DCR.
4237
4238**/
4239UINT64
4240EFIAPI
4241AsmWriteDcr (
4242 IN UINT64 Value
4243 );
4244
4245
4246/**
4247 Writes the current value of 64-bit Interruption Vector Address Register (IVA).
4248 The size of vector table is 32 K bytes and is 32 K bytes aligned
4249 the low 15 bits of Value is ignored when written.
4250 This function is only available on IPF.
4251
4252 @param Value The 64-bit value to write to IVA.
4253
4254 @return The 64-bit value written to the IVA.
4255
4256**/
4257UINT64
4258EFIAPI
4259AsmWriteIva (
4260 IN UINT64 Value
4261 );
4262
4263
4264/**
4265 Writes the current value of 64-bit Page Table Address Register (PTA).
4266 No parameter checking is performed on Value. All bits of Value corresponding to
4267 reserved fields of DCR must be 0 or a Reserved Register/Field fault may occur.
4268 The caller must either guarantee that Value is valid, or the caller must set up
4269 fault handlers to catch the faults.
4270 This function is only available on IPF.
4271
4272 @param Value The 64-bit value to write to PTA.
4273
4274 @return The 64-bit value written to the PTA.
4275**/
4276UINT64
4277EFIAPI
4278AsmWritePta (
4279 IN UINT64 Value
4280 );
4281
4282
4283/**
4284 Reads the current value of Local Interrupt ID Register (LID).
4285 This function is only available on IPF.
4286
4287 @return The current value of LID.
4288
4289**/
4290UINT64
4291EFIAPI
4292AsmReadLid (
4293 VOID
4294 );
4295
4296
4297/**
4298 Reads the current value of External Interrupt Vector Register (IVR).
4299 This function is only available on IPF.
4300
4301 @return The current value of IVR.
4302
4303**/
4304UINT64
4305EFIAPI
4306AsmReadIvr (
4307 VOID
4308 );
4309
4310
4311/**
4312 Reads the current value of Task Priority Register (TPR).
4313 This function is only available on IPF.
4314
4315 @return The current value of TPR.
4316
4317**/
4318UINT64
4319EFIAPI
4320AsmReadTpr (
4321 VOID
4322 );
4323
4324
4325/**
4326 Reads the current value of External Interrupt Request Register #0 (IRR0).
4327 This function is only available on IPF.
4328
4329 @return The current value of IRR0.
4330
4331**/
4332UINT64
4333EFIAPI
4334AsmReadIrr0 (
4335 VOID
4336 );
4337
4338
4339/**
4340 Reads the current value of External Interrupt Request Register #1 (IRR1).
4341 This function is only available on IPF.
4342
4343 @return The current value of IRR1.
4344
4345**/
4346UINT64
4347EFIAPI
4348AsmReadIrr1 (
4349 VOID
4350 );
4351
4352
4353/**
4354 Reads the current value of External Interrupt Request Register #2 (IRR2).
4355 This function is only available on IPF.
4356
4357 @return The current value of IRR2.
4358
4359**/
4360UINT64
4361EFIAPI
4362AsmReadIrr2 (
4363 VOID
4364 );
4365
4366
4367/**
4368 Reads the current value of External Interrupt Request Register #3 (IRR3).
4369 This function is only available on IPF.
4370
4371 @return The current value of IRR3.
4372
4373**/
4374UINT64
4375EFIAPI
4376AsmReadIrr3 (
4377 VOID
4378 );
4379
4380
4381/**
4382 Reads the current value of Performance Monitor Vector Register (PMV).
4383 This function is only available on IPF.
4384
4385 @return The current value of PMV.
4386
4387**/
4388UINT64
4389EFIAPI
4390AsmReadPmv (
4391 VOID
4392 );
4393
4394
4395/**
4396 Reads the current value of Corrected Machine Check Vector Register (CMCV).
4397 This function is only available on IPF.
4398
4399 @return The current value of CMCV.
4400
4401**/
4402UINT64
4403EFIAPI
4404AsmReadCmcv (
4405 VOID
4406 );
4407
4408
4409/**
4410 Reads the current value of Local Redirection Register #0 (LRR0).
4411 This function is only available on IPF.
4412
4413 @return The current value of LRR0.
4414
4415**/
4416UINT64
4417EFIAPI
4418AsmReadLrr0 (
4419 VOID
4420 );
4421
4422
4423/**
4424 Reads the current value of Local Redirection Register #1 (LRR1).
4425 This function is only available on IPF.
4426
4427 @return The current value of LRR1.
4428
4429**/
4430UINT64
4431EFIAPI
4432AsmReadLrr1 (
4433 VOID
4434 );
4435
4436
4437/**
4438 Writes the current value of 64-bit Page Local Interrupt ID Register (LID).
4439 No parameter checking is performed on Value. All bits of Value corresponding to
4440 reserved fields of LID must be 0 or a Reserved Register/Field fault may occur.
4441 The caller must either guarantee that Value is valid, or the caller must set up
4442 fault handlers to catch the faults.
4443 This function is only available on IPF.
4444
4445 @param Value The 64-bit value to write to LID.
4446
4447 @return The 64-bit value written to the LID.
4448
4449**/
4450UINT64
4451EFIAPI
4452AsmWriteLid (
4453 IN UINT64 Value
4454 );
4455
4456
4457/**
4458 Writes the current value of 64-bit Task Priority Register (TPR).
4459 No parameter checking is performed on Value. All bits of Value corresponding to
4460 reserved fields of TPR must be 0 or a Reserved Register/Field fault may occur.
4461 The caller must either guarantee that Value is valid, or the caller must set up
4462 fault handlers to catch the faults.
4463 This function is only available on IPF.
4464
4465 @param Value The 64-bit value to write to TPR.
4466
4467 @return The 64-bit value written to the TPR.
4468
4469**/
4470UINT64
4471EFIAPI
4472AsmWriteTpr (
4473 IN UINT64 Value
4474 );
4475
4476
4477/**
4478 Performs a write operation on End OF External Interrupt Register (EOI).
4479 Writes a value of 0 to the EOI Register. This function is only available on IPF.
4480
4481**/
4482VOID
4483EFIAPI
4484AsmWriteEoi (
4485 VOID
4486 );
4487
4488
4489/**
4490 Writes the current value of 64-bit Performance Monitor Vector Register (PMV).
4491 No parameter checking is performed on Value. All bits of Value corresponding
4492 to reserved fields of PMV must be 0 or a Reserved Register/Field fault may occur.
4493 The caller must either guarantee that Value is valid, or the caller must set up
4494 fault handlers to catch the faults.
4495 This function is only available on IPF.
4496
4497 @param Value The 64-bit value to write to PMV.
4498
4499 @return The 64-bit value written to the PMV.
4500
4501**/
4502UINT64
4503EFIAPI
4504AsmWritePmv (
4505 IN UINT64 Value
4506 );
4507
4508
4509/**
4510 Writes the current value of 64-bit Corrected Machine Check Vector Register (CMCV).
4511 No parameter checking is performed on Value. All bits of Value corresponding
4512 to reserved fields of CMCV must be 0 or a Reserved Register/Field fault may occur.
4513 The caller must either guarantee that Value is valid, or the caller must set up
4514 fault handlers to catch the faults.
4515 This function is only available on IPF.
4516
4517 @param Value The 64-bit value to write to CMCV.
4518
4519 @return The 64-bit value written to the CMCV.
4520
4521**/
4522UINT64
4523EFIAPI
4524AsmWriteCmcv (
4525 IN UINT64 Value
4526 );
4527
4528
4529/**
4530 Writes the current value of 64-bit Local Redirection Register #0 (LRR0).
4531 No parameter checking is performed on Value. All bits of Value corresponding
4532 to reserved fields of LRR0 must be 0 or a Reserved Register/Field fault may occur.
4533 The caller must either guarantee that Value is valid, or the caller must set up
4534 fault handlers to catch the faults.
4535 This function is only available on IPF.
4536
4537 @param Value The 64-bit value to write to LRR0.
4538
4539 @return The 64-bit value written to the LRR0.
4540
4541**/
4542UINT64
4543EFIAPI
4544AsmWriteLrr0 (
4545 IN UINT64 Value
4546 );
4547
4548
4549/**
4550 Writes the current value of 64-bit Local Redirection Register #1 (LRR1).
4551 No parameter checking is performed on Value. All bits of Value corresponding
4552 to reserved fields of LRR1 must be 0 or a Reserved Register/Field fault may occur.
4553 The caller must either guarantee that Value is valid, or the caller must
4554 set up fault handlers to catch the faults.
4555 This function is only available on IPF.
4556
4557 @param Value The 64-bit value to write to LRR1.
4558
4559 @return The 64-bit value written to the LRR1.
4560
4561**/
4562UINT64
4563EFIAPI
4564AsmWriteLrr1 (
4565 IN UINT64 Value
4566 );
4567
4568
4569/**
4570 Reads the current value of Instruction Breakpoint Register (IBR).
4571
4572 The Instruction Breakpoint Registers are used in pairs. The even numbered
4573 registers contain breakpoint addresses, and the odd numbered registers contain
4574 breakpoint mask conditions. At least 4 instruction registers pairs are implemented
4575 on all processor models. Implemented registers are contiguous starting with
4576 register 0. No parameter checking is performed on Index, and if the Index value
4577 is beyond the implemented IBR register range, a Reserved Register/Field fault may
4578 occur. The caller must either guarantee that Index is valid, or the caller must
4579 set up fault handlers to catch the faults.
4580 This function is only available on IPF.
4581
4582 @param Index The 8-bit Instruction Breakpoint Register index to read.
4583
4584 @return The current value of Instruction Breakpoint Register specified by Index.
4585
4586**/
4587UINT64
4588EFIAPI
4589AsmReadIbr (
4590 IN UINT8 Index
4591 );
4592
4593
4594/**
4595 Reads the current value of Data Breakpoint Register (DBR).
4596
4597 The Data Breakpoint Registers are used in pairs. The even numbered registers
4598 contain breakpoint addresses, and odd numbered registers contain breakpoint
4599 mask conditions. At least 4 data registers pairs are implemented on all processor
4600 models. Implemented registers are contiguous starting with register 0.
4601 No parameter checking is performed on Index. If the Index value is beyond
4602 the implemented DBR register range, a Reserved Register/Field fault may occur.
4603 The caller must either guarantee that Index is valid, or the caller must set up
4604 fault handlers to catch the faults.
4605 This function is only available on IPF.
4606
4607 @param Index The 8-bit Data Breakpoint Register index to read.
4608
4609 @return The current value of Data Breakpoint Register specified by Index.
4610
4611**/
4612UINT64
4613EFIAPI
4614AsmReadDbr (
4615 IN UINT8 Index
4616 );
4617
4618
4619/**
4620 Reads the current value of Performance Monitor Configuration Register (PMC).
4621
4622 All processor implementations provide at least 4 performance counters
4623 (PMC/PMD [4]...PMC/PMD [7] pairs), and 4 performance monitor counter overflow
4624