]> git.proxmox.com Git - mirror_edk2.git/blame - MdePkg/Library/BaseLib/BaseLibInternals.h
Add the AND of all architectural protocols for UEFI drivers. Build tool will optimize...
[mirror_edk2.git] / MdePkg / Library / BaseLib / BaseLibInternals.h
CommitLineData
e1f414b6 1/** @file\r
2 Declaration of internal functions in BaseLib.\r
3\r
24dcb5e5 4 Copyright (c) 2006 - 2008, Intel Corporation<BR>\r
e1f414b6 5 All rights reserved. This program and the accompanying materials\r
6 are licensed and made available under the terms and conditions of the BSD License\r
7 which accompanies this distribution. The full text of the license may be found at\r
8 http://opensource.org/licenses/bsd-license.php\r
9\r
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
12\r
e1f414b6 13**/\r
14\r
15#ifndef __BASE_LIB_INTERNALS__\r
16#define __BASE_LIB_INTERNALS__\r
17\r
f734a10a
A
18#include <Base.h>\r
19#include <Library/BaseLib.h>\r
20#include <Library/BaseMemoryLib.h>\r
21#include <Library/DebugLib.h>\r
22#include <Library/TimerLib.h>\r
23#include <Library/PcdLib.h>\r
24\r
e1f414b6 25//\r
26// Math functions\r
27//\r
28\r
29/**\r
30 Shifts a 64-bit integer left between 0 and 63 bits. The low bits\r
31 are filled with zeros. The shifted value is returned.\r
32\r
33 This function shifts the 64-bit value Operand to the left by Count bits. The\r
34 low Count bits are set to zero. The shifted value is returned.\r
35\r
36 @param Operand The 64-bit operand to shift left.\r
37 @param Count The number of bits to shift left.\r
38\r
39 @return Operand << Count\r
40\r
41**/\r
42UINT64\r
43EFIAPI\r
44InternalMathLShiftU64 (\r
45 IN UINT64 Operand,\r
46 IN UINTN Count\r
47 );\r
48\r
49/**\r
50 Shifts a 64-bit integer right between 0 and 63 bits. This high bits\r
51 are filled with zeros. The shifted value is returned.\r
52\r
53 This function shifts the 64-bit value Operand to the right by Count bits. The\r
54 high Count bits are set to zero. The shifted value is returned.\r
55\r
56 @param Operand The 64-bit operand to shift right.\r
57 @param Count The number of bits to shift right.\r
58\r
59 @return Operand >> Count\r
60\r
61**/\r
62UINT64\r
63EFIAPI\r
64InternalMathRShiftU64 (\r
65 IN UINT64 Operand,\r
66 IN UINTN Count\r
67 );\r
68\r
69/**\r
70 Shifts a 64-bit integer right between 0 and 63 bits. The high bits\r
71 are filled with original integer's bit 63. The shifted value is returned.\r
72\r
73 This function shifts the 64-bit value Operand to the right by Count bits. The\r
74 high Count bits are set to bit 63 of Operand. The shifted value is returned.\r
75\r
76 @param Operand The 64-bit operand to shift right.\r
77 @param Count The number of bits to shift right.\r
78\r
79 @return Operand arithmetically shifted right by Count\r
80\r
81**/\r
82UINT64\r
83EFIAPI\r
84InternalMathARShiftU64 (\r
85 IN UINT64 Operand,\r
86 IN UINTN Count\r
87 );\r
88\r
89/**\r
90 Rotates a 64-bit integer left between 0 and 63 bits, filling\r
91 the low bits with the high bits that were rotated.\r
92\r
93 This function rotates the 64-bit value Operand to the left by Count bits. The\r
94 low Count bits are fill with the high Count bits of Operand. The rotated\r
95 value is returned.\r
96\r
97 @param Operand The 64-bit operand to rotate left.\r
98 @param Count The number of bits to rotate left.\r
99\r
100 @return Operand <<< Count\r
101\r
102**/\r
103UINT64\r
104EFIAPI\r
105InternalMathLRotU64 (\r
106 IN UINT64 Operand,\r
107 IN UINTN Count\r
108 );\r
109\r
110/**\r
111 Rotates a 64-bit integer right between 0 and 63 bits, filling\r
112 the high bits with the high low bits that were rotated.\r
113\r
114 This function rotates the 64-bit value Operand to the right by Count bits.\r
115 The high Count bits are fill with the low Count bits of Operand. The rotated\r
116 value is returned.\r
117\r
118 @param Operand The 64-bit operand to rotate right.\r
119 @param Count The number of bits to rotate right.\r
120\r
121 @return Operand >>> Count\r
122\r
123**/\r
124UINT64\r
125EFIAPI\r
126InternalMathRRotU64 (\r
127 IN UINT64 Operand,\r
128 IN UINTN Count\r
129 );\r
130\r
131/**\r
132 Switches the endianess of a 64-bit integer.\r
133\r
134 This function swaps the bytes in a 64-bit unsigned value to switch the value\r
135 from little endian to big endian or vice versa. The byte swapped value is\r
136 returned.\r
137\r
138 @param Operand A 64-bit unsigned value.\r
139\r
24dcb5e5 140 @return The byte swapped Operand.\r
e1f414b6 141\r
142**/\r
143UINT64\r
144EFIAPI\r
145InternalMathSwapBytes64 (\r
146 IN UINT64 Operand\r
147 );\r
148\r
149/**\r
150 Multiples a 64-bit unsigned integer by a 32-bit unsigned integer\r
151 and generates a 64-bit unsigned result.\r
152\r
153 This function multiples the 64-bit unsigned value Multiplicand by the 32-bit\r
154 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-\r
155 bit unsigned result is returned.\r
156\r
157 @param Multiplicand A 64-bit unsigned value.\r
158 @param Multiplier A 32-bit unsigned value.\r
159\r
160 @return Multiplicand * Multiplier\r
161\r
162**/\r
163UINT64\r
164EFIAPI\r
165InternalMathMultU64x32 (\r
166 IN UINT64 Multiplicand,\r
167 IN UINT32 Multiplier\r
168 );\r
169\r
170/**\r
171 Multiples a 64-bit unsigned integer by a 64-bit unsigned integer\r
172 and generates a 64-bit unsigned result.\r
173\r
174 This function multiples the 64-bit unsigned value Multiplicand by the 64-bit\r
175 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-\r
176 bit unsigned result is returned.\r
177\r
178 @param Multiplicand A 64-bit unsigned value.\r
179 @param Multiplier A 64-bit unsigned value.\r
180\r
181 @return Multiplicand * Multiplier\r
182\r
183**/\r
184UINT64\r
185EFIAPI\r
186InternalMathMultU64x64 (\r
187 IN UINT64 Multiplicand,\r
188 IN UINT64 Multiplier\r
189 );\r
190\r
191/**\r
192 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and\r
193 generates a 64-bit unsigned result.\r
194\r
195 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
196 unsigned value Divisor and generates a 64-bit unsigned quotient. This\r
197 function returns the 64-bit unsigned quotient.\r
198\r
24dcb5e5 199 @param Dividend A 64-bit unsigned value.\r
e1f414b6 200 @param Divisor A 32-bit unsigned value.\r
201\r
202 @return Dividend / Divisor\r
203\r
204**/\r
205UINT64\r
206EFIAPI\r
207InternalMathDivU64x32 (\r
208 IN UINT64 Dividend,\r
209 IN UINT32 Divisor\r
210 );\r
211\r
212/**\r
213 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and\r
214 generates a 32-bit unsigned remainder.\r
215\r
216 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
217 unsigned value Divisor and generates a 32-bit remainder. This function\r
218 returns the 32-bit unsigned remainder.\r
219\r
220 @param Dividend A 64-bit unsigned value.\r
221 @param Divisor A 32-bit unsigned value.\r
222\r
223 @return Dividend % Divisor\r
224\r
225**/\r
226UINT32\r
227EFIAPI\r
228InternalMathModU64x32 (\r
229 IN UINT64 Dividend,\r
230 IN UINT32 Divisor\r
231 );\r
232\r
233/**\r
234 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and\r
235 generates a 64-bit unsigned result and an optional 32-bit unsigned remainder.\r
236\r
237 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
238 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder\r
239 is not NULL, then the 32-bit unsigned remainder is returned in Remainder.\r
240 This function returns the 64-bit unsigned quotient.\r
241\r
242 @param Dividend A 64-bit unsigned value.\r
243 @param Divisor A 32-bit unsigned value.\r
244 @param Remainder A pointer to a 32-bit unsigned value. This parameter is\r
245 optional and may be NULL.\r
246\r
247 @return Dividend / Divisor\r
248\r
249**/\r
250UINT64\r
251EFIAPI\r
252InternalMathDivRemU64x32 (\r
253 IN UINT64 Dividend,\r
254 IN UINT32 Divisor,\r
42eedea9 255 OUT UINT32 *Remainder OPTIONAL\r
e1f414b6 256 );\r
257\r
258/**\r
259 Divides a 64-bit unsigned integer by a 64-bit unsigned integer and\r
260 generates a 64-bit unsigned result and an optional 64-bit unsigned remainder.\r
261\r
262 This function divides the 64-bit unsigned value Dividend by the 64-bit\r
263 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder\r
264 is not NULL, then the 64-bit unsigned remainder is returned in Remainder.\r
265 This function returns the 64-bit unsigned quotient.\r
266\r
267 @param Dividend A 64-bit unsigned value.\r
268 @param Divisor A 64-bit unsigned value.\r
269 @param Remainder A pointer to a 64-bit unsigned value. This parameter is\r
270 optional and may be NULL.\r
271\r
272 @return Dividend / Divisor\r
273\r
274**/\r
275UINT64\r
276EFIAPI\r
277InternalMathDivRemU64x64 (\r
278 IN UINT64 Dividend,\r
279 IN UINT64 Divisor,\r
42eedea9 280 OUT UINT64 *Remainder OPTIONAL\r
e1f414b6 281 );\r
282\r
283/**\r
284 Divides a 64-bit signed integer by a 64-bit signed integer and\r
24dcb5e5 285 generates a 64-bit signed result and an optional 64-bit signed remainder.\r
e1f414b6 286\r
24dcb5e5 287 This function divides the 64-bit signed value Dividend by the 64-bit\r
288 signed value Divisor and generates a 64-bit signed quotient. If Remainder\r
289 is not NULL, then the 64-bit signed remainder is returned in Remainder.\r
290 This function returns the 64-bit signed quotient.\r
e1f414b6 291\r
292 @param Dividend A 64-bit signed value.\r
293 @param Divisor A 64-bit signed value.\r
294 @param Remainder A pointer to a 64-bit signed value. This parameter is\r
295 optional and may be NULL.\r
296\r
297 @return Dividend / Divisor\r
298\r
299**/\r
300INT64\r
38bbd3d9 301EFIAPI\r
e1f414b6 302InternalMathDivRemS64x64 (\r
303 IN INT64 Dividend,\r
304 IN INT64 Divisor,\r
305 OUT INT64 *Remainder OPTIONAL\r
7e43ed89 306 );\r
e1f414b6 307\r
308/**\r
309 Transfers control to a function starting with a new stack.\r
310\r
311 Transfers control to the function specified by EntryPoint using the\r
312 new stack specified by NewStack and passing in the parameters specified\r
313 by Context1 and Context2. Context1 and Context2 are optional and may\r
314 be NULL. The function EntryPoint must never return.\r
315 Marker will be ignored on IA-32, x64, and EBC.\r
316 IPF CPUs expect one additional parameter of type VOID * that specifies\r
317 the new backing store pointer.\r
318\r
319 If EntryPoint is NULL, then ASSERT().\r
320 If NewStack is NULL, then ASSERT().\r
321\r
322 @param EntryPoint A pointer to function to call with the new stack.\r
323 @param Context1 A pointer to the context to pass into the EntryPoint\r
324 function.\r
325 @param Context2 A pointer to the context to pass into the EntryPoint\r
326 function.\r
327 @param NewStack A pointer to the new stack to use for the EntryPoint\r
328 function.\r
329 @param Marker VA_LIST marker for the variable argument list.\r
330\r
331**/\r
332VOID\r
333EFIAPI\r
334InternalSwitchStack (\r
335 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
336 IN VOID *Context1, OPTIONAL\r
337 IN VOID *Context2, OPTIONAL\r
338 IN VOID *NewStack,\r
339 IN VA_LIST Marker\r
340 );\r
341\r
342\r
343/**\r
24dcb5e5 344 Worker function that locates the Node in the List.\r
e1f414b6 345\r
346 By searching the List, finds the location of the Node in List. At the same time,\r
347 verifies the validity of this list.\r
348\r
349 If List is NULL, then ASSERT().\r
350 If List->ForwardLink is NULL, then ASSERT().\r
351 If List->backLink is NULL, then ASSERT().\r
352 If Node is NULL, then ASSERT();\r
353 If PcdMaximumLinkedListLenth is not zero, and prior to insertion the number\r
354 of nodes in ListHead, including the ListHead node, is greater than or\r
355 equal to PcdMaximumLinkedListLength, then ASSERT().\r
356\r
357 @param List A pointer to a node in a linked list.\r
358 @param Node A pointer to one nod.\r
359\r
360 @retval TRUE Node is in List\r
361 @retval FALSE Node isn't in List, or List is invalid\r
362\r
363**/\r
364BOOLEAN\r
38bbd3d9 365EFIAPI\r
e1f414b6 366IsNodeInList (\r
367 IN CONST LIST_ENTRY *List,\r
368 IN CONST LIST_ENTRY *Node\r
369 );\r
370\r
371\r
372/**\r
373 Performs an atomic increment of an 32-bit unsigned integer.\r
374\r
375 Performs an atomic increment of the 32-bit unsigned integer specified by\r
376 Value and returns the incremented value. The increment operation must be\r
377 performed using MP safe mechanisms. The state of the return value is not\r
378 guaranteed to be MP safe.\r
379\r
380 @param Value A pointer to the 32-bit value to increment.\r
381\r
382 @return The incremented value.\r
383\r
384**/\r
385UINT32\r
386EFIAPI\r
387InternalSyncIncrement (\r
388 IN volatile UINT32 *Value\r
389 );\r
390\r
391\r
392/**\r
393 Performs an atomic decrement of an 32-bit unsigned integer.\r
394\r
395 Performs an atomic decrement of the 32-bit unsigned integer specified by\r
396 Value and returns the decrement value. The decrement operation must be\r
397 performed using MP safe mechanisms. The state of the return value is not\r
398 guaranteed to be MP safe.\r
399\r
400 @param Value A pointer to the 32-bit value to decrement.\r
401\r
402 @return The decrement value.\r
403\r
404**/\r
405UINT32\r
406EFIAPI\r
407InternalSyncDecrement (\r
408 IN volatile UINT32 *Value\r
409 );\r
410\r
411\r
412/**\r
413 Performs an atomic compare exchange operation on a 32-bit unsigned integer.\r
414\r
415 Performs an atomic compare exchange operation on the 32-bit unsigned integer\r
416 specified by Value. If Value is equal to CompareValue, then Value is set to\r
417 ExchangeValue and CompareValue is returned. If Value is not equal to CompareValue,\r
418 then Value is returned. The compare exchange operation must be performed using\r
419 MP safe mechanisms.\r
420\r
421 @param Value A pointer to the 32-bit value for the compare exchange\r
422 operation.\r
423 @param CompareValue 32-bit value used in compare operation.\r
424 @param ExchangeValue 32-bit value used in exchange operation.\r
425\r
426 @return The original *Value before exchange.\r
427\r
428**/\r
429UINT32\r
430EFIAPI\r
431InternalSyncCompareExchange32 (\r
432 IN volatile UINT32 *Value,\r
433 IN UINT32 CompareValue,\r
434 IN UINT32 ExchangeValue\r
435 );\r
436\r
437\r
438/**\r
439 Performs an atomic compare exchange operation on a 64-bit unsigned integer.\r
440\r
441 Performs an atomic compare exchange operation on the 64-bit unsigned integer specified\r
442 by Value. If Value is equal to CompareValue, then Value is set to ExchangeValue and\r
443 CompareValue is returned. If Value is not equal to CompareValue, then Value is returned.\r
444 The compare exchange operation must be performed using MP safe mechanisms.\r
445\r
446 @param Value A pointer to the 64-bit value for the compare exchange\r
447 operation.\r
448 @param CompareValue 64-bit value used in compare operation.\r
449 @param ExchangeValue 64-bit value used in exchange operation.\r
450\r
451 @return The original *Value before exchange.\r
452\r
453**/\r
454UINT64\r
455EFIAPI\r
456InternalSyncCompareExchange64 (\r
457 IN volatile UINT64 *Value,\r
458 IN UINT64 CompareValue,\r
459 IN UINT64 ExchangeValue\r
460 );\r
461\r
462\r
463/**\r
24dcb5e5 464 Worker function that returns a bit field from Operand.\r
e1f414b6 465\r
466 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
467\r
468 @param Operand Operand on which to perform the bitfield operation.\r
469 @param StartBit The ordinal of the least significant bit in the bit field.\r
470 @param EndBit The ordinal of the most significant bit in the bit field.\r
471\r
472 @return The bit field read.\r
473\r
474**/\r
28ca72bc 475UINTN\r
38bbd3d9 476EFIAPI\r
e1f414b6 477BitFieldReadUint (\r
28ca72bc 478 IN UINTN Operand,\r
e1f414b6 479 IN UINTN StartBit,\r
480 IN UINTN EndBit\r
481 );\r
482\r
483\r
484/**\r
485 Worker function that reads a bit field from Operand, performs a bitwise OR,\r
486 and returns the result.\r
487\r
488 Performs a bitwise OR between the bit field specified by StartBit and EndBit\r
489 in Operand and the value specified by AndData. All other bits in Operand are\r
490 preserved. The new value is returned.\r
491\r
492 @param Operand Operand on which to perform the bitfield operation.\r
493 @param StartBit The ordinal of the least significant bit in the bit field.\r
494 @param EndBit The ordinal of the most significant bit in the bit field.\r
495 @param OrData The value to OR with the read value from the value\r
496\r
497 @return The new value.\r
498\r
499**/\r
28ca72bc 500UINTN\r
38bbd3d9 501EFIAPI\r
e1f414b6 502BitFieldOrUint (\r
28ca72bc 503 IN UINTN Operand,\r
e1f414b6 504 IN UINTN StartBit,\r
505 IN UINTN EndBit,\r
28ca72bc 506 IN UINTN OrData\r
e1f414b6 507 );\r
508\r
509\r
510/**\r
511 Worker function that reads a bit field from Operand, performs a bitwise AND,\r
512 and returns the result.\r
513\r
514 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
515 in Operand and the value specified by AndData. All other bits in Operand are\r
516 preserved. The new value is returned.\r
517\r
518 @param Operand Operand on which to perform the bitfield operation.\r
519 @param StartBit The ordinal of the least significant bit in the bit field.\r
520 @param EndBit The ordinal of the most significant bit in the bit field.\r
521 @param AndData The value to And with the read value from the value\r
522\r
523 @return The new value.\r
524\r
525**/\r
28ca72bc 526UINTN\r
38bbd3d9 527EFIAPI\r
e1f414b6 528BitFieldAndUint (\r
28ca72bc 529 IN UINTN Operand,\r
e1f414b6 530 IN UINTN StartBit,\r
531 IN UINTN EndBit,\r
28ca72bc 532 IN UINTN AndData\r
e1f414b6 533 );\r
534\r
535\r
536/**\r
537 Worker function that checks ASSERT condition for JumpBuffer\r
538\r
539 Checks ASSERT condition for JumpBuffer.\r
540\r
541 If JumpBuffer is NULL, then ASSERT().\r
542 For IPF CPUs, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().\r
543\r
544 @param JumpBuffer A pointer to CPU context buffer.\r
545\r
546**/\r
547VOID\r
38bbd3d9 548EFIAPI\r
e1f414b6 549InternalAssertJumpBuffer (\r
550 IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer\r
551 );\r
552\r
553\r
554/**\r
555 Restores the CPU context that was saved with SetJump().\r
556\r
557 Restores the CPU context from the buffer specified by JumpBuffer.\r
558 This function never returns to the caller.\r
559 Instead is resumes execution based on the state of JumpBuffer.\r
560\r
561 @param JumpBuffer A pointer to CPU context buffer.\r
562 @param Value The value to return when the SetJump() context is restored.\r
563\r
564**/\r
565VOID\r
566EFIAPI\r
567InternalLongJump (\r
568 IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer,\r
569 IN UINTN Value\r
570 );\r
571\r
572\r
573//\r
574// Ia32 and x64 specific functions\r
575//\r
576#if defined (MDE_CPU_IA32) || defined (MDE_CPU_X64)\r
577\r
578/**\r
579 Reads the current Global Descriptor Table Register(GDTR) descriptor.\r
580\r
581 Reads and returns the current GDTR descriptor and returns it in Gdtr. This\r
582 function is only available on IA-32 and X64.\r
583\r
584 @param Gdtr Pointer to a GDTR descriptor.\r
585\r
586**/\r
587VOID\r
588EFIAPI\r
589InternalX86ReadGdtr (\r
590 OUT IA32_DESCRIPTOR *Gdtr\r
591 );\r
592\r
593/**\r
594 Writes the current Global Descriptor Table Register (GDTR) descriptor.\r
595\r
596 Writes and the current GDTR descriptor specified by Gdtr. This function is\r
597 only available on IA-32 and X64.\r
598\r
599 @param Gdtr Pointer to a GDTR descriptor.\r
600\r
601**/\r
602VOID\r
603EFIAPI\r
604InternalX86WriteGdtr (\r
605 IN CONST IA32_DESCRIPTOR *Gdtr\r
606 );\r
607\r
608/**\r
609 Reads the current Interrupt Descriptor Table Register(GDTR) descriptor.\r
610\r
611 Reads and returns the current IDTR descriptor and returns it in Idtr. This\r
612 function is only available on IA-32 and X64.\r
613\r
614 @param Idtr Pointer to a IDTR descriptor.\r
615\r
616**/\r
617VOID\r
618EFIAPI\r
619InternalX86ReadIdtr (\r
620 OUT IA32_DESCRIPTOR *Idtr\r
621 );\r
622\r
623/**\r
624 Writes the current Interrupt Descriptor Table Register(GDTR) descriptor.\r
625\r
626 Writes the current IDTR descriptor and returns it in Idtr. This function is\r
627 only available on IA-32 and X64.\r
628\r
629 @param Idtr Pointer to a IDTR descriptor.\r
630\r
631**/\r
632VOID\r
633EFIAPI\r
634InternalX86WriteIdtr (\r
635 IN CONST IA32_DESCRIPTOR *Idtr\r
636 );\r
637\r
638/**\r
639 Save the current floating point/SSE/SSE2 context to a buffer.\r
640\r
641 Saves the current floating point/SSE/SSE2 state to the buffer specified by\r
642 Buffer. Buffer must be aligned on a 16-byte boundary. This function is only\r
643 available on IA-32 and X64.\r
644\r
645 @param Buffer Pointer to a buffer to save the floating point/SSE/SSE2 context.\r
646\r
647**/\r
648VOID\r
649EFIAPI\r
650InternalX86FxSave (\r
651 OUT IA32_FX_BUFFER *Buffer\r
652 );\r
653\r
654/**\r
655 Restores the current floating point/SSE/SSE2 context from a buffer.\r
656\r
657 Restores the current floating point/SSE/SSE2 state from the buffer specified\r
658 by Buffer. Buffer must be aligned on a 16-byte boundary. This function is\r
659 only available on IA-32 and X64.\r
660\r
661 @param Buffer Pointer to a buffer to save the floating point/SSE/SSE2 context.\r
662\r
663**/\r
664VOID\r
665EFIAPI\r
666InternalX86FxRestore (\r
667 IN CONST IA32_FX_BUFFER *Buffer\r
668 );\r
669\r
670/**\r
671 Enables the 32-bit paging mode on the CPU.\r
672\r
673 Enables the 32-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables\r
674 must be properly initialized prior to calling this service. This function\r
675 assumes the current execution mode is 32-bit protected mode. This function is\r
676 only available on IA-32. After the 32-bit paging mode is enabled, control is\r
677 transferred to the function specified by EntryPoint using the new stack\r
678 specified by NewStack and passing in the parameters specified by Context1 and\r
679 Context2. Context1 and Context2 are optional and may be NULL. The function\r
680 EntryPoint must never return.\r
681\r
682 There are a number of constraints that must be followed before calling this\r
683 function:\r
684 1) Interrupts must be disabled.\r
685 2) The caller must be in 32-bit protected mode with flat descriptors. This\r
686 means all descriptors must have a base of 0 and a limit of 4GB.\r
687 3) CR0 and CR4 must be compatible with 32-bit protected mode with flat\r
688 descriptors.\r
689 4) CR3 must point to valid page tables that will be used once the transition\r
690 is complete, and those page tables must guarantee that the pages for this\r
691 function and the stack are identity mapped.\r
692\r
693 @param EntryPoint A pointer to function to call with the new stack after\r
694 paging is enabled.\r
695 @param Context1 A pointer to the context to pass into the EntryPoint\r
696 function as the first parameter after paging is enabled.\r
697 @param Context2 A pointer to the context to pass into the EntryPoint\r
698 function as the second parameter after paging is enabled.\r
699 @param NewStack A pointer to the new stack to use for the EntryPoint\r
700 function after paging is enabled.\r
701\r
702**/\r
703VOID\r
704EFIAPI\r
705InternalX86EnablePaging32 (\r
706 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
707 IN VOID *Context1, OPTIONAL\r
708 IN VOID *Context2, OPTIONAL\r
709 IN VOID *NewStack\r
710 );\r
711\r
712/**\r
713 Disables the 32-bit paging mode on the CPU.\r
714\r
715 Disables the 32-bit paging mode on the CPU and returns to 32-bit protected\r
716 mode. This function assumes the current execution mode is 32-paged protected\r
717 mode. This function is only available on IA-32. After the 32-bit paging mode\r
718 is disabled, control is transferred to the function specified by EntryPoint\r
719 using the new stack specified by NewStack and passing in the parameters\r
720 specified by Context1 and Context2. Context1 and Context2 are optional and\r
721 may be NULL. The function EntryPoint must never return.\r
722\r
723 There are a number of constraints that must be followed before calling this\r
724 function:\r
725 1) Interrupts must be disabled.\r
726 2) The caller must be in 32-bit paged mode.\r
727 3) CR0, CR3, and CR4 must be compatible with 32-bit paged mode.\r
728 4) CR3 must point to valid page tables that guarantee that the pages for\r
729 this function and the stack are identity mapped.\r
730\r
731 @param EntryPoint A pointer to function to call with the new stack after\r
732 paging is disabled.\r
733 @param Context1 A pointer to the context to pass into the EntryPoint\r
734 function as the first parameter after paging is disabled.\r
735 @param Context2 A pointer to the context to pass into the EntryPoint\r
736 function as the second parameter after paging is\r
737 disabled.\r
738 @param NewStack A pointer to the new stack to use for the EntryPoint\r
739 function after paging is disabled.\r
740\r
741**/\r
742VOID\r
743EFIAPI\r
744InternalX86DisablePaging32 (\r
745 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
746 IN VOID *Context1, OPTIONAL\r
747 IN VOID *Context2, OPTIONAL\r
748 IN VOID *NewStack\r
749 );\r
750\r
751/**\r
752 Enables the 64-bit paging mode on the CPU.\r
753\r
754 Enables the 64-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables\r
755 must be properly initialized prior to calling this service. This function\r
756 assumes the current execution mode is 32-bit protected mode with flat\r
757 descriptors. This function is only available on IA-32. After the 64-bit\r
758 paging mode is enabled, control is transferred to the function specified by\r
759 EntryPoint using the new stack specified by NewStack and passing in the\r
760 parameters specified by Context1 and Context2. Context1 and Context2 are\r
761 optional and may be 0. The function EntryPoint must never return.\r
762\r
763 @param Cs The 16-bit selector to load in the CS before EntryPoint\r
764 is called. The descriptor in the GDT that this selector\r
765 references must be setup for long mode.\r
766 @param EntryPoint The 64-bit virtual address of the function to call with\r
767 the new stack after paging is enabled.\r
768 @param Context1 The 64-bit virtual address of the context to pass into\r
769 the EntryPoint function as the first parameter after\r
770 paging is enabled.\r
771 @param Context2 The 64-bit virtual address of the context to pass into\r
772 the EntryPoint function as the second parameter after\r
773 paging is enabled.\r
774 @param NewStack The 64-bit virtual address of the new stack to use for\r
775 the EntryPoint function after paging is enabled.\r
776\r
777**/\r
778VOID\r
779EFIAPI\r
780InternalX86EnablePaging64 (\r
781 IN UINT16 Cs,\r
782 IN UINT64 EntryPoint,\r
783 IN UINT64 Context1, OPTIONAL\r
784 IN UINT64 Context2, OPTIONAL\r
785 IN UINT64 NewStack\r
786 );\r
787\r
788/**\r
789 Disables the 64-bit paging mode on the CPU.\r
790\r
791 Disables the 64-bit paging mode on the CPU and returns to 32-bit protected\r
792 mode. This function assumes the current execution mode is 64-paging mode.\r
793 This function is only available on X64. After the 64-bit paging mode is\r
794 disabled, control is transferred to the function specified by EntryPoint\r
795 using the new stack specified by NewStack and passing in the parameters\r
796 specified by Context1 and Context2. Context1 and Context2 are optional and\r
797 may be 0. The function EntryPoint must never return.\r
798\r
799 @param Cs The 16-bit selector to load in the CS before EntryPoint\r
800 is called. The descriptor in the GDT that this selector\r
801 references must be setup for 32-bit protected mode.\r
802 @param EntryPoint The 64-bit virtual address of the function to call with\r
803 the new stack after paging is disabled.\r
804 @param Context1 The 64-bit virtual address of the context to pass into\r
805 the EntryPoint function as the first parameter after\r
806 paging is disabled.\r
807 @param Context2 The 64-bit virtual address of the context to pass into\r
808 the EntryPoint function as the second parameter after\r
809 paging is disabled.\r
810 @param NewStack The 64-bit virtual address of the new stack to use for\r
811 the EntryPoint function after paging is disabled.\r
812\r
813**/\r
814VOID\r
815EFIAPI\r
816InternalX86DisablePaging64 (\r
817 IN UINT16 Cs,\r
818 IN UINT32 EntryPoint,\r
819 IN UINT32 Context1, OPTIONAL\r
820 IN UINT32 Context2, OPTIONAL\r
821 IN UINT32 NewStack\r
822 );\r
823\r
824\r
825#elif defined (MDE_CPU_IPF)\r
826//\r
827//\r
828// IPF specific functions\r
829//\r
830\r
831/**\r
832 Transfers control to a function starting with a new stack.\r
833\r
834 Transfers control to the function specified by EntryPoint using the new stack\r
835 specified by NewStack and passing in the parameters specified by Context1 and\r
836 Context2. Context1 and Context2 are optional and may be NULL. The function\r
837 EntryPoint must never return.\r
838\r
839 If EntryPoint is NULL, then ASSERT().\r
840 If NewStack is NULL, then ASSERT().\r
841\r
842 @param EntryPoint A pointer to function to call with the new stack.\r
843 @param Context1 A pointer to the context to pass into the EntryPoint\r
844 function.\r
845 @param Context2 A pointer to the context to pass into the EntryPoint\r
846 function.\r
847 @param NewStack A pointer to the new stack to use for the EntryPoint\r
848 function.\r
849 @param NewBsp A pointer to the new memory location for RSE backing\r
850 store.\r
851\r
852**/\r
853VOID\r
854EFIAPI\r
855AsmSwitchStackAndBackingStore (\r
856 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
857 IN VOID *Context1, OPTIONAL\r
858 IN VOID *Context2, OPTIONAL\r
859 IN VOID *NewStack,\r
860 IN VOID *NewBsp\r
861 );\r
862#else\r
863\r
864#endif\r
865\r
866#endif\r