]> git.proxmox.com Git - mirror_edk2.git/blame - MdePkg/Library/BaseLib/BaseLibInternals.h
MdeModulePkg: Replace BSD License with BSD+Patent License
[mirror_edk2.git] / MdePkg / Library / BaseLib / BaseLibInternals.h
CommitLineData
e1f414b6 1/** @file\r
2 Declaration of internal functions in BaseLib.\r
3\r
8c9b4950 4 Copyright (c) 2006 - 2019, Intel Corporation. All rights reserved.<BR>\r
bb817c56 5 This program and the accompanying materials\r
e1f414b6 6 are licensed and made available under the terms and conditions of the BSD License\r
7 which accompanies this distribution. The full text of the license may be found at\r
127010dd 8 http://opensource.org/licenses/bsd-license.php.\r
e1f414b6 9\r
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
12\r
e1f414b6 13**/\r
14\r
15#ifndef __BASE_LIB_INTERNALS__\r
16#define __BASE_LIB_INTERNALS__\r
17\r
f734a10a
A
18#include <Base.h>\r
19#include <Library/BaseLib.h>\r
20#include <Library/BaseMemoryLib.h>\r
21#include <Library/DebugLib.h>\r
f734a10a
A
22#include <Library/PcdLib.h>\r
23\r
e1f414b6 24//\r
25// Math functions\r
26//\r
27\r
28/**\r
29 Shifts a 64-bit integer left between 0 and 63 bits. The low bits\r
30 are filled with zeros. The shifted value is returned.\r
31\r
32 This function shifts the 64-bit value Operand to the left by Count bits. The\r
33 low Count bits are set to zero. The shifted value is returned.\r
34\r
35 @param Operand The 64-bit operand to shift left.\r
36 @param Count The number of bits to shift left.\r
37\r
38 @return Operand << Count\r
39\r
40**/\r
41UINT64\r
42EFIAPI\r
43InternalMathLShiftU64 (\r
44 IN UINT64 Operand,\r
45 IN UINTN Count\r
46 );\r
47\r
48/**\r
127010dd 49 Shifts a 64-bit integer right between 0 and 63 bits. The high bits\r
e1f414b6 50 are filled with zeros. The shifted value is returned.\r
51\r
52 This function shifts the 64-bit value Operand to the right by Count bits. The\r
53 high Count bits are set to zero. The shifted value is returned.\r
54\r
55 @param Operand The 64-bit operand to shift right.\r
56 @param Count The number of bits to shift right.\r
57\r
58 @return Operand >> Count\r
59\r
60**/\r
61UINT64\r
62EFIAPI\r
63InternalMathRShiftU64 (\r
64 IN UINT64 Operand,\r
65 IN UINTN Count\r
66 );\r
67\r
68/**\r
69 Shifts a 64-bit integer right between 0 and 63 bits. The high bits\r
70 are filled with original integer's bit 63. The shifted value is returned.\r
71\r
72 This function shifts the 64-bit value Operand to the right by Count bits. The\r
73 high Count bits are set to bit 63 of Operand. The shifted value is returned.\r
74\r
75 @param Operand The 64-bit operand to shift right.\r
76 @param Count The number of bits to shift right.\r
77\r
78 @return Operand arithmetically shifted right by Count\r
79\r
80**/\r
81UINT64\r
82EFIAPI\r
83InternalMathARShiftU64 (\r
84 IN UINT64 Operand,\r
85 IN UINTN Count\r
86 );\r
87\r
88/**\r
89 Rotates a 64-bit integer left between 0 and 63 bits, filling\r
90 the low bits with the high bits that were rotated.\r
91\r
92 This function rotates the 64-bit value Operand to the left by Count bits. The\r
127010dd 93 low Count bits are filled with the high Count bits of Operand. The rotated\r
e1f414b6 94 value is returned.\r
95\r
96 @param Operand The 64-bit operand to rotate left.\r
97 @param Count The number of bits to rotate left.\r
98\r
99 @return Operand <<< Count\r
100\r
101**/\r
102UINT64\r
103EFIAPI\r
104InternalMathLRotU64 (\r
105 IN UINT64 Operand,\r
106 IN UINTN Count\r
107 );\r
108\r
109/**\r
110 Rotates a 64-bit integer right between 0 and 63 bits, filling\r
111 the high bits with the high low bits that were rotated.\r
112\r
113 This function rotates the 64-bit value Operand to the right by Count bits.\r
127010dd 114 The high Count bits are filled with the low Count bits of Operand. The rotated\r
e1f414b6 115 value is returned.\r
116\r
117 @param Operand The 64-bit operand to rotate right.\r
118 @param Count The number of bits to rotate right.\r
119\r
120 @return Operand >>> Count\r
121\r
122**/\r
123UINT64\r
124EFIAPI\r
125InternalMathRRotU64 (\r
126 IN UINT64 Operand,\r
127 IN UINTN Count\r
128 );\r
129\r
130/**\r
131 Switches the endianess of a 64-bit integer.\r
132\r
133 This function swaps the bytes in a 64-bit unsigned value to switch the value\r
134 from little endian to big endian or vice versa. The byte swapped value is\r
135 returned.\r
136\r
137 @param Operand A 64-bit unsigned value.\r
138\r
24dcb5e5 139 @return The byte swapped Operand.\r
e1f414b6 140\r
141**/\r
142UINT64\r
143EFIAPI\r
144InternalMathSwapBytes64 (\r
145 IN UINT64 Operand\r
146 );\r
147\r
148/**\r
127010dd 149 Multiplies a 64-bit unsigned integer by a 32-bit unsigned integer\r
e1f414b6 150 and generates a 64-bit unsigned result.\r
151\r
127010dd 152 This function multiplies the 64-bit unsigned value Multiplicand by the 32-bit\r
e1f414b6 153 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-\r
154 bit unsigned result is returned.\r
155\r
156 @param Multiplicand A 64-bit unsigned value.\r
157 @param Multiplier A 32-bit unsigned value.\r
158\r
159 @return Multiplicand * Multiplier\r
160\r
161**/\r
162UINT64\r
163EFIAPI\r
164InternalMathMultU64x32 (\r
165 IN UINT64 Multiplicand,\r
166 IN UINT32 Multiplier\r
167 );\r
168\r
169/**\r
127010dd 170 Multiplies a 64-bit unsigned integer by a 64-bit unsigned integer\r
e1f414b6 171 and generates a 64-bit unsigned result.\r
172\r
173 This function multiples the 64-bit unsigned value Multiplicand by the 64-bit\r
174 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-\r
175 bit unsigned result is returned.\r
176\r
177 @param Multiplicand A 64-bit unsigned value.\r
178 @param Multiplier A 64-bit unsigned value.\r
179\r
180 @return Multiplicand * Multiplier\r
181\r
182**/\r
183UINT64\r
184EFIAPI\r
185InternalMathMultU64x64 (\r
186 IN UINT64 Multiplicand,\r
187 IN UINT64 Multiplier\r
188 );\r
189\r
190/**\r
191 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and\r
192 generates a 64-bit unsigned result.\r
193\r
194 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
195 unsigned value Divisor and generates a 64-bit unsigned quotient. This\r
196 function returns the 64-bit unsigned quotient.\r
197\r
24dcb5e5 198 @param Dividend A 64-bit unsigned value.\r
e1f414b6 199 @param Divisor A 32-bit unsigned value.\r
200\r
201 @return Dividend / Divisor\r
202\r
203**/\r
204UINT64\r
205EFIAPI\r
206InternalMathDivU64x32 (\r
207 IN UINT64 Dividend,\r
208 IN UINT32 Divisor\r
209 );\r
210\r
211/**\r
212 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and\r
213 generates a 32-bit unsigned remainder.\r
214\r
215 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
216 unsigned value Divisor and generates a 32-bit remainder. This function\r
217 returns the 32-bit unsigned remainder.\r
218\r
219 @param Dividend A 64-bit unsigned value.\r
220 @param Divisor A 32-bit unsigned value.\r
221\r
222 @return Dividend % Divisor\r
223\r
224**/\r
225UINT32\r
226EFIAPI\r
227InternalMathModU64x32 (\r
228 IN UINT64 Dividend,\r
229 IN UINT32 Divisor\r
230 );\r
231\r
232/**\r
233 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and\r
234 generates a 64-bit unsigned result and an optional 32-bit unsigned remainder.\r
235\r
236 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
237 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder\r
238 is not NULL, then the 32-bit unsigned remainder is returned in Remainder.\r
239 This function returns the 64-bit unsigned quotient.\r
240\r
241 @param Dividend A 64-bit unsigned value.\r
242 @param Divisor A 32-bit unsigned value.\r
243 @param Remainder A pointer to a 32-bit unsigned value. This parameter is\r
244 optional and may be NULL.\r
245\r
246 @return Dividend / Divisor\r
247\r
248**/\r
249UINT64\r
250EFIAPI\r
251InternalMathDivRemU64x32 (\r
252 IN UINT64 Dividend,\r
253 IN UINT32 Divisor,\r
42eedea9 254 OUT UINT32 *Remainder OPTIONAL\r
e1f414b6 255 );\r
256\r
257/**\r
258 Divides a 64-bit unsigned integer by a 64-bit unsigned integer and\r
259 generates a 64-bit unsigned result and an optional 64-bit unsigned remainder.\r
260\r
261 This function divides the 64-bit unsigned value Dividend by the 64-bit\r
262 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder\r
263 is not NULL, then the 64-bit unsigned remainder is returned in Remainder.\r
264 This function returns the 64-bit unsigned quotient.\r
265\r
266 @param Dividend A 64-bit unsigned value.\r
267 @param Divisor A 64-bit unsigned value.\r
268 @param Remainder A pointer to a 64-bit unsigned value. This parameter is\r
269 optional and may be NULL.\r
270\r
271 @return Dividend / Divisor\r
272\r
273**/\r
274UINT64\r
275EFIAPI\r
276InternalMathDivRemU64x64 (\r
277 IN UINT64 Dividend,\r
278 IN UINT64 Divisor,\r
42eedea9 279 OUT UINT64 *Remainder OPTIONAL\r
e1f414b6 280 );\r
281\r
282/**\r
283 Divides a 64-bit signed integer by a 64-bit signed integer and\r
24dcb5e5 284 generates a 64-bit signed result and an optional 64-bit signed remainder.\r
e1f414b6 285\r
24dcb5e5 286 This function divides the 64-bit signed value Dividend by the 64-bit\r
287 signed value Divisor and generates a 64-bit signed quotient. If Remainder\r
288 is not NULL, then the 64-bit signed remainder is returned in Remainder.\r
289 This function returns the 64-bit signed quotient.\r
e1f414b6 290\r
291 @param Dividend A 64-bit signed value.\r
292 @param Divisor A 64-bit signed value.\r
293 @param Remainder A pointer to a 64-bit signed value. This parameter is\r
294 optional and may be NULL.\r
295\r
296 @return Dividend / Divisor\r
297\r
298**/\r
299INT64\r
38bbd3d9 300EFIAPI\r
e1f414b6 301InternalMathDivRemS64x64 (\r
302 IN INT64 Dividend,\r
303 IN INT64 Divisor,\r
304 OUT INT64 *Remainder OPTIONAL\r
7e43ed89 305 );\r
e1f414b6 306\r
307/**\r
308 Transfers control to a function starting with a new stack.\r
309\r
310 Transfers control to the function specified by EntryPoint using the\r
311 new stack specified by NewStack and passing in the parameters specified\r
312 by Context1 and Context2. Context1 and Context2 are optional and may\r
313 be NULL. The function EntryPoint must never return.\r
314 Marker will be ignored on IA-32, x64, and EBC.\r
315 IPF CPUs expect one additional parameter of type VOID * that specifies\r
316 the new backing store pointer.\r
317\r
318 If EntryPoint is NULL, then ASSERT().\r
319 If NewStack is NULL, then ASSERT().\r
320\r
321 @param EntryPoint A pointer to function to call with the new stack.\r
322 @param Context1 A pointer to the context to pass into the EntryPoint\r
323 function.\r
324 @param Context2 A pointer to the context to pass into the EntryPoint\r
325 function.\r
326 @param NewStack A pointer to the new stack to use for the EntryPoint\r
327 function.\r
328 @param Marker VA_LIST marker for the variable argument list.\r
329\r
330**/\r
331VOID\r
332EFIAPI\r
333InternalSwitchStack (\r
334 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
335 IN VOID *Context1, OPTIONAL\r
336 IN VOID *Context2, OPTIONAL\r
337 IN VOID *NewStack,\r
338 IN VA_LIST Marker\r
339 );\r
340\r
341\r
e1f414b6 342/**\r
24dcb5e5 343 Worker function that returns a bit field from Operand.\r
e1f414b6 344\r
345 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
346\r
347 @param Operand Operand on which to perform the bitfield operation.\r
348 @param StartBit The ordinal of the least significant bit in the bit field.\r
349 @param EndBit The ordinal of the most significant bit in the bit field.\r
350\r
351 @return The bit field read.\r
352\r
353**/\r
28ca72bc 354UINTN\r
38bbd3d9 355EFIAPI\r
e1f414b6 356BitFieldReadUint (\r
28ca72bc 357 IN UINTN Operand,\r
e1f414b6 358 IN UINTN StartBit,\r
359 IN UINTN EndBit\r
360 );\r
361\r
362\r
363/**\r
364 Worker function that reads a bit field from Operand, performs a bitwise OR,\r
365 and returns the result.\r
366\r
367 Performs a bitwise OR between the bit field specified by StartBit and EndBit\r
368 in Operand and the value specified by AndData. All other bits in Operand are\r
369 preserved. The new value is returned.\r
370\r
371 @param Operand Operand on which to perform the bitfield operation.\r
372 @param StartBit The ordinal of the least significant bit in the bit field.\r
373 @param EndBit The ordinal of the most significant bit in the bit field.\r
374 @param OrData The value to OR with the read value from the value\r
375\r
376 @return The new value.\r
377\r
378**/\r
28ca72bc 379UINTN\r
38bbd3d9 380EFIAPI\r
e1f414b6 381BitFieldOrUint (\r
28ca72bc 382 IN UINTN Operand,\r
e1f414b6 383 IN UINTN StartBit,\r
384 IN UINTN EndBit,\r
28ca72bc 385 IN UINTN OrData\r
e1f414b6 386 );\r
387\r
388\r
389/**\r
390 Worker function that reads a bit field from Operand, performs a bitwise AND,\r
391 and returns the result.\r
392\r
393 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
394 in Operand and the value specified by AndData. All other bits in Operand are\r
395 preserved. The new value is returned.\r
396\r
397 @param Operand Operand on which to perform the bitfield operation.\r
398 @param StartBit The ordinal of the least significant bit in the bit field.\r
399 @param EndBit The ordinal of the most significant bit in the bit field.\r
400 @param AndData The value to And with the read value from the value\r
401\r
402 @return The new value.\r
403\r
404**/\r
28ca72bc 405UINTN\r
38bbd3d9 406EFIAPI\r
e1f414b6 407BitFieldAndUint (\r
28ca72bc 408 IN UINTN Operand,\r
e1f414b6 409 IN UINTN StartBit,\r
410 IN UINTN EndBit,\r
28ca72bc 411 IN UINTN AndData\r
e1f414b6 412 );\r
413\r
414\r
415/**\r
416 Worker function that checks ASSERT condition for JumpBuffer\r
417\r
418 Checks ASSERT condition for JumpBuffer.\r
419\r
420 If JumpBuffer is NULL, then ASSERT().\r
421 For IPF CPUs, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().\r
422\r
423 @param JumpBuffer A pointer to CPU context buffer.\r
424\r
425**/\r
426VOID\r
38bbd3d9 427EFIAPI\r
e1f414b6 428InternalAssertJumpBuffer (\r
429 IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer\r
430 );\r
431\r
432\r
433/**\r
434 Restores the CPU context that was saved with SetJump().\r
435\r
436 Restores the CPU context from the buffer specified by JumpBuffer.\r
437 This function never returns to the caller.\r
438 Instead is resumes execution based on the state of JumpBuffer.\r
439\r
440 @param JumpBuffer A pointer to CPU context buffer.\r
441 @param Value The value to return when the SetJump() context is restored.\r
442\r
443**/\r
444VOID\r
445EFIAPI\r
446InternalLongJump (\r
447 IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer,\r
448 IN UINTN Value\r
449 );\r
450\r
451\r
d8af3301
HW
452/**\r
453 Check if a Unicode character is a decimal character.\r
454\r
455 This internal function checks if a Unicode character is a\r
456 decimal character. The valid decimal character is from\r
457 L'0' to L'9'.\r
458\r
459 @param Char The character to check against.\r
460\r
461 @retval TRUE If the Char is a decmial character.\r
462 @retval FALSE If the Char is not a decmial character.\r
463\r
464**/\r
465BOOLEAN\r
466EFIAPI\r
467InternalIsDecimalDigitCharacter (\r
468 IN CHAR16 Char\r
469 );\r
470\r
471\r
d8af3301
HW
472/**\r
473 Convert a Unicode character to numerical value.\r
474\r
475 This internal function only deal with Unicode character\r
476 which maps to a valid hexadecimal ASII character, i.e.\r
477 L'0' to L'9', L'a' to L'f' or L'A' to L'F'. For other\r
478 Unicode character, the value returned does not make sense.\r
479\r
480 @param Char The character to convert.\r
481\r
482 @return The numerical value converted.\r
483\r
484**/\r
485UINTN\r
486EFIAPI\r
487InternalHexCharToUintn (\r
488 IN CHAR16 Char\r
489 );\r
490\r
491\r
492/**\r
493 Check if a Unicode character is a hexadecimal character.\r
494\r
495 This internal function checks if a Unicode character is a\r
496 decimal character. The valid hexadecimal character is\r
497 L'0' to L'9', L'a' to L'f', or L'A' to L'F'.\r
498\r
499\r
500 @param Char The character to check against.\r
501\r
502 @retval TRUE If the Char is a hexadecmial character.\r
503 @retval FALSE If the Char is not a hexadecmial character.\r
504\r
505**/\r
506BOOLEAN\r
507EFIAPI\r
508InternalIsHexaDecimalDigitCharacter (\r
509 IN CHAR16 Char\r
510 );\r
511\r
512\r
513/**\r
514 Check if a ASCII character is a decimal character.\r
515\r
516 This internal function checks if a Unicode character is a\r
517 decimal character. The valid decimal character is from\r
518 '0' to '9'.\r
519\r
520 @param Char The character to check against.\r
521\r
522 @retval TRUE If the Char is a decmial character.\r
523 @retval FALSE If the Char is not a decmial character.\r
524\r
525**/\r
526BOOLEAN\r
527EFIAPI\r
528InternalAsciiIsDecimalDigitCharacter (\r
529 IN CHAR8 Char\r
530 );\r
531\r
532\r
d8af3301
HW
533/**\r
534 Check if a ASCII character is a hexadecimal character.\r
535\r
536 This internal function checks if a ASCII character is a\r
537 decimal character. The valid hexadecimal character is\r
538 L'0' to L'9', L'a' to L'f', or L'A' to L'F'.\r
539\r
540\r
541 @param Char The character to check against.\r
542\r
543 @retval TRUE If the Char is a hexadecmial character.\r
544 @retval FALSE If the Char is not a hexadecmial character.\r
545\r
546**/\r
547BOOLEAN\r
548EFIAPI\r
549InternalAsciiIsHexaDecimalDigitCharacter (\r
550 IN CHAR8 Char\r
551 );\r
552\r
553\r
554/**\r
555 Convert a ASCII character to numerical value.\r
556\r
557 This internal function only deal with Unicode character\r
558 which maps to a valid hexadecimal ASII character, i.e.\r
559 '0' to '9', 'a' to 'f' or 'A' to 'F'. For other\r
560 ASCII character, the value returned does not make sense.\r
561\r
562 @param Char The character to convert.\r
563\r
564 @return The numerical value converted.\r
565\r
566**/\r
567UINTN\r
568EFIAPI\r
569InternalAsciiHexCharToUintn (\r
570 IN CHAR8 Char\r
571 );\r
572\r
573\r
e1f414b6 574//\r
575// Ia32 and x64 specific functions\r
576//\r
577#if defined (MDE_CPU_IA32) || defined (MDE_CPU_X64)\r
578\r
579/**\r
580 Reads the current Global Descriptor Table Register(GDTR) descriptor.\r
581\r
582 Reads and returns the current GDTR descriptor and returns it in Gdtr. This\r
030cd1a2 583 function is only available on IA-32 and x64.\r
e1f414b6 584\r
127010dd 585 @param Gdtr The pointer to a GDTR descriptor.\r
e1f414b6 586\r
587**/\r
588VOID\r
589EFIAPI\r
590InternalX86ReadGdtr (\r
591 OUT IA32_DESCRIPTOR *Gdtr\r
592 );\r
593\r
594/**\r
595 Writes the current Global Descriptor Table Register (GDTR) descriptor.\r
596\r
597 Writes and the current GDTR descriptor specified by Gdtr. This function is\r
030cd1a2 598 only available on IA-32 and x64.\r
e1f414b6 599\r
127010dd 600 @param Gdtr The pointer to a GDTR descriptor.\r
e1f414b6 601\r
602**/\r
603VOID\r
604EFIAPI\r
605InternalX86WriteGdtr (\r
606 IN CONST IA32_DESCRIPTOR *Gdtr\r
607 );\r
608\r
609/**\r
610 Reads the current Interrupt Descriptor Table Register(GDTR) descriptor.\r
611\r
612 Reads and returns the current IDTR descriptor and returns it in Idtr. This\r
030cd1a2 613 function is only available on IA-32 and x64.\r
e1f414b6 614\r
127010dd 615 @param Idtr The pointer to an IDTR descriptor.\r
e1f414b6 616\r
617**/\r
618VOID\r
619EFIAPI\r
620InternalX86ReadIdtr (\r
621 OUT IA32_DESCRIPTOR *Idtr\r
622 );\r
623\r
624/**\r
625 Writes the current Interrupt Descriptor Table Register(GDTR) descriptor.\r
626\r
627 Writes the current IDTR descriptor and returns it in Idtr. This function is\r
030cd1a2 628 only available on IA-32 and x64.\r
e1f414b6 629\r
127010dd 630 @param Idtr The pointer to an IDTR descriptor.\r
e1f414b6 631\r
632**/\r
633VOID\r
634EFIAPI\r
635InternalX86WriteIdtr (\r
636 IN CONST IA32_DESCRIPTOR *Idtr\r
637 );\r
638\r
639/**\r
640 Save the current floating point/SSE/SSE2 context to a buffer.\r
641\r
642 Saves the current floating point/SSE/SSE2 state to the buffer specified by\r
643 Buffer. Buffer must be aligned on a 16-byte boundary. This function is only\r
030cd1a2 644 available on IA-32 and x64.\r
e1f414b6 645\r
127010dd 646 @param Buffer The pointer to a buffer to save the floating point/SSE/SSE2 context.\r
e1f414b6 647\r
648**/\r
649VOID\r
650EFIAPI\r
651InternalX86FxSave (\r
652 OUT IA32_FX_BUFFER *Buffer\r
653 );\r
654\r
655/**\r
656 Restores the current floating point/SSE/SSE2 context from a buffer.\r
657\r
658 Restores the current floating point/SSE/SSE2 state from the buffer specified\r
659 by Buffer. Buffer must be aligned on a 16-byte boundary. This function is\r
030cd1a2 660 only available on IA-32 and x64.\r
e1f414b6 661\r
127010dd 662 @param Buffer The pointer to a buffer to save the floating point/SSE/SSE2 context.\r
e1f414b6 663\r
664**/\r
665VOID\r
666EFIAPI\r
667InternalX86FxRestore (\r
668 IN CONST IA32_FX_BUFFER *Buffer\r
669 );\r
670\r
671/**\r
672 Enables the 32-bit paging mode on the CPU.\r
673\r
674 Enables the 32-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables\r
675 must be properly initialized prior to calling this service. This function\r
676 assumes the current execution mode is 32-bit protected mode. This function is\r
677 only available on IA-32. After the 32-bit paging mode is enabled, control is\r
678 transferred to the function specified by EntryPoint using the new stack\r
679 specified by NewStack and passing in the parameters specified by Context1 and\r
680 Context2. Context1 and Context2 are optional and may be NULL. The function\r
681 EntryPoint must never return.\r
682\r
683 There are a number of constraints that must be followed before calling this\r
684 function:\r
685 1) Interrupts must be disabled.\r
686 2) The caller must be in 32-bit protected mode with flat descriptors. This\r
687 means all descriptors must have a base of 0 and a limit of 4GB.\r
688 3) CR0 and CR4 must be compatible with 32-bit protected mode with flat\r
689 descriptors.\r
690 4) CR3 must point to valid page tables that will be used once the transition\r
691 is complete, and those page tables must guarantee that the pages for this\r
692 function and the stack are identity mapped.\r
693\r
694 @param EntryPoint A pointer to function to call with the new stack after\r
695 paging is enabled.\r
696 @param Context1 A pointer to the context to pass into the EntryPoint\r
697 function as the first parameter after paging is enabled.\r
698 @param Context2 A pointer to the context to pass into the EntryPoint\r
699 function as the second parameter after paging is enabled.\r
700 @param NewStack A pointer to the new stack to use for the EntryPoint\r
701 function after paging is enabled.\r
702\r
703**/\r
704VOID\r
705EFIAPI\r
706InternalX86EnablePaging32 (\r
707 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
708 IN VOID *Context1, OPTIONAL\r
709 IN VOID *Context2, OPTIONAL\r
710 IN VOID *NewStack\r
711 );\r
712\r
713/**\r
714 Disables the 32-bit paging mode on the CPU.\r
715\r
716 Disables the 32-bit paging mode on the CPU and returns to 32-bit protected\r
717 mode. This function assumes the current execution mode is 32-paged protected\r
718 mode. This function is only available on IA-32. After the 32-bit paging mode\r
719 is disabled, control is transferred to the function specified by EntryPoint\r
720 using the new stack specified by NewStack and passing in the parameters\r
721 specified by Context1 and Context2. Context1 and Context2 are optional and\r
722 may be NULL. The function EntryPoint must never return.\r
723\r
724 There are a number of constraints that must be followed before calling this\r
725 function:\r
726 1) Interrupts must be disabled.\r
727 2) The caller must be in 32-bit paged mode.\r
728 3) CR0, CR3, and CR4 must be compatible with 32-bit paged mode.\r
729 4) CR3 must point to valid page tables that guarantee that the pages for\r
730 this function and the stack are identity mapped.\r
731\r
732 @param EntryPoint A pointer to function to call with the new stack after\r
733 paging is disabled.\r
734 @param Context1 A pointer to the context to pass into the EntryPoint\r
735 function as the first parameter after paging is disabled.\r
736 @param Context2 A pointer to the context to pass into the EntryPoint\r
737 function as the second parameter after paging is\r
738 disabled.\r
739 @param NewStack A pointer to the new stack to use for the EntryPoint\r
740 function after paging is disabled.\r
741\r
742**/\r
743VOID\r
744EFIAPI\r
745InternalX86DisablePaging32 (\r
746 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
747 IN VOID *Context1, OPTIONAL\r
748 IN VOID *Context2, OPTIONAL\r
749 IN VOID *NewStack\r
750 );\r
751\r
752/**\r
753 Enables the 64-bit paging mode on the CPU.\r
754\r
755 Enables the 64-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables\r
756 must be properly initialized prior to calling this service. This function\r
757 assumes the current execution mode is 32-bit protected mode with flat\r
758 descriptors. This function is only available on IA-32. After the 64-bit\r
759 paging mode is enabled, control is transferred to the function specified by\r
760 EntryPoint using the new stack specified by NewStack and passing in the\r
761 parameters specified by Context1 and Context2. Context1 and Context2 are\r
762 optional and may be 0. The function EntryPoint must never return.\r
763\r
764 @param Cs The 16-bit selector to load in the CS before EntryPoint\r
765 is called. The descriptor in the GDT that this selector\r
766 references must be setup for long mode.\r
767 @param EntryPoint The 64-bit virtual address of the function to call with\r
768 the new stack after paging is enabled.\r
769 @param Context1 The 64-bit virtual address of the context to pass into\r
770 the EntryPoint function as the first parameter after\r
771 paging is enabled.\r
772 @param Context2 The 64-bit virtual address of the context to pass into\r
773 the EntryPoint function as the second parameter after\r
774 paging is enabled.\r
775 @param NewStack The 64-bit virtual address of the new stack to use for\r
776 the EntryPoint function after paging is enabled.\r
777\r
778**/\r
779VOID\r
780EFIAPI\r
781InternalX86EnablePaging64 (\r
782 IN UINT16 Cs,\r
783 IN UINT64 EntryPoint,\r
784 IN UINT64 Context1, OPTIONAL\r
785 IN UINT64 Context2, OPTIONAL\r
786 IN UINT64 NewStack\r
787 );\r
788\r
789/**\r
790 Disables the 64-bit paging mode on the CPU.\r
791\r
792 Disables the 64-bit paging mode on the CPU and returns to 32-bit protected\r
793 mode. This function assumes the current execution mode is 64-paging mode.\r
030cd1a2 794 This function is only available on x64. After the 64-bit paging mode is\r
e1f414b6 795 disabled, control is transferred to the function specified by EntryPoint\r
796 using the new stack specified by NewStack and passing in the parameters\r
797 specified by Context1 and Context2. Context1 and Context2 are optional and\r
798 may be 0. The function EntryPoint must never return.\r
799\r
800 @param Cs The 16-bit selector to load in the CS before EntryPoint\r
801 is called. The descriptor in the GDT that this selector\r
802 references must be setup for 32-bit protected mode.\r
803 @param EntryPoint The 64-bit virtual address of the function to call with\r
804 the new stack after paging is disabled.\r
805 @param Context1 The 64-bit virtual address of the context to pass into\r
806 the EntryPoint function as the first parameter after\r
807 paging is disabled.\r
808 @param Context2 The 64-bit virtual address of the context to pass into\r
809 the EntryPoint function as the second parameter after\r
810 paging is disabled.\r
811 @param NewStack The 64-bit virtual address of the new stack to use for\r
812 the EntryPoint function after paging is disabled.\r
813\r
814**/\r
815VOID\r
816EFIAPI\r
817InternalX86DisablePaging64 (\r
818 IN UINT16 Cs,\r
819 IN UINT32 EntryPoint,\r
820 IN UINT32 Context1, OPTIONAL\r
821 IN UINT32 Context2, OPTIONAL\r
822 IN UINT32 NewStack\r
823 );\r
824\r
9ec9a7a5
QL
825/**\r
826 Generates a 16-bit random number through RDRAND instruction.\r
827\r
828 @param[out] Rand Buffer pointer to store the random result.\r
829\r
830 @retval TRUE RDRAND call was successful.\r
831 @retval FALSE Failed attempts to call RDRAND.\r
832\r
833 **/\r
834BOOLEAN\r
835EFIAPI\r
836InternalX86RdRand16 (\r
837 OUT UINT16 *Rand\r
838 );\r
839\r
840/**\r
841 Generates a 32-bit random number through RDRAND instruction.\r
842\r
843 @param[out] Rand Buffer pointer to store the random result.\r
844\r
845 @retval TRUE RDRAND call was successful.\r
846 @retval FALSE Failed attempts to call RDRAND.\r
847\r
848**/\r
849BOOLEAN\r
850EFIAPI\r
851InternalX86RdRand32 (\r
852 OUT UINT32 *Rand\r
853 );\r
854\r
855/**\r
856 Generates a 64-bit random number through RDRAND instruction.\r
857\r
858\r
859 @param[out] Rand Buffer pointer to store the random result.\r
860\r
861 @retval TRUE RDRAND call was successful.\r
862 @retval FALSE Failed attempts to call RDRAND.\r
863\r
864**/\r
865BOOLEAN\r
866EFIAPI\r
867InternalX86RdRand64 (\r
868 OUT UINT64 *Rand\r
869 );\r
870\r
e1f414b6 871#else\r
872\r
873#endif\r
874\r
875#endif\r