]> git.proxmox.com Git - mirror_edk2.git/blame - MdePkg/Library/BaseLib/BaseLibInternals.h
Removed CommonHeader.h generated file from the MdePkg.
[mirror_edk2.git] / MdePkg / Library / BaseLib / BaseLibInternals.h
CommitLineData
e1f414b6 1/** @file\r
2 Declaration of internal functions in BaseLib.\r
3\r
4 Copyright (c) 2006 - 2007, Intel Corporation<BR>\r
5 All rights reserved. This program and the accompanying materials\r
6 are licensed and made available under the terms and conditions of the BSD License\r
7 which accompanies this distribution. The full text of the license may be found at\r
8 http://opensource.org/licenses/bsd-license.php\r
9\r
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
12\r
e1f414b6 13**/\r
14\r
15#ifndef __BASE_LIB_INTERNALS__\r
16#define __BASE_LIB_INTERNALS__\r
17\r
f734a10a
A
18#include <Base.h>\r
19#include <Library/BaseLib.h>\r
20#include <Library/BaseMemoryLib.h>\r
21#include <Library/DebugLib.h>\r
22#include <Library/TimerLib.h>\r
23#include <Library/PcdLib.h>\r
24\r
e1f414b6 25\r
26#define QUIENT_MAX_UINTN_DIVIDED_BY_10 ((UINTN) -1 / 10)\r
27#define REMINDER_MAX_UINTN_DIVIDED_BY_10 ((UINTN) -1 % 10)\r
28\r
29#define QUIENT_MAX_UINTN_DIVIDED_BY_16 ((UINTN) -1 / 16)\r
30#define REMINDER_MAX_UINTN_DIVIDED_BY_16 ((UINTN) -1 % 16)\r
31\r
32#define QUIENT_MAX_UINT64_DIVIDED_BY_10 ((UINT64) -1 / 10)\r
33#define REMINDER_MAX_UINT64_DIVIDED_BY_10 ((UINT64) -1 % 10)\r
34\r
35#define QUIENT_MAX_UINT64_DIVIDED_BY_16 ((UINT64) -1 / 16)\r
36#define REMINDER_MAX_UINT64_DIVIDED_BY_16 ((UINT64) -1 % 16)\r
37\r
38//\r
39// Math functions\r
40//\r
41\r
42/**\r
43 Shifts a 64-bit integer left between 0 and 63 bits. The low bits\r
44 are filled with zeros. The shifted value is returned.\r
45\r
46 This function shifts the 64-bit value Operand to the left by Count bits. The\r
47 low Count bits are set to zero. The shifted value is returned.\r
48\r
49 @param Operand The 64-bit operand to shift left.\r
50 @param Count The number of bits to shift left.\r
51\r
52 @return Operand << Count\r
53\r
54**/\r
55UINT64\r
56EFIAPI\r
57InternalMathLShiftU64 (\r
58 IN UINT64 Operand,\r
59 IN UINTN Count\r
60 );\r
61\r
62/**\r
63 Shifts a 64-bit integer right between 0 and 63 bits. This high bits\r
64 are filled with zeros. The shifted value is returned.\r
65\r
66 This function shifts the 64-bit value Operand to the right by Count bits. The\r
67 high Count bits are set to zero. The shifted value is returned.\r
68\r
69 @param Operand The 64-bit operand to shift right.\r
70 @param Count The number of bits to shift right.\r
71\r
72 @return Operand >> Count\r
73\r
74**/\r
75UINT64\r
76EFIAPI\r
77InternalMathRShiftU64 (\r
78 IN UINT64 Operand,\r
79 IN UINTN Count\r
80 );\r
81\r
82/**\r
83 Shifts a 64-bit integer right between 0 and 63 bits. The high bits\r
84 are filled with original integer's bit 63. The shifted value is returned.\r
85\r
86 This function shifts the 64-bit value Operand to the right by Count bits. The\r
87 high Count bits are set to bit 63 of Operand. The shifted value is returned.\r
88\r
89 @param Operand The 64-bit operand to shift right.\r
90 @param Count The number of bits to shift right.\r
91\r
92 @return Operand arithmetically shifted right by Count\r
93\r
94**/\r
95UINT64\r
96EFIAPI\r
97InternalMathARShiftU64 (\r
98 IN UINT64 Operand,\r
99 IN UINTN Count\r
100 );\r
101\r
102/**\r
103 Rotates a 64-bit integer left between 0 and 63 bits, filling\r
104 the low bits with the high bits that were rotated.\r
105\r
106 This function rotates the 64-bit value Operand to the left by Count bits. The\r
107 low Count bits are fill with the high Count bits of Operand. The rotated\r
108 value is returned.\r
109\r
110 @param Operand The 64-bit operand to rotate left.\r
111 @param Count The number of bits to rotate left.\r
112\r
113 @return Operand <<< Count\r
114\r
115**/\r
116UINT64\r
117EFIAPI\r
118InternalMathLRotU64 (\r
119 IN UINT64 Operand,\r
120 IN UINTN Count\r
121 );\r
122\r
123/**\r
124 Rotates a 64-bit integer right between 0 and 63 bits, filling\r
125 the high bits with the high low bits that were rotated.\r
126\r
127 This function rotates the 64-bit value Operand to the right by Count bits.\r
128 The high Count bits are fill with the low Count bits of Operand. The rotated\r
129 value is returned.\r
130\r
131 @param Operand The 64-bit operand to rotate right.\r
132 @param Count The number of bits to rotate right.\r
133\r
134 @return Operand >>> Count\r
135\r
136**/\r
137UINT64\r
138EFIAPI\r
139InternalMathRRotU64 (\r
140 IN UINT64 Operand,\r
141 IN UINTN Count\r
142 );\r
143\r
144/**\r
145 Switches the endianess of a 64-bit integer.\r
146\r
147 This function swaps the bytes in a 64-bit unsigned value to switch the value\r
148 from little endian to big endian or vice versa. The byte swapped value is\r
149 returned.\r
150\r
151 @param Operand A 64-bit unsigned value.\r
152\r
153 @return The byte swaped Operand.\r
154\r
155**/\r
156UINT64\r
157EFIAPI\r
158InternalMathSwapBytes64 (\r
159 IN UINT64 Operand\r
160 );\r
161\r
162/**\r
163 Multiples a 64-bit unsigned integer by a 32-bit unsigned integer\r
164 and generates a 64-bit unsigned result.\r
165\r
166 This function multiples the 64-bit unsigned value Multiplicand by the 32-bit\r
167 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-\r
168 bit unsigned result is returned.\r
169\r
170 @param Multiplicand A 64-bit unsigned value.\r
171 @param Multiplier A 32-bit unsigned value.\r
172\r
173 @return Multiplicand * Multiplier\r
174\r
175**/\r
176UINT64\r
177EFIAPI\r
178InternalMathMultU64x32 (\r
179 IN UINT64 Multiplicand,\r
180 IN UINT32 Multiplier\r
181 );\r
182\r
183/**\r
184 Multiples a 64-bit unsigned integer by a 64-bit unsigned integer\r
185 and generates a 64-bit unsigned result.\r
186\r
187 This function multiples the 64-bit unsigned value Multiplicand by the 64-bit\r
188 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-\r
189 bit unsigned result is returned.\r
190\r
191 @param Multiplicand A 64-bit unsigned value.\r
192 @param Multiplier A 64-bit unsigned value.\r
193\r
194 @return Multiplicand * Multiplier\r
195\r
196**/\r
197UINT64\r
198EFIAPI\r
199InternalMathMultU64x64 (\r
200 IN UINT64 Multiplicand,\r
201 IN UINT64 Multiplier\r
202 );\r
203\r
204/**\r
205 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and\r
206 generates a 64-bit unsigned result.\r
207\r
208 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
209 unsigned value Divisor and generates a 64-bit unsigned quotient. This\r
210 function returns the 64-bit unsigned quotient.\r
211\r
212 @param Dividend A 64-bit unsigned value.\r
213 @param Divisor A 32-bit unsigned value.\r
214\r
215 @return Dividend / Divisor\r
216\r
217**/\r
218UINT64\r
219EFIAPI\r
220InternalMathDivU64x32 (\r
221 IN UINT64 Dividend,\r
222 IN UINT32 Divisor\r
223 );\r
224\r
225/**\r
226 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and\r
227 generates a 32-bit unsigned remainder.\r
228\r
229 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
230 unsigned value Divisor and generates a 32-bit remainder. This function\r
231 returns the 32-bit unsigned remainder.\r
232\r
233 @param Dividend A 64-bit unsigned value.\r
234 @param Divisor A 32-bit unsigned value.\r
235\r
236 @return Dividend % Divisor\r
237\r
238**/\r
239UINT32\r
240EFIAPI\r
241InternalMathModU64x32 (\r
242 IN UINT64 Dividend,\r
243 IN UINT32 Divisor\r
244 );\r
245\r
246/**\r
247 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and\r
248 generates a 64-bit unsigned result and an optional 32-bit unsigned remainder.\r
249\r
250 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
251 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder\r
252 is not NULL, then the 32-bit unsigned remainder is returned in Remainder.\r
253 This function returns the 64-bit unsigned quotient.\r
254\r
255 @param Dividend A 64-bit unsigned value.\r
256 @param Divisor A 32-bit unsigned value.\r
257 @param Remainder A pointer to a 32-bit unsigned value. This parameter is\r
258 optional and may be NULL.\r
259\r
260 @return Dividend / Divisor\r
261\r
262**/\r
263UINT64\r
264EFIAPI\r
265InternalMathDivRemU64x32 (\r
266 IN UINT64 Dividend,\r
267 IN UINT32 Divisor,\r
268 OUT UINT32 *Remainder\r
269 );\r
270\r
271/**\r
272 Divides a 64-bit unsigned integer by a 64-bit unsigned integer and\r
273 generates a 64-bit unsigned result and an optional 64-bit unsigned remainder.\r
274\r
275 This function divides the 64-bit unsigned value Dividend by the 64-bit\r
276 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder\r
277 is not NULL, then the 64-bit unsigned remainder is returned in Remainder.\r
278 This function returns the 64-bit unsigned quotient.\r
279\r
280 @param Dividend A 64-bit unsigned value.\r
281 @param Divisor A 64-bit unsigned value.\r
282 @param Remainder A pointer to a 64-bit unsigned value. This parameter is\r
283 optional and may be NULL.\r
284\r
285 @return Dividend / Divisor\r
286\r
287**/\r
288UINT64\r
289EFIAPI\r
290InternalMathDivRemU64x64 (\r
291 IN UINT64 Dividend,\r
292 IN UINT64 Divisor,\r
293 OUT UINT64 *Remainder\r
294 );\r
295\r
296/**\r
297 Divides a 64-bit signed integer by a 64-bit signed integer and\r
298 generates a 64-bit signed result and a optional 64-bit signed remainder.\r
299\r
300 This function divides the 64-bit unsigned value Dividend by the 64-bit\r
301 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder\r
302 is not NULL, then the 64-bit unsigned remainder is returned in Remainder.\r
303 This function returns the 64-bit unsigned quotient.\r
304\r
305 @param Dividend A 64-bit signed value.\r
306 @param Divisor A 64-bit signed value.\r
307 @param Remainder A pointer to a 64-bit signed value. This parameter is\r
308 optional and may be NULL.\r
309\r
310 @return Dividend / Divisor\r
311\r
312**/\r
313INT64\r
314InternalMathDivRemS64x64 (\r
315 IN INT64 Dividend,\r
316 IN INT64 Divisor,\r
317 OUT INT64 *Remainder OPTIONAL\r
318 );\r
319\r
320/**\r
321 Transfers control to a function starting with a new stack.\r
322\r
323 Transfers control to the function specified by EntryPoint using the\r
324 new stack specified by NewStack and passing in the parameters specified\r
325 by Context1 and Context2. Context1 and Context2 are optional and may\r
326 be NULL. The function EntryPoint must never return.\r
327 Marker will be ignored on IA-32, x64, and EBC.\r
328 IPF CPUs expect one additional parameter of type VOID * that specifies\r
329 the new backing store pointer.\r
330\r
331 If EntryPoint is NULL, then ASSERT().\r
332 If NewStack is NULL, then ASSERT().\r
333\r
334 @param EntryPoint A pointer to function to call with the new stack.\r
335 @param Context1 A pointer to the context to pass into the EntryPoint\r
336 function.\r
337 @param Context2 A pointer to the context to pass into the EntryPoint\r
338 function.\r
339 @param NewStack A pointer to the new stack to use for the EntryPoint\r
340 function.\r
341 @param Marker VA_LIST marker for the variable argument list.\r
342\r
343**/\r
344VOID\r
345EFIAPI\r
346InternalSwitchStack (\r
347 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
348 IN VOID *Context1, OPTIONAL\r
349 IN VOID *Context2, OPTIONAL\r
350 IN VOID *NewStack,\r
351 IN VA_LIST Marker\r
352 );\r
353\r
354\r
355/**\r
356 Worker function that locates the Node in the List\r
357\r
358 By searching the List, finds the location of the Node in List. At the same time,\r
359 verifies the validity of this list.\r
360\r
361 If List is NULL, then ASSERT().\r
362 If List->ForwardLink is NULL, then ASSERT().\r
363 If List->backLink is NULL, then ASSERT().\r
364 If Node is NULL, then ASSERT();\r
365 If PcdMaximumLinkedListLenth is not zero, and prior to insertion the number\r
366 of nodes in ListHead, including the ListHead node, is greater than or\r
367 equal to PcdMaximumLinkedListLength, then ASSERT().\r
368\r
369 @param List A pointer to a node in a linked list.\r
370 @param Node A pointer to one nod.\r
371\r
372 @retval TRUE Node is in List\r
373 @retval FALSE Node isn't in List, or List is invalid\r
374\r
375**/\r
376BOOLEAN\r
377IsNodeInList (\r
378 IN CONST LIST_ENTRY *List,\r
379 IN CONST LIST_ENTRY *Node\r
380 );\r
381\r
382\r
383/**\r
384 Performs an atomic increment of an 32-bit unsigned integer.\r
385\r
386 Performs an atomic increment of the 32-bit unsigned integer specified by\r
387 Value and returns the incremented value. The increment operation must be\r
388 performed using MP safe mechanisms. The state of the return value is not\r
389 guaranteed to be MP safe.\r
390\r
391 @param Value A pointer to the 32-bit value to increment.\r
392\r
393 @return The incremented value.\r
394\r
395**/\r
396UINT32\r
397EFIAPI\r
398InternalSyncIncrement (\r
399 IN volatile UINT32 *Value\r
400 );\r
401\r
402\r
403/**\r
404 Performs an atomic decrement of an 32-bit unsigned integer.\r
405\r
406 Performs an atomic decrement of the 32-bit unsigned integer specified by\r
407 Value and returns the decrement value. The decrement operation must be\r
408 performed using MP safe mechanisms. The state of the return value is not\r
409 guaranteed to be MP safe.\r
410\r
411 @param Value A pointer to the 32-bit value to decrement.\r
412\r
413 @return The decrement value.\r
414\r
415**/\r
416UINT32\r
417EFIAPI\r
418InternalSyncDecrement (\r
419 IN volatile UINT32 *Value\r
420 );\r
421\r
422\r
423/**\r
424 Performs an atomic compare exchange operation on a 32-bit unsigned integer.\r
425\r
426 Performs an atomic compare exchange operation on the 32-bit unsigned integer\r
427 specified by Value. If Value is equal to CompareValue, then Value is set to\r
428 ExchangeValue and CompareValue is returned. If Value is not equal to CompareValue,\r
429 then Value is returned. The compare exchange operation must be performed using\r
430 MP safe mechanisms.\r
431\r
432 @param Value A pointer to the 32-bit value for the compare exchange\r
433 operation.\r
434 @param CompareValue 32-bit value used in compare operation.\r
435 @param ExchangeValue 32-bit value used in exchange operation.\r
436\r
437 @return The original *Value before exchange.\r
438\r
439**/\r
440UINT32\r
441EFIAPI\r
442InternalSyncCompareExchange32 (\r
443 IN volatile UINT32 *Value,\r
444 IN UINT32 CompareValue,\r
445 IN UINT32 ExchangeValue\r
446 );\r
447\r
448\r
449/**\r
450 Performs an atomic compare exchange operation on a 64-bit unsigned integer.\r
451\r
452 Performs an atomic compare exchange operation on the 64-bit unsigned integer specified\r
453 by Value. If Value is equal to CompareValue, then Value is set to ExchangeValue and\r
454 CompareValue is returned. If Value is not equal to CompareValue, then Value is returned.\r
455 The compare exchange operation must be performed using MP safe mechanisms.\r
456\r
457 @param Value A pointer to the 64-bit value for the compare exchange\r
458 operation.\r
459 @param CompareValue 64-bit value used in compare operation.\r
460 @param ExchangeValue 64-bit value used in exchange operation.\r
461\r
462 @return The original *Value before exchange.\r
463\r
464**/\r
465UINT64\r
466EFIAPI\r
467InternalSyncCompareExchange64 (\r
468 IN volatile UINT64 *Value,\r
469 IN UINT64 CompareValue,\r
470 IN UINT64 ExchangeValue\r
471 );\r
472\r
473\r
474/**\r
475 Worker function that returns a bit field from Operand\r
476\r
477 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
478\r
479 @param Operand Operand on which to perform the bitfield operation.\r
480 @param StartBit The ordinal of the least significant bit in the bit field.\r
481 @param EndBit The ordinal of the most significant bit in the bit field.\r
482\r
483 @return The bit field read.\r
484\r
485**/\r
486unsigned int\r
487BitFieldReadUint (\r
488 IN unsigned int Operand,\r
489 IN UINTN StartBit,\r
490 IN UINTN EndBit\r
491 );\r
492\r
493\r
494/**\r
495 Worker function that reads a bit field from Operand, performs a bitwise OR,\r
496 and returns the result.\r
497\r
498 Performs a bitwise OR between the bit field specified by StartBit and EndBit\r
499 in Operand and the value specified by AndData. All other bits in Operand are\r
500 preserved. The new value is returned.\r
501\r
502 @param Operand Operand on which to perform the bitfield operation.\r
503 @param StartBit The ordinal of the least significant bit in the bit field.\r
504 @param EndBit The ordinal of the most significant bit in the bit field.\r
505 @param OrData The value to OR with the read value from the value\r
506\r
507 @return The new value.\r
508\r
509**/\r
510unsigned int\r
511BitFieldOrUint (\r
512 IN unsigned int Operand,\r
513 IN UINTN StartBit,\r
514 IN UINTN EndBit,\r
515 IN unsigned int OrData\r
516 );\r
517\r
518\r
519/**\r
520 Worker function that reads a bit field from Operand, performs a bitwise AND,\r
521 and returns the result.\r
522\r
523 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
524 in Operand and the value specified by AndData. All other bits in Operand are\r
525 preserved. The new value is returned.\r
526\r
527 @param Operand Operand on which to perform the bitfield operation.\r
528 @param StartBit The ordinal of the least significant bit in the bit field.\r
529 @param EndBit The ordinal of the most significant bit in the bit field.\r
530 @param AndData The value to And with the read value from the value\r
531\r
532 @return The new value.\r
533\r
534**/\r
535unsigned int\r
536BitFieldAndUint (\r
537 IN unsigned int Operand,\r
538 IN UINTN StartBit,\r
539 IN UINTN EndBit,\r
540 IN unsigned int AndData\r
541 );\r
542\r
543\r
544/**\r
545 Worker function that checks ASSERT condition for JumpBuffer\r
546\r
547 Checks ASSERT condition for JumpBuffer.\r
548\r
549 If JumpBuffer is NULL, then ASSERT().\r
550 For IPF CPUs, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().\r
551\r
552 @param JumpBuffer A pointer to CPU context buffer.\r
553\r
554**/\r
555VOID\r
556InternalAssertJumpBuffer (\r
557 IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer\r
558 );\r
559\r
560\r
561/**\r
562 Restores the CPU context that was saved with SetJump().\r
563\r
564 Restores the CPU context from the buffer specified by JumpBuffer.\r
565 This function never returns to the caller.\r
566 Instead is resumes execution based on the state of JumpBuffer.\r
567\r
568 @param JumpBuffer A pointer to CPU context buffer.\r
569 @param Value The value to return when the SetJump() context is restored.\r
570\r
571**/\r
572VOID\r
573EFIAPI\r
574InternalLongJump (\r
575 IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer,\r
576 IN UINTN Value\r
577 );\r
578\r
579\r
580//\r
581// Ia32 and x64 specific functions\r
582//\r
583#if defined (MDE_CPU_IA32) || defined (MDE_CPU_X64)\r
584\r
585/**\r
586 Reads the current Global Descriptor Table Register(GDTR) descriptor.\r
587\r
588 Reads and returns the current GDTR descriptor and returns it in Gdtr. This\r
589 function is only available on IA-32 and X64.\r
590\r
591 @param Gdtr Pointer to a GDTR descriptor.\r
592\r
593**/\r
594VOID\r
595EFIAPI\r
596InternalX86ReadGdtr (\r
597 OUT IA32_DESCRIPTOR *Gdtr\r
598 );\r
599\r
600/**\r
601 Writes the current Global Descriptor Table Register (GDTR) descriptor.\r
602\r
603 Writes and the current GDTR descriptor specified by Gdtr. This function is\r
604 only available on IA-32 and X64.\r
605\r
606 @param Gdtr Pointer to a GDTR descriptor.\r
607\r
608**/\r
609VOID\r
610EFIAPI\r
611InternalX86WriteGdtr (\r
612 IN CONST IA32_DESCRIPTOR *Gdtr\r
613 );\r
614\r
615/**\r
616 Reads the current Interrupt Descriptor Table Register(GDTR) descriptor.\r
617\r
618 Reads and returns the current IDTR descriptor and returns it in Idtr. This\r
619 function is only available on IA-32 and X64.\r
620\r
621 @param Idtr Pointer to a IDTR descriptor.\r
622\r
623**/\r
624VOID\r
625EFIAPI\r
626InternalX86ReadIdtr (\r
627 OUT IA32_DESCRIPTOR *Idtr\r
628 );\r
629\r
630/**\r
631 Writes the current Interrupt Descriptor Table Register(GDTR) descriptor.\r
632\r
633 Writes the current IDTR descriptor and returns it in Idtr. This function is\r
634 only available on IA-32 and X64.\r
635\r
636 @param Idtr Pointer to a IDTR descriptor.\r
637\r
638**/\r
639VOID\r
640EFIAPI\r
641InternalX86WriteIdtr (\r
642 IN CONST IA32_DESCRIPTOR *Idtr\r
643 );\r
644\r
645/**\r
646 Save the current floating point/SSE/SSE2 context to a buffer.\r
647\r
648 Saves the current floating point/SSE/SSE2 state to the buffer specified by\r
649 Buffer. Buffer must be aligned on a 16-byte boundary. This function is only\r
650 available on IA-32 and X64.\r
651\r
652 @param Buffer Pointer to a buffer to save the floating point/SSE/SSE2 context.\r
653\r
654**/\r
655VOID\r
656EFIAPI\r
657InternalX86FxSave (\r
658 OUT IA32_FX_BUFFER *Buffer\r
659 );\r
660\r
661/**\r
662 Restores the current floating point/SSE/SSE2 context from a buffer.\r
663\r
664 Restores the current floating point/SSE/SSE2 state from the buffer specified\r
665 by Buffer. Buffer must be aligned on a 16-byte boundary. This function is\r
666 only available on IA-32 and X64.\r
667\r
668 @param Buffer Pointer to a buffer to save the floating point/SSE/SSE2 context.\r
669\r
670**/\r
671VOID\r
672EFIAPI\r
673InternalX86FxRestore (\r
674 IN CONST IA32_FX_BUFFER *Buffer\r
675 );\r
676\r
677/**\r
678 Enables the 32-bit paging mode on the CPU.\r
679\r
680 Enables the 32-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables\r
681 must be properly initialized prior to calling this service. This function\r
682 assumes the current execution mode is 32-bit protected mode. This function is\r
683 only available on IA-32. After the 32-bit paging mode is enabled, control is\r
684 transferred to the function specified by EntryPoint using the new stack\r
685 specified by NewStack and passing in the parameters specified by Context1 and\r
686 Context2. Context1 and Context2 are optional and may be NULL. The function\r
687 EntryPoint must never return.\r
688\r
689 There are a number of constraints that must be followed before calling this\r
690 function:\r
691 1) Interrupts must be disabled.\r
692 2) The caller must be in 32-bit protected mode with flat descriptors. This\r
693 means all descriptors must have a base of 0 and a limit of 4GB.\r
694 3) CR0 and CR4 must be compatible with 32-bit protected mode with flat\r
695 descriptors.\r
696 4) CR3 must point to valid page tables that will be used once the transition\r
697 is complete, and those page tables must guarantee that the pages for this\r
698 function and the stack are identity mapped.\r
699\r
700 @param EntryPoint A pointer to function to call with the new stack after\r
701 paging is enabled.\r
702 @param Context1 A pointer to the context to pass into the EntryPoint\r
703 function as the first parameter after paging is enabled.\r
704 @param Context2 A pointer to the context to pass into the EntryPoint\r
705 function as the second parameter after paging is enabled.\r
706 @param NewStack A pointer to the new stack to use for the EntryPoint\r
707 function after paging is enabled.\r
708\r
709**/\r
710VOID\r
711EFIAPI\r
712InternalX86EnablePaging32 (\r
713 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
714 IN VOID *Context1, OPTIONAL\r
715 IN VOID *Context2, OPTIONAL\r
716 IN VOID *NewStack\r
717 );\r
718\r
719/**\r
720 Disables the 32-bit paging mode on the CPU.\r
721\r
722 Disables the 32-bit paging mode on the CPU and returns to 32-bit protected\r
723 mode. This function assumes the current execution mode is 32-paged protected\r
724 mode. This function is only available on IA-32. After the 32-bit paging mode\r
725 is disabled, control is transferred to the function specified by EntryPoint\r
726 using the new stack specified by NewStack and passing in the parameters\r
727 specified by Context1 and Context2. Context1 and Context2 are optional and\r
728 may be NULL. The function EntryPoint must never return.\r
729\r
730 There are a number of constraints that must be followed before calling this\r
731 function:\r
732 1) Interrupts must be disabled.\r
733 2) The caller must be in 32-bit paged mode.\r
734 3) CR0, CR3, and CR4 must be compatible with 32-bit paged mode.\r
735 4) CR3 must point to valid page tables that guarantee that the pages for\r
736 this function and the stack are identity mapped.\r
737\r
738 @param EntryPoint A pointer to function to call with the new stack after\r
739 paging is disabled.\r
740 @param Context1 A pointer to the context to pass into the EntryPoint\r
741 function as the first parameter after paging is disabled.\r
742 @param Context2 A pointer to the context to pass into the EntryPoint\r
743 function as the second parameter after paging is\r
744 disabled.\r
745 @param NewStack A pointer to the new stack to use for the EntryPoint\r
746 function after paging is disabled.\r
747\r
748**/\r
749VOID\r
750EFIAPI\r
751InternalX86DisablePaging32 (\r
752 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
753 IN VOID *Context1, OPTIONAL\r
754 IN VOID *Context2, OPTIONAL\r
755 IN VOID *NewStack\r
756 );\r
757\r
758/**\r
759 Enables the 64-bit paging mode on the CPU.\r
760\r
761 Enables the 64-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables\r
762 must be properly initialized prior to calling this service. This function\r
763 assumes the current execution mode is 32-bit protected mode with flat\r
764 descriptors. This function is only available on IA-32. After the 64-bit\r
765 paging mode is enabled, control is transferred to the function specified by\r
766 EntryPoint using the new stack specified by NewStack and passing in the\r
767 parameters specified by Context1 and Context2. Context1 and Context2 are\r
768 optional and may be 0. The function EntryPoint must never return.\r
769\r
770 @param Cs The 16-bit selector to load in the CS before EntryPoint\r
771 is called. The descriptor in the GDT that this selector\r
772 references must be setup for long mode.\r
773 @param EntryPoint The 64-bit virtual address of the function to call with\r
774 the new stack after paging is enabled.\r
775 @param Context1 The 64-bit virtual address of the context to pass into\r
776 the EntryPoint function as the first parameter after\r
777 paging is enabled.\r
778 @param Context2 The 64-bit virtual address of the context to pass into\r
779 the EntryPoint function as the second parameter after\r
780 paging is enabled.\r
781 @param NewStack The 64-bit virtual address of the new stack to use for\r
782 the EntryPoint function after paging is enabled.\r
783\r
784**/\r
785VOID\r
786EFIAPI\r
787InternalX86EnablePaging64 (\r
788 IN UINT16 Cs,\r
789 IN UINT64 EntryPoint,\r
790 IN UINT64 Context1, OPTIONAL\r
791 IN UINT64 Context2, OPTIONAL\r
792 IN UINT64 NewStack\r
793 );\r
794\r
795/**\r
796 Disables the 64-bit paging mode on the CPU.\r
797\r
798 Disables the 64-bit paging mode on the CPU and returns to 32-bit protected\r
799 mode. This function assumes the current execution mode is 64-paging mode.\r
800 This function is only available on X64. After the 64-bit paging mode is\r
801 disabled, control is transferred to the function specified by EntryPoint\r
802 using the new stack specified by NewStack and passing in the parameters\r
803 specified by Context1 and Context2. Context1 and Context2 are optional and\r
804 may be 0. The function EntryPoint must never return.\r
805\r
806 @param Cs The 16-bit selector to load in the CS before EntryPoint\r
807 is called. The descriptor in the GDT that this selector\r
808 references must be setup for 32-bit protected mode.\r
809 @param EntryPoint The 64-bit virtual address of the function to call with\r
810 the new stack after paging is disabled.\r
811 @param Context1 The 64-bit virtual address of the context to pass into\r
812 the EntryPoint function as the first parameter after\r
813 paging is disabled.\r
814 @param Context2 The 64-bit virtual address of the context to pass into\r
815 the EntryPoint function as the second parameter after\r
816 paging is disabled.\r
817 @param NewStack The 64-bit virtual address of the new stack to use for\r
818 the EntryPoint function after paging is disabled.\r
819\r
820**/\r
821VOID\r
822EFIAPI\r
823InternalX86DisablePaging64 (\r
824 IN UINT16 Cs,\r
825 IN UINT32 EntryPoint,\r
826 IN UINT32 Context1, OPTIONAL\r
827 IN UINT32 Context2, OPTIONAL\r
828 IN UINT32 NewStack\r
829 );\r
830\r
831\r
832#elif defined (MDE_CPU_IPF)\r
833//\r
834//\r
835// IPF specific functions\r
836//\r
837\r
838/**\r
839 Transfers control to a function starting with a new stack.\r
840\r
841 Transfers control to the function specified by EntryPoint using the new stack\r
842 specified by NewStack and passing in the parameters specified by Context1 and\r
843 Context2. Context1 and Context2 are optional and may be NULL. The function\r
844 EntryPoint must never return.\r
845\r
846 If EntryPoint is NULL, then ASSERT().\r
847 If NewStack is NULL, then ASSERT().\r
848\r
849 @param EntryPoint A pointer to function to call with the new stack.\r
850 @param Context1 A pointer to the context to pass into the EntryPoint\r
851 function.\r
852 @param Context2 A pointer to the context to pass into the EntryPoint\r
853 function.\r
854 @param NewStack A pointer to the new stack to use for the EntryPoint\r
855 function.\r
856 @param NewBsp A pointer to the new memory location for RSE backing\r
857 store.\r
858\r
859**/\r
860VOID\r
861EFIAPI\r
862AsmSwitchStackAndBackingStore (\r
863 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
864 IN VOID *Context1, OPTIONAL\r
865 IN VOID *Context2, OPTIONAL\r
866 IN VOID *NewStack,\r
867 IN VOID *NewBsp\r
868 );\r
869#else\r
870\r
871#endif\r
872\r
873#endif\r