]> git.proxmox.com Git - mirror_edk2.git/blame - OvmfPkg/Library/PlatformInitLib/MemDetect.c
UefiCpuPkg: Move AsmRelocateApLoopStart from Mpfuncs.nasm to AmdSev.nasm
[mirror_edk2.git] / OvmfPkg / Library / PlatformInitLib / MemDetect.c
CommitLineData
10460942
MX
1/**@file\r
2 Memory Detection for Virtual Machines.\r
3\r
4 Copyright (c) 2006 - 2016, Intel Corporation. All rights reserved.<BR>\r
5 SPDX-License-Identifier: BSD-2-Clause-Patent\r
6\r
7Module Name:\r
8\r
9 MemDetect.c\r
10\r
11**/\r
12\r
13//\r
14// The package level header files this module uses\r
15//\r
16#include <IndustryStandard/E820.h>\r
17#include <IndustryStandard/I440FxPiix4.h>\r
18#include <IndustryStandard/Q35MchIch9.h>\r
19#include <IndustryStandard/CloudHv.h>\r
20#include <IndustryStandard/Xen/arch-x86/hvm/start_info.h>\r
21#include <PiPei.h>\r
22#include <Register/Intel/SmramSaveStateMap.h>\r
23\r
24//\r
25// The Library classes this module consumes\r
26//\r
27#include <Library/BaseLib.h>\r
28#include <Library/BaseMemoryLib.h>\r
e03b0d06 29#include <Library/CcProbeLib.h>\r
10460942 30#include <Library/DebugLib.h>\r
3497fd5c 31#include <Library/HardwareInfoLib.h>\r
10460942
MX
32#include <Library/HobLib.h>\r
33#include <Library/IoLib.h>\r
34#include <Library/MemEncryptSevLib.h>\r
35#include <Library/PcdLib.h>\r
36#include <Library/PciLib.h>\r
37#include <Library/PeimEntryPoint.h>\r
38#include <Library/ResourcePublicationLib.h>\r
39#include <Library/MtrrLib.h>\r
40#include <Library/QemuFwCfgLib.h>\r
41#include <Library/QemuFwCfgSimpleParserLib.h>\r
e23f8f52
MX
42#include <Library/TdxLib.h>\r
43\r
10460942
MX
44#include <Library/PlatformInitLib.h>\r
45\r
d1e41c62
MX
46#define MEGABYTE_SHIFT 20\r
47\r
10460942
MX
48VOID\r
49EFIAPI\r
50PlatformQemuUc32BaseInitialization (\r
51 IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob\r
52 )\r
53{\r
10460942
MX
54 if (PlatformInfoHob->HostBridgeDevId == 0xffff /* microvm */) {\r
55 return;\r
56 }\r
57\r
015a001b
GH
58 if (PlatformInfoHob->HostBridgeDevId == CLOUDHV_DEVICE_ID) {\r
59 PlatformInfoHob->Uc32Size = CLOUDHV_MMIO_HOLE_SIZE;\r
60 PlatformInfoHob->Uc32Base = CLOUDHV_MMIO_HOLE_ADDRESS;\r
61 return;\r
62 }\r
63\r
64 PlatformGetSystemMemorySizeBelow4gb (PlatformInfoHob);\r
65\r
10460942 66 if (PlatformInfoHob->HostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) {\r
47f44097 67 ASSERT (PcdGet64 (PcdPciExpressBaseAddress) <= MAX_UINT32);\r
124b7650 68 ASSERT (PcdGet64 (PcdPciExpressBaseAddress) >= PlatformInfoHob->LowMemory);\r
2a0bd3bf 69\r
124b7650 70 if (PlatformInfoHob->LowMemory <= BASE_2GB) {\r
2a0bd3bf
GH
71 // Newer qemu with gigabyte aligned memory,\r
72 // 32-bit pci mmio window is 2G -> 4G then.\r
73 PlatformInfoHob->Uc32Base = BASE_2GB;\r
74 } else {\r
75 //\r
76 // On q35, the 32-bit area that we'll mark as UC, through variable MTRRs,\r
77 // starts at PcdPciExpressBaseAddress. The platform DSC is responsible for\r
78 // setting PcdPciExpressBaseAddress such that describing the\r
79 // [PcdPciExpressBaseAddress, 4GB) range require a very small number of\r
80 // variable MTRRs (preferably 1 or 2).\r
81 //\r
82 PlatformInfoHob->Uc32Base = (UINT32)PcdGet64 (PcdPciExpressBaseAddress);\r
83 }\r
84\r
10460942
MX
85 return;\r
86 }\r
87\r
10460942
MX
88 ASSERT (PlatformInfoHob->HostBridgeDevId == INTEL_82441_DEVICE_ID);\r
89 //\r
90 // On i440fx, start with the [LowerMemorySize, 4GB) range. Make sure one\r
91 // variable MTRR suffices by truncating the size to a whole power of two,\r
92 // while keeping the end affixed to 4GB. This will round the base up.\r
93 //\r
124b7650 94 PlatformInfoHob->Uc32Size = GetPowerOfTwo32 ((UINT32)(SIZE_4GB - PlatformInfoHob->LowMemory));\r
10460942
MX
95 PlatformInfoHob->Uc32Base = (UINT32)(SIZE_4GB - PlatformInfoHob->Uc32Size);\r
96 //\r
97 // Assuming that LowerMemorySize is at least 1 byte, Uc32Size is at most 2GB.\r
98 // Therefore Uc32Base is at least 2GB.\r
99 //\r
100 ASSERT (PlatformInfoHob->Uc32Base >= BASE_2GB);\r
101\r
124b7650 102 if (PlatformInfoHob->Uc32Base != PlatformInfoHob->LowMemory) {\r
10460942
MX
103 DEBUG ((\r
104 DEBUG_VERBOSE,\r
105 "%a: rounded UC32 base from 0x%x up to 0x%x, for "\r
106 "an UC32 size of 0x%x\n",\r
107 __FUNCTION__,\r
124b7650 108 PlatformInfoHob->LowMemory,\r
10460942
MX
109 PlatformInfoHob->Uc32Base,\r
110 PlatformInfoHob->Uc32Size\r
111 ));\r
112 }\r
113}\r
114\r
e0375304
GH
115typedef VOID (*E820_SCAN_CALLBACK) (\r
116 EFI_E820_ENTRY64 *E820Entry,\r
117 EFI_HOB_PLATFORM_INFO *PlatformInfoHob\r
118 );\r
119\r
120/**\r
121 Store first address not used by e820 RAM entries in\r
122 PlatformInfoHob->FirstNonAddress\r
123**/\r
124STATIC\r
125VOID\r
126PlatformGetFirstNonAddressCB (\r
127 IN EFI_E820_ENTRY64 *E820Entry,\r
128 IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob\r
129 )\r
130{\r
131 UINT64 Candidate;\r
132\r
133 if (E820Entry->Type != EfiAcpiAddressRangeMemory) {\r
134 return;\r
135 }\r
136\r
137 Candidate = E820Entry->BaseAddr + E820Entry->Length;\r
138 if (PlatformInfoHob->FirstNonAddress < Candidate) {\r
139 DEBUG ((DEBUG_INFO, "%a: FirstNonAddress=0x%Lx\n", __FUNCTION__, Candidate));\r
140 PlatformInfoHob->FirstNonAddress = Candidate;\r
141 }\r
142}\r
143\r
124b7650
GH
144/**\r
145 Store the low (below 4G) memory size in\r
146 PlatformInfoHob->LowMemory\r
147**/\r
148STATIC\r
149VOID\r
150PlatformGetLowMemoryCB (\r
151 IN EFI_E820_ENTRY64 *E820Entry,\r
152 IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob\r
153 )\r
154{\r
155 UINT64 Candidate;\r
156\r
157 if (E820Entry->Type != EfiAcpiAddressRangeMemory) {\r
158 return;\r
159 }\r
160\r
161 Candidate = E820Entry->BaseAddr + E820Entry->Length;\r
162 if (Candidate >= BASE_4GB) {\r
163 return;\r
164 }\r
165\r
166 if (PlatformInfoHob->LowMemory < Candidate) {\r
167 DEBUG ((DEBUG_INFO, "%a: LowMemory=0x%Lx\n", __FUNCTION__, Candidate));\r
168 PlatformInfoHob->LowMemory = (UINT32)Candidate;\r
169 }\r
170}\r
171\r
328076cf
GH
172/**\r
173 Create HOBs for reservations and RAM (except low memory).\r
174**/\r
175STATIC\r
176VOID\r
177PlatformAddHobCB (\r
178 IN EFI_E820_ENTRY64 *E820Entry,\r
179 IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob\r
180 )\r
181{\r
182 UINT64 Base, End;\r
183\r
184 Base = E820Entry->BaseAddr;\r
185 End = E820Entry->BaseAddr + E820Entry->Length;\r
186\r
187 switch (E820Entry->Type) {\r
188 case EfiAcpiAddressRangeMemory:\r
189 if (Base >= BASE_4GB) {\r
190 //\r
191 // Round up the start address, and round down the end address.\r
192 //\r
193 Base = ALIGN_VALUE (Base, (UINT64)EFI_PAGE_SIZE);\r
194 End = End & ~(UINT64)EFI_PAGE_MASK;\r
195 if (Base < End) {\r
196 DEBUG ((DEBUG_INFO, "%a: HighMemory [0x%Lx, 0x%Lx)\n", __FUNCTION__, Base, End));\r
197 PlatformAddMemoryRangeHob (Base, End);\r
198 }\r
199 }\r
200\r
201 break;\r
202 case EfiAcpiAddressRangeReserved:\r
f25ee547 203 BuildResourceDescriptorHob (EFI_RESOURCE_MEMORY_RESERVED, 0, Base, End - Base);\r
328076cf
GH
204 DEBUG ((DEBUG_INFO, "%a: Reserved [0x%Lx, 0x%Lx)\n", __FUNCTION__, Base, End));\r
205 break;\r
206 default:\r
207 DEBUG ((\r
208 DEBUG_WARN,\r
209 "%a: Type %u [0x%Lx, 0x%Lx) (NOT HANDLED)\n",\r
210 __FUNCTION__,\r
211 E820Entry->Type,\r
212 Base,\r
213 End\r
214 ));\r
215 break;\r
216 }\r
217}\r
218\r
c0a0b9bc
GH
219/**\r
220 Check whenever the 64bit PCI MMIO window overlaps with a reservation\r
221 from qemu. If so move down the MMIO window to resolve the conflict.\r
222\r
223 This happens on (virtual) AMD machines with 1TB address space,\r
224 because the AMD IOMMU uses an address window just below 1TB.\r
225**/\r
226STATIC\r
227VOID\r
228PlatformReservationConflictCB (\r
229 IN EFI_E820_ENTRY64 *E820Entry,\r
230 IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob\r
231 )\r
232{\r
233 UINT64 IntersectionBase;\r
234 UINT64 IntersectionEnd;\r
235 UINT64 NewBase;\r
236\r
237 IntersectionBase = MAX (\r
238 E820Entry->BaseAddr,\r
239 PlatformInfoHob->PcdPciMmio64Base\r
240 );\r
241 IntersectionEnd = MIN (\r
242 E820Entry->BaseAddr + E820Entry->Length,\r
243 PlatformInfoHob->PcdPciMmio64Base +\r
244 PlatformInfoHob->PcdPciMmio64Size\r
245 );\r
246\r
247 if (IntersectionBase >= IntersectionEnd) {\r
248 return; // no overlap\r
249 }\r
250\r
251 NewBase = E820Entry->BaseAddr - PlatformInfoHob->PcdPciMmio64Size;\r
252 NewBase = NewBase & ~(PlatformInfoHob->PcdPciMmio64Size - 1);\r
253\r
254 DEBUG ((\r
255 DEBUG_INFO,\r
256 "%a: move mmio: 0x%Lx => %Lx\n",\r
257 __FUNCTION__,\r
258 PlatformInfoHob->PcdPciMmio64Base,\r
259 NewBase\r
260 ));\r
261 PlatformInfoHob->PcdPciMmio64Base = NewBase;\r
262}\r
263\r
e0375304
GH
264/**\r
265 Iterate over the entries in QEMU's fw_cfg E820 RAM map, call the\r
266 passed callback for each entry.\r
267\r
268 @param[in] Callback The callback function to be called.\r
269\r
270 @param[in out] PlatformInfoHob PlatformInfo struct which is passed\r
271 through to the callback.\r
272\r
273 @retval EFI_SUCCESS The fw_cfg E820 RAM map was found and processed.\r
274\r
275 @retval EFI_PROTOCOL_ERROR The RAM map was found, but its size wasn't a\r
276 whole multiple of sizeof(EFI_E820_ENTRY64). No\r
277 RAM entry was processed.\r
278\r
279 @return Error codes from QemuFwCfgFindFile(). No RAM\r
280 entry was processed.\r
281**/\r
282STATIC\r
283EFI_STATUS\r
284PlatformScanE820 (\r
285 IN E820_SCAN_CALLBACK Callback,\r
286 IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob\r
287 )\r
288{\r
289 EFI_STATUS Status;\r
290 FIRMWARE_CONFIG_ITEM FwCfgItem;\r
291 UINTN FwCfgSize;\r
292 EFI_E820_ENTRY64 E820Entry;\r
293 UINTN Processed;\r
294\r
295 Status = QemuFwCfgFindFile ("etc/e820", &FwCfgItem, &FwCfgSize);\r
296 if (EFI_ERROR (Status)) {\r
297 return Status;\r
298 }\r
299\r
300 if (FwCfgSize % sizeof E820Entry != 0) {\r
301 return EFI_PROTOCOL_ERROR;\r
302 }\r
303\r
304 QemuFwCfgSelectItem (FwCfgItem);\r
305 for (Processed = 0; Processed < FwCfgSize; Processed += sizeof E820Entry) {\r
306 QemuFwCfgReadBytes (sizeof E820Entry, &E820Entry);\r
307 Callback (&E820Entry, PlatformInfoHob);\r
308 }\r
309\r
310 return EFI_SUCCESS;\r
311}\r
312\r
10460942
MX
313/**\r
314 Returns PVH memmap\r
315\r
316 @param Entries Pointer to PVH memmap\r
317 @param Count Number of entries\r
318\r
319 @return EFI_STATUS\r
320**/\r
321EFI_STATUS\r
322GetPvhMemmapEntries (\r
323 struct hvm_memmap_table_entry **Entries,\r
324 UINT32 *Count\r
325 )\r
326{\r
327 UINT32 *PVHResetVectorData;\r
328 struct hvm_start_info *pvh_start_info;\r
329\r
330 PVHResetVectorData = (VOID *)(UINTN)PcdGet32 (PcdXenPvhStartOfDayStructPtr);\r
331 if (PVHResetVectorData == 0) {\r
332 return EFI_NOT_FOUND;\r
333 }\r
334\r
335 pvh_start_info = (struct hvm_start_info *)(UINTN)PVHResetVectorData[0];\r
336\r
337 *Entries = (struct hvm_memmap_table_entry *)(UINTN)pvh_start_info->memmap_paddr;\r
338 *Count = pvh_start_info->memmap_entries;\r
339\r
340 return EFI_SUCCESS;\r
341}\r
342\r
343STATIC\r
344UINT64\r
345GetHighestSystemMemoryAddressFromPvhMemmap (\r
346 BOOLEAN Below4gb\r
347 )\r
348{\r
349 struct hvm_memmap_table_entry *Memmap;\r
350 UINT32 MemmapEntriesCount;\r
351 struct hvm_memmap_table_entry *Entry;\r
352 EFI_STATUS Status;\r
353 UINT32 Loop;\r
354 UINT64 HighestAddress;\r
355 UINT64 EntryEnd;\r
356\r
357 HighestAddress = 0;\r
358\r
359 Status = GetPvhMemmapEntries (&Memmap, &MemmapEntriesCount);\r
360 ASSERT_EFI_ERROR (Status);\r
361\r
362 for (Loop = 0; Loop < MemmapEntriesCount; Loop++) {\r
363 Entry = Memmap + Loop;\r
364 EntryEnd = Entry->addr + Entry->size;\r
365\r
366 if ((Entry->type == XEN_HVM_MEMMAP_TYPE_RAM) &&\r
367 (EntryEnd > HighestAddress))\r
368 {\r
369 if (Below4gb && (EntryEnd <= BASE_4GB)) {\r
370 HighestAddress = EntryEnd;\r
371 } else if (!Below4gb && (EntryEnd >= BASE_4GB)) {\r
372 HighestAddress = EntryEnd;\r
373 }\r
374 }\r
375 }\r
376\r
377 return HighestAddress;\r
378}\r
379\r
124b7650 380VOID\r
10460942
MX
381EFIAPI\r
382PlatformGetSystemMemorySizeBelow4gb (\r
383 IN EFI_HOB_PLATFORM_INFO *PlatformInfoHob\r
384 )\r
385{\r
386 EFI_STATUS Status;\r
10460942
MX
387 UINT8 Cmos0x34;\r
388 UINT8 Cmos0x35;\r
389\r
e03b0d06
SB
390 if ((PlatformInfoHob->HostBridgeDevId == CLOUDHV_DEVICE_ID) &&\r
391 (CcProbe () != CcGuestTypeIntelTdx))\r
392 {\r
10460942 393 // Get the information from PVH memmap\r
124b7650
GH
394 PlatformInfoHob->LowMemory = (UINT32)GetHighestSystemMemoryAddressFromPvhMemmap (TRUE);\r
395 return;\r
10460942
MX
396 }\r
397\r
124b7650
GH
398 Status = PlatformScanE820 (PlatformGetLowMemoryCB, PlatformInfoHob);\r
399 if (!EFI_ERROR (Status) && (PlatformInfoHob->LowMemory > 0)) {\r
400 return;\r
10460942
MX
401 }\r
402\r
403 //\r
404 // CMOS 0x34/0x35 specifies the system memory above 16 MB.\r
405 // * CMOS(0x35) is the high byte\r
406 // * CMOS(0x34) is the low byte\r
407 // * The size is specified in 64kb chunks\r
408 // * Since this is memory above 16MB, the 16MB must be added\r
409 // into the calculation to get the total memory size.\r
410 //\r
411\r
412 Cmos0x34 = (UINT8)PlatformCmosRead8 (0x34);\r
413 Cmos0x35 = (UINT8)PlatformCmosRead8 (0x35);\r
414\r
124b7650 415 PlatformInfoHob->LowMemory = (UINT32)(((UINTN)((Cmos0x35 << 8) + Cmos0x34) << 16) + SIZE_16MB);\r
10460942
MX
416}\r
417\r
418STATIC\r
419UINT64\r
420PlatformGetSystemMemorySizeAbove4gb (\r
421 )\r
422{\r
423 UINT32 Size;\r
424 UINTN CmosIndex;\r
425\r
426 //\r
427 // CMOS 0x5b-0x5d specifies the system memory above 4GB MB.\r
428 // * CMOS(0x5d) is the most significant size byte\r
429 // * CMOS(0x5c) is the middle size byte\r
430 // * CMOS(0x5b) is the least significant size byte\r
431 // * The size is specified in 64kb chunks\r
432 //\r
433\r
434 Size = 0;\r
435 for (CmosIndex = 0x5d; CmosIndex >= 0x5b; CmosIndex--) {\r
436 Size = (UINT32)(Size << 8) + (UINT32)PlatformCmosRead8 (CmosIndex);\r
437 }\r
438\r
439 return LShiftU64 (Size, 16);\r
440}\r
441\r
442/**\r
443 Return the highest address that DXE could possibly use, plus one.\r
444**/\r
445STATIC\r
e0375304 446VOID\r
10460942
MX
447PlatformGetFirstNonAddress (\r
448 IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob\r
449 )\r
450{\r
10460942
MX
451 UINT32 FwCfgPciMmio64Mb;\r
452 EFI_STATUS Status;\r
453 FIRMWARE_CONFIG_ITEM FwCfgItem;\r
454 UINTN FwCfgSize;\r
455 UINT64 HotPlugMemoryEnd;\r
456\r
10460942
MX
457 //\r
458 // If QEMU presents an E820 map, then get the highest exclusive >=4GB RAM\r
459 // address from it. This can express an address >= 4GB+1TB.\r
460 //\r
461 // Otherwise, get the flat size of the memory above 4GB from the CMOS (which\r
462 // can only express a size smaller than 1TB), and add it to 4GB.\r
463 //\r
e0375304
GH
464 PlatformInfoHob->FirstNonAddress = BASE_4GB;\r
465 Status = PlatformScanE820 (PlatformGetFirstNonAddressCB, PlatformInfoHob);\r
10460942 466 if (EFI_ERROR (Status)) {\r
e0375304 467 PlatformInfoHob->FirstNonAddress = BASE_4GB + PlatformGetSystemMemorySizeAbove4gb ();\r
10460942
MX
468 }\r
469\r
470 //\r
471 // If DXE is 32-bit, then we're done; PciBusDxe will degrade 64-bit MMIO\r
472 // resources to 32-bit anyway. See DegradeResource() in\r
473 // "PciResourceSupport.c".\r
474 //\r
475 #ifdef MDE_CPU_IA32\r
476 if (!FeaturePcdGet (PcdDxeIplSwitchToLongMode)) {\r
e0375304 477 return;\r
10460942
MX
478 }\r
479\r
480 #endif\r
481\r
482 //\r
483 // See if the user specified the number of megabytes for the 64-bit PCI host\r
484 // aperture. Accept an aperture size up to 16TB.\r
485 //\r
486 // As signaled by the "X-" prefix, this knob is experimental, and might go\r
487 // away at any time.\r
488 //\r
489 Status = QemuFwCfgParseUint32 (\r
490 "opt/ovmf/X-PciMmio64Mb",\r
491 FALSE,\r
492 &FwCfgPciMmio64Mb\r
493 );\r
494 switch (Status) {\r
495 case EFI_UNSUPPORTED:\r
496 case EFI_NOT_FOUND:\r
497 break;\r
498 case EFI_SUCCESS:\r
499 if (FwCfgPciMmio64Mb <= 0x1000000) {\r
500 PlatformInfoHob->PcdPciMmio64Size = LShiftU64 (FwCfgPciMmio64Mb, 20);\r
501 break;\r
502 }\r
503\r
504 //\r
505 // fall through\r
506 //\r
507 default:\r
508 DEBUG ((\r
509 DEBUG_WARN,\r
510 "%a: ignoring malformed 64-bit PCI host aperture size from fw_cfg\n",\r
511 __FUNCTION__\r
512 ));\r
513 break;\r
514 }\r
515\r
516 if (PlatformInfoHob->PcdPciMmio64Size == 0) {\r
517 if (PlatformInfoHob->BootMode != BOOT_ON_S3_RESUME) {\r
518 DEBUG ((\r
519 DEBUG_INFO,\r
520 "%a: disabling 64-bit PCI host aperture\n",\r
521 __FUNCTION__\r
522 ));\r
523 }\r
524\r
525 //\r
526 // There's nothing more to do; the amount of memory above 4GB fully\r
527 // determines the highest address plus one. The memory hotplug area (see\r
528 // below) plays no role for the firmware in this case.\r
529 //\r
e0375304 530 return;\r
10460942
MX
531 }\r
532\r
533 //\r
534 // The "etc/reserved-memory-end" fw_cfg file, when present, contains an\r
535 // absolute, exclusive end address for the memory hotplug area. This area\r
536 // starts right at the end of the memory above 4GB. The 64-bit PCI host\r
537 // aperture must be placed above it.\r
538 //\r
539 Status = QemuFwCfgFindFile (\r
540 "etc/reserved-memory-end",\r
541 &FwCfgItem,\r
542 &FwCfgSize\r
543 );\r
544 if (!EFI_ERROR (Status) && (FwCfgSize == sizeof HotPlugMemoryEnd)) {\r
545 QemuFwCfgSelectItem (FwCfgItem);\r
546 QemuFwCfgReadBytes (FwCfgSize, &HotPlugMemoryEnd);\r
547 DEBUG ((\r
548 DEBUG_VERBOSE,\r
549 "%a: HotPlugMemoryEnd=0x%Lx\n",\r
550 __FUNCTION__,\r
551 HotPlugMemoryEnd\r
552 ));\r
553\r
e0375304
GH
554 ASSERT (HotPlugMemoryEnd >= PlatformInfoHob->FirstNonAddress);\r
555 PlatformInfoHob->FirstNonAddress = HotPlugMemoryEnd;\r
10460942
MX
556 }\r
557\r
558 //\r
559 // SeaBIOS aligns both boundaries of the 64-bit PCI host aperture to 1GB, so\r
560 // that the host can map it with 1GB hugepages. Follow suit.\r
561 //\r
e0375304 562 PlatformInfoHob->PcdPciMmio64Base = ALIGN_VALUE (PlatformInfoHob->FirstNonAddress, (UINT64)SIZE_1GB);\r
10460942
MX
563 PlatformInfoHob->PcdPciMmio64Size = ALIGN_VALUE (PlatformInfoHob->PcdPciMmio64Size, (UINT64)SIZE_1GB);\r
564\r
565 //\r
566 // The 64-bit PCI host aperture should also be "naturally" aligned. The\r
567 // alignment is determined by rounding the size of the aperture down to the\r
568 // next smaller or equal power of two. That is, align the aperture by the\r
569 // largest BAR size that can fit into it.\r
570 //\r
571 PlatformInfoHob->PcdPciMmio64Base = ALIGN_VALUE (PlatformInfoHob->PcdPciMmio64Base, GetPowerOfTwo64 (PlatformInfoHob->PcdPciMmio64Size));\r
572\r
573 //\r
574 // The useful address space ends with the 64-bit PCI host aperture.\r
575 //\r
e0375304
GH
576 PlatformInfoHob->FirstNonAddress = PlatformInfoHob->PcdPciMmio64Base + PlatformInfoHob->PcdPciMmio64Size;\r
577 return;\r
10460942
MX
578}\r
579\r
bd10d4e2 580/*\r
8f9ef9c9 581 * Use CPUID to figure physical address width.\r
bd10d4e2 582 *\r
8f9ef9c9
GH
583 * Does *not* work reliable on qemu. For historical reasons qemu\r
584 * returns phys-bits=40 by default even in case the host machine\r
585 * supports less than that.\r
586 *\r
587 * So we apply the following rules (which can be enabled/disabled\r
588 * using the QemuQuirk parameter) to figure whenever we can work with\r
589 * the returned physical address width or not:\r
590 *\r
591 * (1) If it is 41 or higher consider it valid.\r
592 * (2) If it is 40 or lower consider it valid in case it matches a\r
593 * known-good value for the CPU vendor, which is:\r
594 * -> 36 or 39 for Intel\r
595 * -> 40 for AMD\r
596 * (3) Otherwise consider it invalid.\r
597 *\r
598 * Recommendation: Run qemu with host-phys-bits=on. That will make\r
599 * sure guest phys-bits is not larger than host phys-bits. Some\r
600 * distro builds do that by default.\r
bd10d4e2
GH
601 */\r
602VOID\r
603EFIAPI\r
604PlatformAddressWidthFromCpuid (\r
8f9ef9c9
GH
605 IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob,\r
606 IN BOOLEAN QemuQuirk\r
bd10d4e2
GH
607 )\r
608{\r
8f9ef9c9
GH
609 UINT32 RegEax, RegEbx, RegEcx, RegEdx, Max;\r
610 UINT8 PhysBits;\r
611 CHAR8 Signature[13] = { 0 };\r
612 BOOLEAN Valid = FALSE;\r
613 BOOLEAN Page1GSupport = FALSE;\r
614\r
615 AsmCpuid (0x80000000, &RegEax, &RegEbx, &RegEcx, &RegEdx);\r
616 *(UINT32 *)(Signature + 0) = RegEbx;\r
617 *(UINT32 *)(Signature + 4) = RegEdx;\r
618 *(UINT32 *)(Signature + 8) = RegEcx;\r
619 Max = RegEax;\r
620\r
621 if (Max >= 0x80000001) {\r
622 AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx);\r
623 if ((RegEdx & BIT26) != 0) {\r
624 Page1GSupport = TRUE;\r
625 }\r
626 }\r
bd10d4e2 627\r
8f9ef9c9 628 if (Max >= 0x80000008) {\r
bd10d4e2 629 AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL);\r
8f9ef9c9 630 PhysBits = (UINT8)RegEax;\r
bd10d4e2 631 } else {\r
8f9ef9c9 632 PhysBits = 36;\r
bd10d4e2
GH
633 }\r
634\r
8f9ef9c9
GH
635 if (!QemuQuirk) {\r
636 Valid = TRUE;\r
637 } else if (PhysBits >= 41) {\r
638 Valid = TRUE;\r
639 } else if (AsciiStrCmp (Signature, "GenuineIntel") == 0) {\r
640 if ((PhysBits == 36) || (PhysBits == 39)) {\r
641 Valid = TRUE;\r
642 }\r
643 } else if (AsciiStrCmp (Signature, "AuthenticAMD") == 0) {\r
644 if (PhysBits == 40) {\r
645 Valid = TRUE;\r
646 }\r
647 }\r
bd10d4e2
GH
648\r
649 DEBUG ((\r
650 DEBUG_INFO,\r
8f9ef9c9 651 "%a: Signature: '%a', PhysBits: %d, QemuQuirk: %a, Valid: %a\n",\r
bd10d4e2 652 __FUNCTION__,\r
8f9ef9c9
GH
653 Signature,\r
654 PhysBits,\r
655 QemuQuirk ? "On" : "Off",\r
656 Valid ? "Yes" : "No"\r
bd10d4e2 657 ));\r
8f9ef9c9
GH
658\r
659 if (Valid) {\r
660 if (PhysBits > 47) {\r
661 /*\r
662 * Avoid 5-level paging altogether for now, which limits\r
663 * PhysBits to 48. Also avoid using address bit 48, due to sign\r
664 * extension we can't identity-map these addresses (and lots of\r
665 * places in edk2 assume we have everything identity-mapped).\r
666 * So the actual limit is 47.\r
667 */\r
668 DEBUG ((DEBUG_INFO, "%a: limit PhysBits to 47 (avoid 5-level paging)\n", __func__));\r
669 PhysBits = 47;\r
670 }\r
671\r
672 if (!Page1GSupport && (PhysBits > 40)) {\r
673 DEBUG ((DEBUG_INFO, "%a: limit PhysBits to 40 (no 1G pages available)\n", __func__));\r
674 PhysBits = 40;\r
675 }\r
676\r
677 PlatformInfoHob->PhysMemAddressWidth = PhysBits;\r
678 PlatformInfoHob->FirstNonAddress = LShiftU64 (1, PlatformInfoHob->PhysMemAddressWidth);\r
679 }\r
bd10d4e2
GH
680}\r
681\r
ecb778d0
GH
682VOID\r
683EFIAPI\r
684PlatformDynamicMmioWindow (\r
685 IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob\r
686 )\r
687{\r
688 UINT64 AddrSpace, MmioSpace;\r
689\r
690 AddrSpace = LShiftU64 (1, PlatformInfoHob->PhysMemAddressWidth);\r
691 MmioSpace = LShiftU64 (1, PlatformInfoHob->PhysMemAddressWidth - 3);\r
692\r
693 if ((PlatformInfoHob->PcdPciMmio64Size < MmioSpace) &&\r
694 (PlatformInfoHob->PcdPciMmio64Base + MmioSpace < AddrSpace))\r
695 {\r
696 DEBUG ((DEBUG_INFO, "%a: using dynamic mmio window\n", __func__));\r
697 DEBUG ((DEBUG_INFO, "%a: Addr Space 0x%Lx (%Ld GB)\n", __func__, AddrSpace, RShiftU64 (AddrSpace, 30)));\r
698 DEBUG ((DEBUG_INFO, "%a: MMIO Space 0x%Lx (%Ld GB)\n", __func__, MmioSpace, RShiftU64 (MmioSpace, 30)));\r
699 PlatformInfoHob->PcdPciMmio64Size = MmioSpace;\r
700 PlatformInfoHob->PcdPciMmio64Base = AddrSpace - MmioSpace;\r
c0a0b9bc 701 PlatformScanE820 (PlatformReservationConflictCB, PlatformInfoHob);\r
ecb778d0
GH
702 } else {\r
703 DEBUG ((DEBUG_INFO, "%a: using classic mmio window\n", __func__));\r
704 }\r
705\r
706 DEBUG ((DEBUG_INFO, "%a: Pci64 Base 0x%Lx\n", __func__, PlatformInfoHob->PcdPciMmio64Base));\r
707 DEBUG ((DEBUG_INFO, "%a: Pci64 Size 0x%Lx\n", __func__, PlatformInfoHob->PcdPciMmio64Size));\r
708}\r
709\r
3497fd5c
NOL
710/**\r
711 Iterate over the PCI host bridges resources information optionally provided\r
712 in fw-cfg and find the highest address contained in the PCI MMIO windows. If\r
713 the information is found, return the exclusive end; one past the last usable\r
714 address.\r
715\r
716 @param[out] PciMmioAddressEnd Pointer to one-after End Address updated with\r
717 information extracted from host-provided data\r
718 or zero if no information available or an\r
719 error happened\r
720\r
721 @retval EFI_SUCCESS PCI information was read and the output\r
722 parameter updated with the last valid\r
723 address in the 64-bit MMIO range.\r
724 @retval EFI_INVALID_PARAMETER Pointer parameter is invalid\r
725 @retval EFI_INCOMPATIBLE_VERSION Hardware information found in fw-cfg\r
726 has an incompatible format\r
727 @retval EFI_UNSUPPORTED Fw-cfg is not supported, thus host\r
728 provided information, if any, cannot be\r
729 read\r
730 @retval EFI_NOT_FOUND No PCI host bridge information provided\r
731 by the host.\r
732**/\r
733STATIC\r
734EFI_STATUS\r
735PlatformScanHostProvided64BitPciMmioEnd (\r
736 OUT UINT64 *PciMmioAddressEnd\r
737 )\r
738{\r
739 EFI_STATUS Status;\r
740 HOST_BRIDGE_INFO HostBridge;\r
741 FIRMWARE_CONFIG_ITEM FwCfgItem;\r
742 UINTN FwCfgSize;\r
743 UINTN FwCfgReadIndex;\r
744 UINTN ReadDataSize;\r
745 UINT64 Above4GMmioEnd;\r
746\r
747 if (PciMmioAddressEnd == NULL) {\r
748 return EFI_INVALID_PARAMETER;\r
749 }\r
750\r
751 *PciMmioAddressEnd = 0;\r
752 Above4GMmioEnd = 0;\r
753\r
754 Status = QemuFwCfgFindFile ("etc/hardware-info", &FwCfgItem, &FwCfgSize);\r
755 if (EFI_ERROR (Status)) {\r
756 return Status;\r
757 }\r
758\r
759 QemuFwCfgSelectItem (FwCfgItem);\r
760\r
761 FwCfgReadIndex = 0;\r
762 while (FwCfgReadIndex < FwCfgSize) {\r
763 Status = QemuFwCfgReadNextHardwareInfoByType (\r
764 HardwareInfoTypeHostBridge,\r
765 sizeof (HostBridge),\r
766 FwCfgSize,\r
767 &HostBridge,\r
768 &ReadDataSize,\r
769 &FwCfgReadIndex\r
770 );\r
771\r
772 if (Status != EFI_SUCCESS) {\r
773 //\r
774 // No more data available to read in the file, break\r
775 // loop and finish process\r
776 //\r
777 break;\r
778 }\r
779\r
780 Status = HardwareInfoPciHostBridgeLastMmioAddress (\r
781 &HostBridge,\r
782 ReadDataSize,\r
783 TRUE,\r
784 &Above4GMmioEnd\r
785 );\r
786\r
787 if (Status != EFI_SUCCESS) {\r
788 //\r
789 // Error parsing MMIO apertures and extracting last MMIO\r
790 // address, reset PciMmioAddressEnd as if no information was\r
791 // found, to avoid moving forward with incomplete data, and\r
792 // bail out\r
793 //\r
794 DEBUG ((\r
795 DEBUG_ERROR,\r
796 "%a: ignoring malformed hardware information from fw_cfg\n",\r
797 __FUNCTION__\r
798 ));\r
799 *PciMmioAddressEnd = 0;\r
800 return Status;\r
801 }\r
802\r
803 if (Above4GMmioEnd > *PciMmioAddressEnd) {\r
804 *PciMmioAddressEnd = Above4GMmioEnd;\r
805 }\r
806 }\r
807\r
808 if (*PciMmioAddressEnd > 0) {\r
809 //\r
810 // Host-provided PCI information was found and a MMIO window end\r
811 // derived from it.\r
812 // Increase the End address by one to have the output pointing to\r
813 // one after the address in use (exclusive end).\r
814 //\r
815 *PciMmioAddressEnd += 1;\r
816\r
817 DEBUG ((\r
818 DEBUG_INFO,\r
819 "%a: Pci64End=0x%Lx\n",\r
820 __FUNCTION__,\r
821 *PciMmioAddressEnd\r
822 ));\r
823\r
824 return EFI_SUCCESS;\r
825 }\r
826\r
827 return EFI_NOT_FOUND;\r
828}\r
829\r
10460942
MX
830/**\r
831 Initialize the PhysMemAddressWidth field in PlatformInfoHob based on guest RAM size.\r
832**/\r
833VOID\r
834EFIAPI\r
835PlatformAddressWidthInitialization (\r
836 IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob\r
837 )\r
838{\r
3497fd5c
NOL
839 UINT8 PhysMemAddressWidth;\r
840 EFI_STATUS Status;\r
10460942 841\r
bd10d4e2 842 if (PlatformInfoHob->HostBridgeDevId == 0xffff /* microvm */) {\r
8f9ef9c9 843 PlatformAddressWidthFromCpuid (PlatformInfoHob, FALSE);\r
bd10d4e2
GH
844 return;\r
845 }\r
846\r
10460942 847 //\r
3497fd5c
NOL
848 // First scan host-provided hardware information to assess if the address\r
849 // space is already known. If so, guest must use those values.\r
10460942 850 //\r
e0375304 851 Status = PlatformScanHostProvided64BitPciMmioEnd (&PlatformInfoHob->FirstNonAddress);\r
3497fd5c
NOL
852\r
853 if (EFI_ERROR (Status)) {\r
854 //\r
855 // If the host did not provide valid hardware information leading to a\r
856 // hard-defined 64-bit MMIO end, fold back to calculating the minimum range\r
857 // needed.\r
858 // As guest-physical memory size grows, the permanent PEI RAM requirements\r
859 // are dominated by the identity-mapping page tables built by the DXE IPL.\r
860 // The DXL IPL keys off of the physical address bits advertized in the CPU\r
861 // HOB. To conserve memory, we calculate the minimum address width here.\r
862 //\r
e0375304 863 PlatformGetFirstNonAddress (PlatformInfoHob);\r
3497fd5c
NOL
864 }\r
865\r
bbda386d
GH
866 PlatformAddressWidthFromCpuid (PlatformInfoHob, TRUE);\r
867 if (PlatformInfoHob->PhysMemAddressWidth != 0) {\r
868 // physical address width is known\r
ecb778d0 869 PlatformDynamicMmioWindow (PlatformInfoHob);\r
bbda386d
GH
870 return;\r
871 }\r
872\r
873 //\r
874 // physical address width is NOT known\r
875 // -> do some guess work, mostly based on installed memory\r
876 // -> try be conservstibe to stay below the guaranteed minimum of\r
877 // 36 phys bits (aka 64 GB).\r
878 //\r
e0375304 879 PhysMemAddressWidth = (UINT8)HighBitSet64 (PlatformInfoHob->FirstNonAddress);\r
10460942
MX
880\r
881 //\r
882 // If FirstNonAddress is not an integral power of two, then we need an\r
883 // additional bit.\r
884 //\r
e0375304 885 if ((PlatformInfoHob->FirstNonAddress & (PlatformInfoHob->FirstNonAddress - 1)) != 0) {\r
10460942
MX
886 ++PhysMemAddressWidth;\r
887 }\r
888\r
889 //\r
890 // The minimum address width is 36 (covers up to and excluding 64 GB, which\r
891 // is the maximum for Ia32 + PAE). The theoretical architecture maximum for\r
892 // X64 long mode is 52 bits, but the DXE IPL clamps that down to 48 bits. We\r
893 // can simply assert that here, since 48 bits are good enough for 256 TB.\r
894 //\r
895 if (PhysMemAddressWidth <= 36) {\r
896 PhysMemAddressWidth = 36;\r
897 }\r
898\r
e23f8f52
MX
899 #if defined (MDE_CPU_X64)\r
900 if (TdIsEnabled ()) {\r
901 if (TdSharedPageMask () == (1ULL << 47)) {\r
902 PhysMemAddressWidth = 48;\r
903 } else {\r
904 PhysMemAddressWidth = 52;\r
905 }\r
906 }\r
907\r
908 ASSERT (PhysMemAddressWidth <= 52);\r
909 #else\r
10460942 910 ASSERT (PhysMemAddressWidth <= 48);\r
e23f8f52 911 #endif\r
10460942 912\r
10460942
MX
913 PlatformInfoHob->PhysMemAddressWidth = PhysMemAddressWidth;\r
914}\r
915\r
916STATIC\r
917VOID\r
918QemuInitializeRamBelow1gb (\r
919 IN EFI_HOB_PLATFORM_INFO *PlatformInfoHob\r
920 )\r
921{\r
922 if (PlatformInfoHob->SmmSmramRequire && PlatformInfoHob->Q35SmramAtDefaultSmbase) {\r
923 PlatformAddMemoryRangeHob (0, SMM_DEFAULT_SMBASE);\r
924 PlatformAddReservedMemoryBaseSizeHob (\r
925 SMM_DEFAULT_SMBASE,\r
926 MCH_DEFAULT_SMBASE_SIZE,\r
927 TRUE /* Cacheable */\r
928 );\r
929 STATIC_ASSERT (\r
930 SMM_DEFAULT_SMBASE + MCH_DEFAULT_SMBASE_SIZE < BASE_512KB + BASE_128KB,\r
931 "end of SMRAM at default SMBASE ends at, or exceeds, 640KB"\r
932 );\r
933 PlatformAddMemoryRangeHob (\r
934 SMM_DEFAULT_SMBASE + MCH_DEFAULT_SMBASE_SIZE,\r
935 BASE_512KB + BASE_128KB\r
936 );\r
937 } else {\r
938 PlatformAddMemoryRangeHob (0, BASE_512KB + BASE_128KB);\r
939 }\r
940}\r
941\r
942/**\r
943 Peform Memory Detection for QEMU / KVM\r
944\r
945**/\r
946VOID\r
947EFIAPI\r
948PlatformQemuInitializeRam (\r
949 IN EFI_HOB_PLATFORM_INFO *PlatformInfoHob\r
950 )\r
951{\r
10460942
MX
952 UINT64 UpperMemorySize;\r
953 MTRR_SETTINGS MtrrSettings;\r
954 EFI_STATUS Status;\r
955\r
956 DEBUG ((DEBUG_INFO, "%a called\n", __FUNCTION__));\r
957\r
958 //\r
959 // Determine total memory size available\r
960 //\r
124b7650 961 PlatformGetSystemMemorySizeBelow4gb (PlatformInfoHob);\r
10460942
MX
962\r
963 if (PlatformInfoHob->BootMode == BOOT_ON_S3_RESUME) {\r
964 //\r
965 // Create the following memory HOB as an exception on the S3 boot path.\r
966 //\r
967 // Normally we'd create memory HOBs only on the normal boot path. However,\r
968 // CpuMpPei specifically needs such a low-memory HOB on the S3 path as\r
969 // well, for "borrowing" a subset of it temporarily, for the AP startup\r
970 // vector.\r
971 //\r
972 // CpuMpPei saves the original contents of the borrowed area in permanent\r
973 // PEI RAM, in a backup buffer allocated with the normal PEI services.\r
974 // CpuMpPei restores the original contents ("returns" the borrowed area) at\r
975 // End-of-PEI. End-of-PEI in turn is emitted by S3Resume2Pei before\r
976 // transferring control to the OS's wakeup vector in the FACS.\r
977 //\r
978 // We expect any other PEIMs that "borrow" memory similarly to CpuMpPei to\r
979 // restore the original contents. Furthermore, we expect all such PEIMs\r
980 // (CpuMpPei included) to claim the borrowed areas by producing memory\r
981 // allocation HOBs, and to honor preexistent memory allocation HOBs when\r
982 // looking for an area to borrow.\r
983 //\r
984 QemuInitializeRamBelow1gb (PlatformInfoHob);\r
985 } else {\r
986 //\r
987 // Create memory HOBs\r
988 //\r
989 QemuInitializeRamBelow1gb (PlatformInfoHob);\r
990\r
991 if (PlatformInfoHob->SmmSmramRequire) {\r
992 UINT32 TsegSize;\r
993\r
994 TsegSize = PlatformInfoHob->Q35TsegMbytes * SIZE_1MB;\r
124b7650 995 PlatformAddMemoryRangeHob (BASE_1MB, PlatformInfoHob->LowMemory - TsegSize);\r
10460942 996 PlatformAddReservedMemoryBaseSizeHob (\r
124b7650 997 PlatformInfoHob->LowMemory - TsegSize,\r
10460942
MX
998 TsegSize,\r
999 TRUE\r
1000 );\r
1001 } else {\r
124b7650 1002 PlatformAddMemoryRangeHob (BASE_1MB, PlatformInfoHob->LowMemory);\r
10460942
MX
1003 }\r
1004\r
1005 //\r
1006 // If QEMU presents an E820 map, then create memory HOBs for the >=4GB RAM\r
1007 // entries. Otherwise, create a single memory HOB with the flat >=4GB\r
1008 // memory size read from the CMOS.\r
1009 //\r
328076cf 1010 Status = PlatformScanE820 (PlatformAddHobCB, PlatformInfoHob);\r
10460942
MX
1011 if (EFI_ERROR (Status)) {\r
1012 UpperMemorySize = PlatformGetSystemMemorySizeAbove4gb ();\r
1013 if (UpperMemorySize != 0) {\r
1014 PlatformAddMemoryBaseSizeHob (BASE_4GB, UpperMemorySize);\r
1015 }\r
1016 }\r
1017 }\r
1018\r
1019 //\r
1020 // We'd like to keep the following ranges uncached:\r
1021 // - [640 KB, 1 MB)\r
85fd05ab 1022 // - [Uc32Base, 4 GB)\r
10460942
MX
1023 //\r
1024 // Everything else should be WB. Unfortunately, programming the inverse (ie.\r
1025 // keeping the default UC, and configuring the complement set of the above as\r
1026 // WB) is not reliable in general, because the end of the upper RAM can have\r
1027 // practically any alignment, and we may not have enough variable MTRRs to\r
1028 // cover it exactly.\r
1029 //\r
1030 if (IsMtrrSupported () && (PlatformInfoHob->HostBridgeDevId != CLOUDHV_DEVICE_ID)) {\r
1031 MtrrGetAllMtrrs (&MtrrSettings);\r
1032\r
1033 //\r
1034 // MTRRs disabled, fixed MTRRs disabled, default type is uncached\r
1035 //\r
1036 ASSERT ((MtrrSettings.MtrrDefType & BIT11) == 0);\r
1037 ASSERT ((MtrrSettings.MtrrDefType & BIT10) == 0);\r
1038 ASSERT ((MtrrSettings.MtrrDefType & 0xFF) == 0);\r
1039\r
1040 //\r
1041 // flip default type to writeback\r
1042 //\r
1043 SetMem (&MtrrSettings.Fixed, sizeof MtrrSettings.Fixed, 0x06);\r
1044 ZeroMem (&MtrrSettings.Variables, sizeof MtrrSettings.Variables);\r
1045 MtrrSettings.MtrrDefType |= BIT11 | BIT10 | 6;\r
1046 MtrrSetAllMtrrs (&MtrrSettings);\r
1047\r
1048 //\r
1049 // Set memory range from 640KB to 1MB to uncacheable\r
1050 //\r
1051 Status = MtrrSetMemoryAttribute (\r
1052 BASE_512KB + BASE_128KB,\r
1053 BASE_1MB - (BASE_512KB + BASE_128KB),\r
1054 CacheUncacheable\r
1055 );\r
1056 ASSERT_EFI_ERROR (Status);\r
1057\r
1058 //\r
1059 // Set the memory range from the start of the 32-bit MMIO area (32-bit PCI\r
1060 // MMIO aperture on i440fx, PCIEXBAR on q35) to 4GB as uncacheable.\r
1061 //\r
1062 Status = MtrrSetMemoryAttribute (\r
1063 PlatformInfoHob->Uc32Base,\r
1064 SIZE_4GB - PlatformInfoHob->Uc32Base,\r
1065 CacheUncacheable\r
1066 );\r
1067 ASSERT_EFI_ERROR (Status);\r
1068 }\r
1069}\r
1070\r
1071VOID\r
1072EFIAPI\r
1073PlatformQemuInitializeRamForS3 (\r
1074 IN EFI_HOB_PLATFORM_INFO *PlatformInfoHob\r
1075 )\r
1076{\r
1077 if (PlatformInfoHob->S3Supported && (PlatformInfoHob->BootMode != BOOT_ON_S3_RESUME)) {\r
1078 //\r
1079 // This is the memory range that will be used for PEI on S3 resume\r
1080 //\r
1081 BuildMemoryAllocationHob (\r
1082 PlatformInfoHob->S3AcpiReservedMemoryBase,\r
1083 PlatformInfoHob->S3AcpiReservedMemorySize,\r
1084 EfiACPIMemoryNVS\r
1085 );\r
1086\r
1087 //\r
1088 // Cover the initial RAM area used as stack and temporary PEI heap.\r
1089 //\r
1090 // This is reserved as ACPI NVS so it can be used on S3 resume.\r
1091 //\r
1092 BuildMemoryAllocationHob (\r
1093 PcdGet32 (PcdOvmfSecPeiTempRamBase),\r
1094 PcdGet32 (PcdOvmfSecPeiTempRamSize),\r
1095 EfiACPIMemoryNVS\r
1096 );\r
1097\r
1098 //\r
1099 // SEC stores its table of GUIDed section handlers here.\r
1100 //\r
1101 BuildMemoryAllocationHob (\r
1102 PcdGet64 (PcdGuidedExtractHandlerTableAddress),\r
1103 PcdGet32 (PcdGuidedExtractHandlerTableSize),\r
1104 EfiACPIMemoryNVS\r
1105 );\r
1106\r
1107 #ifdef MDE_CPU_X64\r
1108 //\r
1109 // Reserve the initial page tables built by the reset vector code.\r
1110 //\r
1111 // Since this memory range will be used by the Reset Vector on S3\r
1112 // resume, it must be reserved as ACPI NVS.\r
1113 //\r
1114 BuildMemoryAllocationHob (\r
1115 (EFI_PHYSICAL_ADDRESS)(UINTN)PcdGet32 (PcdOvmfSecPageTablesBase),\r
1116 (UINT64)(UINTN)PcdGet32 (PcdOvmfSecPageTablesSize),\r
1117 EfiACPIMemoryNVS\r
1118 );\r
1119\r
1120 if (PlatformInfoHob->SevEsIsEnabled) {\r
1121 //\r
1122 // If SEV-ES is enabled, reserve the GHCB-related memory area. This\r
1123 // includes the extra page table used to break down the 2MB page\r
1124 // mapping into 4KB page entries where the GHCB resides and the\r
1125 // GHCB area itself.\r
1126 //\r
1127 // Since this memory range will be used by the Reset Vector on S3\r
1128 // resume, it must be reserved as ACPI NVS.\r
1129 //\r
1130 BuildMemoryAllocationHob (\r
1131 (EFI_PHYSICAL_ADDRESS)(UINTN)PcdGet32 (PcdOvmfSecGhcbPageTableBase),\r
1132 (UINT64)(UINTN)PcdGet32 (PcdOvmfSecGhcbPageTableSize),\r
1133 EfiACPIMemoryNVS\r
1134 );\r
1135 BuildMemoryAllocationHob (\r
1136 (EFI_PHYSICAL_ADDRESS)(UINTN)PcdGet32 (PcdOvmfSecGhcbBase),\r
1137 (UINT64)(UINTN)PcdGet32 (PcdOvmfSecGhcbSize),\r
1138 EfiACPIMemoryNVS\r
1139 );\r
1140 BuildMemoryAllocationHob (\r
1141 (EFI_PHYSICAL_ADDRESS)(UINTN)PcdGet32 (PcdOvmfSecGhcbBackupBase),\r
1142 (UINT64)(UINTN)PcdGet32 (PcdOvmfSecGhcbBackupSize),\r
1143 EfiACPIMemoryNVS\r
1144 );\r
1145 }\r
1146\r
1147 #endif\r
1148 }\r
1149\r
1150 if (PlatformInfoHob->BootMode != BOOT_ON_S3_RESUME) {\r
1151 if (!PlatformInfoHob->SmmSmramRequire) {\r
1152 //\r
1153 // Reserve the lock box storage area\r
1154 //\r
1155 // Since this memory range will be used on S3 resume, it must be\r
1156 // reserved as ACPI NVS.\r
1157 //\r
1158 // If S3 is unsupported, then various drivers might still write to the\r
1159 // LockBox area. We ought to prevent DXE from serving allocation requests\r
1160 // such that they would overlap the LockBox storage.\r
1161 //\r
1162 ZeroMem (\r
1163 (VOID *)(UINTN)PcdGet32 (PcdOvmfLockBoxStorageBase),\r
1164 (UINTN)PcdGet32 (PcdOvmfLockBoxStorageSize)\r
1165 );\r
1166 BuildMemoryAllocationHob (\r
1167 (EFI_PHYSICAL_ADDRESS)(UINTN)PcdGet32 (PcdOvmfLockBoxStorageBase),\r
1168 (UINT64)(UINTN)PcdGet32 (PcdOvmfLockBoxStorageSize),\r
1169 PlatformInfoHob->S3Supported ? EfiACPIMemoryNVS : EfiBootServicesData\r
1170 );\r
1171 }\r
1172\r
1173 if (PlatformInfoHob->SmmSmramRequire) {\r
1174 UINT32 TsegSize;\r
1175\r
1176 //\r
1177 // Make sure the TSEG area that we reported as a reserved memory resource\r
1178 // cannot be used for reserved memory allocations.\r
1179 //\r
124b7650 1180 PlatformGetSystemMemorySizeBelow4gb (PlatformInfoHob);\r
10460942
MX
1181 TsegSize = PlatformInfoHob->Q35TsegMbytes * SIZE_1MB;\r
1182 BuildMemoryAllocationHob (\r
124b7650 1183 PlatformInfoHob->LowMemory - TsegSize,\r
10460942
MX
1184 TsegSize,\r
1185 EfiReservedMemoryType\r
1186 );\r
1187 //\r
1188 // Similarly, allocate away the (already reserved) SMRAM at the default\r
1189 // SMBASE, if it exists.\r
1190 //\r
1191 if (PlatformInfoHob->Q35SmramAtDefaultSmbase) {\r
1192 BuildMemoryAllocationHob (\r
1193 SMM_DEFAULT_SMBASE,\r
1194 MCH_DEFAULT_SMBASE_SIZE,\r
1195 EfiReservedMemoryType\r
1196 );\r
1197 }\r
1198 }\r
1199\r
1200 #ifdef MDE_CPU_X64\r
1201 if (FixedPcdGet32 (PcdOvmfWorkAreaSize) != 0) {\r
1202 //\r
1203 // Reserve the work area.\r
1204 //\r
1205 // Since this memory range will be used by the Reset Vector on S3\r
1206 // resume, it must be reserved as ACPI NVS.\r
1207 //\r
1208 // If S3 is unsupported, then various drivers might still write to the\r
1209 // work area. We ought to prevent DXE from serving allocation requests\r
1210 // such that they would overlap the work area.\r
1211 //\r
1212 BuildMemoryAllocationHob (\r
1213 (EFI_PHYSICAL_ADDRESS)(UINTN)FixedPcdGet32 (PcdOvmfWorkAreaBase),\r
1214 (UINT64)(UINTN)FixedPcdGet32 (PcdOvmfWorkAreaSize),\r
1215 PlatformInfoHob->S3Supported ? EfiACPIMemoryNVS : EfiBootServicesData\r
1216 );\r
1217 }\r
1218\r
1219 #endif\r
1220 }\r
1221}\r