]> git.proxmox.com Git - mirror_edk2.git/blame - OvmfPkg/PlatformPei/MemDetect.c
OvmfPkg/PlatformPei: ScanOrAdd64BitE820Ram improvements
[mirror_edk2.git] / OvmfPkg / PlatformPei / MemDetect.c
CommitLineData
49ba9447 1/**@file\r
2 Memory Detection for Virtual Machines.\r
3\r
035ce3b3 4 Copyright (c) 2006 - 2016, Intel Corporation. All rights reserved.<BR>\r
b26f0cf9 5 SPDX-License-Identifier: BSD-2-Clause-Patent\r
49ba9447 6\r
7Module Name:\r
8\r
9 MemDetect.c\r
10\r
11**/\r
12\r
13//\r
14// The package level header files this module uses\r
15//\r
1fceaddb 16#include <IndustryStandard/E820.h>\r
49edde15 17#include <IndustryStandard/I440FxPiix4.h>\r
d5e06444 18#include <IndustryStandard/Q35MchIch9.h>\r
9afcd48a 19#include <IndustryStandard/CloudHv.h>\r
49ba9447 20#include <PiPei.h>\r
adec2bd5 21#include <Register/Intel/SmramSaveStateMap.h>\r
49ba9447 22\r
23//\r
24// The Library classes this module consumes\r
25//\r
d5e06444 26#include <Library/BaseLib.h>\r
6a7cba79 27#include <Library/BaseMemoryLib.h>\r
49ba9447 28#include <Library/DebugLib.h>\r
29#include <Library/HobLib.h>\r
30#include <Library/IoLib.h>\r
0bbed066 31#include <Library/MemEncryptSevLib.h>\r
c1c2669c 32#include <Library/PcdLib.h>\r
d5e06444 33#include <Library/PciLib.h>\r
49ba9447 34#include <Library/PeimEntryPoint.h>\r
35#include <Library/ResourcePublicationLib.h>\r
e8e5cd4a 36#include <Library/MtrrLib.h>\r
7e5b1b67 37#include <Library/QemuFwCfgLib.h>\r
98800cce 38#include <Library/QemuFwCfgSimpleParserLib.h>\r
49ba9447 39\r
40#include "Platform.h"\r
41#include "Cmos.h"\r
42\r
ac0a286f 43UINT8 mPhysMemAddressWidth;\r
bc89fe48 44\r
ac0a286f
MK
45STATIC UINT32 mS3AcpiReservedMemoryBase;\r
46STATIC UINT32 mS3AcpiReservedMemorySize;\r
45d87081 47\r
ac0a286f 48STATIC UINT16 mQ35TsegMbytes;\r
23bfb5c0 49\r
ac0a286f 50BOOLEAN mQ35SmramAtDefaultSmbase;\r
73974f80 51\r
ac0a286f 52UINT32 mQemuUc32Base;\r
49edde15 53\r
23bfb5c0
LE
54VOID\r
55Q35TsegMbytesInitialization (\r
56 VOID\r
57 )\r
58{\r
ac0a286f
MK
59 UINT16 ExtendedTsegMbytes;\r
60 RETURN_STATUS PcdStatus;\r
d5e06444 61\r
e0ed7a9b 62 ASSERT (mHostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID);\r
d5e06444
LE
63\r
64 //\r
65 // Check if QEMU offers an extended TSEG.\r
66 //\r
67 // This can be seen from writing MCH_EXT_TSEG_MB_QUERY to the MCH_EXT_TSEG_MB\r
68 // register, and reading back the register.\r
69 //\r
70 // On a QEMU machine type that does not offer an extended TSEG, the initial\r
71 // write overwrites whatever value a malicious guest OS may have placed in\r
72 // the (unimplemented) register, before entering S3 or rebooting.\r
73 // Subsequently, the read returns MCH_EXT_TSEG_MB_QUERY unchanged.\r
74 //\r
75 // On a QEMU machine type that offers an extended TSEG, the initial write\r
76 // triggers an update to the register. Subsequently, the value read back\r
77 // (which is guaranteed to differ from MCH_EXT_TSEG_MB_QUERY) tells us the\r
78 // number of megabytes.\r
79 //\r
80 PciWrite16 (DRAMC_REGISTER_Q35 (MCH_EXT_TSEG_MB), MCH_EXT_TSEG_MB_QUERY);\r
81 ExtendedTsegMbytes = PciRead16 (DRAMC_REGISTER_Q35 (MCH_EXT_TSEG_MB));\r
82 if (ExtendedTsegMbytes == MCH_EXT_TSEG_MB_QUERY) {\r
83 mQ35TsegMbytes = PcdGet16 (PcdQ35TsegMbytes);\r
84 return;\r
85 }\r
86\r
87 DEBUG ((\r
88 DEBUG_INFO,\r
89 "%a: QEMU offers an extended TSEG (%d MB)\n",\r
90 __FUNCTION__,\r
91 ExtendedTsegMbytes\r
92 ));\r
93 PcdStatus = PcdSet16S (PcdQ35TsegMbytes, ExtendedTsegMbytes);\r
94 ASSERT_RETURN_ERROR (PcdStatus);\r
95 mQ35TsegMbytes = ExtendedTsegMbytes;\r
23bfb5c0
LE
96}\r
97\r
73974f80
LE
98VOID\r
99Q35SmramAtDefaultSmbaseInitialization (\r
100 VOID\r
101 )\r
102{\r
ac0a286f 103 RETURN_STATUS PcdStatus;\r
73974f80
LE
104\r
105 ASSERT (mHostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID);\r
106\r
107 mQ35SmramAtDefaultSmbase = FALSE;\r
75839f97 108 if (FeaturePcdGet (PcdCsmEnable)) {\r
ac0a286f
MK
109 DEBUG ((\r
110 DEBUG_INFO,\r
111 "%a: SMRAM at default SMBASE not checked due to CSM\n",\r
112 __FUNCTION__\r
113 ));\r
75839f97 114 } else {\r
ac0a286f
MK
115 UINTN CtlReg;\r
116 UINT8 CtlRegVal;\r
75839f97
LE
117\r
118 CtlReg = DRAMC_REGISTER_Q35 (MCH_DEFAULT_SMBASE_CTL);\r
119 PciWrite8 (CtlReg, MCH_DEFAULT_SMBASE_QUERY);\r
ac0a286f 120 CtlRegVal = PciRead8 (CtlReg);\r
75839f97
LE
121 mQ35SmramAtDefaultSmbase = (BOOLEAN)(CtlRegVal ==\r
122 MCH_DEFAULT_SMBASE_IN_RAM);\r
ac0a286f
MK
123 DEBUG ((\r
124 DEBUG_INFO,\r
125 "%a: SMRAM at default SMBASE %a\n",\r
126 __FUNCTION__,\r
127 mQ35SmramAtDefaultSmbase ? "found" : "not found"\r
128 ));\r
75839f97
LE
129 }\r
130\r
ac0a286f
MK
131 PcdStatus = PcdSetBoolS (\r
132 PcdQ35SmramAtDefaultSmbase,\r
133 mQ35SmramAtDefaultSmbase\r
134 );\r
73974f80
LE
135 ASSERT_RETURN_ERROR (PcdStatus);\r
136}\r
137\r
49edde15
LE
138VOID\r
139QemuUc32BaseInitialization (\r
140 VOID\r
141 )\r
142{\r
ac0a286f
MK
143 UINT32 LowerMemorySize;\r
144 UINT32 Uc32Size;\r
49edde15 145\r
6a8e9ad2
GH
146 if (mHostBridgeDevId == 0xffff /* microvm */) {\r
147 return;\r
148 }\r
149\r
49edde15
LE
150 if (mHostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) {\r
151 //\r
152 // On q35, the 32-bit area that we'll mark as UC, through variable MTRRs,\r
153 // starts at PcdPciExpressBaseAddress. The platform DSC is responsible for\r
154 // setting PcdPciExpressBaseAddress such that describing the\r
155 // [PcdPciExpressBaseAddress, 4GB) range require a very small number of\r
156 // variable MTRRs (preferably 1 or 2).\r
157 //\r
158 ASSERT (FixedPcdGet64 (PcdPciExpressBaseAddress) <= MAX_UINT32);\r
159 mQemuUc32Base = (UINT32)FixedPcdGet64 (PcdPciExpressBaseAddress);\r
160 return;\r
161 }\r
162\r
9afcd48a
SB
163 if (mHostBridgeDevId == CLOUDHV_DEVICE_ID) {\r
164 Uc32Size = CLOUDHV_MMIO_HOLE_SIZE;\r
165 mQemuUc32Base = CLOUDHV_MMIO_HOLE_ADDRESS;\r
166 return;\r
167 }\r
168\r
49edde15
LE
169 ASSERT (mHostBridgeDevId == INTEL_82441_DEVICE_ID);\r
170 //\r
171 // On i440fx, start with the [LowerMemorySize, 4GB) range. Make sure one\r
172 // variable MTRR suffices by truncating the size to a whole power of two,\r
173 // while keeping the end affixed to 4GB. This will round the base up.\r
174 //\r
175 LowerMemorySize = GetSystemMemorySizeBelow4gb ();\r
ac0a286f
MK
176 Uc32Size = GetPowerOfTwo32 ((UINT32)(SIZE_4GB - LowerMemorySize));\r
177 mQemuUc32Base = (UINT32)(SIZE_4GB - Uc32Size);\r
49edde15
LE
178 //\r
179 // Assuming that LowerMemorySize is at least 1 byte, Uc32Size is at most 2GB.\r
180 // Therefore mQemuUc32Base is at least 2GB.\r
181 //\r
182 ASSERT (mQemuUc32Base >= BASE_2GB);\r
183\r
184 if (mQemuUc32Base != LowerMemorySize) {\r
ac0a286f
MK
185 DEBUG ((\r
186 DEBUG_VERBOSE,\r
187 "%a: rounded UC32 base from 0x%x up to 0x%x, for "\r
188 "an UC32 size of 0x%x\n",\r
189 __FUNCTION__,\r
190 LowerMemorySize,\r
191 mQemuUc32Base,\r
192 Uc32Size\r
193 ));\r
49edde15
LE
194 }\r
195}\r
196\r
1fceaddb
LE
197/**\r
198 Iterate over the RAM entries in QEMU's fw_cfg E820 RAM map that start outside\r
199 of the 32-bit address range.\r
200\r
201 Find the highest exclusive >=4GB RAM address, or produce memory resource\r
202 descriptor HOBs for RAM entries that start at or above 4GB.\r
203\r
204 @param[out] MaxAddress If MaxAddress is NULL, then ScanOrAdd64BitE820Ram()\r
205 produces memory resource descriptor HOBs for RAM\r
206 entries that start at or above 4GB.\r
207\r
208 Otherwise, MaxAddress holds the highest exclusive\r
209 >=4GB RAM address on output. If QEMU's fw_cfg E820\r
210 RAM map contains no RAM entry that starts outside of\r
211 the 32-bit address range, then MaxAddress is exactly\r
212 4GB on output.\r
213\r
214 @retval EFI_SUCCESS The fw_cfg E820 RAM map was found and processed.\r
215\r
216 @retval EFI_PROTOCOL_ERROR The RAM map was found, but its size wasn't a\r
217 whole multiple of sizeof(EFI_E820_ENTRY64). No\r
218 RAM entry was processed.\r
219\r
220 @return Error codes from QemuFwCfgFindFile(). No RAM\r
221 entry was processed.\r
222**/\r
223STATIC\r
224EFI_STATUS\r
225ScanOrAdd64BitE820Ram (\r
557dede8
GH
226 IN BOOLEAN AddHighHob,\r
227 OUT UINT64 *LowMemory OPTIONAL,\r
ac0a286f 228 OUT UINT64 *MaxAddress OPTIONAL\r
1fceaddb
LE
229 )\r
230{\r
ac0a286f
MK
231 EFI_STATUS Status;\r
232 FIRMWARE_CONFIG_ITEM FwCfgItem;\r
233 UINTN FwCfgSize;\r
234 EFI_E820_ENTRY64 E820Entry;\r
235 UINTN Processed;\r
1fceaddb
LE
236\r
237 Status = QemuFwCfgFindFile ("etc/e820", &FwCfgItem, &FwCfgSize);\r
238 if (EFI_ERROR (Status)) {\r
239 return Status;\r
240 }\r
ac0a286f 241\r
1fceaddb
LE
242 if (FwCfgSize % sizeof E820Entry != 0) {\r
243 return EFI_PROTOCOL_ERROR;\r
244 }\r
245\r
557dede8
GH
246 if (LowMemory != NULL) {\r
247 *LowMemory = 0;\r
248 }\r
249\r
1fceaddb
LE
250 if (MaxAddress != NULL) {\r
251 *MaxAddress = BASE_4GB;\r
252 }\r
253\r
254 QemuFwCfgSelectItem (FwCfgItem);\r
255 for (Processed = 0; Processed < FwCfgSize; Processed += sizeof E820Entry) {\r
256 QemuFwCfgReadBytes (sizeof E820Entry, &E820Entry);\r
257 DEBUG ((\r
258 DEBUG_VERBOSE,\r
259 "%a: Base=0x%Lx Length=0x%Lx Type=%u\n",\r
260 __FUNCTION__,\r
261 E820Entry.BaseAddr,\r
262 E820Entry.Length,\r
263 E820Entry.Type\r
264 ));\r
557dede8
GH
265 if (E820Entry.Type == EfiAcpiAddressRangeMemory) {\r
266 if (AddHighHob && (E820Entry.BaseAddr >= BASE_4GB)) {\r
ac0a286f
MK
267 UINT64 Base;\r
268 UINT64 End;\r
1fceaddb
LE
269\r
270 //\r
271 // Round up the start address, and round down the end address.\r
272 //\r
273 Base = ALIGN_VALUE (E820Entry.BaseAddr, (UINT64)EFI_PAGE_SIZE);\r
ac0a286f
MK
274 End = (E820Entry.BaseAddr + E820Entry.Length) &\r
275 ~(UINT64)EFI_PAGE_MASK;\r
1fceaddb
LE
276 if (Base < End) {\r
277 AddMemoryRangeHob (Base, End);\r
278 DEBUG ((\r
279 DEBUG_VERBOSE,\r
280 "%a: AddMemoryRangeHob [0x%Lx, 0x%Lx)\n",\r
281 __FUNCTION__,\r
282 Base,\r
283 End\r
284 ));\r
285 }\r
557dede8
GH
286 }\r
287\r
288 if (MaxAddress || LowMemory) {\r
ac0a286f 289 UINT64 Candidate;\r
1fceaddb
LE
290\r
291 Candidate = E820Entry.BaseAddr + E820Entry.Length;\r
557dede8 292 if (MaxAddress && (Candidate > *MaxAddress)) {\r
1fceaddb
LE
293 *MaxAddress = Candidate;\r
294 DEBUG ((\r
295 DEBUG_VERBOSE,\r
296 "%a: MaxAddress=0x%Lx\n",\r
297 __FUNCTION__,\r
298 *MaxAddress\r
299 ));\r
300 }\r
557dede8
GH
301\r
302 if (LowMemory && (Candidate > *LowMemory) && (Candidate < BASE_4GB)) {\r
303 *LowMemory = Candidate;\r
304 DEBUG ((\r
305 DEBUG_VERBOSE,\r
306 "%a: LowMemory=0x%Lx\n",\r
307 __FUNCTION__,\r
308 *LowMemory\r
309 ));\r
310 }\r
1fceaddb
LE
311 }\r
312 }\r
313 }\r
ac0a286f 314\r
1fceaddb
LE
315 return EFI_SUCCESS;\r
316}\r
317\r
4b455f7b 318UINT32\r
c0e10976 319GetSystemMemorySizeBelow4gb (\r
4b455f7b 320 VOID\r
49ba9447 321 )\r
322{\r
ac0a286f
MK
323 UINT8 Cmos0x34;\r
324 UINT8 Cmos0x35;\r
49ba9447 325\r
326 //\r
327 // CMOS 0x34/0x35 specifies the system memory above 16 MB.\r
328 // * CMOS(0x35) is the high byte\r
329 // * CMOS(0x34) is the low byte\r
330 // * The size is specified in 64kb chunks\r
331 // * Since this is memory above 16MB, the 16MB must be added\r
332 // into the calculation to get the total memory size.\r
333 //\r
334\r
ac0a286f
MK
335 Cmos0x34 = (UINT8)CmosRead8 (0x34);\r
336 Cmos0x35 = (UINT8)CmosRead8 (0x35);\r
49ba9447 337\r
ac0a286f 338 return (UINT32)(((UINTN)((Cmos0x35 << 8) + Cmos0x34) << 16) + SIZE_16MB);\r
49ba9447 339}\r
340\r
c0e10976 341STATIC\r
342UINT64\r
343GetSystemMemorySizeAbove4gb (\r
344 )\r
345{\r
ac0a286f
MK
346 UINT32 Size;\r
347 UINTN CmosIndex;\r
c0e10976 348\r
349 //\r
350 // CMOS 0x5b-0x5d specifies the system memory above 4GB MB.\r
351 // * CMOS(0x5d) is the most significant size byte\r
352 // * CMOS(0x5c) is the middle size byte\r
353 // * CMOS(0x5b) is the least significant size byte\r
354 // * The size is specified in 64kb chunks\r
355 //\r
356\r
357 Size = 0;\r
358 for (CmosIndex = 0x5d; CmosIndex >= 0x5b; CmosIndex--) {\r
ac0a286f 359 Size = (UINT32)(Size << 8) + (UINT32)CmosRead8 (CmosIndex);\r
c0e10976 360 }\r
361\r
362 return LShiftU64 (Size, 16);\r
363}\r
364\r
d5371680
LE
365/**\r
366 Return the highest address that DXE could possibly use, plus one.\r
367**/\r
368STATIC\r
369UINT64\r
370GetFirstNonAddress (\r
371 VOID\r
372 )\r
373{\r
ac0a286f
MK
374 UINT64 FirstNonAddress;\r
375 UINT64 Pci64Base, Pci64Size;\r
376 UINT32 FwCfgPciMmio64Mb;\r
377 EFI_STATUS Status;\r
378 FIRMWARE_CONFIG_ITEM FwCfgItem;\r
379 UINTN FwCfgSize;\r
380 UINT64 HotPlugMemoryEnd;\r
381 RETURN_STATUS PcdStatus;\r
d5371680 382\r
1fceaddb
LE
383 //\r
384 // set FirstNonAddress to suppress incorrect compiler/analyzer warnings\r
385 //\r
386 FirstNonAddress = 0;\r
387\r
388 //\r
389 // If QEMU presents an E820 map, then get the highest exclusive >=4GB RAM\r
390 // address from it. This can express an address >= 4GB+1TB.\r
391 //\r
392 // Otherwise, get the flat size of the memory above 4GB from the CMOS (which\r
393 // can only express a size smaller than 1TB), and add it to 4GB.\r
394 //\r
557dede8 395 Status = ScanOrAdd64BitE820Ram (FALSE, NULL, &FirstNonAddress);\r
1fceaddb
LE
396 if (EFI_ERROR (Status)) {\r
397 FirstNonAddress = BASE_4GB + GetSystemMemorySizeAbove4gb ();\r
398 }\r
7e5b1b67
LE
399\r
400 //\r
401 // If DXE is 32-bit, then we're done; PciBusDxe will degrade 64-bit MMIO\r
402 // resources to 32-bit anyway. See DegradeResource() in\r
403 // "PciResourceSupport.c".\r
404 //\r
ac0a286f 405 #ifdef MDE_CPU_IA32\r
7e5b1b67
LE
406 if (!FeaturePcdGet (PcdDxeIplSwitchToLongMode)) {\r
407 return FirstNonAddress;\r
408 }\r
ac0a286f
MK
409\r
410 #endif\r
7e5b1b67
LE
411\r
412 //\r
413 // Otherwise, in order to calculate the highest address plus one, we must\r
414 // consider the 64-bit PCI host aperture too. Fetch the default size.\r
415 //\r
416 Pci64Size = PcdGet64 (PcdPciMmio64Size);\r
417\r
418 //\r
419 // See if the user specified the number of megabytes for the 64-bit PCI host\r
98800cce 420 // aperture. Accept an aperture size up to 16TB.\r
7e5b1b67
LE
421 //\r
422 // As signaled by the "X-" prefix, this knob is experimental, and might go\r
423 // away at any time.\r
424 //\r
ac0a286f
MK
425 Status = QemuFwCfgParseUint32 (\r
426 "opt/ovmf/X-PciMmio64Mb",\r
427 FALSE,\r
428 &FwCfgPciMmio64Mb\r
429 );\r
98800cce 430 switch (Status) {\r
ac0a286f
MK
431 case EFI_UNSUPPORTED:\r
432 case EFI_NOT_FOUND:\r
98800cce 433 break;\r
ac0a286f
MK
434 case EFI_SUCCESS:\r
435 if (FwCfgPciMmio64Mb <= 0x1000000) {\r
436 Pci64Size = LShiftU64 (FwCfgPciMmio64Mb, 20);\r
437 break;\r
438 }\r
439\r
98800cce
LE
440 //\r
441 // fall through\r
442 //\r
ac0a286f
MK
443 default:\r
444 DEBUG ((\r
445 DEBUG_WARN,\r
446 "%a: ignoring malformed 64-bit PCI host aperture size from fw_cfg\n",\r
447 __FUNCTION__\r
448 ));\r
449 break;\r
7e5b1b67
LE
450 }\r
451\r
452 if (Pci64Size == 0) {\r
453 if (mBootMode != BOOT_ON_S3_RESUME) {\r
ac0a286f
MK
454 DEBUG ((\r
455 DEBUG_INFO,\r
456 "%a: disabling 64-bit PCI host aperture\n",\r
457 __FUNCTION__\r
458 ));\r
32e083c7
LE
459 PcdStatus = PcdSet64S (PcdPciMmio64Size, 0);\r
460 ASSERT_RETURN_ERROR (PcdStatus);\r
7e5b1b67
LE
461 }\r
462\r
463 //\r
464 // There's nothing more to do; the amount of memory above 4GB fully\r
465 // determines the highest address plus one. The memory hotplug area (see\r
466 // below) plays no role for the firmware in this case.\r
467 //\r
468 return FirstNonAddress;\r
469 }\r
470\r
471 //\r
472 // The "etc/reserved-memory-end" fw_cfg file, when present, contains an\r
473 // absolute, exclusive end address for the memory hotplug area. This area\r
474 // starts right at the end of the memory above 4GB. The 64-bit PCI host\r
475 // aperture must be placed above it.\r
476 //\r
ac0a286f
MK
477 Status = QemuFwCfgFindFile (\r
478 "etc/reserved-memory-end",\r
479 &FwCfgItem,\r
480 &FwCfgSize\r
481 );\r
482 if (!EFI_ERROR (Status) && (FwCfgSize == sizeof HotPlugMemoryEnd)) {\r
7e5b1b67
LE
483 QemuFwCfgSelectItem (FwCfgItem);\r
484 QemuFwCfgReadBytes (FwCfgSize, &HotPlugMemoryEnd);\r
ac0a286f
MK
485 DEBUG ((\r
486 DEBUG_VERBOSE,\r
487 "%a: HotPlugMemoryEnd=0x%Lx\n",\r
488 __FUNCTION__,\r
489 HotPlugMemoryEnd\r
490 ));\r
7e5b1b67
LE
491\r
492 ASSERT (HotPlugMemoryEnd >= FirstNonAddress);\r
493 FirstNonAddress = HotPlugMemoryEnd;\r
494 }\r
495\r
496 //\r
497 // SeaBIOS aligns both boundaries of the 64-bit PCI host aperture to 1GB, so\r
498 // that the host can map it with 1GB hugepages. Follow suit.\r
499 //\r
500 Pci64Base = ALIGN_VALUE (FirstNonAddress, (UINT64)SIZE_1GB);\r
501 Pci64Size = ALIGN_VALUE (Pci64Size, (UINT64)SIZE_1GB);\r
502\r
503 //\r
504 // The 64-bit PCI host aperture should also be "naturally" aligned. The\r
505 // alignment is determined by rounding the size of the aperture down to the\r
506 // next smaller or equal power of two. That is, align the aperture by the\r
507 // largest BAR size that can fit into it.\r
508 //\r
509 Pci64Base = ALIGN_VALUE (Pci64Base, GetPowerOfTwo64 (Pci64Size));\r
510\r
511 if (mBootMode != BOOT_ON_S3_RESUME) {\r
512 //\r
513 // The core PciHostBridgeDxe driver will automatically add this range to\r
514 // the GCD memory space map through our PciHostBridgeLib instance; here we\r
515 // only need to set the PCDs.\r
516 //\r
32e083c7
LE
517 PcdStatus = PcdSet64S (PcdPciMmio64Base, Pci64Base);\r
518 ASSERT_RETURN_ERROR (PcdStatus);\r
519 PcdStatus = PcdSet64S (PcdPciMmio64Size, Pci64Size);\r
520 ASSERT_RETURN_ERROR (PcdStatus);\r
521\r
ac0a286f
MK
522 DEBUG ((\r
523 DEBUG_INFO,\r
524 "%a: Pci64Base=0x%Lx Pci64Size=0x%Lx\n",\r
525 __FUNCTION__,\r
526 Pci64Base,\r
527 Pci64Size\r
528 ));\r
7e5b1b67
LE
529 }\r
530\r
531 //\r
532 // The useful address space ends with the 64-bit PCI host aperture.\r
533 //\r
534 FirstNonAddress = Pci64Base + Pci64Size;\r
d5371680
LE
535 return FirstNonAddress;\r
536}\r
537\r
bc89fe48
LE
538/**\r
539 Initialize the mPhysMemAddressWidth variable, based on guest RAM size.\r
540**/\r
541VOID\r
542AddressWidthInitialization (\r
543 VOID\r
544 )\r
545{\r
ac0a286f 546 UINT64 FirstNonAddress;\r
bc89fe48
LE
547\r
548 //\r
549 // As guest-physical memory size grows, the permanent PEI RAM requirements\r
550 // are dominated by the identity-mapping page tables built by the DXE IPL.\r
551 // The DXL IPL keys off of the physical address bits advertized in the CPU\r
552 // HOB. To conserve memory, we calculate the minimum address width here.\r
553 //\r
d5371680 554 FirstNonAddress = GetFirstNonAddress ();\r
bc89fe48
LE
555 mPhysMemAddressWidth = (UINT8)HighBitSet64 (FirstNonAddress);\r
556\r
557 //\r
558 // If FirstNonAddress is not an integral power of two, then we need an\r
559 // additional bit.\r
560 //\r
561 if ((FirstNonAddress & (FirstNonAddress - 1)) != 0) {\r
562 ++mPhysMemAddressWidth;\r
563 }\r
564\r
565 //\r
566 // The minimum address width is 36 (covers up to and excluding 64 GB, which\r
567 // is the maximum for Ia32 + PAE). The theoretical architecture maximum for\r
568 // X64 long mode is 52 bits, but the DXE IPL clamps that down to 48 bits. We\r
569 // can simply assert that here, since 48 bits are good enough for 256 TB.\r
570 //\r
571 if (mPhysMemAddressWidth <= 36) {\r
572 mPhysMemAddressWidth = 36;\r
573 }\r
ac0a286f 574\r
bc89fe48
LE
575 ASSERT (mPhysMemAddressWidth <= 48);\r
576}\r
577\r
bc89fe48
LE
578/**\r
579 Calculate the cap for the permanent PEI memory.\r
580**/\r
581STATIC\r
582UINT32\r
583GetPeiMemoryCap (\r
584 VOID\r
585 )\r
586{\r
ac0a286f
MK
587 BOOLEAN Page1GSupport;\r
588 UINT32 RegEax;\r
589 UINT32 RegEdx;\r
590 UINT32 Pml4Entries;\r
591 UINT32 PdpEntries;\r
592 UINTN TotalPages;\r
bc89fe48
LE
593\r
594 //\r
595 // If DXE is 32-bit, then just return the traditional 64 MB cap.\r
596 //\r
ac0a286f 597 #ifdef MDE_CPU_IA32\r
bc89fe48
LE
598 if (!FeaturePcdGet (PcdDxeIplSwitchToLongMode)) {\r
599 return SIZE_64MB;\r
600 }\r
ac0a286f
MK
601\r
602 #endif\r
bc89fe48
LE
603\r
604 //\r
605 // Dependent on physical address width, PEI memory allocations can be\r
606 // dominated by the page tables built for 64-bit DXE. So we key the cap off\r
607 // of those. The code below is based on CreateIdentityMappingPageTables() in\r
608 // "MdeModulePkg/Core/DxeIplPeim/X64/VirtualMemory.c".\r
609 //\r
610 Page1GSupport = FALSE;\r
611 if (PcdGetBool (PcdUse1GPageTable)) {\r
612 AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);\r
613 if (RegEax >= 0x80000001) {\r
614 AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx);\r
615 if ((RegEdx & BIT26) != 0) {\r
616 Page1GSupport = TRUE;\r
617 }\r
618 }\r
619 }\r
620\r
621 if (mPhysMemAddressWidth <= 39) {\r
622 Pml4Entries = 1;\r
ac0a286f 623 PdpEntries = 1 << (mPhysMemAddressWidth - 30);\r
bc89fe48
LE
624 ASSERT (PdpEntries <= 0x200);\r
625 } else {\r
626 Pml4Entries = 1 << (mPhysMemAddressWidth - 39);\r
627 ASSERT (Pml4Entries <= 0x200);\r
628 PdpEntries = 512;\r
629 }\r
630\r
631 TotalPages = Page1GSupport ? Pml4Entries + 1 :\r
ac0a286f 632 (PdpEntries + 1) * Pml4Entries + 1;\r
bc89fe48
LE
633 ASSERT (TotalPages <= 0x40201);\r
634\r
635 //\r
636 // Add 64 MB for miscellaneous allocations. Note that for\r
637 // mPhysMemAddressWidth values close to 36, the cap will actually be\r
638 // dominated by this increment.\r
639 //\r
640 return (UINT32)(EFI_PAGES_TO_SIZE (TotalPages) + SIZE_64MB);\r
641}\r
642\r
36658fff
WL
643/**\r
644 Publish PEI core memory\r
645\r
646 @return EFI_SUCCESS The PEIM initialized successfully.\r
647\r
648**/\r
649EFI_STATUS\r
650PublishPeiMemory (\r
651 VOID\r
652 )\r
653{\r
ac0a286f
MK
654 EFI_STATUS Status;\r
655 EFI_PHYSICAL_ADDRESS MemoryBase;\r
656 UINT64 MemorySize;\r
657 UINT32 LowerMemorySize;\r
658 UINT32 PeiMemoryCap;\r
36658fff 659\r
45d87081
LE
660 LowerMemorySize = GetSystemMemorySizeBelow4gb ();\r
661 if (FeaturePcdGet (PcdSmmSmramRequire)) {\r
662 //\r
663 // TSEG is chipped from the end of low RAM\r
664 //\r
23bfb5c0 665 LowerMemorySize -= mQ35TsegMbytes * SIZE_1MB;\r
45d87081
LE
666 }\r
667\r
668 //\r
669 // If S3 is supported, then the S3 permanent PEI memory is placed next,\r
670 // downwards. Its size is primarily dictated by CpuMpPei. The formula below\r
671 // is an approximation.\r
672 //\r
673 if (mS3Supported) {\r
674 mS3AcpiReservedMemorySize = SIZE_512KB +\r
ac0a286f
MK
675 mMaxCpuCount *\r
676 PcdGet32 (PcdCpuApStackSize);\r
45d87081 677 mS3AcpiReservedMemoryBase = LowerMemorySize - mS3AcpiReservedMemorySize;\r
ac0a286f 678 LowerMemorySize = mS3AcpiReservedMemoryBase;\r
45d87081
LE
679 }\r
680\r
8e54500f 681 if (mBootMode == BOOT_ON_S3_RESUME) {\r
45d87081
LE
682 MemoryBase = mS3AcpiReservedMemoryBase;\r
683 MemorySize = mS3AcpiReservedMemorySize;\r
8e54500f 684 } else {\r
bc89fe48 685 PeiMemoryCap = GetPeiMemoryCap ();\r
ac0a286f
MK
686 DEBUG ((\r
687 DEBUG_INFO,\r
688 "%a: mPhysMemAddressWidth=%d PeiMemoryCap=%u KB\n",\r
689 __FUNCTION__,\r
690 mPhysMemAddressWidth,\r
691 PeiMemoryCap >> 10\r
692 ));\r
bc89fe48 693\r
8e54500f
JJ
694 //\r
695 // Determine the range of memory to use during PEI\r
696 //\r
efb0f16e
LE
697 // Technically we could lay the permanent PEI RAM over SEC's temporary\r
698 // decompression and scratch buffer even if "secure S3" is needed, since\r
699 // their lifetimes don't overlap. However, PeiFvInitialization() will cover\r
700 // RAM up to PcdOvmfDecompressionScratchEnd with an EfiACPIMemoryNVS memory\r
701 // allocation HOB, and other allocations served from the permanent PEI RAM\r
702 // shouldn't overlap with that HOB.\r
703 //\r
704 MemoryBase = mS3Supported && FeaturePcdGet (PcdSmmSmramRequire) ?\r
ac0a286f
MK
705 PcdGet32 (PcdOvmfDecompressionScratchEnd) :\r
706 PcdGet32 (PcdOvmfDxeMemFvBase) + PcdGet32 (PcdOvmfDxeMemFvSize);\r
8e54500f 707 MemorySize = LowerMemorySize - MemoryBase;\r
bc89fe48
LE
708 if (MemorySize > PeiMemoryCap) {\r
709 MemoryBase = LowerMemorySize - PeiMemoryCap;\r
710 MemorySize = PeiMemoryCap;\r
8e54500f 711 }\r
36658fff
WL
712 }\r
713\r
adec2bd5
LE
714 //\r
715 // MEMFD_BASE_ADDRESS separates the SMRAM at the default SMBASE from the\r
716 // normal boot permanent PEI RAM. Regarding the S3 boot path, the S3\r
717 // permanent PEI RAM is located even higher.\r
718 //\r
719 if (FeaturePcdGet (PcdSmmSmramRequire) && mQ35SmramAtDefaultSmbase) {\r
720 ASSERT (SMM_DEFAULT_SMBASE + MCH_DEFAULT_SMBASE_SIZE <= MemoryBase);\r
721 }\r
722\r
36658fff
WL
723 //\r
724 // Publish this memory to the PEI Core\r
725 //\r
ac0a286f 726 Status = PublishSystemMemory (MemoryBase, MemorySize);\r
36658fff
WL
727 ASSERT_EFI_ERROR (Status);\r
728\r
729 return Status;\r
730}\r
731\r
84b223c1
LE
732STATIC\r
733VOID\r
734QemuInitializeRamBelow1gb (\r
735 VOID\r
736 )\r
737{\r
738 if (FeaturePcdGet (PcdSmmSmramRequire) && mQ35SmramAtDefaultSmbase) {\r
739 AddMemoryRangeHob (0, SMM_DEFAULT_SMBASE);\r
ac0a286f
MK
740 AddReservedMemoryBaseSizeHob (\r
741 SMM_DEFAULT_SMBASE,\r
742 MCH_DEFAULT_SMBASE_SIZE,\r
743 TRUE /* Cacheable */\r
744 );\r
84b223c1
LE
745 STATIC_ASSERT (\r
746 SMM_DEFAULT_SMBASE + MCH_DEFAULT_SMBASE_SIZE < BASE_512KB + BASE_128KB,\r
747 "end of SMRAM at default SMBASE ends at, or exceeds, 640KB"\r
748 );\r
ac0a286f
MK
749 AddMemoryRangeHob (\r
750 SMM_DEFAULT_SMBASE + MCH_DEFAULT_SMBASE_SIZE,\r
751 BASE_512KB + BASE_128KB\r
752 );\r
84b223c1
LE
753 } else {\r
754 AddMemoryRangeHob (0, BASE_512KB + BASE_128KB);\r
755 }\r
756}\r
757\r
49ba9447 758/**\r
c034906e 759 Peform Memory Detection for QEMU / KVM\r
49ba9447 760\r
761**/\r
c034906e
JJ
762STATIC\r
763VOID\r
764QemuInitializeRam (\r
765 VOID\r
49ba9447 766 )\r
767{\r
ac0a286f
MK
768 UINT64 LowerMemorySize;\r
769 UINT64 UpperMemorySize;\r
770 MTRR_SETTINGS MtrrSettings;\r
771 EFI_STATUS Status;\r
49ba9447 772\r
70d5086c 773 DEBUG ((DEBUG_INFO, "%a called\n", __FUNCTION__));\r
49ba9447 774\r
775 //\r
776 // Determine total memory size available\r
777 //\r
c0e10976 778 LowerMemorySize = GetSystemMemorySizeBelow4gb ();\r
779 UpperMemorySize = GetSystemMemorySizeAbove4gb ();\r
49ba9447 780\r
e3e3090a
LE
781 if (mBootMode == BOOT_ON_S3_RESUME) {\r
782 //\r
783 // Create the following memory HOB as an exception on the S3 boot path.\r
784 //\r
785 // Normally we'd create memory HOBs only on the normal boot path. However,\r
786 // CpuMpPei specifically needs such a low-memory HOB on the S3 path as\r
787 // well, for "borrowing" a subset of it temporarily, for the AP startup\r
788 // vector.\r
789 //\r
790 // CpuMpPei saves the original contents of the borrowed area in permanent\r
791 // PEI RAM, in a backup buffer allocated with the normal PEI services.\r
792 // CpuMpPei restores the original contents ("returns" the borrowed area) at\r
793 // End-of-PEI. End-of-PEI in turn is emitted by S3Resume2Pei before\r
8c0b0b34 794 // transferring control to the OS's wakeup vector in the FACS.\r
e3e3090a
LE
795 //\r
796 // We expect any other PEIMs that "borrow" memory similarly to CpuMpPei to\r
797 // restore the original contents. Furthermore, we expect all such PEIMs\r
798 // (CpuMpPei included) to claim the borrowed areas by producing memory\r
799 // allocation HOBs, and to honor preexistent memory allocation HOBs when\r
800 // looking for an area to borrow.\r
801 //\r
84b223c1 802 QemuInitializeRamBelow1gb ();\r
e3e3090a 803 } else {\r
bd386eaf
JJ
804 //\r
805 // Create memory HOBs\r
806 //\r
84b223c1 807 QemuInitializeRamBelow1gb ();\r
b09c1c6f
LE
808\r
809 if (FeaturePcdGet (PcdSmmSmramRequire)) {\r
ac0a286f 810 UINT32 TsegSize;\r
b09c1c6f 811\r
23bfb5c0 812 TsegSize = mQ35TsegMbytes * SIZE_1MB;\r
b09c1c6f 813 AddMemoryRangeHob (BASE_1MB, LowerMemorySize - TsegSize);\r
ac0a286f
MK
814 AddReservedMemoryBaseSizeHob (\r
815 LowerMemorySize - TsegSize,\r
816 TsegSize,\r
817 TRUE\r
818 );\r
b09c1c6f
LE
819 } else {\r
820 AddMemoryRangeHob (BASE_1MB, LowerMemorySize);\r
821 }\r
822\r
1fceaddb
LE
823 //\r
824 // If QEMU presents an E820 map, then create memory HOBs for the >=4GB RAM\r
825 // entries. Otherwise, create a single memory HOB with the flat >=4GB\r
826 // memory size read from the CMOS.\r
827 //\r
557dede8 828 Status = ScanOrAdd64BitE820Ram (TRUE, NULL, NULL);\r
ac0a286f 829 if (EFI_ERROR (Status) && (UpperMemorySize != 0)) {\r
035ce3b3 830 AddMemoryBaseSizeHob (BASE_4GB, UpperMemorySize);\r
cfc80e2e 831 }\r
bd386eaf 832 }\r
49ba9447 833\r
79d274b8
LE
834 //\r
835 // We'd like to keep the following ranges uncached:\r
836 // - [640 KB, 1 MB)\r
837 // - [LowerMemorySize, 4 GB)\r
838 //\r
839 // Everything else should be WB. Unfortunately, programming the inverse (ie.\r
840 // keeping the default UC, and configuring the complement set of the above as\r
841 // WB) is not reliable in general, because the end of the upper RAM can have\r
842 // practically any alignment, and we may not have enough variable MTRRs to\r
843 // cover it exactly.\r
844 //\r
9afcd48a 845 if (IsMtrrSupported () && (mHostBridgeDevId != CLOUDHV_DEVICE_ID)) {\r
79d274b8
LE
846 MtrrGetAllMtrrs (&MtrrSettings);\r
847\r
848 //\r
849 // MTRRs disabled, fixed MTRRs disabled, default type is uncached\r
850 //\r
851 ASSERT ((MtrrSettings.MtrrDefType & BIT11) == 0);\r
852 ASSERT ((MtrrSettings.MtrrDefType & BIT10) == 0);\r
853 ASSERT ((MtrrSettings.MtrrDefType & 0xFF) == 0);\r
854\r
855 //\r
856 // flip default type to writeback\r
857 //\r
858 SetMem (&MtrrSettings.Fixed, sizeof MtrrSettings.Fixed, 0x06);\r
859 ZeroMem (&MtrrSettings.Variables, sizeof MtrrSettings.Variables);\r
860 MtrrSettings.MtrrDefType |= BIT11 | BIT10 | 6;\r
861 MtrrSetAllMtrrs (&MtrrSettings);\r
e8e5cd4a 862\r
79d274b8
LE
863 //\r
864 // Set memory range from 640KB to 1MB to uncacheable\r
865 //\r
ac0a286f
MK
866 Status = MtrrSetMemoryAttribute (\r
867 BASE_512KB + BASE_128KB,\r
868 BASE_1MB - (BASE_512KB + BASE_128KB),\r
869 CacheUncacheable\r
870 );\r
79d274b8 871 ASSERT_EFI_ERROR (Status);\r
e8e5cd4a 872\r
79d274b8 873 //\r
49edde15
LE
874 // Set the memory range from the start of the 32-bit MMIO area (32-bit PCI\r
875 // MMIO aperture on i440fx, PCIEXBAR on q35) to 4GB as uncacheable.\r
79d274b8 876 //\r
ac0a286f
MK
877 Status = MtrrSetMemoryAttribute (\r
878 mQemuUc32Base,\r
879 SIZE_4GB - mQemuUc32Base,\r
880 CacheUncacheable\r
881 );\r
79d274b8 882 ASSERT_EFI_ERROR (Status);\r
c0e10976 883 }\r
49ba9447 884}\r
885\r
c034906e
JJ
886/**\r
887 Publish system RAM and reserve memory regions\r
888\r
889**/\r
890VOID\r
891InitializeRamRegions (\r
892 VOID\r
893 )\r
894{\r
d06eb2d1 895 QemuInitializeRam ();\r
8e54500f 896\r
ea3a12d9
BS
897 SevInitializeRam ();\r
898\r
ac0a286f 899 if (mS3Supported && (mBootMode != BOOT_ON_S3_RESUME)) {\r
8e54500f
JJ
900 //\r
901 // This is the memory range that will be used for PEI on S3 resume\r
902 //\r
903 BuildMemoryAllocationHob (\r
45d87081
LE
904 mS3AcpiReservedMemoryBase,\r
905 mS3AcpiReservedMemorySize,\r
8e54500f
JJ
906 EfiACPIMemoryNVS\r
907 );\r
e249f906
LE
908\r
909 //\r
910 // Cover the initial RAM area used as stack and temporary PEI heap.\r
911 //\r
912 // This is reserved as ACPI NVS so it can be used on S3 resume.\r
913 //\r
914 BuildMemoryAllocationHob (\r
915 PcdGet32 (PcdOvmfSecPeiTempRamBase),\r
916 PcdGet32 (PcdOvmfSecPeiTempRamSize),\r
917 EfiACPIMemoryNVS\r
918 );\r
78a38b73 919\r
ad43bc6b
LE
920 //\r
921 // SEC stores its table of GUIDed section handlers here.\r
922 //\r
923 BuildMemoryAllocationHob (\r
924 PcdGet64 (PcdGuidedExtractHandlerTableAddress),\r
925 PcdGet32 (PcdGuidedExtractHandlerTableSize),\r
926 EfiACPIMemoryNVS\r
927 );\r
928\r
ac0a286f 929 #ifdef MDE_CPU_X64\r
78a38b73
LE
930 //\r
931 // Reserve the initial page tables built by the reset vector code.\r
932 //\r
933 // Since this memory range will be used by the Reset Vector on S3\r
934 // resume, it must be reserved as ACPI NVS.\r
935 //\r
936 BuildMemoryAllocationHob (\r
ac0a286f
MK
937 (EFI_PHYSICAL_ADDRESS)(UINTN)PcdGet32 (PcdOvmfSecPageTablesBase),\r
938 (UINT64)(UINTN)PcdGet32 (PcdOvmfSecPageTablesSize),\r
78a38b73
LE
939 EfiACPIMemoryNVS\r
940 );\r
0bbed066
TL
941\r
942 if (MemEncryptSevEsIsEnabled ()) {\r
943 //\r
944 // If SEV-ES is enabled, reserve the GHCB-related memory area. This\r
945 // includes the extra page table used to break down the 2MB page\r
946 // mapping into 4KB page entries where the GHCB resides and the\r
947 // GHCB area itself.\r
948 //\r
949 // Since this memory range will be used by the Reset Vector on S3\r
950 // resume, it must be reserved as ACPI NVS.\r
951 //\r
952 BuildMemoryAllocationHob (\r
ac0a286f
MK
953 (EFI_PHYSICAL_ADDRESS)(UINTN)PcdGet32 (PcdOvmfSecGhcbPageTableBase),\r
954 (UINT64)(UINTN)PcdGet32 (PcdOvmfSecGhcbPageTableSize),\r
0bbed066
TL
955 EfiACPIMemoryNVS\r
956 );\r
957 BuildMemoryAllocationHob (\r
ac0a286f
MK
958 (EFI_PHYSICAL_ADDRESS)(UINTN)PcdGet32 (PcdOvmfSecGhcbBase),\r
959 (UINT64)(UINTN)PcdGet32 (PcdOvmfSecGhcbSize),\r
0bbed066
TL
960 EfiACPIMemoryNVS\r
961 );\r
36265424 962 BuildMemoryAllocationHob (\r
ac0a286f
MK
963 (EFI_PHYSICAL_ADDRESS)(UINTN)PcdGet32 (PcdOvmfSecGhcbBackupBase),\r
964 (UINT64)(UINTN)PcdGet32 (PcdOvmfSecGhcbBackupSize),\r
36265424
TL
965 EfiACPIMemoryNVS\r
966 );\r
0bbed066 967 }\r
ac0a286f
MK
968\r
969 #endif\r
0e8a31f5 970 }\r
6a7cba79 971\r
0e8a31f5 972 if (mBootMode != BOOT_ON_S3_RESUME) {\r
1a7edbbc
LE
973 if (!FeaturePcdGet (PcdSmmSmramRequire)) {\r
974 //\r
975 // Reserve the lock box storage area\r
976 //\r
977 // Since this memory range will be used on S3 resume, it must be\r
978 // reserved as ACPI NVS.\r
979 //\r
980 // If S3 is unsupported, then various drivers might still write to the\r
981 // LockBox area. We ought to prevent DXE from serving allocation requests\r
982 // such that they would overlap the LockBox storage.\r
983 //\r
984 ZeroMem (\r
ac0a286f
MK
985 (VOID *)(UINTN)PcdGet32 (PcdOvmfLockBoxStorageBase),\r
986 (UINTN)PcdGet32 (PcdOvmfLockBoxStorageSize)\r
1a7edbbc
LE
987 );\r
988 BuildMemoryAllocationHob (\r
ac0a286f
MK
989 (EFI_PHYSICAL_ADDRESS)(UINTN)PcdGet32 (PcdOvmfLockBoxStorageBase),\r
990 (UINT64)(UINTN)PcdGet32 (PcdOvmfLockBoxStorageSize),\r
1a7edbbc
LE
991 mS3Supported ? EfiACPIMemoryNVS : EfiBootServicesData\r
992 );\r
993 }\r
b09c1c6f
LE
994\r
995 if (FeaturePcdGet (PcdSmmSmramRequire)) {\r
ac0a286f 996 UINT32 TsegSize;\r
b09c1c6f
LE
997\r
998 //\r
999 // Make sure the TSEG area that we reported as a reserved memory resource\r
1000 // cannot be used for reserved memory allocations.\r
1001 //\r
23bfb5c0 1002 TsegSize = mQ35TsegMbytes * SIZE_1MB;\r
b09c1c6f 1003 BuildMemoryAllocationHob (\r
ac0a286f 1004 GetSystemMemorySizeBelow4gb () - TsegSize,\r
b09c1c6f
LE
1005 TsegSize,\r
1006 EfiReservedMemoryType\r
1007 );\r
84b223c1
LE
1008 //\r
1009 // Similarly, allocate away the (already reserved) SMRAM at the default\r
1010 // SMBASE, if it exists.\r
1011 //\r
1012 if (mQ35SmramAtDefaultSmbase) {\r
1013 BuildMemoryAllocationHob (\r
1014 SMM_DEFAULT_SMBASE,\r
1015 MCH_DEFAULT_SMBASE_SIZE,\r
1016 EfiReservedMemoryType\r
1017 );\r
1018 }\r
b09c1c6f 1019 }\r
0731236f 1020\r
ac0a286f 1021 #ifdef MDE_CPU_X64\r
80e67af9 1022 if (FixedPcdGet32 (PcdOvmfWorkAreaSize) != 0) {\r
0731236f 1023 //\r
80e67af9 1024 // Reserve the work area.\r
0731236f
TL
1025 //\r
1026 // Since this memory range will be used by the Reset Vector on S3\r
1027 // resume, it must be reserved as ACPI NVS.\r
1028 //\r
1029 // If S3 is unsupported, then various drivers might still write to the\r
1030 // work area. We ought to prevent DXE from serving allocation requests\r
1031 // such that they would overlap the work area.\r
1032 //\r
1033 BuildMemoryAllocationHob (\r
ac0a286f
MK
1034 (EFI_PHYSICAL_ADDRESS)(UINTN)FixedPcdGet32 (PcdOvmfWorkAreaBase),\r
1035 (UINT64)(UINTN)FixedPcdGet32 (PcdOvmfWorkAreaSize),\r
0731236f
TL
1036 mS3Supported ? EfiACPIMemoryNVS : EfiBootServicesData\r
1037 );\r
1038 }\r
ac0a286f
MK
1039\r
1040 #endif\r
8e54500f 1041 }\r
c034906e 1042}\r