]> git.proxmox.com Git - mirror_edk2.git/blame - PerformancePkg/Library/PeiTscTimerLib/PeiTscTimerLib.c
Add new API GetTimeInNanoSecond() to TimerLib to convert elapsed ticks to time in...
[mirror_edk2.git] / PerformancePkg / Library / PeiTscTimerLib / PeiTscTimerLib.c
CommitLineData
c06ad33e 1/** @file\r
d50f6f8b 2 A Pei Timer Library implementation which uses the Time Stamp Counter in the processor.\r
c06ad33e 3\r
4 For Pentium 4 processors, Intel Xeon processors (family [0FH], models [03H and higher]);\r
5 for Intel Core Solo and Intel Core Duo processors (family [06H], model [0EH]);\r
6 for the Intel Xeon processor 5100 series and Intel Core 2 Duo processors (family [06H], model [0FH]);\r
7 for Intel Core 2 and Intel Xeon processors (family [06H], display_model [17H]);\r
8 for Intel Atom processors (family [06H], display_model [1CH]):\r
9 the time-stamp counter increments at a constant rate.\r
10 That rate may be set by the maximum core-clock to bus-clock ratio of the processor or may be set by\r
11 the maximum resolved frequency at which the processor is booted. The maximum resolved frequency may\r
12 differ from the maximum qualified frequency of the processor.\r
13\r
14 The specific processor configuration determines the behavior. Constant TSC behavior ensures that the\r
15 duration of each clock tick is uniform and supports the use of the TSC as a wall clock timer even if\r
d50f6f8b 16 the processor core changes frequency. This is the architectural behavior moving forward.\r
c06ad33e 17\r
24cd83a7 18 A Processor's support for invariant TSC is indicated by CPUID.0x80000007.EDX[8].\r
c06ad33e 19\r
d50f6f8b 20 Copyright (c) 2009 - 2011, Intel Corporation. All rights reserved.<BR>\r
c06ad33e 21 This program and the accompanying materials\r
22 are licensed and made available under the terms and conditions of the BSD License\r
d50f6f8b 23 which accompanies this distribution. The full text of the license may be found at\r
c06ad33e 24 http://opensource.org/licenses/bsd-license.php\r
25\r
26 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
27 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
28\r
29**/\r
30\r
d50f6f8b 31#include <PiPei.h>\r
c06ad33e 32#include <Ich/GenericIch.h>\r
33\r
34#include <Library/TimerLib.h>\r
35#include <Library/BaseLib.h>\r
36#include <Library/IoLib.h>\r
37#include <Library/PciLib.h>\r
38#include <Library/PcdLib.h>\r
d50f6f8b 39#include <Library/HobLib.h>\r
c06ad33e 40\r
d50f6f8b 41#include <Guid/TscFrequency.h>\r
c06ad33e 42\r
d50f6f8b 43/** Get TSC frequency from TSC frequency GUID HOB, if the HOB is not found, build it.\r
c06ad33e 44\r
45 The TSC counting frequency is determined by comparing how far it counts\r
d50f6f8b 46 during a 1ms period as determined by the ACPI timer. The ACPI timer is\r
c06ad33e 47 used because it counts at a known frequency.\r
d50f6f8b 48 If ACPI I/O space not enabled, this function will enable it. Then the\r
c06ad33e 49 TSC is sampled, followed by waiting for 3579 clocks of the ACPI timer, or 1ms.\r
50 The TSC is then sampled again. The difference multiplied by 1000 is the TSC\r
d50f6f8b
SZ
51 frequency. There will be a small error because of the overhead of reading\r
52 the ACPI timer.\r
c06ad33e 53\r
d50f6f8b 54 @return The number of TSC counts per second.\r
c06ad33e 55\r
56**/\r
d50f6f8b
SZ
57UINT64\r
58InternalGetTscFrequency (\r
c06ad33e 59 VOID\r
60 )\r
61{\r
d50f6f8b
SZ
62 EFI_HOB_GUID_TYPE *GuidHob;\r
63 VOID *DataInHob;\r
c06ad33e 64 UINT64 StartTSC;\r
65 UINT64 EndTSC;\r
66 UINT32 TimerAddr;\r
67 UINT32 Ticks;\r
d50f6f8b
SZ
68 UINT64 TscFrequency;\r
69\r
70 //\r
71 // Get TSC frequency from TSC frequency GUID HOB.\r
72 //\r
73 GuidHob = GetFirstGuidHob (&gEfiTscFrequencyGuid);\r
74 if (GuidHob != NULL) {\r
75 DataInHob = GET_GUID_HOB_DATA (GuidHob);\r
76 TscFrequency = * (UINT64 *) DataInHob;\r
77 return TscFrequency;\r
78 }\r
79\r
80 //\r
81 // TSC frequency GUID HOB is not found, build it.\r
82 //\r
c06ad33e 83\r
84 //\r
85 // If ACPI I/O space is not enabled yet, program ACPI I/O base address and enable it.\r
86 //\r
87 if ((PciRead8 (PCI_ICH_LPC_ADDRESS (R_ICH_LPC_ACPI_CNT)) & B_ICH_LPC_ACPI_CNT_ACPI_EN) == 0) {\r
88 PciWrite16 (PCI_ICH_LPC_ADDRESS (R_ICH_LPC_ACPI_BASE), PcdGet16 (PcdPerfPkgAcpiIoPortBaseAddress));\r
89 PciOr8 (PCI_ICH_LPC_ADDRESS (R_ICH_LPC_ACPI_CNT), B_ICH_LPC_ACPI_CNT_ACPI_EN);\r
90 }\r
91\r
d50f6f8b
SZ
92 //\r
93 // ACPI I/O space should be enabled now, locate the ACPI Timer.\r
94 // ACPI I/O base address maybe have be initialized by other driver with different value,\r
95 // So get it from PCI space directly.\r
96 //\r
97 TimerAddr = ((PciRead16 (PCI_ICH_LPC_ADDRESS (R_ICH_LPC_ACPI_BASE))) & B_ICH_LPC_ACPI_BASE_BAR) + R_ACPI_PM1_TMR;\r
98 Ticks = IoRead32 (TimerAddr) + (3579); // Set Ticks to 1ms in the future\r
c06ad33e 99 StartTSC = AsmReadTsc(); // Get base value for the TSC\r
100 //\r
101 // Wait until the ACPI timer has counted 1ms.\r
102 // Timer wrap-arounds are handled correctly by this function.\r
103 // When the current ACPI timer value is greater than 'Ticks', the while loop will exit.\r
104 //\r
d50f6f8b 105 while (((Ticks - IoRead32 (TimerAddr)) & BIT23) == 0) {\r
c06ad33e 106 CpuPause();\r
107 }\r
108 EndTSC = AsmReadTsc(); // TSC value 1ms later\r
109\r
d50f6f8b 110 TscFrequency = MultU64x32 (\r
c06ad33e 111 (EndTSC - StartTSC), // Number of TSC counts in 1ms\r
112 1000 // Number of ms in a second\r
113 );\r
114 //\r
d50f6f8b 115 // TscFrequency is now equal to the number of TSC counts per second, build GUID HOB for it.\r
c06ad33e 116 //\r
d50f6f8b
SZ
117 BuildGuidDataHob (\r
118 &gEfiTscFrequencyGuid,\r
119 &TscFrequency,\r
120 sizeof (UINT64)\r
121 );\r
122\r
123 return TscFrequency;\r
c06ad33e 124}\r
125\r
126/** Stalls the CPU for at least the given number of ticks.\r
127\r
128 Stalls the CPU for at least the given number of ticks. It's invoked by\r
129 MicroSecondDelay() and NanoSecondDelay().\r
130\r
131 @param[in] Delay A period of time to delay in ticks.\r
132\r
133**/\r
c06ad33e 134VOID\r
135InternalX86Delay (\r
136 IN UINT64 Delay\r
137 )\r
138{\r
139 UINT64 Ticks;\r
140\r
141 //\r
142 // The target timer count is calculated here\r
143 //\r
144 Ticks = AsmReadTsc() + Delay;\r
145\r
146 //\r
147 // Wait until time out\r
148 // Timer wrap-arounds are NOT handled correctly by this function.\r
149 // Thus, this function must be called within 10 years of reset since\r
150 // Intel guarantees a minimum of 10 years before the TSC wraps.\r
151 //\r
152 while (AsmReadTsc() <= Ticks) CpuPause();\r
153}\r
154\r
155/** Stalls the CPU for at least the specified number of MicroSeconds.\r
156\r
157 @param[in] MicroSeconds The minimum number of microseconds to delay.\r
158\r
159 @return The value of MicroSeconds input.\r
160\r
161**/\r
162UINTN\r
163EFIAPI\r
164MicroSecondDelay (\r
165 IN UINTN MicroSeconds\r
166 )\r
167{\r
168 InternalX86Delay (\r
169 DivU64x32 (\r
170 MultU64x64 (\r
d50f6f8b 171 InternalGetTscFrequency (),\r
c06ad33e 172 MicroSeconds\r
173 ),\r
174 1000000u\r
175 )\r
176 );\r
177 return MicroSeconds;\r
178}\r
179\r
180/** Stalls the CPU for at least the specified number of NanoSeconds.\r
181\r
182 @param[in] NanoSeconds The minimum number of nanoseconds to delay.\r
183\r
184 @return The value of NanoSeconds input.\r
185\r
186**/\r
187UINTN\r
188EFIAPI\r
189NanoSecondDelay (\r
190 IN UINTN NanoSeconds\r
191 )\r
192{\r
193 InternalX86Delay (\r
194 DivU64x32 (\r
195 MultU64x32 (\r
d50f6f8b 196 InternalGetTscFrequency (),\r
c06ad33e 197 (UINT32)NanoSeconds\r
198 ),\r
199 1000000000u\r
200 )\r
201 );\r
202 return NanoSeconds;\r
203}\r
204\r
205/** Retrieves the current value of the 64-bit free running Time-Stamp counter.\r
206\r
207 The time-stamp counter (as implemented in the P6 family, Pentium, Pentium M,\r
208 Pentium 4, Intel Xeon, Intel Core Solo and Intel Core Duo processors and\r
209 later processors) is a 64-bit counter that is set to 0 following a RESET of\r
210 the processor. Following a RESET, the counter increments even when the\r
211 processor is halted by the HLT instruction or the external STPCLK# pin. Note\r
212 that the assertion of the external DPSLP# pin may cause the time-stamp\r
213 counter to stop.\r
214\r
215 The properties of the counter can be retrieved by the\r
216 GetPerformanceCounterProperties() function.\r
217\r
218 @return The current value of the free running performance counter.\r
219\r
220**/\r
221UINT64\r
222EFIAPI\r
223GetPerformanceCounter (\r
224 VOID\r
225 )\r
226{\r
227 return AsmReadTsc();\r
228}\r
229\r
230/** Retrieves the 64-bit frequency in Hz and the range of performance counter\r
231 values.\r
232\r
233 If StartValue is not NULL, then the value that the performance counter starts\r
234 with, 0x0, is returned in StartValue. If EndValue is not NULL, then the value\r
235 that the performance counter end with, 0xFFFFFFFFFFFFFFFF, is returned in\r
236 EndValue.\r
237\r
238 The 64-bit frequency of the performance counter, in Hz, is always returned.\r
239 To determine average processor clock frequency, Intel recommends the use of\r
240 EMON logic to count processor core clocks over the period of time for which\r
241 the average is required.\r
242\r
243\r
244 @param[out] StartValue Pointer to where the performance counter's starting value is saved, or NULL.\r
245 @param[out] EndValue Pointer to where the performance counter's ending value is saved, or NULL.\r
246\r
247 @return The frequency in Hz.\r
248\r
249**/\r
250UINT64\r
251EFIAPI\r
252GetPerformanceCounterProperties (\r
253 OUT UINT64 *StartValue, OPTIONAL\r
254 OUT UINT64 *EndValue OPTIONAL\r
255 )\r
256{\r
257 if (StartValue != NULL) {\r
258 *StartValue = 0;\r
259 }\r
260 if (EndValue != NULL) {\r
261 *EndValue = 0xFFFFFFFFFFFFFFFFull;\r
262 }\r
263\r
d50f6f8b 264 return InternalGetTscFrequency ();\r
c06ad33e 265}\r
b9610b9c 266\r
267/**\r
268 Converts elapsed ticks of performance counter to time in nanoseconds.\r
269\r
270 This function converts the elapsed ticks of running performance counter to\r
271 time value in unit of nanoseconds.\r
272\r
273 @param Ticks The number of elapsed ticks of running performance counter.\r
274\r
275 @return The elapsed time in nanoseconds.\r
276\r
277**/\r
278UINT64\r
279EFIAPI\r
280GetTimeInNanoSecond (\r
281 IN UINT64 Ticks\r
282 )\r
283{\r
284 UINT64 Frequency;\r
285 UINT64 NanoSeconds;\r
286 UINT64 Remainder;\r
287 INTN Shift;\r
288\r
289 Frequency = GetPerformanceCounterProperties (NULL, NULL);\r
290\r
291 //\r
292 // Ticks\r
293 // Time = --------- x 1,000,000,000\r
294 // Frequency\r
295 //\r
296 NanoSeconds = MultU64x32 (DivU64x64Remainder (Ticks, Frequency, &Remainder), 1000000000u);\r
297\r
298 //\r
299 // Ensure (Remainder * 1,000,000,000) will not overflow 64-bit.\r
300 // Since 2^29 < 1,000,000,000 = 0x3B9ACA00 < 2^30, Remainder should < 2^(64-30) = 2^34,\r
301 // i.e. highest bit set in Remainder should <= 33.\r
302 //\r
303 Shift = MAX (0, HighBitSet64 (Remainder) - 33);\r
304 Remainder = RShiftU64 (Remainder, (UINTN) Shift);\r
305 Frequency = RShiftU64 (Frequency, (UINTN) Shift);\r
306 NanoSeconds += DivU64x64Remainder (MultU64x32 (Remainder, 1000000000u), Frequency, NULL);\r
307\r
308 return NanoSeconds;\r
309}\r