]> git.proxmox.com Git - mirror_edk2.git/blame_incremental - EdkCompatibilityPkg/Foundation/Library/EdkIIGlueLib/Library/BaseLib/BaseLibInternals.h
Update the copyright notice format
[mirror_edk2.git] / EdkCompatibilityPkg / Foundation / Library / EdkIIGlueLib / Library / BaseLib / BaseLibInternals.h
... / ...
CommitLineData
1/*++\r
2\r
3Copyright (c) 2004 - 2006, Intel Corporation. All rights reserved.<BR>\r
4This program and the accompanying materials \r
5are licensed and made available under the terms and conditions of the BSD License \r
6which accompanies this distribution. The full text of the license may be found at \r
7http://opensource.org/licenses/bsd-license.php \r
8 \r
9THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, \r
10WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. \r
11\r
12\r
13Module Name:\r
14\r
15 BaseLibInternals.h\r
16 \r
17Abstract: \r
18\r
19 Declaration of internal functions in BaseLib.\r
20\r
21--*/\r
22\r
23#ifndef __BASE_LIB_INTERNALS_H__\r
24#define __BASE_LIB_INTERNALS_H__\r
25\r
26#include "EdkIIGlueBase.h"\r
27\r
28#define QUIENT_MAX_UINTN_DIVIDED_BY_10 ((UINTN) -1 / 10)\r
29#define REMINDER_MAX_UINTN_DIVIDED_BY_10 ((UINTN) -1 % 10)\r
30\r
31#define QUIENT_MAX_UINTN_DIVIDED_BY_16 ((UINTN) -1 / 16)\r
32#define REMINDER_MAX_UINTN_DIVIDED_BY_16 ((UINTN) -1 % 16)\r
33\r
34#define QUIENT_MAX_UINT64_DIVIDED_BY_10 ((UINT64) -1 / 10)\r
35#define REMINDER_MAX_UINT64_DIVIDED_BY_10 ((UINT64) -1 % 10)\r
36\r
37#define QUIENT_MAX_UINT64_DIVIDED_BY_16 ((UINT64) -1 / 16)\r
38#define REMINDER_MAX_UINT64_DIVIDED_BY_16 ((UINT64) -1 % 16)\r
39\r
40//\r
41// Math functions\r
42//\r
43\r
44/**\r
45 Shifts a 64-bit integer left between 0 and 63 bits. The low bits\r
46 are filled with zeros. The shifted value is returned.\r
47\r
48 This function shifts the 64-bit value Operand to the left by Count bits. The\r
49 low Count bits are set to zero. The shifted value is returned.\r
50\r
51 @param Operand The 64-bit operand to shift left.\r
52 @param Count The number of bits to shift left.\r
53\r
54 @return Operand << Count\r
55\r
56**/\r
57UINT64\r
58EFIAPI\r
59InternalMathLShiftU64 (\r
60 IN UINT64 Operand,\r
61 IN UINTN Count\r
62 );\r
63\r
64/**\r
65 Shifts a 64-bit integer right between 0 and 63 bits. This high bits\r
66 are filled with zeros. The shifted value is returned.\r
67\r
68 This function shifts the 64-bit value Operand to the right by Count bits. The\r
69 high Count bits are set to zero. The shifted value is returned.\r
70\r
71 @param Operand The 64-bit operand to shift right.\r
72 @param Count The number of bits to shift right.\r
73\r
74 @return Operand >> Count\r
75\r
76**/\r
77UINT64\r
78EFIAPI\r
79InternalMathRShiftU64 (\r
80 IN UINT64 Operand,\r
81 IN UINTN Count\r
82 );\r
83\r
84/**\r
85 Shifts a 64-bit integer right between 0 and 63 bits. The high bits\r
86 are filled with original integer's bit 63. The shifted value is returned.\r
87\r
88 This function shifts the 64-bit value Operand to the right by Count bits. The\r
89 high Count bits are set to bit 63 of Operand. The shifted value is returned.\r
90\r
91 @param Operand The 64-bit operand to shift right.\r
92 @param Count The number of bits to shift right.\r
93\r
94 @return Operand arithmetically shifted right by Count\r
95\r
96**/\r
97UINT64\r
98EFIAPI\r
99InternalMathARShiftU64 (\r
100 IN UINT64 Operand,\r
101 IN UINTN Count\r
102 );\r
103\r
104/**\r
105 Rotates a 64-bit integer left between 0 and 63 bits, filling\r
106 the low bits with the high bits that were rotated.\r
107\r
108 This function rotates the 64-bit value Operand to the left by Count bits. The\r
109 low Count bits are fill with the high Count bits of Operand. The rotated\r
110 value is returned.\r
111\r
112 @param Operand The 64-bit operand to rotate left.\r
113 @param Count The number of bits to rotate left.\r
114\r
115 @return Operand <<< Count\r
116\r
117**/\r
118UINT64\r
119EFIAPI\r
120InternalMathLRotU64 (\r
121 IN UINT64 Operand,\r
122 IN UINTN Count\r
123 );\r
124\r
125/**\r
126 Rotates a 64-bit integer right between 0 and 63 bits, filling\r
127 the high bits with the high low bits that were rotated.\r
128\r
129 This function rotates the 64-bit value Operand to the right by Count bits.\r
130 The high Count bits are fill with the low Count bits of Operand. The rotated\r
131 value is returned.\r
132\r
133 @param Operand The 64-bit operand to rotate right.\r
134 @param Count The number of bits to rotate right.\r
135\r
136 @return Operand >>> Count\r
137\r
138**/\r
139UINT64\r
140EFIAPI\r
141InternalMathRRotU64 (\r
142 IN UINT64 Operand,\r
143 IN UINTN Count\r
144 );\r
145\r
146/**\r
147 Switches the endianess of a 64-bit integer.\r
148\r
149 This function swaps the bytes in a 64-bit unsigned value to switch the value\r
150 from little endian to big endian or vice versa. The byte swapped value is\r
151 returned.\r
152\r
153 @param Operand A 64-bit unsigned value.\r
154\r
155 @return The byte swaped Operand.\r
156\r
157**/\r
158UINT64\r
159EFIAPI\r
160InternalMathSwapBytes64 (\r
161 IN UINT64 Operand\r
162 );\r
163\r
164/**\r
165 Multiples a 64-bit unsigned integer by a 32-bit unsigned integer\r
166 and generates a 64-bit unsigned result.\r
167\r
168 This function multiples the 64-bit unsigned value Multiplicand by the 32-bit\r
169 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-\r
170 bit unsigned result is returned.\r
171\r
172 @param Multiplicand A 64-bit unsigned value.\r
173 @param Multiplier A 32-bit unsigned value.\r
174\r
175 @return Multiplicand * Multiplier\r
176\r
177**/\r
178UINT64\r
179EFIAPI\r
180InternalMathMultU64x32 (\r
181 IN UINT64 Multiplicand,\r
182 IN UINT32 Multiplier\r
183 );\r
184\r
185/**\r
186 Multiples a 64-bit unsigned integer by a 64-bit unsigned integer\r
187 and generates a 64-bit unsigned result.\r
188\r
189 This function multiples the 64-bit unsigned value Multiplicand by the 64-bit\r
190 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-\r
191 bit unsigned result is returned.\r
192\r
193 @param Multiplicand A 64-bit unsigned value.\r
194 @param Multiplier A 64-bit unsigned value.\r
195\r
196 @return Multiplicand * Multiplier\r
197\r
198**/\r
199UINT64\r
200EFIAPI\r
201InternalMathMultU64x64 (\r
202 IN UINT64 Multiplicand,\r
203 IN UINT64 Multiplier\r
204 );\r
205\r
206/**\r
207 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and\r
208 generates a 64-bit unsigned result.\r
209\r
210 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
211 unsigned value Divisor and generates a 64-bit unsigned quotient. This\r
212 function returns the 64-bit unsigned quotient.\r
213\r
214 @param Dividend A 64-bit unsigned value.\r
215 @param Divisor A 32-bit unsigned value.\r
216\r
217 @return Dividend / Divisor\r
218\r
219**/\r
220UINT64\r
221EFIAPI\r
222InternalMathDivU64x32 (\r
223 IN UINT64 Dividend,\r
224 IN UINT32 Divisor\r
225 );\r
226\r
227/**\r
228 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and\r
229 generates a 32-bit unsigned remainder.\r
230\r
231 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
232 unsigned value Divisor and generates a 32-bit remainder. This function\r
233 returns the 32-bit unsigned remainder.\r
234\r
235 @param Dividend A 64-bit unsigned value.\r
236 @param Divisor A 32-bit unsigned value.\r
237\r
238 @return Dividend % Divisor\r
239\r
240**/\r
241UINT32\r
242EFIAPI\r
243InternalMathModU64x32 (\r
244 IN UINT64 Dividend,\r
245 IN UINT32 Divisor\r
246 );\r
247\r
248/**\r
249 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and\r
250 generates a 64-bit unsigned result and an optional 32-bit unsigned remainder.\r
251\r
252 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
253 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder\r
254 is not NULL, then the 32-bit unsigned remainder is returned in Remainder.\r
255 This function returns the 64-bit unsigned quotient.\r
256\r
257 @param Dividend A 64-bit unsigned value.\r
258 @param Divisor A 32-bit unsigned value.\r
259 @param Remainder A pointer to a 32-bit unsigned value. This parameter is\r
260 optional and may be NULL.\r
261\r
262 @return Dividend / Divisor\r
263\r
264**/\r
265UINT64\r
266EFIAPI\r
267InternalMathDivRemU64x32 (\r
268 IN UINT64 Dividend,\r
269 IN UINT32 Divisor,\r
270 OUT UINT32 *Remainder\r
271 );\r
272\r
273/**\r
274 Divides a 64-bit unsigned integer by a 64-bit unsigned integer and\r
275 generates a 64-bit unsigned result and an optional 64-bit unsigned remainder.\r
276\r
277 This function divides the 64-bit unsigned value Dividend by the 64-bit\r
278 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder\r
279 is not NULL, then the 64-bit unsigned remainder is returned in Remainder.\r
280 This function returns the 64-bit unsigned quotient.\r
281\r
282 @param Dividend A 64-bit unsigned value.\r
283 @param Divisor A 64-bit unsigned value.\r
284 @param Remainder A pointer to a 64-bit unsigned value. This parameter is\r
285 optional and may be NULL.\r
286\r
287 @return Dividend / Divisor\r
288\r
289**/\r
290UINT64\r
291EFIAPI\r
292InternalMathDivRemU64x64 (\r
293 IN UINT64 Dividend,\r
294 IN UINT64 Divisor,\r
295 OUT UINT64 *Remainder\r
296 );\r
297\r
298/**\r
299 Divides a 64-bit signed integer by a 64-bit signed integer and\r
300 generates a 64-bit signed result and a optional 64-bit signed remainder.\r
301\r
302 This function divides the 64-bit unsigned value Dividend by the 64-bit\r
303 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder\r
304 is not NULL, then the 64-bit unsigned remainder is returned in Remainder.\r
305 This function returns the 64-bit unsigned quotient.\r
306\r
307 @param Dividend A 64-bit signed value.\r
308 @param Divisor A 64-bit signed value.\r
309 @param Remainder A pointer to a 64-bit signed value. This parameter is\r
310 optional and may be NULL.\r
311\r
312 @return Dividend / Divisor\r
313\r
314**/\r
315INT64\r
316InternalMathDivRemS64x64 (\r
317 IN INT64 Dividend,\r
318 IN INT64 Divisor,\r
319 OUT INT64 *Remainder OPTIONAL\r
320 );\r
321\r
322/**\r
323 Transfers control to a function starting with a new stack.\r
324\r
325 Transfers control to the function specified by EntryPoint using the\r
326 new stack specified by NewStack and passing in the parameters specified\r
327 by Context1 and Context2. Context1 and Context2 are optional and may\r
328 be NULL. The function EntryPoint must never return.\r
329 Marker will be ignored on IA-32, x64, and EBC.\r
330 IPF CPUs expect one additional parameter of type VOID * that specifies\r
331 the new backing store pointer.\r
332\r
333 If EntryPoint is NULL, then ASSERT().\r
334 If NewStack is NULL, then ASSERT().\r
335\r
336 @param EntryPoint A pointer to function to call with the new stack.\r
337 @param Context1 A pointer to the context to pass into the EntryPoint\r
338 function.\r
339 @param Context2 A pointer to the context to pass into the EntryPoint\r
340 function.\r
341 @param NewStack A pointer to the new stack to use for the EntryPoint\r
342 function.\r
343 @param Marker VA_LIST marker for the variable argument list.\r
344\r
345**/\r
346VOID\r
347EFIAPI\r
348InternalSwitchStack (\r
349 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
350 IN VOID *Context1, OPTIONAL\r
351 IN VOID *Context2, OPTIONAL\r
352 IN VOID *NewStack,\r
353 IN VA_LIST Marker\r
354 );\r
355\r
356\r
357/**\r
358 Worker function that locates the Node in the List\r
359\r
360 By searching the List, finds the location of the Node in List. At the same time,\r
361 verifies the validity of this list.\r
362\r
363 If List is NULL, then ASSERT().\r
364 If List->ForwardLink is NULL, then ASSERT().\r
365 If List->backLink is NULL, then ASSERT().\r
366 If Node is NULL, then ASSERT();\r
367 If PcdMaximumLinkedListLenth is not zero, and prior to insertion the number\r
368 of nodes in ListHead, including the ListHead node, is greater than or\r
369 equal to PcdMaximumLinkedListLength, then ASSERT().\r
370\r
371 @param List A pointer to a node in a linked list.\r
372 @param Node A pointer to one nod.\r
373\r
374 @retval TRUE Node is in List\r
375 @retval FALSE Node isn't in List, or List is invalid\r
376\r
377**/\r
378BOOLEAN\r
379IsNodeInList (\r
380 IN CONST LIST_ENTRY *List,\r
381 IN CONST LIST_ENTRY *Node\r
382 );\r
383\r
384\r
385/**\r
386 Performs an atomic increment of an 32-bit unsigned integer.\r
387\r
388 Performs an atomic increment of the 32-bit unsigned integer specified by\r
389 Value and returns the incremented value. The increment operation must be\r
390 performed using MP safe mechanisms. The state of the return value is not\r
391 guaranteed to be MP safe.\r
392\r
393 @param Value A pointer to the 32-bit value to increment.\r
394\r
395 @return The incremented value.\r
396\r
397**/\r
398UINT32\r
399EFIAPI\r
400InternalSyncIncrement (\r
401 IN volatile UINT32 *Value\r
402 );\r
403\r
404\r
405/**\r
406 Performs an atomic decrement of an 32-bit unsigned integer.\r
407\r
408 Performs an atomic decrement of the 32-bit unsigned integer specified by\r
409 Value and returns the decrement value. The decrement operation must be\r
410 performed using MP safe mechanisms. The state of the return value is not\r
411 guaranteed to be MP safe.\r
412\r
413 @param Value A pointer to the 32-bit value to decrement.\r
414\r
415 @return The decrement value.\r
416\r
417**/\r
418UINT32\r
419EFIAPI\r
420InternalSyncDecrement (\r
421 IN volatile UINT32 *Value\r
422 );\r
423\r
424\r
425/**\r
426 Performs an atomic compare exchange operation on a 32-bit unsigned integer.\r
427\r
428 Performs an atomic compare exchange operation on the 32-bit unsigned integer\r
429 specified by Value. If Value is equal to CompareValue, then Value is set to\r
430 ExchangeValue and CompareValue is returned. If Value is not equal to CompareValue,\r
431 then Value is returned. The compare exchange operation must be performed using\r
432 MP safe mechanisms.\r
433\r
434 @param Value A pointer to the 32-bit value for the compare exchange\r
435 operation.\r
436 @param CompareValue 32-bit value used in compare operation.\r
437 @param ExchangeValue 32-bit value used in exchange operation.\r
438\r
439 @return The original *Value before exchange.\r
440\r
441**/\r
442UINT32\r
443EFIAPI\r
444InternalSyncCompareExchange32 (\r
445 IN volatile UINT32 *Value,\r
446 IN UINT32 CompareValue,\r
447 IN UINT32 ExchangeValue\r
448 );\r
449\r
450\r
451/**\r
452 Performs an atomic compare exchange operation on a 64-bit unsigned integer.\r
453\r
454 Performs an atomic compare exchange operation on the 64-bit unsigned integer specified\r
455 by Value. If Value is equal to CompareValue, then Value is set to ExchangeValue and\r
456 CompareValue is returned. If Value is not equal to CompareValue, then Value is returned.\r
457 The compare exchange operation must be performed using MP safe mechanisms.\r
458\r
459 @param Value A pointer to the 64-bit value for the compare exchange\r
460 operation.\r
461 @param CompareValue 64-bit value used in compare operation.\r
462 @param ExchangeValue 64-bit value used in exchange operation.\r
463\r
464 @return The original *Value before exchange.\r
465\r
466**/\r
467UINT64\r
468EFIAPI\r
469InternalSyncCompareExchange64 (\r
470 IN volatile UINT64 *Value,\r
471 IN UINT64 CompareValue,\r
472 IN UINT64 ExchangeValue\r
473 );\r
474\r
475\r
476/**\r
477 Worker function that returns a bit field from Operand\r
478\r
479 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
480\r
481 @param Operand Operand on which to perform the bitfield operation.\r
482 @param StartBit The ordinal of the least significant bit in the bit field.\r
483 @param EndBit The ordinal of the most significant bit in the bit field.\r
484\r
485 @return The bit field read.\r
486\r
487**/\r
488unsigned int\r
489BitFieldReadUint (\r
490 IN unsigned int Operand,\r
491 IN UINTN StartBit,\r
492 IN UINTN EndBit\r
493 );\r
494\r
495\r
496/**\r
497 Worker function that reads a bit field from Operand, performs a bitwise OR,\r
498 and returns the result.\r
499\r
500 Performs a bitwise OR between the bit field specified by StartBit and EndBit\r
501 in Operand and the value specified by AndData. All other bits in Operand are\r
502 preserved. The new value is returned.\r
503\r
504 @param Operand Operand on which to perform the bitfield operation.\r
505 @param StartBit The ordinal of the least significant bit in the bit field.\r
506 @param EndBit The ordinal of the most significant bit in the bit field.\r
507 @param OrData The value to OR with the read value from the value\r
508\r
509 @return The new value.\r
510\r
511**/\r
512unsigned int\r
513BitFieldOrUint (\r
514 IN unsigned int Operand,\r
515 IN UINTN StartBit,\r
516 IN UINTN EndBit,\r
517 IN unsigned int OrData\r
518 );\r
519\r
520\r
521/**\r
522 Worker function that reads a bit field from Operand, performs a bitwise AND,\r
523 and returns the result.\r
524\r
525 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
526 in Operand and the value specified by AndData. All other bits in Operand are\r
527 preserved. The new value is returned.\r
528\r
529 @param Operand Operand on which to perform the bitfield operation.\r
530 @param StartBit The ordinal of the least significant bit in the bit field.\r
531 @param EndBit The ordinal of the most significant bit in the bit field.\r
532 @param AndData The value to And with the read value from the value\r
533\r
534 @return The new value.\r
535\r
536**/\r
537unsigned int\r
538BitFieldAndUint (\r
539 IN unsigned int Operand,\r
540 IN UINTN StartBit,\r
541 IN UINTN EndBit,\r
542 IN unsigned int AndData\r
543 );\r
544\r
545\r
546/**\r
547 Worker function that checks ASSERT condition for JumpBuffer\r
548\r
549 Checks ASSERT condition for JumpBuffer.\r
550\r
551 If JumpBuffer is NULL, then ASSERT().\r
552 For IPF CPUs, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().\r
553\r
554 @param JumpBuffer A pointer to CPU context buffer.\r
555\r
556**/\r
557VOID\r
558EFIAPI\r
559InternalAssertJumpBuffer (\r
560 IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer\r
561 );\r
562\r
563\r
564/**\r
565 Restores the CPU context that was saved with SetJump().\r
566\r
567 Restores the CPU context from the buffer specified by JumpBuffer.\r
568 This function never returns to the caller.\r
569 Instead is resumes execution based on the state of JumpBuffer.\r
570\r
571 @param JumpBuffer A pointer to CPU context buffer.\r
572 @param Value The value to return when the SetJump() context is restored.\r
573\r
574**/\r
575VOID\r
576EFIAPI\r
577InternalLongJump (\r
578 IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer,\r
579 IN UINTN Value\r
580 );\r
581\r
582\r
583//\r
584// Ia32 and x64 specific functions\r
585//\r
586#if defined (MDE_CPU_IA32) || defined (MDE_CPU_X64)\r
587\r
588/**\r
589 Reads the current Global Descriptor Table Register(GDTR) descriptor.\r
590\r
591 Reads and returns the current GDTR descriptor and returns it in Gdtr. This\r
592 function is only available on IA-32 and X64.\r
593\r
594 @param Gdtr Pointer to a GDTR descriptor.\r
595\r
596**/\r
597VOID\r
598EFIAPI\r
599InternalX86ReadGdtr (\r
600 OUT IA32_DESCRIPTOR *Gdtr\r
601 );\r
602\r
603/**\r
604 Writes the current Global Descriptor Table Register (GDTR) descriptor.\r
605\r
606 Writes and the current GDTR descriptor specified by Gdtr. This function is\r
607 only available on IA-32 and X64.\r
608\r
609 @param Gdtr Pointer to a GDTR descriptor.\r
610\r
611**/\r
612VOID\r
613EFIAPI\r
614InternalX86WriteGdtr (\r
615 IN CONST IA32_DESCRIPTOR *Gdtr\r
616 );\r
617\r
618/**\r
619 Reads the current Interrupt Descriptor Table Register(GDTR) descriptor.\r
620\r
621 Reads and returns the current IDTR descriptor and returns it in Idtr. This\r
622 function is only available on IA-32 and X64.\r
623\r
624 @param Idtr Pointer to a IDTR descriptor.\r
625\r
626**/\r
627VOID\r
628EFIAPI\r
629InternalX86ReadIdtr (\r
630 OUT IA32_DESCRIPTOR *Idtr\r
631 );\r
632\r
633/**\r
634 Writes the current Interrupt Descriptor Table Register(GDTR) descriptor.\r
635\r
636 Writes the current IDTR descriptor and returns it in Idtr. This function is\r
637 only available on IA-32 and X64.\r
638\r
639 @param Idtr Pointer to a IDTR descriptor.\r
640\r
641**/\r
642VOID\r
643EFIAPI\r
644InternalX86WriteIdtr (\r
645 IN CONST IA32_DESCRIPTOR *Idtr\r
646 );\r
647\r
648/**\r
649 Save the current floating point/SSE/SSE2 context to a buffer.\r
650\r
651 Saves the current floating point/SSE/SSE2 state to the buffer specified by\r
652 Buffer. Buffer must be aligned on a 16-byte boundary. This function is only\r
653 available on IA-32 and X64.\r
654\r
655 @param Buffer Pointer to a buffer to save the floating point/SSE/SSE2 context.\r
656\r
657**/\r
658VOID\r
659EFIAPI\r
660InternalX86FxSave (\r
661 OUT IA32_FX_BUFFER *Buffer\r
662 );\r
663\r
664/**\r
665 Restores the current floating point/SSE/SSE2 context from a buffer.\r
666\r
667 Restores the current floating point/SSE/SSE2 state from the buffer specified\r
668 by Buffer. Buffer must be aligned on a 16-byte boundary. This function is\r
669 only available on IA-32 and X64.\r
670\r
671 @param Buffer Pointer to a buffer to save the floating point/SSE/SSE2 context.\r
672\r
673**/\r
674VOID\r
675EFIAPI\r
676InternalX86FxRestore (\r
677 IN CONST IA32_FX_BUFFER *Buffer\r
678 );\r
679\r
680/**\r
681 Enables the 32-bit paging mode on the CPU.\r
682\r
683 Enables the 32-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables\r
684 must be properly initialized prior to calling this service. This function\r
685 assumes the current execution mode is 32-bit protected mode. This function is\r
686 only available on IA-32. After the 32-bit paging mode is enabled, control is\r
687 transferred to the function specified by EntryPoint using the new stack\r
688 specified by NewStack and passing in the parameters specified by Context1 and\r
689 Context2. Context1 and Context2 are optional and may be NULL. The function\r
690 EntryPoint must never return.\r
691\r
692 There are a number of constraints that must be followed before calling this\r
693 function:\r
694 1) Interrupts must be disabled.\r
695 2) The caller must be in 32-bit protected mode with flat descriptors. This\r
696 means all descriptors must have a base of 0 and a limit of 4GB.\r
697 3) CR0 and CR4 must be compatible with 32-bit protected mode with flat\r
698 descriptors.\r
699 4) CR3 must point to valid page tables that will be used once the transition\r
700 is complete, and those page tables must guarantee that the pages for this\r
701 function and the stack are identity mapped.\r
702\r
703 @param EntryPoint A pointer to function to call with the new stack after\r
704 paging is enabled.\r
705 @param Context1 A pointer to the context to pass into the EntryPoint\r
706 function as the first parameter after paging is enabled.\r
707 @param Context2 A pointer to the context to pass into the EntryPoint\r
708 function as the second parameter after paging is enabled.\r
709 @param NewStack A pointer to the new stack to use for the EntryPoint\r
710 function after paging is enabled.\r
711\r
712**/\r
713VOID\r
714EFIAPI\r
715InternalX86EnablePaging32 (\r
716 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
717 IN VOID *Context1, OPTIONAL\r
718 IN VOID *Context2, OPTIONAL\r
719 IN VOID *NewStack\r
720 );\r
721\r
722/**\r
723 Disables the 32-bit paging mode on the CPU.\r
724\r
725 Disables the 32-bit paging mode on the CPU and returns to 32-bit protected\r
726 mode. This function assumes the current execution mode is 32-paged protected\r
727 mode. This function is only available on IA-32. After the 32-bit paging mode\r
728 is disabled, control is transferred to the function specified by EntryPoint\r
729 using the new stack specified by NewStack and passing in the parameters\r
730 specified by Context1 and Context2. Context1 and Context2 are optional and\r
731 may be NULL. The function EntryPoint must never return.\r
732\r
733 There are a number of constraints that must be followed before calling this\r
734 function:\r
735 1) Interrupts must be disabled.\r
736 2) The caller must be in 32-bit paged mode.\r
737 3) CR0, CR3, and CR4 must be compatible with 32-bit paged mode.\r
738 4) CR3 must point to valid page tables that guarantee that the pages for\r
739 this function and the stack are identity mapped.\r
740\r
741 @param EntryPoint A pointer to function to call with the new stack after\r
742 paging is disabled.\r
743 @param Context1 A pointer to the context to pass into the EntryPoint\r
744 function as the first parameter after paging is disabled.\r
745 @param Context2 A pointer to the context to pass into the EntryPoint\r
746 function as the second parameter after paging is\r
747 disabled.\r
748 @param NewStack A pointer to the new stack to use for the EntryPoint\r
749 function after paging is disabled.\r
750\r
751**/\r
752VOID\r
753EFIAPI\r
754InternalX86DisablePaging32 (\r
755 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
756 IN VOID *Context1, OPTIONAL\r
757 IN VOID *Context2, OPTIONAL\r
758 IN VOID *NewStack\r
759 );\r
760\r
761/**\r
762 Enables the 64-bit paging mode on the CPU.\r
763\r
764 Enables the 64-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables\r
765 must be properly initialized prior to calling this service. This function\r
766 assumes the current execution mode is 32-bit protected mode with flat\r
767 descriptors. This function is only available on IA-32. After the 64-bit\r
768 paging mode is enabled, control is transferred to the function specified by\r
769 EntryPoint using the new stack specified by NewStack and passing in the\r
770 parameters specified by Context1 and Context2. Context1 and Context2 are\r
771 optional and may be 0. The function EntryPoint must never return.\r
772\r
773 @param Cs The 16-bit selector to load in the CS before EntryPoint\r
774 is called. The descriptor in the GDT that this selector\r
775 references must be setup for long mode.\r
776 @param EntryPoint The 64-bit virtual address of the function to call with\r
777 the new stack after paging is enabled.\r
778 @param Context1 The 64-bit virtual address of the context to pass into\r
779 the EntryPoint function as the first parameter after\r
780 paging is enabled.\r
781 @param Context2 The 64-bit virtual address of the context to pass into\r
782 the EntryPoint function as the second parameter after\r
783 paging is enabled.\r
784 @param NewStack The 64-bit virtual address of the new stack to use for\r
785 the EntryPoint function after paging is enabled.\r
786\r
787**/\r
788VOID\r
789EFIAPI\r
790InternalX86EnablePaging64 (\r
791 IN UINT16 Cs,\r
792 IN UINT64 EntryPoint,\r
793 IN UINT64 Context1, OPTIONAL\r
794 IN UINT64 Context2, OPTIONAL\r
795 IN UINT64 NewStack\r
796 );\r
797\r
798/**\r
799 Disables the 64-bit paging mode on the CPU.\r
800\r
801 Disables the 64-bit paging mode on the CPU and returns to 32-bit protected\r
802 mode. This function assumes the current execution mode is 64-paging mode.\r
803 This function is only available on X64. After the 64-bit paging mode is\r
804 disabled, control is transferred to the function specified by EntryPoint\r
805 using the new stack specified by NewStack and passing in the parameters\r
806 specified by Context1 and Context2. Context1 and Context2 are optional and\r
807 may be 0. The function EntryPoint must never return.\r
808\r
809 @param Cs The 16-bit selector to load in the CS before EntryPoint\r
810 is called. The descriptor in the GDT that this selector\r
811 references must be setup for 32-bit protected mode.\r
812 @param EntryPoint The 64-bit virtual address of the function to call with\r
813 the new stack after paging is disabled.\r
814 @param Context1 The 64-bit virtual address of the context to pass into\r
815 the EntryPoint function as the first parameter after\r
816 paging is disabled.\r
817 @param Context2 The 64-bit virtual address of the context to pass into\r
818 the EntryPoint function as the second parameter after\r
819 paging is disabled.\r
820 @param NewStack The 64-bit virtual address of the new stack to use for\r
821 the EntryPoint function after paging is disabled.\r
822\r
823**/\r
824VOID\r
825EFIAPI\r
826InternalX86DisablePaging64 (\r
827 IN UINT16 Cs,\r
828 IN UINT32 EntryPoint,\r
829 IN UINT32 Context1, OPTIONAL\r
830 IN UINT32 Context2, OPTIONAL\r
831 IN UINT32 NewStack\r
832 );\r
833\r
834\r
835#elif defined (MDE_CPU_IPF)\r
836//\r
837//\r
838// IPF specific functions\r
839//\r
840\r
841/**\r
842 Transfers control to a function starting with a new stack.\r
843\r
844 Transfers control to the function specified by EntryPoint using the new stack\r
845 specified by NewStack and passing in the parameters specified by Context1 and\r
846 Context2. Context1 and Context2 are optional and may be NULL. The function\r
847 EntryPoint must never return.\r
848\r
849 If EntryPoint is NULL, then ASSERT().\r
850 If NewStack is NULL, then ASSERT().\r
851\r
852 @param EntryPoint A pointer to function to call with the new stack.\r
853 @param Context1 A pointer to the context to pass into the EntryPoint\r
854 function.\r
855 @param Context2 A pointer to the context to pass into the EntryPoint\r
856 function.\r
857 @param NewStack A pointer to the new stack to use for the EntryPoint\r
858 function.\r
859 @param NewBsp A pointer to the new memory location for RSE backing\r
860 store.\r
861\r
862**/\r
863VOID\r
864EFIAPI\r
865AsmSwitchStackAndBackingStore (\r
866 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
867 IN VOID *Context1, OPTIONAL\r
868 IN VOID *Context2, OPTIONAL\r
869 IN VOID *NewStack,\r
870 IN VOID *NewBsp\r
871 );\r
872#else\r
873\r
874#endif\r
875\r
876#endif\r