]> git.proxmox.com Git - mirror_edk2.git/blame_incremental - MdeModulePkg/Core/Pei/Dispatcher/Dispatcher.c
Add core FFS3 support, ExtractGuidedSectionLib/GuidedSectionExtractionLib/PiFirmwareF...
[mirror_edk2.git] / MdeModulePkg / Core / Pei / Dispatcher / Dispatcher.c
... / ...
CommitLineData
1/** @file\r
2 EFI PEI Core dispatch services\r
3 \r
4Copyright (c) 2006 - 2011, Intel Corporation. All rights reserved.<BR>\r
5This program and the accompanying materials\r
6are licensed and made available under the terms and conditions of the BSD License\r
7which accompanies this distribution. The full text of the license may be found at\r
8http://opensource.org/licenses/bsd-license.php\r
9\r
10THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
11WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
12\r
13**/\r
14\r
15#include "PeiMain.h"\r
16\r
17///\r
18/// temporary memory is filled with this initial value during SEC phase\r
19///\r
20#define INIT_CAR_VALUE 0x5AA55AA5\r
21\r
22typedef struct {\r
23 EFI_STATUS_CODE_DATA DataHeader;\r
24 EFI_HANDLE Handle;\r
25} PEIM_FILE_HANDLE_EXTENDED_DATA;\r
26\r
27/**\r
28\r
29 Discover all Peims and optional Apriori file in one FV. There is at most one\r
30 Apriori file in one FV.\r
31\r
32\r
33 @param Private Pointer to the private data passed in from caller\r
34 @param CoreFileHandle The instance of PEI_CORE_FV_HANDLE.\r
35\r
36**/\r
37VOID\r
38DiscoverPeimsAndOrderWithApriori (\r
39 IN PEI_CORE_INSTANCE *Private,\r
40 IN PEI_CORE_FV_HANDLE *CoreFileHandle\r
41 )\r
42{\r
43 EFI_STATUS Status;\r
44 EFI_PEI_FV_HANDLE FileHandle;\r
45 EFI_PEI_FILE_HANDLE AprioriFileHandle;\r
46 EFI_GUID *Apriori;\r
47 UINTN Index;\r
48 UINTN Index2;\r
49 UINTN PeimIndex;\r
50 UINTN PeimCount;\r
51 EFI_GUID *Guid;\r
52 EFI_PEI_FV_HANDLE TempFileHandles[FixedPcdGet32 (PcdPeiCoreMaxPeimPerFv)];\r
53 EFI_GUID FileGuid[FixedPcdGet32 (PcdPeiCoreMaxPeimPerFv)];\r
54 EFI_PEI_FIRMWARE_VOLUME_PPI *FvPpi;\r
55 EFI_FV_FILE_INFO FileInfo;\r
56 \r
57 FvPpi = CoreFileHandle->FvPpi;\r
58 \r
59 //\r
60 // Walk the FV and find all the PEIMs and the Apriori file.\r
61 //\r
62 AprioriFileHandle = NULL;\r
63 Private->CurrentFvFileHandles[0] = NULL;\r
64 Guid = NULL;\r
65 FileHandle = NULL;\r
66\r
67 //\r
68 // If the current Fv has been scanned, directly get its cachable record.\r
69 //\r
70 if (Private->Fv[Private->CurrentPeimFvCount].ScanFv) {\r
71 CopyMem (Private->CurrentFvFileHandles, Private->Fv[Private->CurrentPeimFvCount].FvFileHandles, sizeof (Private->CurrentFvFileHandles));\r
72 return;\r
73 }\r
74\r
75 //\r
76 // Go ahead to scan this Fv, and cache FileHandles within it.\r
77 //\r
78 for (PeimCount = 0; PeimCount < FixedPcdGet32 (PcdPeiCoreMaxPeimPerFv); PeimCount++) {\r
79 Status = FvPpi->FindFileByType (FvPpi, PEI_CORE_INTERNAL_FFS_FILE_DISPATCH_TYPE, CoreFileHandle->FvHandle, &FileHandle);\r
80 if (Status != EFI_SUCCESS) {\r
81 break;\r
82 }\r
83\r
84 Private->CurrentFvFileHandles[PeimCount] = FileHandle;\r
85 }\r
86 \r
87 //\r
88 // Check whether the count of Peims exceeds the max support PEIMs in a FV image\r
89 // If more Peims are required in a FV image, PcdPeiCoreMaxPeimPerFv can be set to a larger value in DSC file.\r
90 //\r
91 ASSERT (PeimCount < FixedPcdGet32 (PcdPeiCoreMaxPeimPerFv));\r
92\r
93 //\r
94 // Get Apriori File handle\r
95 //\r
96 Private->AprioriCount = 0;\r
97 Status = FvPpi->FindFileByName (FvPpi, &gPeiAprioriFileNameGuid, &CoreFileHandle->FvHandle, &AprioriFileHandle);\r
98 if (!EFI_ERROR(Status) && AprioriFileHandle != NULL) {\r
99 //\r
100 // Read the Apriori file\r
101 //\r
102 Status = FvPpi->FindSectionByType (FvPpi, EFI_SECTION_RAW, AprioriFileHandle, (VOID **) &Apriori);\r
103 if (!EFI_ERROR (Status)) {\r
104 //\r
105 // Calculate the number of PEIMs in the A Priori list\r
106 //\r
107 Status = FvPpi->GetFileInfo (FvPpi, AprioriFileHandle, &FileInfo);\r
108 ASSERT_EFI_ERROR (Status);\r
109 Private->AprioriCount = FileInfo.BufferSize & 0x00FFFFFF;\r
110 Private->AprioriCount -= sizeof (EFI_COMMON_SECTION_HEADER);\r
111 Private->AprioriCount /= sizeof (EFI_GUID);\r
112\r
113 ZeroMem (FileGuid, sizeof (FileGuid));\r
114 for (Index = 0; Index < PeimCount; Index++) {\r
115 //\r
116 // Make an array of file name guids that matches the FileHandle array so we can convert\r
117 // quickly from file name to file handle\r
118 //\r
119 Status = FvPpi->GetFileInfo (FvPpi, Private->CurrentFvFileHandles[Index], &FileInfo);\r
120 CopyMem (&FileGuid[Index], &FileInfo.FileName, sizeof(EFI_GUID));\r
121 }\r
122\r
123 //\r
124 // Walk through FileGuid array to find out who is invalid PEIM guid in Apriori file.\r
125 // Add avalible PEIMs in Apriori file into TempFileHandles array at first.\r
126 //\r
127 Index2 = 0;\r
128 for (Index = 0; Index2 < Private->AprioriCount; Index++) {\r
129 while (Index2 < Private->AprioriCount) {\r
130 Guid = ScanGuid (FileGuid, PeimCount * sizeof (EFI_GUID), &Apriori[Index2++]);\r
131 if (Guid != NULL) {\r
132 break;\r
133 }\r
134 }\r
135 if (Guid == NULL) {\r
136 break;\r
137 }\r
138 PeimIndex = ((UINTN)Guid - (UINTN)&FileGuid[0])/sizeof (EFI_GUID);\r
139 TempFileHandles[Index] = Private->CurrentFvFileHandles[PeimIndex];\r
140\r
141 //\r
142 // Since we have copied the file handle we can remove it from this list.\r
143 //\r
144 Private->CurrentFvFileHandles[PeimIndex] = NULL;\r
145 }\r
146\r
147 //\r
148 // Update valid Aprioricount\r
149 //\r
150 Private->AprioriCount = Index;\r
151\r
152 //\r
153 // Add in any PEIMs not in the Apriori file\r
154 //\r
155 for (;Index < PeimCount; Index++) {\r
156 for (Index2 = 0; Index2 < PeimCount; Index2++) {\r
157 if (Private->CurrentFvFileHandles[Index2] != NULL) {\r
158 TempFileHandles[Index] = Private->CurrentFvFileHandles[Index2];\r
159 Private->CurrentFvFileHandles[Index2] = NULL;\r
160 break;\r
161 }\r
162 }\r
163 }\r
164 //\r
165 //Index the end of array contains re-range Pei moudle.\r
166 //\r
167 TempFileHandles[Index] = NULL;\r
168\r
169 //\r
170 // Private->CurrentFvFileHandles is currently in PEIM in the FV order.\r
171 // We need to update it to start with files in the A Priori list and\r
172 // then the remaining files in PEIM order.\r
173 //\r
174 CopyMem (Private->CurrentFvFileHandles, TempFileHandles, sizeof (Private->CurrentFvFileHandles));\r
175 }\r
176 }\r
177 //\r
178 // Cache the current Fv File Handle. So that we don't have to scan the Fv again.\r
179 // Instead, we can retrieve the file handles within this Fv from cachable data.\r
180 //\r
181 Private->Fv[Private->CurrentPeimFvCount].ScanFv = TRUE;\r
182 CopyMem (Private->Fv[Private->CurrentPeimFvCount].FvFileHandles, Private->CurrentFvFileHandles, sizeof (Private->CurrentFvFileHandles));\r
183\r
184}\r
185\r
186//\r
187// This is the minimum memory required by DxeCore initialization. When LMFA feature enabled,\r
188// This part of memory still need reserved on the very top of memory so that the DXE Core could \r
189// use these memory for data initialization. This macro should be sync with the same marco\r
190// defined in DXE Core.\r
191//\r
192#define MINIMUM_INITIAL_MEMORY_SIZE 0x10000\r
193/**\r
194 This function is to test if the memory range described in resource HOB is available or not. \r
195 \r
196 This function should only be invoked when Loading Module at Fixed Address(LMFA) feature is enabled. Some platform may allocate the \r
197 memory before PeiLoadFixAddressHook in invoked. so this function is to test if the memory range described by the input resource HOB is\r
198 available or not.\r
199\r
200 @param PrivateData Pointer to the private data passed in from caller\r
201 @param ResourceHob Pointer to a resource HOB which described the memory range described by the input resource HOB\r
202**/\r
203BOOLEAN\r
204PeiLoadFixAddressIsMemoryRangeAvailable (\r
205 IN PEI_CORE_INSTANCE *PrivateData,\r
206 IN EFI_HOB_RESOURCE_DESCRIPTOR *ResourceHob\r
207 )\r
208{\r
209 EFI_HOB_MEMORY_ALLOCATION *MemoryHob;\r
210 BOOLEAN IsAvailable;\r
211 EFI_PEI_HOB_POINTERS Hob;\r
212 \r
213 IsAvailable = TRUE;\r
214 if (PrivateData == NULL || ResourceHob == NULL) {\r
215 return FALSE;\r
216 }\r
217 //\r
218 // test if the memory range describe in the HOB is already allocated.\r
219 //\r
220 for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {\r
221 // \r
222 // See if this is a memory allocation HOB \r
223 //\r
224 if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_MEMORY_ALLOCATION) { \r
225 MemoryHob = Hob.MemoryAllocation;\r
226 if(MemoryHob->AllocDescriptor.MemoryBaseAddress == ResourceHob->PhysicalStart && \r
227 MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength == ResourceHob->PhysicalStart + ResourceHob->ResourceLength) {\r
228 IsAvailable = FALSE;\r
229 break; \r
230 }\r
231 }\r
232 }\r
233 \r
234 return IsAvailable;\r
235 \r
236}\r
237/**\r
238 Hook function for Loading Module at Fixed Address feature\r
239 \r
240 This function should only be invoked when Loading Module at Fixed Address(LMFA) feature is enabled. When feature is\r
241 configured as Load Modules at Fix Absolute Address, this function is to validate the top address assigned by user. When \r
242 feature is configured as Load Modules at Fixed Offset, the functino is to find the top address which is TOLM-TSEG in general. \r
243 And also the function will re-install PEI memory. \r
244\r
245 @param PrivateData Pointer to the private data passed in from caller\r
246\r
247**/\r
248VOID\r
249PeiLoadFixAddressHook(\r
250 IN PEI_CORE_INSTANCE *PrivateData\r
251 )\r
252{\r
253 EFI_PHYSICAL_ADDRESS TopLoadingAddress;\r
254 UINT64 PeiMemorySize;\r
255 UINT64 TotalReservedMemorySize;\r
256 UINT64 MemoryRangeEnd;\r
257 EFI_PHYSICAL_ADDRESS HighAddress; \r
258 EFI_HOB_RESOURCE_DESCRIPTOR *ResourceHob;\r
259 EFI_HOB_RESOURCE_DESCRIPTOR *NextResourceHob;\r
260 EFI_HOB_RESOURCE_DESCRIPTOR *CurrentResourceHob;\r
261 EFI_PEI_HOB_POINTERS CurrentHob;\r
262 EFI_PEI_HOB_POINTERS Hob;\r
263 EFI_PEI_HOB_POINTERS NextHob;\r
264 EFI_PHYSICAL_ADDRESS MaxMemoryBaseAddress;\r
265 UINT64 MaxMemoryLength;\r
266 EFI_HOB_MEMORY_ALLOCATION *MemoryHob;\r
267 //\r
268 // Initialize Local Variables\r
269 //\r
270 CurrentResourceHob = NULL;\r
271 ResourceHob = NULL;\r
272 NextResourceHob = NULL;\r
273 MaxMemoryBaseAddress = 0;\r
274 MaxMemoryLength = 0;\r
275 HighAddress = 0;\r
276 TopLoadingAddress = 0;\r
277 MemoryRangeEnd = 0;\r
278 CurrentHob.Raw = PrivateData->HobList.Raw;\r
279 PeiMemorySize = PrivateData->PhysicalMemoryLength;\r
280 //\r
281 // The top reserved memory include 3 parts: the topest range is for DXE core initialization with the size MINIMUM_INITIAL_MEMORY_SIZE\r
282 // then RuntimeCodePage range and Boot time code range.\r
283 // \r
284 TotalReservedMemorySize = MINIMUM_INITIAL_MEMORY_SIZE + EFI_PAGES_TO_SIZE(PcdGet32(PcdLoadFixAddressRuntimeCodePageNumber));\r
285 TotalReservedMemorySize+= EFI_PAGES_TO_SIZE(PcdGet32(PcdLoadFixAddressBootTimeCodePageNumber)) ; \r
286 //\r
287 // PEI memory range lies below the top reserved memory\r
288 // \r
289 TotalReservedMemorySize += PeiMemorySize;\r
290 \r
291 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: PcdLoadFixAddressRuntimeCodePageNumber= 0x%x.\n", PcdGet32(PcdLoadFixAddressRuntimeCodePageNumber)));\r
292 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: PcdLoadFixAddressBootTimeCodePageNumber= 0x%x.\n", PcdGet32(PcdLoadFixAddressBootTimeCodePageNumber)));\r
293 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: PcdLoadFixAddressPeiCodePageNumber= 0x%x.\n", PcdGet32(PcdLoadFixAddressPeiCodePageNumber))); \r
294 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: Total Reserved Memory Size = 0x%lx.\n", TotalReservedMemorySize));\r
295 //\r
296 // Loop through the system memory typed hob to merge the adjacent memory range \r
297 //\r
298 for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {\r
299 // \r
300 // See if this is a resource descriptor HOB \r
301 //\r
302 if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {\r
303 \r
304 ResourceHob = Hob.ResourceDescriptor; \r
305 //\r
306 // If range described in this hob is not system memory or heigher than MAX_ADDRESS, ignored.\r
307 //\r
308 if (ResourceHob->ResourceType != EFI_RESOURCE_SYSTEM_MEMORY &&\r
309 ResourceHob->PhysicalStart + ResourceHob->ResourceLength > MAX_ADDRESS) {\r
310 continue;\r
311 } \r
312 \r
313 for (NextHob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(NextHob); NextHob.Raw = GET_NEXT_HOB(NextHob)) { \r
314 if (NextHob.Raw == Hob.Raw){\r
315 continue;\r
316 } \r
317 //\r
318 // See if this is a resource descriptor HOB\r
319 //\r
320 if (GET_HOB_TYPE (NextHob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {\r
321 \r
322 NextResourceHob = NextHob.ResourceDescriptor;\r
323 //\r
324 // test if range described in this NextResourceHob is system memory and have the same attribute.\r
325 // Note: Here is a assumption that system memory should always be healthy even without test.\r
326 // \r
327 if (NextResourceHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY &&\r
328 (((NextResourceHob->ResourceAttribute^ResourceHob->ResourceAttribute)&(~EFI_RESOURCE_ATTRIBUTE_TESTED)) == 0)){\r
329 \r
330 //\r
331 // See if the memory range described in ResourceHob and NextResourceHob is adjacent\r
332 //\r
333 if ((ResourceHob->PhysicalStart <= NextResourceHob->PhysicalStart && \r
334 ResourceHob->PhysicalStart + ResourceHob->ResourceLength >= NextResourceHob->PhysicalStart)|| \r
335 (ResourceHob->PhysicalStart >= NextResourceHob->PhysicalStart&&\r
336 ResourceHob->PhysicalStart <= NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength)) {\r
337 \r
338 MemoryRangeEnd = ((ResourceHob->PhysicalStart + ResourceHob->ResourceLength)>(NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength)) ?\r
339 (ResourceHob->PhysicalStart + ResourceHob->ResourceLength):(NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength);\r
340 \r
341 ResourceHob->PhysicalStart = (ResourceHob->PhysicalStart < NextResourceHob->PhysicalStart) ? \r
342 ResourceHob->PhysicalStart : NextResourceHob->PhysicalStart;\r
343 \r
344 \r
345 ResourceHob->ResourceLength = (MemoryRangeEnd - ResourceHob->PhysicalStart);\r
346 \r
347 ResourceHob->ResourceAttribute = ResourceHob->ResourceAttribute & (~EFI_RESOURCE_ATTRIBUTE_TESTED);\r
348 //\r
349 // Delete the NextResourceHob by marking it as unused.\r
350 //\r
351 GET_HOB_TYPE (NextHob) = EFI_HOB_TYPE_UNUSED;\r
352 \r
353 }\r
354 }\r
355 } \r
356 }\r
357 } \r
358 }\r
359 //\r
360 // Some platform is already allocated pages before the HOB re-org. Here to build dedicated resource HOB to describe\r
361 // the allocated memory range\r
362 //\r
363 for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {\r
364 // \r
365 // See if this is a memory allocation HOB \r
366 //\r
367 if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_MEMORY_ALLOCATION) {\r
368 MemoryHob = Hob.MemoryAllocation;\r
369 for (NextHob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(NextHob); NextHob.Raw = GET_NEXT_HOB(NextHob)) {\r
370 //\r
371 // See if this is a resource descriptor HOB\r
372 //\r
373 if (GET_HOB_TYPE (NextHob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {\r
374 NextResourceHob = NextHob.ResourceDescriptor;\r
375 //\r
376 // If range described in this hob is not system memory or heigher than MAX_ADDRESS, ignored.\r
377 //\r
378 if (NextResourceHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY && NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength > MAX_ADDRESS) {\r
379 continue;\r
380 }\r
381 //\r
382 // If the range describe in memory allocation HOB belongs to the memroy range described by the resource hob\r
383 // \r
384 if (MemoryHob->AllocDescriptor.MemoryBaseAddress >= NextResourceHob->PhysicalStart && \r
385 MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength <= NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength) {\r
386 //\r
387 // Build seperate resource hob for this allocated range\r
388 // \r
389 if (MemoryHob->AllocDescriptor.MemoryBaseAddress > NextResourceHob->PhysicalStart) {\r
390 BuildResourceDescriptorHob (\r
391 EFI_RESOURCE_SYSTEM_MEMORY, \r
392 NextResourceHob->ResourceAttribute,\r
393 NextResourceHob->PhysicalStart, \r
394 (MemoryHob->AllocDescriptor.MemoryBaseAddress - NextResourceHob->PhysicalStart) \r
395 );\r
396 }\r
397 if (MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength < NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength) {\r
398 BuildResourceDescriptorHob (\r
399 EFI_RESOURCE_SYSTEM_MEMORY, \r
400 NextResourceHob->ResourceAttribute,\r
401 MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength, \r
402 (NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength -(MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength)) \r
403 );\r
404 }\r
405 NextResourceHob->PhysicalStart = MemoryHob->AllocDescriptor.MemoryBaseAddress;\r
406 NextResourceHob->ResourceLength = MemoryHob->AllocDescriptor.MemoryLength;\r
407 break;\r
408 }\r
409 }\r
410 }\r
411 }\r
412 }\r
413\r
414 //\r
415 // Try to find and validate the TOP address.\r
416 // \r
417 if ((INT64)PcdGet64(PcdLoadModuleAtFixAddressEnable) > 0 ) {\r
418 //\r
419 // The LMFA feature is enabled as load module at fixed absolute address.\r
420 //\r
421 TopLoadingAddress = (EFI_PHYSICAL_ADDRESS)PcdGet64(PcdLoadModuleAtFixAddressEnable);\r
422 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: Loading module at fixed absolute address.\n"));\r
423 //\r
424 // validate the Address. Loop the resource descriptor HOB to make sure the address is in valid memory range\r
425 //\r
426 if ((TopLoadingAddress & EFI_PAGE_MASK) != 0) {\r
427 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED ERROR:Top Address 0x%lx is invalid since top address should be page align. \n", TopLoadingAddress)); \r
428 ASSERT (FALSE); \r
429 }\r
430 //\r
431 // Search for a memory region that is below MAX_ADDRESS and in which TopLoadingAddress lies \r
432 //\r
433 for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {\r
434 //\r
435 // See if this is a resource descriptor HOB\r
436 //\r
437 if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {\r
438\r
439 ResourceHob = Hob.ResourceDescriptor;\r
440 //\r
441 // See if this resource descrior HOB describes tested system memory below MAX_ADDRESS\r
442 // \r
443 if (ResourceHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY &&\r
444 ResourceHob->PhysicalStart + ResourceHob->ResourceLength <= MAX_ADDRESS) {\r
445 //\r
446 // See if Top address specified by user is valid.\r
447 //\r
448 if (ResourceHob->PhysicalStart + TotalReservedMemorySize < TopLoadingAddress && \r
449 (ResourceHob->PhysicalStart + ResourceHob->ResourceLength - MINIMUM_INITIAL_MEMORY_SIZE) >= TopLoadingAddress && \r
450 PeiLoadFixAddressIsMemoryRangeAvailable(PrivateData, ResourceHob)) {\r
451 CurrentResourceHob = ResourceHob; \r
452 CurrentHob = Hob;\r
453 break;\r
454 }\r
455 }\r
456 } \r
457 } \r
458 if (CurrentResourceHob != NULL) {\r
459 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO:Top Address 0x%lx is valid \n", TopLoadingAddress));\r
460 TopLoadingAddress += MINIMUM_INITIAL_MEMORY_SIZE; \r
461 } else {\r
462 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED ERROR:Top Address 0x%lx is invalid \n", TopLoadingAddress)); \r
463 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED ERROR:The recommended Top Address for the platform is: \n")); \r
464 //\r
465 // Print the recomended Top address range.\r
466 // \r
467 for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {\r
468 //\r
469 // See if this is a resource descriptor HOB\r
470 //\r
471 if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {\r
472 \r
473 ResourceHob = Hob.ResourceDescriptor;\r
474 //\r
475 // See if this resource descrior HOB describes tested system memory below MAX_ADDRESS\r
476 // \r
477 if (ResourceHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY &&\r
478 ResourceHob->PhysicalStart + ResourceHob->ResourceLength <= MAX_ADDRESS) {\r
479 //\r
480 // See if Top address specified by user is valid.\r
481 //\r
482 if (ResourceHob->ResourceLength > TotalReservedMemorySize && PeiLoadFixAddressIsMemoryRangeAvailable(PrivateData, ResourceHob)) {\r
483 DEBUG ((EFI_D_INFO, "(0x%lx, 0x%lx)\n", \r
484 (ResourceHob->PhysicalStart + TotalReservedMemorySize -MINIMUM_INITIAL_MEMORY_SIZE), \r
485 (ResourceHob->PhysicalStart + ResourceHob->ResourceLength -MINIMUM_INITIAL_MEMORY_SIZE) \r
486 )); \r
487 }\r
488 }\r
489 }\r
490 } \r
491 //\r
492 // Assert here \r
493 //\r
494 ASSERT (FALSE); \r
495 return; \r
496 } \r
497 } else {\r
498 //\r
499 // The LMFA feature is enabled as load module at fixed offset relative to TOLM\r
500 // Parse the Hob list to find the topest available memory. Generally it is (TOLM - TSEG)\r
501 //\r
502 //\r
503 // Search for a tested memory region that is below MAX_ADDRESS\r
504 //\r
505 for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {\r
506 //\r
507 // See if this is a resource descriptor HOB \r
508 //\r
509 if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {\r
510 \r
511 ResourceHob = Hob.ResourceDescriptor; \r
512 //\r
513 // See if this resource descrior HOB describes tested system memory below MAX_ADDRESS\r
514 //\r
515 if (ResourceHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY && \r
516 ResourceHob->PhysicalStart + ResourceHob->ResourceLength <= MAX_ADDRESS &&\r
517 ResourceHob->ResourceLength > TotalReservedMemorySize && PeiLoadFixAddressIsMemoryRangeAvailable(PrivateData, ResourceHob)) {\r
518 //\r
519 // See if this is the highest largest system memory region below MaxAddress\r
520 //\r
521 if (ResourceHob->PhysicalStart > HighAddress) {\r
522 CurrentResourceHob = ResourceHob;\r
523 CurrentHob = Hob;\r
524 HighAddress = CurrentResourceHob->PhysicalStart;\r
525 }\r
526 }\r
527 } \r
528 }\r
529 if (CurrentResourceHob == NULL) {\r
530 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED ERROR:The System Memory is too small\n")); \r
531 //\r
532 // Assert here \r
533 //\r
534 ASSERT (FALSE);\r
535 return; \r
536 } else {\r
537 TopLoadingAddress = CurrentResourceHob->PhysicalStart + CurrentResourceHob->ResourceLength ; \r
538 } \r
539 }\r
540 \r
541 if (CurrentResourceHob != NULL) {\r
542 //\r
543 // rebuild resource HOB for PEI memmory and reserved memory\r
544 //\r
545 BuildResourceDescriptorHob (\r
546 EFI_RESOURCE_SYSTEM_MEMORY, \r
547 (\r
548 EFI_RESOURCE_ATTRIBUTE_PRESENT |\r
549 EFI_RESOURCE_ATTRIBUTE_INITIALIZED |\r
550 EFI_RESOURCE_ATTRIBUTE_TESTED |\r
551 EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |\r
552 EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |\r
553 EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |\r
554 EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE\r
555 ),\r
556 (TopLoadingAddress - TotalReservedMemorySize), \r
557 TotalReservedMemorySize \r
558 );\r
559 //\r
560 // rebuild resource for the remain memory if necessary\r
561 //\r
562 if (CurrentResourceHob->PhysicalStart < TopLoadingAddress - TotalReservedMemorySize) {\r
563 BuildResourceDescriptorHob (\r
564 EFI_RESOURCE_SYSTEM_MEMORY, \r
565 (\r
566 EFI_RESOURCE_ATTRIBUTE_PRESENT |\r
567 EFI_RESOURCE_ATTRIBUTE_INITIALIZED |\r
568 EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |\r
569 EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |\r
570 EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |\r
571 EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE\r
572 ),\r
573 CurrentResourceHob->PhysicalStart, \r
574 (TopLoadingAddress - TotalReservedMemorySize - CurrentResourceHob->PhysicalStart) \r
575 );\r
576 }\r
577 if (CurrentResourceHob->PhysicalStart + CurrentResourceHob->ResourceLength > TopLoadingAddress ) {\r
578 BuildResourceDescriptorHob (\r
579 EFI_RESOURCE_SYSTEM_MEMORY, \r
580 (\r
581 EFI_RESOURCE_ATTRIBUTE_PRESENT |\r
582 EFI_RESOURCE_ATTRIBUTE_INITIALIZED |\r
583 EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |\r
584 EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |\r
585 EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |\r
586 EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE\r
587 ),\r
588 TopLoadingAddress, \r
589 (CurrentResourceHob->PhysicalStart + CurrentResourceHob->ResourceLength - TopLoadingAddress) \r
590 );\r
591 }\r
592 //\r
593 // Delete CurrentHob by marking it as unused since the the memory range described by is rebuilt.\r
594 //\r
595 GET_HOB_TYPE (CurrentHob) = EFI_HOB_TYPE_UNUSED; \r
596 }\r
597\r
598 //\r
599 // Cache the top address for Loading Module at Fixed Address feature\r
600 //\r
601 PrivateData->LoadModuleAtFixAddressTopAddress = TopLoadingAddress - MINIMUM_INITIAL_MEMORY_SIZE;\r
602 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: Top address = 0x%lx\n", PrivateData->LoadModuleAtFixAddressTopAddress)); \r
603 //\r
604 // reinstall the PEI memory relative to TopLoadingAddress\r
605 //\r
606 PrivateData->PhysicalMemoryBegin = TopLoadingAddress - TotalReservedMemorySize;\r
607 PrivateData->FreePhysicalMemoryTop = PrivateData->PhysicalMemoryBegin + PeiMemorySize;\r
608}\r
609/**\r
610 Conduct PEIM dispatch.\r
611\r
612 @param SecCoreData Points to a data structure containing information about the PEI core's operating\r
613 environment, such as the size and location of temporary RAM, the stack location and\r
614 the BFV location.\r
615 @param Private Pointer to the private data passed in from caller\r
616\r
617**/\r
618VOID\r
619PeiDispatcher (\r
620 IN CONST EFI_SEC_PEI_HAND_OFF *SecCoreData,\r
621 IN PEI_CORE_INSTANCE *Private\r
622 )\r
623{\r
624 EFI_STATUS Status;\r
625 UINT32 Index1;\r
626 UINT32 Index2;\r
627 CONST EFI_PEI_SERVICES **PeiServices;\r
628 EFI_PEI_FILE_HANDLE PeimFileHandle;\r
629 UINTN FvCount;\r
630 UINTN PeimCount;\r
631 UINT32 AuthenticationState;\r
632 EFI_PHYSICAL_ADDRESS EntryPoint;\r
633 EFI_PEIM_ENTRY_POINT2 PeimEntryPoint;\r
634 UINTN SaveCurrentPeimCount;\r
635 UINTN SaveCurrentFvCount;\r
636 EFI_PEI_FILE_HANDLE SaveCurrentFileHandle;\r
637 PEIM_FILE_HANDLE_EXTENDED_DATA ExtendedData;\r
638 EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI *TemporaryRamSupportPpi;\r
639 UINT64 NewStackSize;\r
640 EFI_PHYSICAL_ADDRESS TopOfNewStack;\r
641 EFI_PHYSICAL_ADDRESS TopOfOldStack;\r
642 EFI_PHYSICAL_ADDRESS TemporaryRamBase;\r
643 UINTN TemporaryRamSize;\r
644 EFI_PHYSICAL_ADDRESS TemporaryStackSize;\r
645 UINTN StackOffset;\r
646 BOOLEAN StackOffsetPositive;\r
647 EFI_FV_FILE_INFO FvFileInfo;\r
648 PEI_CORE_FV_HANDLE *CoreFvHandle;\r
649 VOID *LoadFixPeiCodeBegin;\r
650\r
651 PeiServices = (CONST EFI_PEI_SERVICES **) &Private->Ps;\r
652 PeimEntryPoint = NULL;\r
653 PeimFileHandle = NULL;\r
654 EntryPoint = 0;\r
655\r
656 if ((Private->PeiMemoryInstalled) && (Private->HobList.HandoffInformationTable->BootMode != BOOT_ON_S3_RESUME)) {\r
657 //\r
658 // Once real memory is available, shadow the RegisterForShadow modules. And meanwhile\r
659 // update the modules' status from PEIM_STATE_REGISITER_FOR_SHADOW to PEIM_STATE_DONE.\r
660 //\r
661 SaveCurrentPeimCount = Private->CurrentPeimCount;\r
662 SaveCurrentFvCount = Private->CurrentPeimFvCount;\r
663 SaveCurrentFileHandle = Private->CurrentFileHandle;\r
664\r
665 for (Index1 = 0; Index1 <= SaveCurrentFvCount; Index1++) {\r
666 for (Index2 = 0; (Index2 < FixedPcdGet32 (PcdPeiCoreMaxPeimPerFv)) && (Private->Fv[Index1].FvFileHandles[Index2] != NULL); Index2++) {\r
667 if (Private->Fv[Index1].PeimState[Index2] == PEIM_STATE_REGISITER_FOR_SHADOW) {\r
668 PeimFileHandle = Private->Fv[Index1].FvFileHandles[Index2];\r
669 Status = PeiLoadImage (\r
670 (CONST EFI_PEI_SERVICES **) &Private->Ps,\r
671 PeimFileHandle,\r
672 PEIM_STATE_REGISITER_FOR_SHADOW,\r
673 &EntryPoint,\r
674 &AuthenticationState\r
675 );\r
676 if (Status == EFI_SUCCESS) {\r
677 //\r
678 // PEIM_STATE_REGISITER_FOR_SHADOW move to PEIM_STATE_DONE\r
679 //\r
680 Private->Fv[Index1].PeimState[Index2]++;\r
681 Private->CurrentFileHandle = PeimFileHandle;\r
682 Private->CurrentPeimFvCount = Index1;\r
683 Private->CurrentPeimCount = Index2;\r
684 //\r
685 // Call the PEIM entry point\r
686 //\r
687 PeimEntryPoint = (EFI_PEIM_ENTRY_POINT2)(UINTN)EntryPoint;\r
688\r
689 PERF_START (PeimFileHandle, "PEIM", NULL, 0);\r
690 PeimEntryPoint(PeimFileHandle, (const EFI_PEI_SERVICES **) &Private->Ps);\r
691 PERF_END (PeimFileHandle, "PEIM", NULL, 0);\r
692 }\r
693\r
694 //\r
695 // Process the Notify list and dispatch any notifies for\r
696 // newly installed PPIs.\r
697 //\r
698 ProcessNotifyList (Private);\r
699 }\r
700 }\r
701 }\r
702 Private->CurrentFileHandle = SaveCurrentFileHandle;\r
703 Private->CurrentPeimFvCount = SaveCurrentFvCount;\r
704 Private->CurrentPeimCount = SaveCurrentPeimCount;\r
705 }\r
706\r
707 //\r
708 // This is the main dispatch loop. It will search known FVs for PEIMs and\r
709 // attempt to dispatch them. If any PEIM gets dispatched through a single\r
710 // pass of the dispatcher, it will start over from the Bfv again to see\r
711 // if any new PEIMs dependencies got satisfied. With a well ordered\r
712 // FV where PEIMs are found in the order their dependencies are also\r
713 // satisfied, this dipatcher should run only once.\r
714 //\r
715 do {\r
716 //\r
717 // In case that reenter PeiCore happens, the last pass record is still available. \r
718 //\r
719 if (!Private->PeimDispatcherReenter) {\r
720 Private->PeimNeedingDispatch = FALSE;\r
721 Private->PeimDispatchOnThisPass = FALSE;\r
722 } else {\r
723 Private->PeimDispatcherReenter = FALSE;\r
724 }\r
725 \r
726 for (FvCount = Private->CurrentPeimFvCount; FvCount < Private->FvCount; FvCount++) {\r
727 CoreFvHandle = FindNextCoreFvHandle (Private, FvCount);\r
728 ASSERT (CoreFvHandle != NULL);\r
729 \r
730 //\r
731 // If the FV has corresponding EFI_PEI_FIRMWARE_VOLUME_PPI instance, then dispatch it.\r
732 //\r
733 if (CoreFvHandle->FvPpi == NULL) {\r
734 continue;\r
735 }\r
736 \r
737 Private->CurrentPeimFvCount = FvCount;\r
738\r
739 if (Private->CurrentPeimCount == 0) {\r
740 //\r
741 // When going through each FV, at first, search Apriori file to\r
742 // reorder all PEIMs to ensure the PEIMs in Apriori file to get\r
743 // dispatch at first.\r
744 //\r
745 DiscoverPeimsAndOrderWithApriori (Private, CoreFvHandle);\r
746 }\r
747\r
748 //\r
749 // Start to dispatch all modules within the current Fv.\r
750 //\r
751 for (PeimCount = Private->CurrentPeimCount;\r
752 (PeimCount < FixedPcdGet32 (PcdPeiCoreMaxPeimPerFv)) && (Private->CurrentFvFileHandles[PeimCount] != NULL);\r
753 PeimCount++) {\r
754 Private->CurrentPeimCount = PeimCount;\r
755 PeimFileHandle = Private->CurrentFileHandle = Private->CurrentFvFileHandles[PeimCount];\r
756\r
757 if (Private->Fv[FvCount].PeimState[PeimCount] == PEIM_STATE_NOT_DISPATCHED) {\r
758 if (!DepexSatisfied (Private, PeimFileHandle, PeimCount)) {\r
759 Private->PeimNeedingDispatch = TRUE;\r
760 } else {\r
761 Status = CoreFvHandle->FvPpi->GetFileInfo (CoreFvHandle->FvPpi, PeimFileHandle, &FvFileInfo);\r
762 ASSERT_EFI_ERROR (Status);\r
763 if (FvFileInfo.FileType == EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE) {\r
764 //\r
765 // For Fv type file, Produce new FV PPI and FV hob\r
766 //\r
767 Status = ProcessFvFile (&Private->Fv[FvCount], PeimFileHandle);\r
768 AuthenticationState = 0;\r
769 } else {\r
770 //\r
771 // For PEIM driver, Load its entry point\r
772 //\r
773 Status = PeiLoadImage (\r
774 PeiServices,\r
775 PeimFileHandle,\r
776 PEIM_STATE_NOT_DISPATCHED,\r
777 &EntryPoint,\r
778 &AuthenticationState\r
779 );\r
780 }\r
781\r
782 if (Status == EFI_SUCCESS) {\r
783 //\r
784 // The PEIM has its dependencies satisfied, and its entry point\r
785 // has been found, so invoke it.\r
786 //\r
787 PERF_START (PeimFileHandle, "PEIM", NULL, 0);\r
788\r
789 ExtendedData.Handle = (EFI_HANDLE)PeimFileHandle;\r
790\r
791 REPORT_STATUS_CODE_WITH_EXTENDED_DATA (\r
792 EFI_PROGRESS_CODE,\r
793 (EFI_SOFTWARE_PEI_CORE | EFI_SW_PC_INIT_BEGIN),\r
794 (VOID *)(&ExtendedData),\r
795 sizeof (ExtendedData)\r
796 );\r
797\r
798 Status = VerifyPeim (Private, CoreFvHandle->FvHandle, PeimFileHandle);\r
799 if (Status != EFI_SECURITY_VIOLATION && (AuthenticationState == 0)) {\r
800 //\r
801 // PEIM_STATE_NOT_DISPATCHED move to PEIM_STATE_DISPATCHED\r
802 //\r
803 Private->Fv[FvCount].PeimState[PeimCount]++;\r
804\r
805 if (FvFileInfo.FileType != EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE) {\r
806 //\r
807 // Call the PEIM entry point for PEIM driver\r
808 //\r
809 PeimEntryPoint = (EFI_PEIM_ENTRY_POINT2)(UINTN)EntryPoint;\r
810 PeimEntryPoint (PeimFileHandle, (const EFI_PEI_SERVICES **) PeiServices);\r
811 }\r
812\r
813 Private->PeimDispatchOnThisPass = TRUE;\r
814 }\r
815\r
816 REPORT_STATUS_CODE_WITH_EXTENDED_DATA (\r
817 EFI_PROGRESS_CODE,\r
818 (EFI_SOFTWARE_PEI_CORE | EFI_SW_PC_INIT_END),\r
819 (VOID *)(&ExtendedData),\r
820 sizeof (ExtendedData)\r
821 );\r
822 PERF_END (PeimFileHandle, "PEIM", NULL, 0);\r
823\r
824 }\r
825\r
826 if (Private->SwitchStackSignal) {\r
827 //\r
828 // Before switch stack from temporary memory to permenent memory, caculate the heap and stack\r
829 // usage in temporary memory for debuging.\r
830 //\r
831 DEBUG_CODE_BEGIN ();\r
832 UINT32 *StackPointer;\r
833 \r
834 for (StackPointer = (UINT32*)SecCoreData->StackBase;\r
835 (StackPointer < (UINT32*)((UINTN)SecCoreData->StackBase + SecCoreData->StackSize)) \\r
836 && (*StackPointer == INIT_CAR_VALUE);\r
837 StackPointer ++);\r
838 \r
839 DEBUG ((EFI_D_INFO, "Temp Stack : BaseAddress=0x%p Length=0x%X\n", SecCoreData->StackBase, (UINT32)SecCoreData->StackSize));\r
840 DEBUG ((EFI_D_INFO, "Temp Heap : BaseAddress=0x%p Length=0x%X\n", Private->HobList.Raw, (UINT32)((UINTN) Private->HobList.HandoffInformationTable->EfiFreeMemoryBottom - (UINTN) Private->HobList.Raw)));\r
841 DEBUG ((EFI_D_INFO, "Total temporary memory: %d bytes.\n", (UINT32)SecCoreData->TemporaryRamSize));\r
842 DEBUG ((EFI_D_INFO, " temporary memory stack ever used: %d bytes.\n",\r
843 (UINT32)(SecCoreData->StackSize - ((UINTN) StackPointer - (UINTN)SecCoreData->StackBase))\r
844 ));\r
845 DEBUG ((EFI_D_INFO, " temporary memory heap used: %d bytes.\n",\r
846 (UINT32)((UINTN)Private->HobList.HandoffInformationTable->EfiFreeMemoryBottom - (UINTN)Private->HobList.Raw)\r
847 ));\r
848 DEBUG_CODE_END ();\r
849 \r
850 if (PcdGet64(PcdLoadModuleAtFixAddressEnable) != 0 && (Private->HobList.HandoffInformationTable->BootMode != BOOT_ON_S3_RESUME)) {\r
851 //\r
852 // Loading Module at Fixed Address is enabled\r
853 //\r
854 PeiLoadFixAddressHook (Private);\r
855\r
856 //\r
857 // If Loading Module at Fixed Address is enabled, Allocating memory range for Pei code range.\r
858 //\r
859 LoadFixPeiCodeBegin = AllocatePages((UINTN)PcdGet32(PcdLoadFixAddressPeiCodePageNumber));\r
860 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: PeiCodeBegin = 0x%lX, PeiCodeTop= 0x%lX\n", (UINT64)(UINTN)LoadFixPeiCodeBegin, (UINT64)((UINTN)LoadFixPeiCodeBegin + PcdGet32(PcdLoadFixAddressPeiCodePageNumber) * EFI_PAGE_SIZE)));\r
861 }\r
862 \r
863 //\r
864 // Reserve the size of new stack at bottom of physical memory\r
865 //\r
866 // The size of new stack in permenent memory must be the same size \r
867 // or larger than the size of old stack in temporary memory.\r
868 // But if new stack is smaller than the size of old stack, we also reserve\r
869 // the size of old stack at bottom of permenent memory.\r
870 //\r
871 NewStackSize = RShiftU64 (Private->PhysicalMemoryLength, 1);\r
872 NewStackSize = ALIGN_VALUE (NewStackSize, EFI_PAGE_SIZE);\r
873 NewStackSize = MIN (PcdGet32(PcdPeiCoreMaxPeiStackSize), NewStackSize);\r
874 DEBUG ((EFI_D_INFO, "Old Stack size %d, New stack size %d\n", (UINT32)SecCoreData->StackSize, (UINT32)NewStackSize));\r
875 ASSERT (NewStackSize >= SecCoreData->StackSize);\r
876\r
877 //\r
878 // Caculate stack offset and heap offset between temporary memory and new permement \r
879 // memory seperately.\r
880 //\r
881 TopOfOldStack = (UINTN)SecCoreData->StackBase + SecCoreData->StackSize;\r
882 TopOfNewStack = Private->PhysicalMemoryBegin + NewStackSize;\r
883 if (TopOfNewStack >= (UINTN)SecCoreData->PeiTemporaryRamBase) {\r
884 Private->HeapOffsetPositive = TRUE;\r
885 Private->HeapOffset = (UINTN)(TopOfNewStack - (UINTN)SecCoreData->PeiTemporaryRamBase);\r
886 } else {\r
887 Private->HeapOffsetPositive = FALSE;\r
888 Private->HeapOffset = (UINTN)((UINTN)SecCoreData->PeiTemporaryRamBase - TopOfNewStack);\r
889 }\r
890 if (TopOfNewStack >= TopOfOldStack) {\r
891 StackOffsetPositive = TRUE;\r
892 StackOffset = (UINTN)(TopOfNewStack - TopOfOldStack);\r
893 } else {\r
894 StackOffsetPositive = FALSE;\r
895 StackOffset = (UINTN)(TopOfOldStack - TopOfNewStack);\r
896 }\r
897 Private->StackOffsetPositive = StackOffsetPositive;\r
898 Private->StackOffset = StackOffset;\r
899\r
900 DEBUG ((EFI_D_INFO, "Heap Offset = 0x%lX Stack Offset = 0x%lX\n", (UINT64)Private->HeapOffset, (UINT64)(StackOffset)));\r
901\r
902 //\r
903 // Build Stack HOB that describes the permanent memory stack\r
904 //\r
905 DEBUG ((EFI_D_INFO, "Stack Hob: BaseAddress=0x%lX Length=0x%lX\n", TopOfNewStack - NewStackSize, NewStackSize));\r
906 BuildStackHob (TopOfNewStack - NewStackSize, NewStackSize);\r
907\r
908 //\r
909 // Cache information from SecCoreData into locals before SecCoreData is converted to a permanent memory address\r
910 //\r
911 TemporaryRamBase = (EFI_PHYSICAL_ADDRESS)(UINTN)SecCoreData->TemporaryRamBase;\r
912 TemporaryRamSize = SecCoreData->TemporaryRamSize;\r
913 TemporaryStackSize = SecCoreData->StackSize;\r
914\r
915 //\r
916 // Caculate new HandOffTable and PrivateData address in permanent memory's stack\r
917 //\r
918 if (StackOffsetPositive) {\r
919 SecCoreData = (CONST EFI_SEC_PEI_HAND_OFF *)((UINTN)(VOID *)SecCoreData + StackOffset);\r
920 Private = (PEI_CORE_INSTANCE *)((UINTN)(VOID *)Private + StackOffset);\r
921 } else {\r
922 SecCoreData = (CONST EFI_SEC_PEI_HAND_OFF *)((UINTN)(VOID *)SecCoreData - StackOffset);\r
923 Private = (PEI_CORE_INSTANCE *)((UINTN)(VOID *)Private - StackOffset);\r
924 }\r
925\r
926 //\r
927 // TemporaryRamSupportPpi is produced by platform's SEC\r
928 //\r
929 Status = PeiServicesLocatePpi (\r
930 &gEfiTemporaryRamSupportPpiGuid,\r
931 0,\r
932 NULL,\r
933 (VOID**)&TemporaryRamSupportPpi\r
934 );\r
935 if (!EFI_ERROR (Status)) {\r
936 //\r
937 // Temporary Ram Support PPI is provided by platform, it will copy \r
938 // temporary memory to permenent memory and do stack switching.\r
939 // After invoking Temporary Ram Support PPI, the following code's \r
940 // stack is in permanent memory.\r
941 //\r
942 TemporaryRamSupportPpi->TemporaryRamMigration (\r
943 PeiServices,\r
944 TemporaryRamBase,\r
945 (EFI_PHYSICAL_ADDRESS)(UINTN)(TopOfNewStack - TemporaryStackSize),\r
946 TemporaryRamSize\r
947 );\r
948\r
949 } else {\r
950 //\r
951 // In IA32/x64/Itanium architecture, we need platform provide\r
952 // TEMPORARY_RAM_MIGRATION_PPI.\r
953 //\r
954 ASSERT (FALSE);\r
955 }\r
956\r
957 //\r
958 // Entry PEI Phase 2\r
959 //\r
960 PeiCore (SecCoreData, NULL, Private);\r
961\r
962 //\r
963 // Code should not come here\r
964 //\r
965 ASSERT (FALSE);\r
966 }\r
967\r
968 //\r
969 // Process the Notify list and dispatch any notifies for\r
970 // newly installed PPIs.\r
971 //\r
972 ProcessNotifyList (Private);\r
973\r
974 if ((Private->PeiMemoryInstalled) && (Private->Fv[FvCount].PeimState[PeimCount] == PEIM_STATE_REGISITER_FOR_SHADOW) && \\r
975 (Private->HobList.HandoffInformationTable->BootMode != BOOT_ON_S3_RESUME)) {\r
976 //\r
977 // If memory is availble we shadow images by default for performance reasons.\r
978 // We call the entry point a 2nd time so the module knows it's shadowed.\r
979 //\r
980 //PERF_START (PeiServices, L"PEIM", PeimFileHandle, 0);\r
981 ASSERT (PeimEntryPoint != NULL);\r
982 PeimEntryPoint (PeimFileHandle, (const EFI_PEI_SERVICES **) PeiServices);\r
983 //PERF_END (PeiServices, L"PEIM", PeimFileHandle, 0);\r
984\r
985 //\r
986 // PEIM_STATE_REGISITER_FOR_SHADOW move to PEIM_STATE_DONE\r
987 //\r
988 Private->Fv[FvCount].PeimState[PeimCount]++;\r
989\r
990 //\r
991 // Process the Notify list and dispatch any notifies for\r
992 // newly installed PPIs.\r
993 //\r
994 ProcessNotifyList (Private);\r
995 }\r
996 }\r
997 }\r
998 }\r
999\r
1000 //\r
1001 // We set to NULL here to optimize the 2nd entry to this routine after\r
1002 // memory is found. This reprevents rescanning of the FV. We set to\r
1003 // NULL here so we start at the begining of the next FV\r
1004 //\r
1005 Private->CurrentFileHandle = NULL;\r
1006 Private->CurrentPeimCount = 0;\r
1007 //\r
1008 // Before walking through the next FV,Private->CurrentFvFileHandles[]should set to NULL\r
1009 //\r
1010 SetMem (Private->CurrentFvFileHandles, sizeof (Private->CurrentFvFileHandles), 0);\r
1011 }\r
1012\r
1013 //\r
1014 // Before making another pass, we should set Private->CurrentPeimFvCount =0 to go\r
1015 // through all the FV.\r
1016 //\r
1017 Private->CurrentPeimFvCount = 0;\r
1018\r
1019 //\r
1020 // PeimNeedingDispatch being TRUE means we found a PEIM that did not get\r
1021 // dispatched. So we need to make another pass\r
1022 //\r
1023 // PeimDispatchOnThisPass being TRUE means we dispatched a PEIM on this\r
1024 // pass. If we did not dispatch a PEIM there is no point in trying again\r
1025 // as it will fail the next time too (nothing has changed).\r
1026 //\r
1027 } while (Private->PeimNeedingDispatch && Private->PeimDispatchOnThisPass);\r
1028\r
1029}\r
1030\r
1031/**\r
1032 Initialize the Dispatcher's data members\r
1033\r
1034 @param PrivateData PeiCore's private data structure\r
1035 @param OldCoreData Old data from SecCore\r
1036 NULL if being run in non-permament memory mode.\r
1037 @param SecCoreData Points to a data structure containing information about the PEI core's operating\r
1038 environment, such as the size and location of temporary RAM, the stack location and\r
1039 the BFV location.\r
1040\r
1041 @return None.\r
1042\r
1043**/\r
1044VOID\r
1045InitializeDispatcherData (\r
1046 IN PEI_CORE_INSTANCE *PrivateData,\r
1047 IN PEI_CORE_INSTANCE *OldCoreData,\r
1048 IN CONST EFI_SEC_PEI_HAND_OFF *SecCoreData\r
1049 )\r
1050{\r
1051 if (OldCoreData == NULL) {\r
1052 PrivateData->PeimDispatcherReenter = FALSE;\r
1053 PeiInitializeFv (PrivateData, SecCoreData);\r
1054 } else {\r
1055 PeiReinitializeFv (PrivateData);\r
1056 }\r
1057\r
1058 return;\r
1059}\r
1060\r
1061/**\r
1062 This routine parses the Dependency Expression, if available, and\r
1063 decides if the module can be executed.\r
1064\r
1065\r
1066 @param Private PeiCore's private data structure\r
1067 @param FileHandle PEIM's file handle\r
1068 @param PeimCount Peim count in all dispatched PEIMs.\r
1069\r
1070 @retval TRUE Can be dispatched\r
1071 @retval FALSE Cannot be dispatched\r
1072\r
1073**/\r
1074BOOLEAN\r
1075DepexSatisfied (\r
1076 IN PEI_CORE_INSTANCE *Private,\r
1077 IN EFI_PEI_FILE_HANDLE FileHandle,\r
1078 IN UINTN PeimCount\r
1079 )\r
1080{\r
1081 EFI_STATUS Status;\r
1082 VOID *DepexData;\r
1083 EFI_FV_FILE_INFO FileInfo;\r
1084\r
1085 Status = PeiServicesFfsGetFileInfo (FileHandle, &FileInfo);\r
1086 if (EFI_ERROR (Status)) {\r
1087 DEBUG ((DEBUG_DISPATCH, "Evaluate PEI DEPEX for FFS(Unknown)\n"));\r
1088 } else {\r
1089 DEBUG ((DEBUG_DISPATCH, "Evaluate PEI DEPEX for FFS(%g)\n", &FileInfo.FileName));\r
1090 }\r
1091 \r
1092 if (PeimCount < Private->AprioriCount) {\r
1093 //\r
1094 // If its in the A priori file then we set Depex to TRUE\r
1095 //\r
1096 DEBUG ((DEBUG_DISPATCH, " RESULT = TRUE (Apriori)\n"));\r
1097 return TRUE;\r
1098 }\r
1099\r
1100 //\r
1101 // Depex section not in the encapsulated section.\r
1102 //\r
1103 Status = PeiServicesFfsFindSectionData (\r
1104 EFI_SECTION_PEI_DEPEX,\r
1105 FileHandle,\r
1106 (VOID **)&DepexData\r
1107 );\r
1108\r
1109 if (EFI_ERROR (Status)) {\r
1110 //\r
1111 // If there is no DEPEX, assume the module can be executed\r
1112 //\r
1113 DEBUG ((DEBUG_DISPATCH, " RESULT = TRUE (No DEPEX)\n"));\r
1114 return TRUE;\r
1115 }\r
1116\r
1117 //\r
1118 // Evaluate a given DEPEX\r
1119 //\r
1120 return PeimDispatchReadiness (&Private->Ps, DepexData);\r
1121}\r
1122\r
1123/**\r
1124 This routine enable a PEIM to register itself to shadow when PEI Foundation\r
1125 discovery permanent memory.\r
1126\r
1127 @param FileHandle File handle of a PEIM.\r
1128\r
1129 @retval EFI_NOT_FOUND The file handle doesn't point to PEIM itself.\r
1130 @retval EFI_ALREADY_STARTED Indicate that the PEIM has been registered itself.\r
1131 @retval EFI_SUCCESS Successfully to register itself.\r
1132\r
1133**/\r
1134EFI_STATUS\r
1135EFIAPI\r
1136PeiRegisterForShadow (\r
1137 IN EFI_PEI_FILE_HANDLE FileHandle\r
1138 )\r
1139{\r
1140 PEI_CORE_INSTANCE *Private;\r
1141 Private = PEI_CORE_INSTANCE_FROM_PS_THIS (GetPeiServicesTablePointer ());\r
1142\r
1143 if (Private->CurrentFileHandle != FileHandle) {\r
1144 //\r
1145 // The FileHandle must be for the current PEIM\r
1146 //\r
1147 return EFI_NOT_FOUND;\r
1148 }\r
1149\r
1150 if (Private->Fv[Private->CurrentPeimFvCount].PeimState[Private->CurrentPeimCount] >= PEIM_STATE_REGISITER_FOR_SHADOW) {\r
1151 //\r
1152 // If the PEIM has already entered the PEIM_STATE_REGISTER_FOR_SHADOW or PEIM_STATE_DONE then it's already been started\r
1153 //\r
1154 return EFI_ALREADY_STARTED;\r
1155 }\r
1156\r
1157 Private->Fv[Private->CurrentPeimFvCount].PeimState[Private->CurrentPeimCount] = PEIM_STATE_REGISITER_FOR_SHADOW;\r
1158\r
1159 return EFI_SUCCESS;\r
1160}\r
1161\r
1162\r
1163\r