]> git.proxmox.com Git - mirror_edk2.git/blame_incremental - MdeModulePkg/Include/Library/NetLib.h
MdeModulePkg: Update IP4 stack to support point-to-point link with 31-bit mask.
[mirror_edk2.git] / MdeModulePkg / Include / Library / NetLib.h
... / ...
CommitLineData
1/** @file\r
2 This library is only intended to be used by UEFI network stack modules.\r
3 It provides basic functions for the UEFI network stack.\r
4\r
5Copyright (c) 2005 - 2017, Intel Corporation. All rights reserved.<BR>\r
6This program and the accompanying materials\r
7are licensed and made available under the terms and conditions of the BSD License\r
8which accompanies this distribution. The full text of the license may be found at<BR>\r
9http://opensource.org/licenses/bsd-license.php\r
10\r
11THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
12WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
13\r
14**/\r
15\r
16#ifndef _NET_LIB_H_\r
17#define _NET_LIB_H_\r
18\r
19#include <Protocol/Ip6.h>\r
20\r
21#include <Library/BaseLib.h>\r
22#include <Library/BaseMemoryLib.h>\r
23\r
24typedef UINT32 IP4_ADDR;\r
25typedef UINT32 TCP_SEQNO;\r
26typedef UINT16 TCP_PORTNO;\r
27\r
28\r
29#define NET_ETHER_ADDR_LEN 6\r
30#define NET_IFTYPE_ETHERNET 0x01\r
31\r
32#define NET_VLAN_TAG_LEN 4\r
33#define ETHER_TYPE_VLAN 0x8100\r
34\r
35#define EFI_IP_PROTO_UDP 0x11\r
36#define EFI_IP_PROTO_TCP 0x06\r
37#define EFI_IP_PROTO_ICMP 0x01\r
38#define IP4_PROTO_IGMP 0x02\r
39#define IP6_ICMP 58\r
40#define DNS_MAX_NAME_SIZE 255\r
41#define DNS_MAX_MESSAGE_SIZE 512\r
42\r
43//\r
44// The address classification\r
45//\r
46#define IP4_ADDR_CLASSA 1 // Deprecated\r
47#define IP4_ADDR_CLASSB 2 // Deprecated\r
48#define IP4_ADDR_CLASSC 3 // Deprecated\r
49#define IP4_ADDR_CLASSD 4\r
50#define IP4_ADDR_CLASSE 5\r
51\r
52#define IP4_MASK_NUM 33\r
53#define IP6_PREFIX_NUM 129\r
54\r
55#define IP4_MASK_MAX 32 \r
56#define IP6_PREFIX_MAX 128\r
57\r
58#define IP6_HOP_BY_HOP 0\r
59#define IP6_DESTINATION 60\r
60#define IP6_ROUTING 43\r
61#define IP6_FRAGMENT 44\r
62#define IP6_AH 51\r
63#define IP6_ESP 50\r
64#define IP6_NO_NEXT_HEADER 59\r
65\r
66#define IP_VERSION_4 4\r
67#define IP_VERSION_6 6\r
68\r
69#define IP6_PREFIX_LENGTH 64\r
70\r
71//\r
72// DNS QTYPE values\r
73//\r
74#define DNS_TYPE_A 1\r
75#define DNS_TYPE_NS 2\r
76#define DNS_TYPE_CNAME 5\r
77#define DNS_TYPE_SOA 6\r
78#define DNS_TYPE_WKS 11\r
79#define DNS_TYPE_PTR 12\r
80#define DNS_TYPE_HINFO 13\r
81#define DNS_TYPE_MINFO 14\r
82#define DNS_TYPE_MX 15\r
83#define DNS_TYPE_TXT 16\r
84#define DNS_TYPE_AAAA 28\r
85#define DNS_TYPE_SRV_RR 33\r
86#define DNS_TYPE_AXFR 252\r
87#define DNS_TYPE_MAILB 253\r
88#define DNS_TYPE_ANY 255\r
89\r
90//\r
91// DNS QCLASS values\r
92//\r
93#define DNS_CLASS_INET 1\r
94#define DNS_CLASS_CH 3\r
95#define DNS_CLASS_HS 4\r
96#define DNS_CLASS_ANY 255\r
97\r
98#pragma pack(1)\r
99\r
100//\r
101// Ethernet head definition\r
102//\r
103typedef struct {\r
104 UINT8 DstMac [NET_ETHER_ADDR_LEN];\r
105 UINT8 SrcMac [NET_ETHER_ADDR_LEN];\r
106 UINT16 EtherType;\r
107} ETHER_HEAD;\r
108\r
109//\r
110// 802.1Q VLAN Tag Control Information\r
111//\r
112typedef union {\r
113 struct {\r
114 UINT16 Vid : 12; // Unique VLAN identifier (0 to 4094)\r
115 UINT16 Cfi : 1; // Canonical Format Indicator\r
116 UINT16 Priority : 3; // 802.1Q priority level (0 to 7)\r
117 } Bits;\r
118 UINT16 Uint16;\r
119} VLAN_TCI;\r
120\r
121#define VLAN_TCI_CFI_CANONICAL_MAC 0\r
122#define VLAN_TCI_CFI_NON_CANONICAL_MAC 1\r
123\r
124//\r
125// The EFI_IP4_HEADER is hard to use because the source and\r
126// destination address are defined as EFI_IPv4_ADDRESS, which\r
127// is a structure. Two structures can't be compared or masked\r
128// directly. This is why there is an internal representation.\r
129//\r
130typedef struct {\r
131 UINT8 HeadLen : 4;\r
132 UINT8 Ver : 4;\r
133 UINT8 Tos;\r
134 UINT16 TotalLen;\r
135 UINT16 Id;\r
136 UINT16 Fragment;\r
137 UINT8 Ttl;\r
138 UINT8 Protocol;\r
139 UINT16 Checksum;\r
140 IP4_ADDR Src;\r
141 IP4_ADDR Dst;\r
142} IP4_HEAD;\r
143\r
144\r
145//\r
146// ICMP head definition. Each ICMP message is categorized as either an error\r
147// message or query message. Two message types have their own head format.\r
148//\r
149typedef struct {\r
150 UINT8 Type;\r
151 UINT8 Code;\r
152 UINT16 Checksum;\r
153} IP4_ICMP_HEAD;\r
154\r
155typedef struct {\r
156 IP4_ICMP_HEAD Head;\r
157 UINT32 Fourth; // 4th filed of the head, it depends on Type.\r
158 IP4_HEAD IpHead;\r
159} IP4_ICMP_ERROR_HEAD;\r
160\r
161typedef struct {\r
162 IP4_ICMP_HEAD Head;\r
163 UINT16 Id;\r
164 UINT16 Seq;\r
165} IP4_ICMP_QUERY_HEAD;\r
166\r
167typedef struct {\r
168 UINT8 Type;\r
169 UINT8 Code;\r
170 UINT16 Checksum;\r
171} IP6_ICMP_HEAD;\r
172\r
173typedef struct {\r
174 IP6_ICMP_HEAD Head;\r
175 UINT32 Fourth;\r
176 EFI_IP6_HEADER IpHead;\r
177} IP6_ICMP_ERROR_HEAD;\r
178\r
179typedef struct {\r
180 IP6_ICMP_HEAD Head;\r
181 UINT32 Fourth;\r
182} IP6_ICMP_INFORMATION_HEAD;\r
183\r
184//\r
185// UDP header definition\r
186//\r
187typedef struct {\r
188 UINT16 SrcPort;\r
189 UINT16 DstPort;\r
190 UINT16 Length;\r
191 UINT16 Checksum;\r
192} EFI_UDP_HEADER;\r
193\r
194//\r
195// TCP header definition\r
196//\r
197typedef struct {\r
198 TCP_PORTNO SrcPort;\r
199 TCP_PORTNO DstPort;\r
200 TCP_SEQNO Seq;\r
201 TCP_SEQNO Ack;\r
202 UINT8 Res : 4;\r
203 UINT8 HeadLen : 4;\r
204 UINT8 Flag;\r
205 UINT16 Wnd;\r
206 UINT16 Checksum;\r
207 UINT16 Urg;\r
208} TCP_HEAD;\r
209\r
210#pragma pack()\r
211\r
212#define NET_MAC_EQUAL(pMac1, pMac2, Len) \\r
213 (CompareMem ((pMac1), (pMac2), Len) == 0)\r
214\r
215#define NET_MAC_IS_MULTICAST(Mac, BMac, Len) \\r
216 (((*((UINT8 *) Mac) & 0x01) == 0x01) && (!NET_MAC_EQUAL (Mac, BMac, Len)))\r
217\r
218#define NTOHL(x) SwapBytes32 (x)\r
219\r
220#define HTONL(x) NTOHL(x)\r
221\r
222#define NTOHS(x) SwapBytes16 (x)\r
223\r
224#define HTONS(x) NTOHS(x)\r
225#define NTOHLL(x) SwapBytes64 (x)\r
226#define HTONLL(x) NTOHLL(x)\r
227#define NTOHLLL(x) Ip6Swap128 (x)\r
228#define HTONLLL(x) NTOHLLL(x)\r
229\r
230//\r
231// Test the IP's attribute, All the IPs are in host byte order.\r
232//\r
233#define IP4_IS_MULTICAST(Ip) (((Ip) & 0xF0000000) == 0xE0000000)\r
234#define IP4_IS_UNSPECIFIED(Ip) ((Ip) == 0)\r
235#define IP4_IS_LOCAL_BROADCAST(Ip) ((Ip) == 0xFFFFFFFF)\r
236#define IP4_NET_EQUAL(Ip1, Ip2, NetMask) (((Ip1) & (NetMask)) == ((Ip2) & (NetMask)))\r
237#define IP4_IS_VALID_NETMASK(Ip) (NetGetMaskLength (Ip) != (IP4_MASK_MAX + 1))\r
238\r
239#define IP6_IS_MULTICAST(Ip6) (((Ip6)->Addr[0]) == 0xFF)\r
240\r
241//\r
242// Convert the EFI_IP4_ADDRESS to plain UINT32 IP4 address.\r
243//\r
244#define EFI_IP4(EfiIpAddr) (*(IP4_ADDR *) ((EfiIpAddr).Addr))\r
245#define EFI_NTOHL(EfiIp) (NTOHL (EFI_IP4 ((EfiIp))))\r
246#define EFI_IP4_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv4_ADDRESS)) == 0)\r
247\r
248#define EFI_IP6_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv6_ADDRESS)) == 0)\r
249\r
250#define IP4_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv4_ADDRESS)))\r
251#define IP6_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv6_ADDRESS)))\r
252#define IP6_COPY_LINK_ADDRESS(Mac1, Mac2) (CopyMem ((Mac1), (Mac2), sizeof (EFI_MAC_ADDRESS)))\r
253\r
254//\r
255// The debug level definition. This value is also used as the\r
256// syslog's severity level. Don't change it.\r
257//\r
258#define NETDEBUG_LEVEL_TRACE 5\r
259#define NETDEBUG_LEVEL_WARNING 4\r
260#define NETDEBUG_LEVEL_ERROR 3\r
261\r
262//\r
263// Network debug message is sent out as syslog packet.\r
264//\r
265#define NET_SYSLOG_FACILITY 16 // Syslog local facility local use\r
266#define NET_SYSLOG_PACKET_LEN 512\r
267#define NET_SYSLOG_TX_TIMEOUT (500 * 1000 * 10) // 500ms\r
268#define NET_DEBUG_MSG_LEN 470 // 512 - (ether+ip4+udp4 head length)\r
269\r
270//\r
271// The debug output expects the ASCII format string, Use %a to print ASCII\r
272// string, and %s to print UNICODE string. PrintArg must be enclosed in ().\r
273// For example: NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name));\r
274//\r
275#define NET_DEBUG_TRACE(Module, PrintArg) \\r
276 NetDebugOutput ( \\r
277 NETDEBUG_LEVEL_TRACE, \\r
278 Module, \\r
279 __FILE__, \\r
280 __LINE__, \\r
281 NetDebugASPrint PrintArg \\r
282 )\r
283\r
284#define NET_DEBUG_WARNING(Module, PrintArg) \\r
285 NetDebugOutput ( \\r
286 NETDEBUG_LEVEL_WARNING, \\r
287 Module, \\r
288 __FILE__, \\r
289 __LINE__, \\r
290 NetDebugASPrint PrintArg \\r
291 )\r
292\r
293#define NET_DEBUG_ERROR(Module, PrintArg) \\r
294 NetDebugOutput ( \\r
295 NETDEBUG_LEVEL_ERROR, \\r
296 Module, \\r
297 __FILE__, \\r
298 __LINE__, \\r
299 NetDebugASPrint PrintArg \\r
300 )\r
301\r
302/**\r
303 Allocate a buffer, then format the message to it. This is a\r
304 help function for the NET_DEBUG_XXX macros. The PrintArg of\r
305 these macros treats the variable length print parameters as a\r
306 single parameter, and pass it to the NetDebugASPrint. For\r
307 example, NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name))\r
308 if extracted to:\r
309\r
310 NetDebugOutput (\r
311 NETDEBUG_LEVEL_TRACE,\r
312 "Tcp",\r
313 __FILE__,\r
314 __LINE__,\r
315 NetDebugASPrint ("State transit to %a\n", Name)\r
316 )\r
317\r
318 @param Format The ASCII format string.\r
319 @param ... The variable length parameter whose format is determined\r
320 by the Format string.\r
321\r
322 @return The buffer containing the formatted message,\r
323 or NULL if memory allocation failed.\r
324\r
325**/\r
326CHAR8 *\r
327EFIAPI\r
328NetDebugASPrint (\r
329 IN CHAR8 *Format,\r
330 ...\r
331 );\r
332\r
333/**\r
334 Builds an UDP4 syslog packet and send it using SNP.\r
335\r
336 This function will locate a instance of SNP then send the message through it.\r
337 Because it isn't open the SNP BY_DRIVER, apply caution when using it.\r
338\r
339 @param Level The severity level of the message.\r
340 @param Module The Module that generates the log.\r
341 @param File The file that contains the log.\r
342 @param Line The exact line that contains the log.\r
343 @param Message The user message to log.\r
344\r
345 @retval EFI_INVALID_PARAMETER Any input parameter is invalid.\r
346 @retval EFI_OUT_OF_RESOURCES Failed to allocate memory for the packet\r
347 @retval EFI_SUCCESS The log is discard because that it is more verbose\r
348 than the mNetDebugLevelMax. Or, it has been sent out.\r
349**/\r
350EFI_STATUS\r
351EFIAPI\r
352NetDebugOutput (\r
353 IN UINT32 Level,\r
354 IN UINT8 *Module,\r
355 IN UINT8 *File,\r
356 IN UINT32 Line,\r
357 IN UINT8 *Message\r
358 );\r
359\r
360\r
361/**\r
362 Return the length of the mask.\r
363\r
364 Return the length of the mask. Valid values are 0 to 32.\r
365 If the mask is invalid, return the invalid length 33, which is IP4_MASK_NUM.\r
366 NetMask is in the host byte order.\r
367\r
368 @param[in] NetMask The netmask to get the length from.\r
369\r
370 @return The length of the netmask, or IP4_MASK_NUM (33) if the mask is invalid.\r
371\r
372**/\r
373INTN\r
374EFIAPI\r
375NetGetMaskLength (\r
376 IN IP4_ADDR NetMask\r
377 );\r
378\r
379/**\r
380 Return the class of the IP address, such as class A, B, C.\r
381 Addr is in host byte order.\r
382\r
383 [ATTENTION]\r
384 Classful addressing (IP class A/B/C) has been deprecated according to RFC4632.\r
385 Caller of this function could only check the returned value against\r
386 IP4_ADDR_CLASSD (multicast) or IP4_ADDR_CLASSE (reserved) now.\r
387\r
388 The address of class A starts with 0.\r
389 If the address belong to class A, return IP4_ADDR_CLASSA.\r
390 The address of class B starts with 10.\r
391 If the address belong to class B, return IP4_ADDR_CLASSB.\r
392 The address of class C starts with 110.\r
393 If the address belong to class C, return IP4_ADDR_CLASSC.\r
394 The address of class D starts with 1110.\r
395 If the address belong to class D, return IP4_ADDR_CLASSD.\r
396 The address of class E starts with 1111.\r
397 If the address belong to class E, return IP4_ADDR_CLASSE.\r
398\r
399\r
400 @param[in] Addr The address to get the class from.\r
401\r
402 @return IP address class, such as IP4_ADDR_CLASSA.\r
403\r
404**/\r
405INTN\r
406EFIAPI\r
407NetGetIpClass (\r
408 IN IP4_ADDR Addr\r
409 );\r
410\r
411/**\r
412 Check whether the IP is a valid unicast address according to\r
413 the netmask. \r
414\r
415 ASSERT if NetMask is zero.\r
416 \r
417 If all bits of the host address of IP are 0 or 1, IP is also not a valid unicast address,\r
418 except when the originator is one of the endpoints of a point-to-point link with a 31-bit\r
419 mask (RFC3021).\r
420 \r
421 @param[in] Ip The IP to check against.\r
422 @param[in] NetMask The mask of the IP.\r
423\r
424 @return TRUE if IP is a valid unicast address on the network, otherwise FALSE.\r
425\r
426**/\r
427BOOLEAN\r
428EFIAPI\r
429NetIp4IsUnicast (\r
430 IN IP4_ADDR Ip,\r
431 IN IP4_ADDR NetMask\r
432 );\r
433\r
434/**\r
435 Check whether the incoming IPv6 address is a valid unicast address.\r
436\r
437 If the address is a multicast address has binary 0xFF at the start, it is not\r
438 a valid unicast address. If the address is unspecified ::, it is not a valid\r
439 unicast address to be assigned to any node. If the address is loopback address\r
440 ::1, it is also not a valid unicast address to be assigned to any physical\r
441 interface.\r
442\r
443 @param[in] Ip6 The IPv6 address to check against.\r
444\r
445 @return TRUE if Ip6 is a valid unicast address on the network, otherwise FALSE.\r
446\r
447**/\r
448BOOLEAN\r
449EFIAPI\r
450NetIp6IsValidUnicast (\r
451 IN EFI_IPv6_ADDRESS *Ip6\r
452 );\r
453\r
454\r
455/**\r
456 Check whether the incoming Ipv6 address is the unspecified address or not.\r
457\r
458 @param[in] Ip6 - Ip6 address, in network order.\r
459\r
460 @retval TRUE - Yes, incoming Ipv6 address is the unspecified address.\r
461 @retval FALSE - The incoming Ipv6 address is not the unspecified address\r
462\r
463**/\r
464BOOLEAN\r
465EFIAPI\r
466NetIp6IsUnspecifiedAddr (\r
467 IN EFI_IPv6_ADDRESS *Ip6\r
468 );\r
469\r
470/**\r
471 Check whether the incoming Ipv6 address is a link-local address.\r
472\r
473 @param[in] Ip6 - Ip6 address, in network order.\r
474\r
475 @retval TRUE - The incoming Ipv6 address is a link-local address.\r
476 @retval FALSE - The incoming Ipv6 address is not a link-local address.\r
477\r
478**/\r
479BOOLEAN\r
480EFIAPI\r
481NetIp6IsLinkLocalAddr (\r
482 IN EFI_IPv6_ADDRESS *Ip6\r
483 );\r
484\r
485/**\r
486 Check whether the Ipv6 address1 and address2 are on the connected network.\r
487\r
488 @param[in] Ip1 - Ip6 address1, in network order.\r
489 @param[in] Ip2 - Ip6 address2, in network order.\r
490 @param[in] PrefixLength - The prefix length of the checking net.\r
491\r
492 @retval TRUE - Yes, the Ipv6 address1 and address2 are connected.\r
493 @retval FALSE - No the Ipv6 address1 and address2 are not connected.\r
494\r
495**/\r
496BOOLEAN\r
497EFIAPI\r
498NetIp6IsNetEqual (\r
499 EFI_IPv6_ADDRESS *Ip1,\r
500 EFI_IPv6_ADDRESS *Ip2,\r
501 UINT8 PrefixLength\r
502 );\r
503\r
504/**\r
505 Switches the endianess of an IPv6 address.\r
506\r
507 This function swaps the bytes in a 128-bit IPv6 address to switch the value\r
508 from little endian to big endian or vice versa. The byte swapped value is\r
509 returned.\r
510\r
511 @param Ip6 Points to an IPv6 address.\r
512\r
513 @return The byte swapped IPv6 address.\r
514\r
515**/\r
516EFI_IPv6_ADDRESS *\r
517EFIAPI\r
518Ip6Swap128 (\r
519 EFI_IPv6_ADDRESS *Ip6\r
520 );\r
521\r
522extern IP4_ADDR gIp4AllMasks[IP4_MASK_NUM];\r
523\r
524\r
525extern EFI_IPv4_ADDRESS mZeroIp4Addr;\r
526\r
527#define NET_IS_DIGIT(Ch) (('0' <= (Ch)) && ((Ch) <= '9'))\r
528#define NET_IS_HEX(Ch) ((('0' <= (Ch)) && ((Ch) <= '9')) || (('A' <= (Ch)) && ((Ch) <= 'F')) || (('a' <= (Ch)) && ((Ch) <= 'f')))\r
529#define NET_ROUNDUP(size, unit) (((size) + (unit) - 1) & (~((unit) - 1)))\r
530#define NET_IS_LOWER_CASE_CHAR(Ch) (('a' <= (Ch)) && ((Ch) <= 'z'))\r
531#define NET_IS_UPPER_CASE_CHAR(Ch) (('A' <= (Ch)) && ((Ch) <= 'Z'))\r
532\r
533#define TICKS_PER_MS 10000U\r
534#define TICKS_PER_SECOND 10000000U\r
535\r
536#define NET_RANDOM(Seed) ((UINT32) ((UINT32) (Seed) * 1103515245UL + 12345) % 4294967295UL)\r
537\r
538/**\r
539 Extract a UINT32 from a byte stream.\r
540\r
541 This function copies a UINT32 from a byte stream, and then converts it from Network\r
542 byte order to host byte order. Use this function to avoid alignment error.\r
543\r
544 @param[in] Buf The buffer to extract the UINT32.\r
545\r
546 @return The UINT32 extracted.\r
547\r
548**/\r
549UINT32\r
550EFIAPI\r
551NetGetUint32 (\r
552 IN UINT8 *Buf\r
553 );\r
554\r
555/**\r
556 Puts a UINT32 into the byte stream in network byte order.\r
557\r
558 Converts a UINT32 from host byte order to network byte order, then copies it to the\r
559 byte stream.\r
560\r
561 @param[in, out] Buf The buffer in which to put the UINT32.\r
562 @param[in] Data The data to be converted and put into the byte stream.\r
563\r
564**/\r
565VOID\r
566EFIAPI\r
567NetPutUint32 (\r
568 IN OUT UINT8 *Buf,\r
569 IN UINT32 Data\r
570 );\r
571\r
572/**\r
573 Initialize a random seed using current time and monotonic count.\r
574\r
575 Get current time and monotonic count first. Then initialize a random seed \r
576 based on some basic mathematics operation on the hour, day, minute, second,\r
577 nanosecond and year of the current time and the monotonic count value.\r
578\r
579 @return The random seed initialized with current time.\r
580\r
581**/\r
582UINT32\r
583EFIAPI\r
584NetRandomInitSeed (\r
585 VOID\r
586 );\r
587\r
588\r
589#define NET_LIST_USER_STRUCT(Entry, Type, Field) \\r
590 BASE_CR(Entry, Type, Field)\r
591\r
592#define NET_LIST_USER_STRUCT_S(Entry, Type, Field, Sig) \\r
593 CR(Entry, Type, Field, Sig)\r
594\r
595//\r
596// Iterate through the double linked list. It is NOT delete safe\r
597//\r
598#define NET_LIST_FOR_EACH(Entry, ListHead) \\r
599 for(Entry = (ListHead)->ForwardLink; Entry != (ListHead); Entry = Entry->ForwardLink)\r
600\r
601//\r
602// Iterate through the double linked list. This is delete-safe.\r
603// Don't touch NextEntry. Also, don't use this macro if list\r
604// entries other than the Entry may be deleted when processing\r
605// the current Entry.\r
606//\r
607#define NET_LIST_FOR_EACH_SAFE(Entry, NextEntry, ListHead) \\r
608 for(Entry = (ListHead)->ForwardLink, NextEntry = Entry->ForwardLink; \\r
609 Entry != (ListHead); \\r
610 Entry = NextEntry, NextEntry = Entry->ForwardLink \\r
611 )\r
612\r
613//\r
614// Make sure the list isn't empty before getting the first/last record.\r
615//\r
616#define NET_LIST_HEAD(ListHead, Type, Field) \\r
617 NET_LIST_USER_STRUCT((ListHead)->ForwardLink, Type, Field)\r
618\r
619#define NET_LIST_TAIL(ListHead, Type, Field) \\r
620 NET_LIST_USER_STRUCT((ListHead)->BackLink, Type, Field)\r
621\r
622\r
623/**\r
624 Remove the first node entry on the list, and return the removed node entry.\r
625\r
626 Removes the first node entry from a doubly linked list. It is up to the caller of\r
627 this function to release the memory used by the first node, if that is required. On\r
628 exit, the removed node is returned.\r
629\r
630 If Head is NULL, then ASSERT().\r
631 If Head was not initialized, then ASSERT().\r
632 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the\r
633 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,\r
634 then ASSERT().\r
635\r
636 @param[in, out] Head The list header.\r
637\r
638 @return The first node entry that is removed from the list, NULL if the list is empty.\r
639\r
640**/\r
641LIST_ENTRY *\r
642EFIAPI\r
643NetListRemoveHead (\r
644 IN OUT LIST_ENTRY *Head\r
645 );\r
646\r
647/**\r
648 Remove the last node entry on the list and return the removed node entry.\r
649\r
650 Removes the last node entry from a doubly linked list. It is up to the caller of\r
651 this function to release the memory used by the first node, if that is required. On\r
652 exit, the removed node is returned.\r
653\r
654 If Head is NULL, then ASSERT().\r
655 If Head was not initialized, then ASSERT().\r
656 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the\r
657 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,\r
658 then ASSERT().\r
659\r
660 @param[in, out] Head The list head.\r
661\r
662 @return The last node entry that is removed from the list, NULL if the list is empty.\r
663\r
664**/\r
665LIST_ENTRY *\r
666EFIAPI\r
667NetListRemoveTail (\r
668 IN OUT LIST_ENTRY *Head\r
669 );\r
670\r
671/**\r
672 Insert a new node entry after a designated node entry of a doubly linked list.\r
673\r
674 Inserts a new node entry designated by NewEntry after the node entry designated by PrevEntry\r
675 of the doubly linked list.\r
676\r
677 @param[in, out] PrevEntry The entry after which to insert.\r
678 @param[in, out] NewEntry The new entry to insert.\r
679\r
680**/\r
681VOID\r
682EFIAPI\r
683NetListInsertAfter (\r
684 IN OUT LIST_ENTRY *PrevEntry,\r
685 IN OUT LIST_ENTRY *NewEntry\r
686 );\r
687\r
688/**\r
689 Insert a new node entry before a designated node entry of a doubly linked list.\r
690\r
691 Inserts a new node entry designated by NewEntry before the node entry designated by PostEntry\r
692 of the doubly linked list.\r
693\r
694 @param[in, out] PostEntry The entry to insert before.\r
695 @param[in, out] NewEntry The new entry to insert.\r
696\r
697**/\r
698VOID\r
699EFIAPI\r
700NetListInsertBefore (\r
701 IN OUT LIST_ENTRY *PostEntry,\r
702 IN OUT LIST_ENTRY *NewEntry\r
703 );\r
704\r
705/**\r
706 Callback function which provided by user to remove one node in NetDestroyLinkList process.\r
707 \r
708 @param[in] Entry The entry to be removed.\r
709 @param[in] Context Pointer to the callback context corresponds to the Context in NetDestroyLinkList.\r
710\r
711 @retval EFI_SUCCESS The entry has been removed successfully.\r
712 @retval Others Fail to remove the entry.\r
713\r
714**/\r
715typedef\r
716EFI_STATUS\r
717(EFIAPI *NET_DESTROY_LINK_LIST_CALLBACK) (\r
718 IN LIST_ENTRY *Entry,\r
719 IN VOID *Context OPTIONAL\r
720 );\r
721\r
722/**\r
723 Safe destroy nodes in a linked list, and return the length of the list after all possible operations finished.\r
724\r
725 Destroy network children list by list traversals is not safe due to graph dependencies between nodes.\r
726 This function performs a safe traversal to destroy these nodes by checking to see if the node being destroyed\r
727 has been removed from the list or not.\r
728 If it has been removed, then restart the traversal from the head.\r
729 If it hasn't been removed, then continue with the next node directly.\r
730 This function will end the iterate and return the CallBack's last return value if error happens,\r
731 or retrun EFI_SUCCESS if 2 complete passes are made with no changes in the number of children in the list. \r
732\r
733 @param[in] List The head of the list.\r
734 @param[in] CallBack Pointer to the callback function to destroy one node in the list.\r
735 @param[in] Context Pointer to the callback function's context: corresponds to the\r
736 parameter Context in NET_DESTROY_LINK_LIST_CALLBACK.\r
737 @param[out] ListLength The length of the link list if the function returns successfully.\r
738\r
739 @retval EFI_SUCCESS Two complete passes are made with no changes in the number of children.\r
740 @retval EFI_INVALID_PARAMETER The input parameter is invalid.\r
741 @retval Others Return the CallBack's last return value.\r
742\r
743**/\r
744EFI_STATUS\r
745EFIAPI\r
746NetDestroyLinkList (\r
747 IN LIST_ENTRY *List,\r
748 IN NET_DESTROY_LINK_LIST_CALLBACK CallBack,\r
749 IN VOID *Context, OPTIONAL\r
750 OUT UINTN *ListLength OPTIONAL\r
751 );\r
752\r
753/**\r
754 This function checks the input Handle to see if it's one of these handles in ChildHandleBuffer.\r
755\r
756 @param[in] Handle Handle to be checked.\r
757 @param[in] NumberOfChildren Number of Handles in ChildHandleBuffer.\r
758 @param[in] ChildHandleBuffer An array of child handles to be freed. May be NULL\r
759 if NumberOfChildren is 0.\r
760\r
761 @retval TRUE Found the input Handle in ChildHandleBuffer.\r
762 @retval FALSE Can't find the input Handle in ChildHandleBuffer.\r
763\r
764**/\r
765BOOLEAN\r
766EFIAPI\r
767NetIsInHandleBuffer (\r
768 IN EFI_HANDLE Handle,\r
769 IN UINTN NumberOfChildren,\r
770 IN EFI_HANDLE *ChildHandleBuffer OPTIONAL\r
771 );\r
772\r
773//\r
774// Object container: EFI network stack spec defines various kinds of\r
775// tokens. The drivers can share code to manage those objects.\r
776//\r
777typedef struct {\r
778 LIST_ENTRY Link;\r
779 VOID *Key;\r
780 VOID *Value;\r
781} NET_MAP_ITEM;\r
782\r
783typedef struct {\r
784 LIST_ENTRY Used;\r
785 LIST_ENTRY Recycled;\r
786 UINTN Count;\r
787} NET_MAP;\r
788\r
789#define NET_MAP_INCREAMENT 64\r
790\r
791/**\r
792 Initialize the netmap. Netmap is a reposity to keep the <Key, Value> pairs.\r
793\r
794 Initialize the forward and backward links of two head nodes donated by Map->Used\r
795 and Map->Recycled of two doubly linked lists.\r
796 Initializes the count of the <Key, Value> pairs in the netmap to zero.\r
797\r
798 If Map is NULL, then ASSERT().\r
799 If the address of Map->Used is NULL, then ASSERT().\r
800 If the address of Map->Recycled is NULl, then ASSERT().\r
801\r
802 @param[in, out] Map The netmap to initialize.\r
803\r
804**/\r
805VOID\r
806EFIAPI\r
807NetMapInit (\r
808 IN OUT NET_MAP *Map\r
809 );\r
810\r
811/**\r
812 To clean up the netmap, that is, release allocated memories.\r
813\r
814 Removes all nodes of the Used doubly linked list and frees memory of all related netmap items.\r
815 Removes all nodes of the Recycled doubly linked list and free memory of all related netmap items.\r
816 The number of the <Key, Value> pairs in the netmap is set to zero.\r
817\r
818 If Map is NULL, then ASSERT().\r
819\r
820 @param[in, out] Map The netmap to clean up.\r
821\r
822**/\r
823VOID\r
824EFIAPI\r
825NetMapClean (\r
826 IN OUT NET_MAP *Map\r
827 );\r
828\r
829/**\r
830 Test whether the netmap is empty and return true if it is.\r
831\r
832 If the number of the <Key, Value> pairs in the netmap is zero, return TRUE.\r
833\r
834 If Map is NULL, then ASSERT().\r
835\r
836\r
837 @param[in] Map The net map to test.\r
838\r
839 @return TRUE if the netmap is empty, otherwise FALSE.\r
840\r
841**/\r
842BOOLEAN\r
843EFIAPI\r
844NetMapIsEmpty (\r
845 IN NET_MAP *Map\r
846 );\r
847\r
848/**\r
849 Return the number of the <Key, Value> pairs in the netmap.\r
850\r
851 @param[in] Map The netmap to get the entry number.\r
852\r
853 @return The entry number in the netmap.\r
854\r
855**/\r
856UINTN\r
857EFIAPI\r
858NetMapGetCount (\r
859 IN NET_MAP *Map\r
860 );\r
861\r
862/**\r
863 Allocate an item to save the <Key, Value> pair to the head of the netmap.\r
864\r
865 Allocate an item to save the <Key, Value> pair and add corresponding node entry\r
866 to the beginning of the Used doubly linked list. The number of the <Key, Value>\r
867 pairs in the netmap increase by 1.\r
868\r
869 If Map is NULL, then ASSERT().\r
870\r
871 @param[in, out] Map The netmap to insert into.\r
872 @param[in] Key The user's key.\r
873 @param[in] Value The user's value for the key.\r
874\r
875 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.\r
876 @retval EFI_SUCCESS The item is inserted to the head.\r
877\r
878**/\r
879EFI_STATUS\r
880EFIAPI\r
881NetMapInsertHead (\r
882 IN OUT NET_MAP *Map,\r
883 IN VOID *Key,\r
884 IN VOID *Value OPTIONAL\r
885 );\r
886\r
887/**\r
888 Allocate an item to save the <Key, Value> pair to the tail of the netmap.\r
889\r
890 Allocate an item to save the <Key, Value> pair and add corresponding node entry\r
891 to the tail of the Used doubly linked list. The number of the <Key, Value>\r
892 pairs in the netmap increase by 1.\r
893\r
894 If Map is NULL, then ASSERT().\r
895\r
896 @param[in, out] Map The netmap to insert into.\r
897 @param[in] Key The user's key.\r
898 @param[in] Value The user's value for the key.\r
899\r
900 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.\r
901 @retval EFI_SUCCESS The item is inserted to the tail.\r
902\r
903**/\r
904EFI_STATUS\r
905EFIAPI\r
906NetMapInsertTail (\r
907 IN OUT NET_MAP *Map,\r
908 IN VOID *Key,\r
909 IN VOID *Value OPTIONAL\r
910 );\r
911\r
912/**\r
913 Finds the key in the netmap and returns the point to the item containing the Key.\r
914\r
915 Iterate the Used doubly linked list of the netmap to get every item. Compare the key of every\r
916 item with the key to search. It returns the point to the item contains the Key if found.\r
917\r
918 If Map is NULL, then ASSERT().\r
919\r
920 @param[in] Map The netmap to search within.\r
921 @param[in] Key The key to search.\r
922\r
923 @return The point to the item contains the Key, or NULL if Key isn't in the map.\r
924\r
925**/\r
926NET_MAP_ITEM *\r
927EFIAPI\r
928NetMapFindKey (\r
929 IN NET_MAP *Map,\r
930 IN VOID *Key\r
931 );\r
932\r
933/**\r
934 Remove the node entry of the item from the netmap and return the key of the removed item.\r
935\r
936 Remove the node entry of the item from the Used doubly linked list of the netmap.\r
937 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node\r
938 entry of the item to the Recycled doubly linked list of the netmap. If Value is not NULL,\r
939 Value will point to the value of the item. It returns the key of the removed item.\r
940\r
941 If Map is NULL, then ASSERT().\r
942 If Item is NULL, then ASSERT().\r
943 if item in not in the netmap, then ASSERT().\r
944\r
945 @param[in, out] Map The netmap to remove the item from.\r
946 @param[in, out] Item The item to remove.\r
947 @param[out] Value The variable to receive the value if not NULL.\r
948\r
949 @return The key of the removed item.\r
950\r
951**/\r
952VOID *\r
953EFIAPI\r
954NetMapRemoveItem (\r
955 IN OUT NET_MAP *Map,\r
956 IN OUT NET_MAP_ITEM *Item,\r
957 OUT VOID **Value OPTIONAL\r
958 );\r
959\r
960/**\r
961 Remove the first node entry on the netmap and return the key of the removed item.\r
962\r
963 Remove the first node entry from the Used doubly linked list of the netmap.\r
964 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node\r
965 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,\r
966 parameter Value will point to the value of the item. It returns the key of the removed item.\r
967\r
968 If Map is NULL, then ASSERT().\r
969 If the Used doubly linked list is empty, then ASSERT().\r
970\r
971 @param[in, out] Map The netmap to remove the head from.\r
972 @param[out] Value The variable to receive the value if not NULL.\r
973\r
974 @return The key of the item removed.\r
975\r
976**/\r
977VOID *\r
978EFIAPI\r
979NetMapRemoveHead (\r
980 IN OUT NET_MAP *Map,\r
981 OUT VOID **Value OPTIONAL\r
982 );\r
983\r
984/**\r
985 Remove the last node entry on the netmap and return the key of the removed item.\r
986\r
987 Remove the last node entry from the Used doubly linked list of the netmap.\r
988 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node\r
989 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,\r
990 parameter Value will point to the value of the item. It returns the key of the removed item.\r
991\r
992 If Map is NULL, then ASSERT().\r
993 If the Used doubly linked list is empty, then ASSERT().\r
994\r
995 @param[in, out] Map The netmap to remove the tail from.\r
996 @param[out] Value The variable to receive the value if not NULL.\r
997\r
998 @return The key of the item removed.\r
999\r
1000**/\r
1001VOID *\r
1002EFIAPI\r
1003NetMapRemoveTail (\r
1004 IN OUT NET_MAP *Map,\r
1005 OUT VOID **Value OPTIONAL\r
1006 );\r
1007\r
1008typedef\r
1009EFI_STATUS\r
1010(EFIAPI *NET_MAP_CALLBACK) (\r
1011 IN NET_MAP *Map,\r
1012 IN NET_MAP_ITEM *Item,\r
1013 IN VOID *Arg\r
1014 );\r
1015\r
1016/**\r
1017 Iterate through the netmap and call CallBack for each item.\r
1018\r
1019 It will continue the traverse if CallBack returns EFI_SUCCESS, otherwise, break\r
1020 from the loop. It returns the CallBack's last return value. This function is\r
1021 delete safe for the current item.\r
1022\r
1023 If Map is NULL, then ASSERT().\r
1024 If CallBack is NULL, then ASSERT().\r
1025\r
1026 @param[in] Map The Map to iterate through.\r
1027 @param[in] CallBack The callback function to call for each item.\r
1028 @param[in] Arg The opaque parameter to the callback.\r
1029\r
1030 @retval EFI_SUCCESS There is no item in the netmap, or CallBack for each item\r
1031 returns EFI_SUCCESS.\r
1032 @retval Others It returns the CallBack's last return value.\r
1033\r
1034**/\r
1035EFI_STATUS\r
1036EFIAPI\r
1037NetMapIterate (\r
1038 IN NET_MAP *Map,\r
1039 IN NET_MAP_CALLBACK CallBack,\r
1040 IN VOID *Arg OPTIONAL\r
1041 );\r
1042\r
1043\r
1044//\r
1045// Helper functions to implement driver binding and service binding protocols.\r
1046//\r
1047/**\r
1048 Create a child of the service that is identified by ServiceBindingGuid.\r
1049\r
1050 Get the ServiceBinding Protocol first, then use it to create a child.\r
1051\r
1052 If ServiceBindingGuid is NULL, then ASSERT().\r
1053 If ChildHandle is NULL, then ASSERT().\r
1054\r
1055 @param[in] Controller The controller which has the service installed.\r
1056 @param[in] Image The image handle used to open service.\r
1057 @param[in] ServiceBindingGuid The service's Guid.\r
1058 @param[in, out] ChildHandle The handle to receive the created child.\r
1059\r
1060 @retval EFI_SUCCESS The child was successfully created.\r
1061 @retval Others Failed to create the child.\r
1062\r
1063**/\r
1064EFI_STATUS\r
1065EFIAPI\r
1066NetLibCreateServiceChild (\r
1067 IN EFI_HANDLE Controller,\r
1068 IN EFI_HANDLE Image,\r
1069 IN EFI_GUID *ServiceBindingGuid,\r
1070 IN OUT EFI_HANDLE *ChildHandle\r
1071 );\r
1072\r
1073/**\r
1074 Destroy a child of the service that is identified by ServiceBindingGuid.\r
1075\r
1076 Get the ServiceBinding Protocol first, then use it to destroy a child.\r
1077\r
1078 If ServiceBindingGuid is NULL, then ASSERT().\r
1079\r
1080 @param[in] Controller The controller which has the service installed.\r
1081 @param[in] Image The image handle used to open service.\r
1082 @param[in] ServiceBindingGuid The service's Guid.\r
1083 @param[in] ChildHandle The child to destroy.\r
1084\r
1085 @retval EFI_SUCCESS The child was destroyed.\r
1086 @retval Others Failed to destroy the child.\r
1087\r
1088**/\r
1089EFI_STATUS\r
1090EFIAPI\r
1091NetLibDestroyServiceChild (\r
1092 IN EFI_HANDLE Controller,\r
1093 IN EFI_HANDLE Image,\r
1094 IN EFI_GUID *ServiceBindingGuid,\r
1095 IN EFI_HANDLE ChildHandle\r
1096 );\r
1097\r
1098/**\r
1099 Get handle with Simple Network Protocol installed on it.\r
1100\r
1101 There should be MNP Service Binding Protocol installed on the input ServiceHandle.\r
1102 If Simple Network Protocol is already installed on the ServiceHandle, the\r
1103 ServiceHandle will be returned. If SNP is not installed on the ServiceHandle,\r
1104 try to find its parent handle with SNP installed.\r
1105\r
1106 @param[in] ServiceHandle The handle where network service binding protocols are\r
1107 installed on.\r
1108 @param[out] Snp The pointer to store the address of the SNP instance.\r
1109 This is an optional parameter that may be NULL.\r
1110\r
1111 @return The SNP handle, or NULL if not found.\r
1112\r
1113**/\r
1114EFI_HANDLE\r
1115EFIAPI\r
1116NetLibGetSnpHandle (\r
1117 IN EFI_HANDLE ServiceHandle,\r
1118 OUT EFI_SIMPLE_NETWORK_PROTOCOL **Snp OPTIONAL\r
1119 );\r
1120\r
1121/**\r
1122 Retrieve VLAN ID of a VLAN device handle.\r
1123\r
1124 Search VLAN device path node in Device Path of specified ServiceHandle and\r
1125 return its VLAN ID. If no VLAN device path node found, then this ServiceHandle\r
1126 is not a VLAN device handle, and 0 will be returned.\r
1127\r
1128 @param[in] ServiceHandle The handle where network service binding protocols are\r
1129 installed on.\r
1130\r
1131 @return VLAN ID of the device handle, or 0 if not a VLAN device.\r
1132\r
1133**/\r
1134UINT16\r
1135EFIAPI\r
1136NetLibGetVlanId (\r
1137 IN EFI_HANDLE ServiceHandle\r
1138 );\r
1139\r
1140/**\r
1141 Find VLAN device handle with specified VLAN ID.\r
1142\r
1143 The VLAN child device handle is created by VLAN Config Protocol on ControllerHandle.\r
1144 This function will append VLAN device path node to the parent device path,\r
1145 and then use LocateDevicePath() to find the correct VLAN device handle.\r
1146\r
1147 @param[in] ControllerHandle The handle where network service binding protocols are\r
1148 installed on.\r
1149 @param[in] VlanId The configured VLAN ID for the VLAN device.\r
1150\r
1151 @return The VLAN device handle, or NULL if not found.\r
1152\r
1153**/\r
1154EFI_HANDLE\r
1155EFIAPI\r
1156NetLibGetVlanHandle (\r
1157 IN EFI_HANDLE ControllerHandle,\r
1158 IN UINT16 VlanId\r
1159 );\r
1160\r
1161/**\r
1162 Get MAC address associated with the network service handle.\r
1163\r
1164 There should be MNP Service Binding Protocol installed on the input ServiceHandle.\r
1165 If SNP is installed on the ServiceHandle or its parent handle, MAC address will\r
1166 be retrieved from SNP. If no SNP found, try to get SNP mode data use MNP.\r
1167\r
1168 @param[in] ServiceHandle The handle where network service binding protocols are\r
1169 installed on.\r
1170 @param[out] MacAddress The pointer to store the returned MAC address.\r
1171 @param[out] AddressSize The length of returned MAC address.\r
1172\r
1173 @retval EFI_SUCCESS MAC address was returned successfully.\r
1174 @retval Others Failed to get SNP mode data.\r
1175\r
1176**/\r
1177EFI_STATUS\r
1178EFIAPI\r
1179NetLibGetMacAddress (\r
1180 IN EFI_HANDLE ServiceHandle,\r
1181 OUT EFI_MAC_ADDRESS *MacAddress,\r
1182 OUT UINTN *AddressSize\r
1183 );\r
1184\r
1185/**\r
1186 Convert MAC address of the NIC associated with specified Service Binding Handle\r
1187 to a unicode string. Callers are responsible for freeing the string storage.\r
1188\r
1189 Locate simple network protocol associated with the Service Binding Handle and\r
1190 get the mac address from SNP. Then convert the mac address into a unicode\r
1191 string. It takes 2 unicode characters to represent a 1 byte binary buffer.\r
1192 Plus one unicode character for the null-terminator.\r
1193\r
1194 @param[in] ServiceHandle The handle where network service binding protocol is\r
1195 installed.\r
1196 @param[in] ImageHandle The image handle used to act as the agent handle to\r
1197 get the simple network protocol. This parameter is\r
1198 optional and may be NULL.\r
1199 @param[out] MacString The pointer to store the address of the string\r
1200 representation of the mac address.\r
1201\r
1202 @retval EFI_SUCCESS Converted the mac address a unicode string successfully.\r
1203 @retval EFI_OUT_OF_RESOURCES There are not enough memory resources.\r
1204 @retval Others Failed to open the simple network protocol.\r
1205\r
1206**/\r
1207EFI_STATUS\r
1208EFIAPI\r
1209NetLibGetMacString (\r
1210 IN EFI_HANDLE ServiceHandle,\r
1211 IN EFI_HANDLE ImageHandle, OPTIONAL\r
1212 OUT CHAR16 **MacString\r
1213 );\r
1214\r
1215/**\r
1216 Detect media status for specified network device.\r
1217\r
1218 The underlying UNDI driver may or may not support reporting media status from\r
1219 GET_STATUS command (PXE_STATFLAGS_GET_STATUS_NO_MEDIA_SUPPORTED). This routine\r
1220 will try to invoke Snp->GetStatus() to get the media status. If media is already\r
1221 present, it returns directly. If media is not present, it will stop SNP and then\r
1222 restart SNP to get the latest media status. This provides an opportunity to get \r
1223 the correct media status for old UNDI driver, which doesn't support reporting \r
1224 media status from GET_STATUS command.\r
1225 Note: there are two limitations for the current algorithm:\r
1226 1) For UNDI with this capability, when the cable is not attached, there will\r
1227 be an redundant Stop/Start() process.\r
1228 2) for UNDI without this capability, in case that network cable is attached when\r
1229 Snp->Initialize() is invoked while network cable is unattached later,\r
1230 NetLibDetectMedia() will report MediaPresent as TRUE, causing upper layer\r
1231 apps to wait for timeout time.\r
1232\r
1233 @param[in] ServiceHandle The handle where network service binding protocols are\r
1234 installed.\r
1235 @param[out] MediaPresent The pointer to store the media status.\r
1236\r
1237 @retval EFI_SUCCESS Media detection success.\r
1238 @retval EFI_INVALID_PARAMETER ServiceHandle is not a valid network device handle.\r
1239 @retval EFI_UNSUPPORTED The network device does not support media detection.\r
1240 @retval EFI_DEVICE_ERROR SNP is in an unknown state.\r
1241\r
1242**/\r
1243EFI_STATUS\r
1244EFIAPI\r
1245NetLibDetectMedia (\r
1246 IN EFI_HANDLE ServiceHandle,\r
1247 OUT BOOLEAN *MediaPresent\r
1248 );\r
1249\r
1250/**\r
1251 Create an IPv4 device path node.\r
1252\r
1253 The header type of IPv4 device path node is MESSAGING_DEVICE_PATH.\r
1254 The header subtype of IPv4 device path node is MSG_IPv4_DP.\r
1255 The length of the IPv4 device path node in bytes is 19.\r
1256 Get other information from parameters to make up the whole IPv4 device path node.\r
1257\r
1258 @param[in, out] Node The pointer to the IPv4 device path node.\r
1259 @param[in] Controller The controller handle.\r
1260 @param[in] LocalIp The local IPv4 address.\r
1261 @param[in] LocalPort The local port.\r
1262 @param[in] RemoteIp The remote IPv4 address.\r
1263 @param[in] RemotePort The remote port.\r
1264 @param[in] Protocol The protocol type in the IP header.\r
1265 @param[in] UseDefaultAddress Whether this instance is using default address or not.\r
1266\r
1267**/\r
1268VOID\r
1269EFIAPI\r
1270NetLibCreateIPv4DPathNode (\r
1271 IN OUT IPv4_DEVICE_PATH *Node,\r
1272 IN EFI_HANDLE Controller,\r
1273 IN IP4_ADDR LocalIp,\r
1274 IN UINT16 LocalPort,\r
1275 IN IP4_ADDR RemoteIp,\r
1276 IN UINT16 RemotePort,\r
1277 IN UINT16 Protocol,\r
1278 IN BOOLEAN UseDefaultAddress\r
1279 );\r
1280\r
1281/**\r
1282 Create an IPv6 device path node.\r
1283\r
1284 The header type of IPv6 device path node is MESSAGING_DEVICE_PATH.\r
1285 The header subtype of IPv6 device path node is MSG_IPv6_DP.\r
1286 The length of the IPv6 device path node in bytes is 43.\r
1287 Get other information from parameters to make up the whole IPv6 device path node.\r
1288\r
1289 @param[in, out] Node The pointer to the IPv6 device path node.\r
1290 @param[in] Controller The controller handle.\r
1291 @param[in] LocalIp The local IPv6 address.\r
1292 @param[in] LocalPort The local port.\r
1293 @param[in] RemoteIp The remote IPv6 address.\r
1294 @param[in] RemotePort The remote port.\r
1295 @param[in] Protocol The protocol type in the IP header.\r
1296\r
1297**/\r
1298VOID\r
1299EFIAPI\r
1300NetLibCreateIPv6DPathNode (\r
1301 IN OUT IPv6_DEVICE_PATH *Node,\r
1302 IN EFI_HANDLE Controller,\r
1303 IN EFI_IPv6_ADDRESS *LocalIp,\r
1304 IN UINT16 LocalPort,\r
1305 IN EFI_IPv6_ADDRESS *RemoteIp,\r
1306 IN UINT16 RemotePort,\r
1307 IN UINT16 Protocol\r
1308 );\r
1309\r
1310\r
1311/**\r
1312 Find the UNDI/SNP handle from controller and protocol GUID.\r
1313\r
1314 For example, IP will open an MNP child to transmit/receive\r
1315 packets. When MNP is stopped, IP should also be stopped. IP\r
1316 needs to find its own private data that is related the IP's\r
1317 service binding instance that is installed on the UNDI/SNP handle.\r
1318 The controller is then either an MNP or an ARP child handle. Note that\r
1319 IP opens these handles using BY_DRIVER. Use that information to get the\r
1320 UNDI/SNP handle.\r
1321\r
1322 @param[in] Controller The protocol handle to check.\r
1323 @param[in] ProtocolGuid The protocol that is related with the handle.\r
1324\r
1325 @return The UNDI/SNP handle or NULL for errors.\r
1326\r
1327**/\r
1328EFI_HANDLE\r
1329EFIAPI\r
1330NetLibGetNicHandle (\r
1331 IN EFI_HANDLE Controller,\r
1332 IN EFI_GUID *ProtocolGuid\r
1333 );\r
1334\r
1335/**\r
1336 This is the default unload handle for all the network drivers.\r
1337\r
1338 Disconnect the driver specified by ImageHandle from all the devices in the handle database.\r
1339 Uninstall all the protocols installed in the driver entry point.\r
1340\r
1341 @param[in] ImageHandle The drivers' driver image.\r
1342\r
1343 @retval EFI_SUCCESS The image is unloaded.\r
1344 @retval Others Failed to unload the image.\r
1345\r
1346**/\r
1347EFI_STATUS\r
1348EFIAPI\r
1349NetLibDefaultUnload (\r
1350 IN EFI_HANDLE ImageHandle\r
1351 );\r
1352\r
1353/**\r
1354 Convert one Null-terminated ASCII string (decimal dotted) to EFI_IPv4_ADDRESS.\r
1355\r
1356 @param[in] String The pointer to the Ascii string.\r
1357 @param[out] Ip4Address The pointer to the converted IPv4 address.\r
1358\r
1359 @retval EFI_SUCCESS Converted to an IPv4 address successfully.\r
1360 @retval EFI_INVALID_PARAMETER The string is malformatted, or Ip4Address is NULL.\r
1361\r
1362**/\r
1363EFI_STATUS\r
1364EFIAPI\r
1365NetLibAsciiStrToIp4 (\r
1366 IN CONST CHAR8 *String,\r
1367 OUT EFI_IPv4_ADDRESS *Ip4Address\r
1368 );\r
1369\r
1370/**\r
1371 Convert one Null-terminated ASCII string to EFI_IPv6_ADDRESS. The format of the\r
1372 string is defined in RFC 4291 - Text Representation of Addresses.\r
1373\r
1374 @param[in] String The pointer to the Ascii string.\r
1375 @param[out] Ip6Address The pointer to the converted IPv6 address.\r
1376\r
1377 @retval EFI_SUCCESS Converted to an IPv6 address successfully.\r
1378 @retval EFI_INVALID_PARAMETER The string is malformatted, or Ip6Address is NULL.\r
1379\r
1380**/\r
1381EFI_STATUS\r
1382EFIAPI\r
1383NetLibAsciiStrToIp6 (\r
1384 IN CONST CHAR8 *String,\r
1385 OUT EFI_IPv6_ADDRESS *Ip6Address\r
1386 );\r
1387\r
1388/**\r
1389 Convert one Null-terminated Unicode string (decimal dotted) to EFI_IPv4_ADDRESS.\r
1390\r
1391 @param[in] String The pointer to the Ascii string.\r
1392 @param[out] Ip4Address The pointer to the converted IPv4 address.\r
1393\r
1394 @retval EFI_SUCCESS Converted to an IPv4 address successfully.\r
1395 @retval EFI_INVALID_PARAMETER The string is mal-formatted or Ip4Address is NULL.\r
1396\r
1397**/\r
1398EFI_STATUS\r
1399EFIAPI\r
1400NetLibStrToIp4 (\r
1401 IN CONST CHAR16 *String,\r
1402 OUT EFI_IPv4_ADDRESS *Ip4Address\r
1403 );\r
1404\r
1405/**\r
1406 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS. The format of\r
1407 the string is defined in RFC 4291 - Text Representation of Addresses.\r
1408\r
1409 @param[in] String The pointer to the Ascii string.\r
1410 @param[out] Ip6Address The pointer to the converted IPv6 address.\r
1411\r
1412 @retval EFI_SUCCESS Converted to an IPv6 address successfully.\r
1413 @retval EFI_INVALID_PARAMETER The string is malformatted or Ip6Address is NULL.\r
1414\r
1415**/\r
1416EFI_STATUS\r
1417EFIAPI\r
1418NetLibStrToIp6 (\r
1419 IN CONST CHAR16 *String,\r
1420 OUT EFI_IPv6_ADDRESS *Ip6Address\r
1421 );\r
1422\r
1423/**\r
1424 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS and prefix length.\r
1425 The format of the string is defined in RFC 4291 - Text Representation of Addresses\r
1426 Prefixes: ipv6-address/prefix-length.\r
1427\r
1428 @param[in] String The pointer to the Ascii string.\r
1429 @param[out] Ip6Address The pointer to the converted IPv6 address.\r
1430 @param[out] PrefixLength The pointer to the converted prefix length.\r
1431\r
1432 @retval EFI_SUCCESS Converted to an IPv6 address successfully.\r
1433 @retval EFI_INVALID_PARAMETER The string is malformatted, or Ip6Address is NULL.\r
1434\r
1435**/\r
1436EFI_STATUS\r
1437EFIAPI\r
1438NetLibStrToIp6andPrefix (\r
1439 IN CONST CHAR16 *String,\r
1440 OUT EFI_IPv6_ADDRESS *Ip6Address,\r
1441 OUT UINT8 *PrefixLength\r
1442 );\r
1443\r
1444/**\r
1445\r
1446 Convert one EFI_IPv6_ADDRESS to Null-terminated Unicode string.\r
1447 The text representation of address is defined in RFC 4291.\r
1448 \r
1449 @param[in] Ip6Address The pointer to the IPv6 address.\r
1450 @param[out] String The buffer to return the converted string.\r
1451 @param[in] StringSize The length in bytes of the input String.\r
1452 \r
1453 @retval EFI_SUCCESS Convert to string successfully.\r
1454 @retval EFI_INVALID_PARAMETER The input parameter is invalid.\r
1455 @retval EFI_BUFFER_TOO_SMALL The BufferSize is too small for the result. BufferSize has been \r
1456 updated with the size needed to complete the request.\r
1457**/\r
1458EFI_STATUS\r
1459EFIAPI\r
1460NetLibIp6ToStr (\r
1461 IN EFI_IPv6_ADDRESS *Ip6Address,\r
1462 OUT CHAR16 *String,\r
1463 IN UINTN StringSize\r
1464 );\r
1465\r
1466//\r
1467// Various signatures\r
1468//\r
1469#define NET_BUF_SIGNATURE SIGNATURE_32 ('n', 'b', 'u', 'f')\r
1470#define NET_VECTOR_SIGNATURE SIGNATURE_32 ('n', 'v', 'e', 'c')\r
1471#define NET_QUE_SIGNATURE SIGNATURE_32 ('n', 'b', 'q', 'u')\r
1472\r
1473\r
1474#define NET_PROTO_DATA 64 // Opaque buffer for protocols\r
1475#define NET_BUF_HEAD 1 // Trim or allocate space from head\r
1476#define NET_BUF_TAIL 0 // Trim or allocate space from tail\r
1477#define NET_VECTOR_OWN_FIRST 0x01 // We allocated the 1st block in the vector\r
1478\r
1479#define NET_CHECK_SIGNATURE(PData, SIGNATURE) \\r
1480 ASSERT (((PData) != NULL) && ((PData)->Signature == (SIGNATURE)))\r
1481\r
1482//\r
1483// Single memory block in the vector.\r
1484//\r
1485typedef struct {\r
1486 UINT32 Len; // The block's length\r
1487 UINT8 *Bulk; // The block's Data\r
1488} NET_BLOCK;\r
1489\r
1490typedef VOID (EFIAPI *NET_VECTOR_EXT_FREE) (VOID *Arg);\r
1491\r
1492//\r
1493//NET_VECTOR contains several blocks to hold all packet's\r
1494//fragments and other house-keeping stuff for sharing. It\r
1495//doesn't specify the where actual packet fragment begins.\r
1496//\r
1497typedef struct {\r
1498 UINT32 Signature;\r
1499 INTN RefCnt; // Reference count to share NET_VECTOR.\r
1500 NET_VECTOR_EXT_FREE Free; // external function to free NET_VECTOR\r
1501 VOID *Arg; // opaque argument to Free\r
1502 UINT32 Flag; // Flags, NET_VECTOR_OWN_FIRST\r
1503 UINT32 Len; // Total length of the associated BLOCKs\r
1504\r
1505 UINT32 BlockNum;\r
1506 NET_BLOCK Block[1];\r
1507} NET_VECTOR;\r
1508\r
1509//\r
1510//NET_BLOCK_OP operates on the NET_BLOCK. It specifies\r
1511//where the actual fragment begins and ends\r
1512//\r
1513typedef struct {\r
1514 UINT8 *BlockHead; // Block's head, or the smallest valid Head\r
1515 UINT8 *BlockTail; // Block's tail. BlockTail-BlockHead=block length\r
1516 UINT8 *Head; // 1st byte of the data in the block\r
1517 UINT8 *Tail; // Tail of the data in the block, Tail-Head=Size\r
1518 UINT32 Size; // The size of the data\r
1519} NET_BLOCK_OP;\r
1520\r
1521typedef union {\r
1522 IP4_HEAD *Ip4;\r
1523 EFI_IP6_HEADER *Ip6;\r
1524} NET_IP_HEAD;\r
1525\r
1526//\r
1527//NET_BUF is the buffer manage structure used by the\r
1528//network stack. Every network packet may be fragmented. The Vector points to\r
1529//memory blocks used by each fragment, and BlockOp\r
1530//specifies where each fragment begins and ends.\r
1531//\r
1532//It also contains an opaque area for the protocol to store\r
1533//per-packet information. Protocol must be careful not\r
1534//to overwrite the members after that.\r
1535//\r
1536typedef struct {\r
1537 UINT32 Signature;\r
1538 INTN RefCnt;\r
1539 LIST_ENTRY List; // The List this NET_BUF is on\r
1540\r
1541 NET_IP_HEAD Ip; // Network layer header, for fast access\r
1542 TCP_HEAD *Tcp; // Transport layer header, for fast access\r
1543 EFI_UDP_HEADER *Udp; // User Datagram Protocol header\r
1544 UINT8 ProtoData [NET_PROTO_DATA]; //Protocol specific data\r
1545\r
1546 NET_VECTOR *Vector; // The vector containing the packet\r
1547\r
1548 UINT32 BlockOpNum; // Total number of BlockOp in the buffer\r
1549 UINT32 TotalSize; // Total size of the actual packet\r
1550 NET_BLOCK_OP BlockOp[1]; // Specify the position of actual packet\r
1551} NET_BUF;\r
1552\r
1553//\r
1554//A queue of NET_BUFs. It is a thin extension of\r
1555//NET_BUF functions.\r
1556//\r
1557typedef struct {\r
1558 UINT32 Signature;\r
1559 INTN RefCnt;\r
1560 LIST_ENTRY List; // The List this buffer queue is on\r
1561\r
1562 LIST_ENTRY BufList; // list of queued buffers\r
1563 UINT32 BufSize; // total length of DATA in the buffers\r
1564 UINT32 BufNum; // total number of buffers on the chain\r
1565} NET_BUF_QUEUE;\r
1566\r
1567//\r
1568// Pseudo header for TCP and UDP checksum\r
1569//\r
1570#pragma pack(1)\r
1571typedef struct {\r
1572 IP4_ADDR SrcIp;\r
1573 IP4_ADDR DstIp;\r
1574 UINT8 Reserved;\r
1575 UINT8 Protocol;\r
1576 UINT16 Len;\r
1577} NET_PSEUDO_HDR;\r
1578\r
1579typedef struct {\r
1580 EFI_IPv6_ADDRESS SrcIp;\r
1581 EFI_IPv6_ADDRESS DstIp;\r
1582 UINT32 Len;\r
1583 UINT32 Reserved:24;\r
1584 UINT32 NextHeader:8;\r
1585} NET_IP6_PSEUDO_HDR;\r
1586#pragma pack()\r
1587\r
1588//\r
1589// The fragment entry table used in network interfaces. This is\r
1590// the same as NET_BLOCK now. Use two different to distinguish\r
1591// the two in case that NET_BLOCK be enhanced later.\r
1592//\r
1593typedef struct {\r
1594 UINT32 Len;\r
1595 UINT8 *Bulk;\r
1596} NET_FRAGMENT;\r
1597\r
1598#define NET_GET_REF(PData) ((PData)->RefCnt++)\r
1599#define NET_PUT_REF(PData) ((PData)->RefCnt--)\r
1600#define NETBUF_FROM_PROTODATA(Info) BASE_CR((Info), NET_BUF, ProtoData)\r
1601\r
1602#define NET_BUF_SHARED(Buf) \\r
1603 (((Buf)->RefCnt > 1) || ((Buf)->Vector->RefCnt > 1))\r
1604\r
1605#define NET_VECTOR_SIZE(BlockNum) \\r
1606 (sizeof (NET_VECTOR) + ((BlockNum) - 1) * sizeof (NET_BLOCK))\r
1607\r
1608#define NET_BUF_SIZE(BlockOpNum) \\r
1609 (sizeof (NET_BUF) + ((BlockOpNum) - 1) * sizeof (NET_BLOCK_OP))\r
1610\r
1611#define NET_HEADSPACE(BlockOp) \\r
1612 ((UINTN)((BlockOp)->Head) - (UINTN)((BlockOp)->BlockHead))\r
1613\r
1614#define NET_TAILSPACE(BlockOp) \\r
1615 ((UINTN)((BlockOp)->BlockTail) - (UINTN)((BlockOp)->Tail))\r
1616\r
1617/**\r
1618 Allocate a single block NET_BUF. Upon allocation, all the\r
1619 free space is in the tail room.\r
1620\r
1621 @param[in] Len The length of the block.\r
1622\r
1623 @return The pointer to the allocated NET_BUF, or NULL if the\r
1624 allocation failed due to resource limitations.\r
1625\r
1626**/\r
1627NET_BUF *\r
1628EFIAPI\r
1629NetbufAlloc (\r
1630 IN UINT32 Len\r
1631 );\r
1632\r
1633/**\r
1634 Free the net buffer and its associated NET_VECTOR.\r
1635\r
1636 Decrease the reference count of the net buffer by one. Free the associated net\r
1637 vector and itself if the reference count of the net buffer is decreased to 0.\r
1638 The net vector free operation decreases the reference count of the net\r
1639 vector by one, and performs the resource free operation when the reference count\r
1640 of the net vector is 0.\r
1641\r
1642 @param[in] Nbuf The pointer to the NET_BUF to be freed.\r
1643\r
1644**/\r
1645VOID\r
1646EFIAPI\r
1647NetbufFree (\r
1648 IN NET_BUF *Nbuf\r
1649 );\r
1650\r
1651/**\r
1652 Get the index of NET_BLOCK_OP that contains the byte at Offset in the net\r
1653 buffer.\r
1654\r
1655 For example, this function can be used to retrieve the IP header in the packet. It\r
1656 also can be used to get the fragment that contains the byte used\r
1657 mainly by the library implementation itself.\r
1658\r
1659 @param[in] Nbuf The pointer to the net buffer.\r
1660 @param[in] Offset The offset of the byte.\r
1661 @param[out] Index Index of the NET_BLOCK_OP that contains the byte at\r
1662 Offset.\r
1663\r
1664 @return The pointer to the Offset'th byte of data in the net buffer, or NULL\r
1665 if there is no such data in the net buffer.\r
1666\r
1667**/\r
1668UINT8 *\r
1669EFIAPI\r
1670NetbufGetByte (\r
1671 IN NET_BUF *Nbuf,\r
1672 IN UINT32 Offset,\r
1673 OUT UINT32 *Index OPTIONAL\r
1674 );\r
1675\r
1676/**\r
1677 Create a copy of the net buffer that shares the associated net vector.\r
1678\r
1679 The reference count of the newly created net buffer is set to 1. The reference\r
1680 count of the associated net vector is increased by one.\r
1681\r
1682 @param[in] Nbuf The pointer to the net buffer to be cloned.\r
1683\r
1684 @return The pointer to the cloned net buffer, or NULL if the\r
1685 allocation failed due to resource limitations.\r
1686\r
1687**/\r
1688NET_BUF *\r
1689EFIAPI\r
1690NetbufClone (\r
1691 IN NET_BUF *Nbuf\r
1692 );\r
1693\r
1694/**\r
1695 Create a duplicated copy of the net buffer with data copied and HeadSpace\r
1696 bytes of head space reserved.\r
1697\r
1698 The duplicated net buffer will allocate its own memory to hold the data of the\r
1699 source net buffer.\r
1700\r
1701 @param[in] Nbuf The pointer to the net buffer to be duplicated from.\r
1702 @param[in, out] Duplicate The pointer to the net buffer to duplicate to. If\r
1703 NULL, a new net buffer is allocated.\r
1704 @param[in] HeadSpace The length of the head space to reserve.\r
1705\r
1706 @return The pointer to the duplicated net buffer, or NULL if\r
1707 the allocation failed due to resource limitations.\r
1708\r
1709**/\r
1710NET_BUF *\r
1711EFIAPI\r
1712NetbufDuplicate (\r
1713 IN NET_BUF *Nbuf,\r
1714 IN OUT NET_BUF *Duplicate OPTIONAL,\r
1715 IN UINT32 HeadSpace\r
1716 );\r
1717\r
1718/**\r
1719 Create a NET_BUF structure which contains Len byte data of Nbuf starting from\r
1720 Offset.\r
1721\r
1722 A new NET_BUF structure will be created but the associated data in NET_VECTOR\r
1723 is shared. This function exists to perform IP packet fragmentation.\r
1724\r
1725 @param[in] Nbuf The pointer to the net buffer to be extracted.\r
1726 @param[in] Offset Starting point of the data to be included in the new\r
1727 net buffer.\r
1728 @param[in] Len The bytes of data to be included in the new net buffer.\r
1729 @param[in] HeadSpace The bytes of the head space to reserve for the protocol header.\r
1730\r
1731 @return The pointer to the cloned net buffer, or NULL if the\r
1732 allocation failed due to resource limitations.\r
1733\r
1734**/\r
1735NET_BUF *\r
1736EFIAPI\r
1737NetbufGetFragment (\r
1738 IN NET_BUF *Nbuf,\r
1739 IN UINT32 Offset,\r
1740 IN UINT32 Len,\r
1741 IN UINT32 HeadSpace\r
1742 );\r
1743\r
1744/**\r
1745 Reserve some space in the header room of the net buffer.\r
1746\r
1747 Upon allocation, all the space is in the tail room of the buffer. Call this\r
1748 function to move space to the header room. This function is quite limited\r
1749 in that it can only reserve space from the first block of an empty NET_BUF not\r
1750 built from the external. However, it should be enough for the network stack.\r
1751\r
1752 @param[in, out] Nbuf The pointer to the net buffer.\r
1753 @param[in] Len The length of buffer to be reserved from the header.\r
1754\r
1755**/\r
1756VOID\r
1757EFIAPI\r
1758NetbufReserve (\r
1759 IN OUT NET_BUF *Nbuf,\r
1760 IN UINT32 Len\r
1761 );\r
1762\r
1763/**\r
1764 Allocate Len bytes of space from the header or tail of the buffer.\r
1765\r
1766 @param[in, out] Nbuf The pointer to the net buffer.\r
1767 @param[in] Len The length of the buffer to be allocated.\r
1768 @param[in] FromHead The flag to indicate whether to reserve the data\r
1769 from head (TRUE) or tail (FALSE).\r
1770\r
1771 @return The pointer to the first byte of the allocated buffer,\r
1772 or NULL, if there is no sufficient space.\r
1773\r
1774**/\r
1775UINT8*\r
1776EFIAPI\r
1777NetbufAllocSpace (\r
1778 IN OUT NET_BUF *Nbuf,\r
1779 IN UINT32 Len,\r
1780 IN BOOLEAN FromHead\r
1781 );\r
1782\r
1783/**\r
1784 Trim Len bytes from the header or the tail of the net buffer.\r
1785\r
1786 @param[in, out] Nbuf The pointer to the net buffer.\r
1787 @param[in] Len The length of the data to be trimmed.\r
1788 @param[in] FromHead The flag to indicate whether trim data is from the \r
1789 head (TRUE) or the tail (FALSE).\r
1790\r
1791 @return The length of the actual trimmed data, which may be less\r
1792 than Len if the TotalSize of Nbuf is less than Len.\r
1793\r
1794**/\r
1795UINT32\r
1796EFIAPI\r
1797NetbufTrim (\r
1798 IN OUT NET_BUF *Nbuf,\r
1799 IN UINT32 Len,\r
1800 IN BOOLEAN FromHead\r
1801 );\r
1802\r
1803/**\r
1804 Copy Len bytes of data from the specific offset of the net buffer to the\r
1805 destination memory.\r
1806\r
1807 The Len bytes of data may cross several fragments of the net buffer.\r
1808\r
1809 @param[in] Nbuf The pointer to the net buffer.\r
1810 @param[in] Offset The sequence number of the first byte to copy.\r
1811 @param[in] Len The length of the data to copy.\r
1812 @param[in] Dest The destination of the data to copy to.\r
1813\r
1814 @return The length of the actual copied data, or 0 if the offset\r
1815 specified exceeds the total size of net buffer.\r
1816\r
1817**/\r
1818UINT32\r
1819EFIAPI\r
1820NetbufCopy (\r
1821 IN NET_BUF *Nbuf,\r
1822 IN UINT32 Offset,\r
1823 IN UINT32 Len,\r
1824 IN UINT8 *Dest\r
1825 );\r
1826\r
1827/**\r
1828 Build a NET_BUF from external blocks.\r
1829\r
1830 A new NET_BUF structure will be created from external blocks. An additional block\r
1831 of memory will be allocated to hold reserved HeadSpace bytes of header room\r
1832 and existing HeadLen bytes of header, but the external blocks are shared by the\r
1833 net buffer to avoid data copying.\r
1834\r
1835 @param[in] ExtFragment The pointer to the data block.\r
1836 @param[in] ExtNum The number of the data blocks.\r
1837 @param[in] HeadSpace The head space to be reserved.\r
1838 @param[in] HeadLen The length of the protocol header. The function\r
1839 pulls this amount of data into a linear block.\r
1840 @param[in] ExtFree The pointer to the caller-provided free function.\r
1841 @param[in] Arg The argument passed to ExtFree when ExtFree is\r
1842 called.\r
1843\r
1844 @return The pointer to the net buffer built from the data blocks,\r
1845 or NULL if the allocation failed due to resource\r
1846 limit.\r
1847\r
1848**/\r
1849NET_BUF *\r
1850EFIAPI\r
1851NetbufFromExt (\r
1852 IN NET_FRAGMENT *ExtFragment,\r
1853 IN UINT32 ExtNum,\r
1854 IN UINT32 HeadSpace,\r
1855 IN UINT32 HeadLen,\r
1856 IN NET_VECTOR_EXT_FREE ExtFree,\r
1857 IN VOID *Arg OPTIONAL\r
1858 );\r
1859\r
1860/**\r
1861 Build a fragment table to contain the fragments in the net buffer. This is the\r
1862 opposite operation of the NetbufFromExt.\r
1863\r
1864 @param[in] Nbuf Points to the net buffer.\r
1865 @param[in, out] ExtFragment The pointer to the data block.\r
1866 @param[in, out] ExtNum The number of the data blocks.\r
1867\r
1868 @retval EFI_BUFFER_TOO_SMALL The number of non-empty blocks is bigger than\r
1869 ExtNum.\r
1870 @retval EFI_SUCCESS The fragment table was built successfully.\r
1871\r
1872**/\r
1873EFI_STATUS\r
1874EFIAPI\r
1875NetbufBuildExt (\r
1876 IN NET_BUF *Nbuf,\r
1877 IN OUT NET_FRAGMENT *ExtFragment,\r
1878 IN OUT UINT32 *ExtNum\r
1879 );\r
1880\r
1881/**\r
1882 Build a net buffer from a list of net buffers.\r
1883\r
1884 All the fragments will be collected from the list of NEW_BUF, and then a new\r
1885 net buffer will be created through NetbufFromExt.\r
1886\r
1887 @param[in] BufList A List of the net buffer.\r
1888 @param[in] HeadSpace The head space to be reserved.\r
1889 @param[in] HeaderLen The length of the protocol header. The function\r
1890 pulls this amount of data into a linear block.\r
1891 @param[in] ExtFree The pointer to the caller provided free function.\r
1892 @param[in] Arg The argument passed to ExtFree when ExtFree is called.\r
1893\r
1894 @return The pointer to the net buffer built from the list of net\r
1895 buffers.\r
1896\r
1897**/\r
1898NET_BUF *\r
1899EFIAPI\r
1900NetbufFromBufList (\r
1901 IN LIST_ENTRY *BufList,\r
1902 IN UINT32 HeadSpace,\r
1903 IN UINT32 HeaderLen,\r
1904 IN NET_VECTOR_EXT_FREE ExtFree,\r
1905 IN VOID *Arg OPTIONAL\r
1906 );\r
1907\r
1908/**\r
1909 Free a list of net buffers.\r
1910\r
1911 @param[in, out] Head The pointer to the head of linked net buffers.\r
1912\r
1913**/\r
1914VOID\r
1915EFIAPI\r
1916NetbufFreeList (\r
1917 IN OUT LIST_ENTRY *Head\r
1918 );\r
1919\r
1920/**\r
1921 Initiate the net buffer queue.\r
1922\r
1923 @param[in, out] NbufQue The pointer to the net buffer queue to be initialized.\r
1924\r
1925**/\r
1926VOID\r
1927EFIAPI\r
1928NetbufQueInit (\r
1929 IN OUT NET_BUF_QUEUE *NbufQue\r
1930 );\r
1931\r
1932/**\r
1933 Allocate and initialize a net buffer queue.\r
1934\r
1935 @return The pointer to the allocated net buffer queue, or NULL if the\r
1936 allocation failed due to resource limit.\r
1937\r
1938**/\r
1939NET_BUF_QUEUE *\r
1940EFIAPI\r
1941NetbufQueAlloc (\r
1942 VOID\r
1943 );\r
1944\r
1945/**\r
1946 Free a net buffer queue.\r
1947\r
1948 Decrease the reference count of the net buffer queue by one. The real resource\r
1949 free operation isn't performed until the reference count of the net buffer\r
1950 queue is decreased to 0.\r
1951\r
1952 @param[in] NbufQue The pointer to the net buffer queue to be freed.\r
1953\r
1954**/\r
1955VOID\r
1956EFIAPI\r
1957NetbufQueFree (\r
1958 IN NET_BUF_QUEUE *NbufQue\r
1959 );\r
1960\r
1961/**\r
1962 Remove a net buffer from the head in the specific queue and return it.\r
1963\r
1964 @param[in, out] NbufQue The pointer to the net buffer queue.\r
1965\r
1966 @return The pointer to the net buffer removed from the specific queue,\r
1967 or NULL if there is no net buffer in the specific queue.\r
1968\r
1969**/\r
1970NET_BUF *\r
1971EFIAPI\r
1972NetbufQueRemove (\r
1973 IN OUT NET_BUF_QUEUE *NbufQue\r
1974 );\r
1975\r
1976/**\r
1977 Append a net buffer to the net buffer queue.\r
1978\r
1979 @param[in, out] NbufQue The pointer to the net buffer queue.\r
1980 @param[in, out] Nbuf The pointer to the net buffer to be appended.\r
1981\r
1982**/\r
1983VOID\r
1984EFIAPI\r
1985NetbufQueAppend (\r
1986 IN OUT NET_BUF_QUEUE *NbufQue,\r
1987 IN OUT NET_BUF *Nbuf\r
1988 );\r
1989\r
1990/**\r
1991 Copy Len bytes of data from the net buffer queue at the specific offset to the\r
1992 destination memory.\r
1993\r
1994 The copying operation is the same as NetbufCopy, but applies to the net buffer\r
1995 queue instead of the net buffer.\r
1996\r
1997 @param[in] NbufQue The pointer to the net buffer queue.\r
1998 @param[in] Offset The sequence number of the first byte to copy.\r
1999 @param[in] Len The length of the data to copy.\r
2000 @param[out] Dest The destination of the data to copy to.\r
2001\r
2002 @return The length of the actual copied data, or 0 if the offset\r
2003 specified exceeds the total size of net buffer queue.\r
2004\r
2005**/\r
2006UINT32\r
2007EFIAPI\r
2008NetbufQueCopy (\r
2009 IN NET_BUF_QUEUE *NbufQue,\r
2010 IN UINT32 Offset,\r
2011 IN UINT32 Len,\r
2012 OUT UINT8 *Dest\r
2013 );\r
2014\r
2015/**\r
2016 Trim Len bytes of data from the buffer queue and free any net buffer\r
2017 that is completely trimmed.\r
2018\r
2019 The trimming operation is the same as NetbufTrim but applies to the net buffer\r
2020 queue instead of the net buffer.\r
2021\r
2022 @param[in, out] NbufQue The pointer to the net buffer queue.\r
2023 @param[in] Len The length of the data to trim.\r
2024\r
2025 @return The actual length of the data trimmed.\r
2026\r
2027**/\r
2028UINT32\r
2029EFIAPI\r
2030NetbufQueTrim (\r
2031 IN OUT NET_BUF_QUEUE *NbufQue,\r
2032 IN UINT32 Len\r
2033 );\r
2034\r
2035\r
2036/**\r
2037 Flush the net buffer queue.\r
2038\r
2039 @param[in, out] NbufQue The pointer to the queue to be flushed.\r
2040\r
2041**/\r
2042VOID\r
2043EFIAPI\r
2044NetbufQueFlush (\r
2045 IN OUT NET_BUF_QUEUE *NbufQue\r
2046 );\r
2047\r
2048/**\r
2049 Compute the checksum for a bulk of data.\r
2050\r
2051 @param[in] Bulk The pointer to the data.\r
2052 @param[in] Len The length of the data, in bytes.\r
2053\r
2054 @return The computed checksum.\r
2055\r
2056**/\r
2057UINT16\r
2058EFIAPI\r
2059NetblockChecksum (\r
2060 IN UINT8 *Bulk,\r
2061 IN UINT32 Len\r
2062 );\r
2063\r
2064/**\r
2065 Add two checksums.\r
2066\r
2067 @param[in] Checksum1 The first checksum to be added.\r
2068 @param[in] Checksum2 The second checksum to be added.\r
2069\r
2070 @return The new checksum.\r
2071\r
2072**/\r
2073UINT16\r
2074EFIAPI\r
2075NetAddChecksum (\r
2076 IN UINT16 Checksum1,\r
2077 IN UINT16 Checksum2\r
2078 );\r
2079\r
2080/**\r
2081 Compute the checksum for a NET_BUF.\r
2082\r
2083 @param[in] Nbuf The pointer to the net buffer.\r
2084\r
2085 @return The computed checksum.\r
2086\r
2087**/\r
2088UINT16\r
2089EFIAPI\r
2090NetbufChecksum (\r
2091 IN NET_BUF *Nbuf\r
2092 );\r
2093\r
2094/**\r
2095 Compute the checksum for TCP/UDP pseudo header.\r
2096\r
2097 Src and Dst are in network byte order, and Len is in host byte order.\r
2098\r
2099 @param[in] Src The source address of the packet.\r
2100 @param[in] Dst The destination address of the packet.\r
2101 @param[in] Proto The protocol type of the packet.\r
2102 @param[in] Len The length of the packet.\r
2103\r
2104 @return The computed checksum.\r
2105\r
2106**/\r
2107UINT16\r
2108EFIAPI\r
2109NetPseudoHeadChecksum (\r
2110 IN IP4_ADDR Src,\r
2111 IN IP4_ADDR Dst,\r
2112 IN UINT8 Proto,\r
2113 IN UINT16 Len\r
2114 );\r
2115\r
2116/**\r
2117 Compute the checksum for the TCP6/UDP6 pseudo header.\r
2118\r
2119 Src and Dst are in network byte order, and Len is in host byte order.\r
2120\r
2121 @param[in] Src The source address of the packet.\r
2122 @param[in] Dst The destination address of the packet.\r
2123 @param[in] NextHeader The protocol type of the packet.\r
2124 @param[in] Len The length of the packet.\r
2125\r
2126 @return The computed checksum.\r
2127\r
2128**/\r
2129UINT16\r
2130EFIAPI\r
2131NetIp6PseudoHeadChecksum (\r
2132 IN EFI_IPv6_ADDRESS *Src,\r
2133 IN EFI_IPv6_ADDRESS *Dst,\r
2134 IN UINT8 NextHeader,\r
2135 IN UINT32 Len\r
2136 );\r
2137\r
2138/**\r
2139 The function frees the net buffer which allocated by the IP protocol. It releases \r
2140 only the net buffer and doesn't call the external free function. \r
2141\r
2142 This function should be called after finishing the process of mIpSec->ProcessExt() \r
2143 for outbound traffic. The (EFI_IPSEC2_PROTOCOL)->ProcessExt() allocates a new \r
2144 buffer for the ESP, so there needs a function to free the old net buffer.\r
2145\r
2146 @param[in] Nbuf The network buffer to be freed.\r
2147\r
2148**/\r
2149VOID\r
2150NetIpSecNetbufFree (\r
2151 NET_BUF *Nbuf\r
2152 );\r
2153\r
2154/**\r
2155 This function obtains the system guid from the smbios table.\r
2156\r
2157 @param[out] SystemGuid The pointer of the returned system guid.\r
2158\r
2159 @retval EFI_SUCCESS Successfully obtained the system guid.\r
2160 @retval EFI_NOT_FOUND Did not find the SMBIOS table.\r
2161\r
2162**/\r
2163EFI_STATUS\r
2164EFIAPI\r
2165NetLibGetSystemGuid (\r
2166 OUT EFI_GUID *SystemGuid\r
2167 );\r
2168\r
2169/**\r
2170 Create Dns QName according the queried domain name. \r
2171 QName is a domain name represented as a sequence of labels, \r
2172 where each label consists of a length octet followed by that \r
2173 number of octets. The QName terminates with the zero \r
2174 length octet for the null label of the root. Caller should \r
2175 take responsibility to free the buffer in returned pointer.\r
2176\r
2177 @param DomainName The pointer to the queried domain name string. \r
2178\r
2179 @retval NULL Failed to fill QName.\r
2180 @return QName filled successfully.\r
2181 \r
2182**/ \r
2183CHAR8 *\r
2184EFIAPI\r
2185NetLibCreateDnsQName (\r
2186 IN CHAR16 *DomainName\r
2187 );\r
2188\r
2189#endif\r