]> git.proxmox.com Git - mirror_edk2.git/blame_incremental - MdeModulePkg/Include/Library/NetLib.h
Removing IsaSerailDxe driver instead of removing the TerminalDxe driver when source...
[mirror_edk2.git] / MdeModulePkg / Include / Library / NetLib.h
... / ...
CommitLineData
1/** @file\r
2 This library is only intended to be used by UEFI network stack modules.\r
3 It provides basic functions for the UEFI network stack.\r
4\r
5Copyright (c) 2005 - 2011, Intel Corporation. All rights reserved.<BR>\r
6This program and the accompanying materials\r
7are licensed and made available under the terms and conditions of the BSD License\r
8which accompanies this distribution. The full text of the license may be found at<BR>\r
9http://opensource.org/licenses/bsd-license.php\r
10\r
11THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
12WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
13\r
14**/\r
15\r
16#ifndef _NET_LIB_H_\r
17#define _NET_LIB_H_\r
18\r
19#include <Protocol/Ip6.h>\r
20\r
21#include <Library/BaseLib.h>\r
22#include <Library/BaseMemoryLib.h>\r
23\r
24typedef UINT32 IP4_ADDR;\r
25typedef UINT32 TCP_SEQNO;\r
26typedef UINT16 TCP_PORTNO;\r
27\r
28\r
29#define NET_ETHER_ADDR_LEN 6\r
30#define NET_IFTYPE_ETHERNET 0x01\r
31\r
32#define NET_VLAN_TAG_LEN 4\r
33#define ETHER_TYPE_VLAN 0x8100\r
34\r
35#define EFI_IP_PROTO_UDP 0x11\r
36#define EFI_IP_PROTO_TCP 0x06\r
37#define EFI_IP_PROTO_ICMP 0x01\r
38#define IP4_PROTO_IGMP 0x02\r
39#define IP6_ICMP 58\r
40\r
41//\r
42// The address classification\r
43//\r
44#define IP4_ADDR_CLASSA 1\r
45#define IP4_ADDR_CLASSB 2\r
46#define IP4_ADDR_CLASSC 3\r
47#define IP4_ADDR_CLASSD 4\r
48#define IP4_ADDR_CLASSE 5\r
49\r
50#define IP4_MASK_NUM 33\r
51#define IP6_PREFIX_NUM 129\r
52\r
53#define IP6_HOP_BY_HOP 0\r
54#define IP6_DESTINATION 60\r
55#define IP6_ROUTING 43\r
56#define IP6_FRAGMENT 44\r
57#define IP6_AH 51\r
58#define IP6_ESP 50\r
59#define IP6_NO_NEXT_HEADER 59\r
60\r
61#define IP_VERSION_4 4\r
62#define IP_VERSION_6 6\r
63\r
64#pragma pack(1)\r
65\r
66//\r
67// Ethernet head definition\r
68//\r
69typedef struct {\r
70 UINT8 DstMac [NET_ETHER_ADDR_LEN];\r
71 UINT8 SrcMac [NET_ETHER_ADDR_LEN];\r
72 UINT16 EtherType;\r
73} ETHER_HEAD;\r
74\r
75//\r
76// 802.1Q VLAN Tag Control Information\r
77//\r
78typedef union {\r
79 struct {\r
80 UINT16 Vid : 12; // Unique VLAN identifier (0 to 4094)\r
81 UINT16 Cfi : 1; // Canonical Format Indicator\r
82 UINT16 Priority : 3; // 802.1Q priority level (0 to 7)\r
83 } Bits;\r
84 UINT16 Uint16;\r
85} VLAN_TCI;\r
86\r
87#define VLAN_TCI_CFI_CANONICAL_MAC 0\r
88#define VLAN_TCI_CFI_NON_CANONICAL_MAC 1\r
89\r
90//\r
91// The EFI_IP4_HEADER is hard to use because the source and\r
92// destination address are defined as EFI_IPv4_ADDRESS, which\r
93// is a structure. Two structures can't be compared or masked\r
94// directly. This is why there is an internal representation.\r
95//\r
96typedef struct {\r
97 UINT8 HeadLen : 4;\r
98 UINT8 Ver : 4;\r
99 UINT8 Tos;\r
100 UINT16 TotalLen;\r
101 UINT16 Id;\r
102 UINT16 Fragment;\r
103 UINT8 Ttl;\r
104 UINT8 Protocol;\r
105 UINT16 Checksum;\r
106 IP4_ADDR Src;\r
107 IP4_ADDR Dst;\r
108} IP4_HEAD;\r
109\r
110\r
111//\r
112// ICMP head definition. Each ICMP message is categorized as either an error\r
113// message or query message. Two message types have their own head format.\r
114//\r
115typedef struct {\r
116 UINT8 Type;\r
117 UINT8 Code;\r
118 UINT16 Checksum;\r
119} IP4_ICMP_HEAD;\r
120\r
121typedef struct {\r
122 IP4_ICMP_HEAD Head;\r
123 UINT32 Fourth; // 4th filed of the head, it depends on Type.\r
124 IP4_HEAD IpHead;\r
125} IP4_ICMP_ERROR_HEAD;\r
126\r
127typedef struct {\r
128 IP4_ICMP_HEAD Head;\r
129 UINT16 Id;\r
130 UINT16 Seq;\r
131} IP4_ICMP_QUERY_HEAD;\r
132\r
133typedef struct {\r
134 UINT8 Type;\r
135 UINT8 Code;\r
136 UINT16 Checksum;\r
137} IP6_ICMP_HEAD;\r
138\r
139typedef struct {\r
140 IP6_ICMP_HEAD Head;\r
141 UINT32 Fourth;\r
142 EFI_IP6_HEADER IpHead;\r
143} IP6_ICMP_ERROR_HEAD;\r
144\r
145typedef struct {\r
146 IP6_ICMP_HEAD Head;\r
147 UINT32 Fourth;\r
148} IP6_ICMP_INFORMATION_HEAD;\r
149\r
150//\r
151// UDP header definition\r
152//\r
153typedef struct {\r
154 UINT16 SrcPort;\r
155 UINT16 DstPort;\r
156 UINT16 Length;\r
157 UINT16 Checksum;\r
158} EFI_UDP_HEADER;\r
159\r
160//\r
161// TCP header definition\r
162//\r
163typedef struct {\r
164 TCP_PORTNO SrcPort;\r
165 TCP_PORTNO DstPort;\r
166 TCP_SEQNO Seq;\r
167 TCP_SEQNO Ack;\r
168 UINT8 Res : 4;\r
169 UINT8 HeadLen : 4;\r
170 UINT8 Flag;\r
171 UINT16 Wnd;\r
172 UINT16 Checksum;\r
173 UINT16 Urg;\r
174} TCP_HEAD;\r
175\r
176#pragma pack()\r
177\r
178#define NET_MAC_EQUAL(pMac1, pMac2, Len) \\r
179 (CompareMem ((pMac1), (pMac2), Len) == 0)\r
180\r
181#define NET_MAC_IS_MULTICAST(Mac, BMac, Len) \\r
182 (((*((UINT8 *) Mac) & 0x01) == 0x01) && (!NET_MAC_EQUAL (Mac, BMac, Len)))\r
183\r
184#define NTOHL(x) SwapBytes32 (x)\r
185\r
186#define HTONL(x) NTOHL(x)\r
187\r
188#define NTOHS(x) SwapBytes16 (x)\r
189\r
190#define HTONS(x) NTOHS(x)\r
191#define NTOHLL(x) SwapBytes64 (x)\r
192#define HTONLL(x) NTOHLL(x)\r
193#define NTOHLLL(x) Ip6Swap128 (x)\r
194#define HTONLLL(x) NTOHLLL(x)\r
195\r
196//\r
197// Test the IP's attribute, All the IPs are in host byte order.\r
198//\r
199#define IP4_IS_MULTICAST(Ip) (((Ip) & 0xF0000000) == 0xE0000000)\r
200#define IP4_IS_LOCAL_BROADCAST(Ip) ((Ip) == 0xFFFFFFFF)\r
201#define IP4_NET_EQUAL(Ip1, Ip2, NetMask) (((Ip1) & (NetMask)) == ((Ip2) & (NetMask)))\r
202#define IP4_IS_VALID_NETMASK(Ip) (NetGetMaskLength (Ip) != IP4_MASK_NUM)\r
203\r
204#define IP6_IS_MULTICAST(Ip6) (((Ip6)->Addr[0]) == 0xFF)\r
205\r
206//\r
207// Convert the EFI_IP4_ADDRESS to plain UINT32 IP4 address.\r
208//\r
209#define EFI_IP4(EfiIpAddr) (*(IP4_ADDR *) ((EfiIpAddr).Addr))\r
210#define EFI_NTOHL(EfiIp) (NTOHL (EFI_IP4 ((EfiIp))))\r
211#define EFI_IP4_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv4_ADDRESS)) == 0)\r
212\r
213#define EFI_IP6_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv6_ADDRESS)) == 0)\r
214\r
215#define IP4_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv4_ADDRESS)))\r
216#define IP6_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv6_ADDRESS)))\r
217#define IP6_COPY_LINK_ADDRESS(Mac1, Mac2) (CopyMem ((Mac1), (Mac2), sizeof (EFI_MAC_ADDRESS)))\r
218\r
219//\r
220// The debug level definition. This value is also used as the\r
221// syslog's servity level. Don't change it.\r
222//\r
223#define NETDEBUG_LEVEL_TRACE 5\r
224#define NETDEBUG_LEVEL_WARNING 4\r
225#define NETDEBUG_LEVEL_ERROR 3\r
226\r
227//\r
228// Network debug message is sent out as syslog packet.\r
229//\r
230#define NET_SYSLOG_FACILITY 16 // Syslog local facility local use\r
231#define NET_SYSLOG_PACKET_LEN 512\r
232#define NET_SYSLOG_TX_TIMEOUT (500 * 1000 * 10) // 500ms\r
233#define NET_DEBUG_MSG_LEN 470 // 512 - (ether+ip4+udp4 head length)\r
234\r
235//\r
236// The debug output expects the ASCII format string, Use %a to print ASCII\r
237// string, and %s to print UNICODE string. PrintArg must be enclosed in ().\r
238// For example: NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name));\r
239//\r
240#define NET_DEBUG_TRACE(Module, PrintArg) \\r
241 NetDebugOutput ( \\r
242 NETDEBUG_LEVEL_TRACE, \\r
243 Module, \\r
244 __FILE__, \\r
245 __LINE__, \\r
246 NetDebugASPrint PrintArg \\r
247 )\r
248\r
249#define NET_DEBUG_WARNING(Module, PrintArg) \\r
250 NetDebugOutput ( \\r
251 NETDEBUG_LEVEL_WARNING, \\r
252 Module, \\r
253 __FILE__, \\r
254 __LINE__, \\r
255 NetDebugASPrint PrintArg \\r
256 )\r
257\r
258#define NET_DEBUG_ERROR(Module, PrintArg) \\r
259 NetDebugOutput ( \\r
260 NETDEBUG_LEVEL_ERROR, \\r
261 Module, \\r
262 __FILE__, \\r
263 __LINE__, \\r
264 NetDebugASPrint PrintArg \\r
265 )\r
266\r
267/**\r
268 Allocate a buffer, then format the message to it. This is a\r
269 help function for the NET_DEBUG_XXX macros. The PrintArg of\r
270 these macros treats the variable length print parameters as a\r
271 single parameter, and pass it to the NetDebugASPrint. For\r
272 example, NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name))\r
273 if extracted to:\r
274\r
275 NetDebugOutput (\r
276 NETDEBUG_LEVEL_TRACE,\r
277 "Tcp",\r
278 __FILE__,\r
279 __LINE__,\r
280 NetDebugASPrint ("State transit to %a\n", Name)\r
281 )\r
282\r
283 @param Format The ASCII format string.\r
284 @param ... The variable length parameter whose format is determined\r
285 by the Format string.\r
286\r
287 @return The buffer containing the formatted message,\r
288 or NULL if memory allocation failed.\r
289\r
290**/\r
291CHAR8 *\r
292EFIAPI\r
293NetDebugASPrint (\r
294 IN CHAR8 *Format,\r
295 ...\r
296 );\r
297\r
298/**\r
299 Builds an UDP4 syslog packet and send it using SNP.\r
300\r
301 This function will locate a instance of SNP then send the message through it.\r
302 Because it isn't open the SNP BY_DRIVER, apply caution when using it.\r
303\r
304 @param Level The servity level of the message.\r
305 @param Module The Moudle that generates the log.\r
306 @param File The file that contains the log.\r
307 @param Line The exact line that contains the log.\r
308 @param Message The user message to log.\r
309\r
310 @retval EFI_INVALID_PARAMETER Any input parameter is invalid.\r
311 @retval EFI_OUT_OF_RESOURCES Failed to allocate memory for the packet\r
312 @retval EFI_SUCCESS The log is discard because that it is more verbose\r
313 than the mNetDebugLevelMax. Or, it has been sent out.\r
314**/\r
315EFI_STATUS\r
316EFIAPI\r
317NetDebugOutput (\r
318 IN UINT32 Level,\r
319 IN UINT8 *Module,\r
320 IN UINT8 *File,\r
321 IN UINT32 Line,\r
322 IN UINT8 *Message\r
323 );\r
324\r
325\r
326/**\r
327 Return the length of the mask.\r
328\r
329 Return the length of the mask. Valid values are 0 to 32.\r
330 If the mask is invalid, return the invalid length 33, which is IP4_MASK_NUM.\r
331 NetMask is in the host byte order.\r
332\r
333 @param[in] NetMask The netmask to get the length from.\r
334\r
335 @return The length of the netmask, or IP4_MASK_NUM (33) if the mask is invalid.\r
336\r
337**/\r
338INTN\r
339EFIAPI\r
340NetGetMaskLength (\r
341 IN IP4_ADDR NetMask\r
342 );\r
343\r
344/**\r
345 Return the class of the IP address, such as class A, B, C.\r
346 Addr is in host byte order.\r
347\r
348 The address of class A starts with 0.\r
349 If the address belong to class A, return IP4_ADDR_CLASSA.\r
350 The address of class B starts with 10.\r
351 If the address belong to class B, return IP4_ADDR_CLASSB.\r
352 The address of class C starts with 110.\r
353 If the address belong to class C, return IP4_ADDR_CLASSC.\r
354 The address of class D starts with 1110.\r
355 If the address belong to class D, return IP4_ADDR_CLASSD.\r
356 The address of class E starts with 1111.\r
357 If the address belong to class E, return IP4_ADDR_CLASSE.\r
358\r
359\r
360 @param[in] Addr The address to get the class from.\r
361\r
362 @return IP address class, such as IP4_ADDR_CLASSA.\r
363\r
364**/\r
365INTN\r
366EFIAPI\r
367NetGetIpClass (\r
368 IN IP4_ADDR Addr\r
369 );\r
370\r
371/**\r
372 Check whether the IP is a valid unicast address according to\r
373 the netmask. If NetMask is zero, use the IP address's class to get the default mask.\r
374\r
375 If Ip is 0, IP is not a valid unicast address.\r
376 Class D address is used for multicasting and class E address is reserved for future. If Ip\r
377 belongs to class D or class E, Ip is not a valid unicast address.\r
378 If all bits of the host address of Ip are 0 or 1, Ip is not a valid unicast address.\r
379\r
380 @param[in] Ip The IP to check against.\r
381 @param[in] NetMask The mask of the IP.\r
382\r
383 @return TRUE if Ip is a valid unicast address on the network, otherwise FALSE.\r
384\r
385**/\r
386BOOLEAN\r
387EFIAPI\r
388NetIp4IsUnicast (\r
389 IN IP4_ADDR Ip,\r
390 IN IP4_ADDR NetMask\r
391 );\r
392\r
393/**\r
394 Check whether the incoming IPv6 address is a valid unicast address.\r
395\r
396 If the address is a multicast address has binary 0xFF at the start, it is not\r
397 a valid unicast address. If the address is unspecified ::, it is not a valid\r
398 unicast address to be assigned to any node. If the address is loopback address\r
399 ::1, it is also not a valid unicast address to be assigned to any physical\r
400 interface.\r
401\r
402 @param[in] Ip6 The IPv6 address to check against.\r
403\r
404 @return TRUE if Ip6 is a valid unicast address on the network, otherwise FALSE.\r
405\r
406**/\r
407BOOLEAN\r
408EFIAPI\r
409NetIp6IsValidUnicast (\r
410 IN EFI_IPv6_ADDRESS *Ip6\r
411 );\r
412\r
413\r
414/**\r
415 Check whether the incoming Ipv6 address is the unspecified address or not.\r
416\r
417 @param[in] Ip6 - Ip6 address, in network order.\r
418\r
419 @retval TRUE - Yes, incoming Ipv6 address is the unspecified address.\r
420 @retval FALSE - The incoming Ipv6 address is not the unspecified address\r
421\r
422**/\r
423BOOLEAN\r
424EFIAPI\r
425NetIp6IsUnspecifiedAddr (\r
426 IN EFI_IPv6_ADDRESS *Ip6\r
427 );\r
428\r
429/**\r
430 Check whether the incoming Ipv6 address is a link-local address.\r
431\r
432 @param[in] Ip6 - Ip6 address, in network order.\r
433\r
434 @retval TRUE - The incoming Ipv6 address is a link-local address.\r
435 @retval FALSE - The incoming Ipv6 address is not a link-local address.\r
436\r
437**/\r
438BOOLEAN\r
439EFIAPI\r
440NetIp6IsLinkLocalAddr (\r
441 IN EFI_IPv6_ADDRESS *Ip6\r
442 );\r
443\r
444/**\r
445 Check whether the Ipv6 address1 and address2 are on the connected network.\r
446\r
447 @param[in] Ip1 - Ip6 address1, in network order.\r
448 @param[in] Ip2 - Ip6 address2, in network order.\r
449 @param[in] PrefixLength - The prefix length of the checking net.\r
450\r
451 @retval TRUE - Yes, the Ipv6 address1 and address2 are connected.\r
452 @retval FALSE - No the Ipv6 address1 and address2 are not connected.\r
453\r
454**/\r
455BOOLEAN\r
456EFIAPI\r
457NetIp6IsNetEqual (\r
458 EFI_IPv6_ADDRESS *Ip1,\r
459 EFI_IPv6_ADDRESS *Ip2,\r
460 UINT8 PrefixLength\r
461 );\r
462\r
463/**\r
464 Switches the endianess of an IPv6 address.\r
465\r
466 This function swaps the bytes in a 128-bit IPv6 address to switch the value\r
467 from little endian to big endian or vice versa. The byte swapped value is\r
468 returned.\r
469\r
470 @param Ip6 Points to an IPv6 address.\r
471\r
472 @return The byte swapped IPv6 address.\r
473\r
474**/\r
475EFI_IPv6_ADDRESS *\r
476EFIAPI\r
477Ip6Swap128 (\r
478 EFI_IPv6_ADDRESS *Ip6\r
479 );\r
480\r
481extern IP4_ADDR gIp4AllMasks[IP4_MASK_NUM];\r
482\r
483\r
484extern EFI_IPv4_ADDRESS mZeroIp4Addr;\r
485\r
486#define NET_IS_DIGIT(Ch) (('0' <= (Ch)) && ((Ch) <= '9'))\r
487#define NET_ROUNDUP(size, unit) (((size) + (unit) - 1) & (~((unit) - 1)))\r
488#define NET_IS_LOWER_CASE_CHAR(Ch) (('a' <= (Ch)) && ((Ch) <= 'z'))\r
489#define NET_IS_UPPER_CASE_CHAR(Ch) (('A' <= (Ch)) && ((Ch) <= 'Z'))\r
490\r
491#define TICKS_PER_MS 10000U\r
492#define TICKS_PER_SECOND 10000000U\r
493\r
494#define NET_RANDOM(Seed) ((UINT32) ((UINT32) (Seed) * 1103515245UL + 12345) % 4294967295UL)\r
495\r
496/**\r
497 Extract a UINT32 from a byte stream.\r
498\r
499 This function copies a UINT32 from a byte stream, and then converts it from Network\r
500 byte order to host byte order. Use this function to avoid alignment error.\r
501\r
502 @param[in] Buf The buffer to extract the UINT32.\r
503\r
504 @return The UINT32 extracted.\r
505\r
506**/\r
507UINT32\r
508EFIAPI\r
509NetGetUint32 (\r
510 IN UINT8 *Buf\r
511 );\r
512\r
513/**\r
514 Puts a UINT32 into the byte stream in network byte order.\r
515\r
516 Converts a UINT32 from host byte order to network byte order, then copies it to the\r
517 byte stream.\r
518\r
519 @param[in, out] Buf The buffer in which to put the UINT32.\r
520 @param[in] Data The data to be converted and put into the byte stream.\r
521\r
522**/\r
523VOID\r
524EFIAPI\r
525NetPutUint32 (\r
526 IN OUT UINT8 *Buf,\r
527 IN UINT32 Data\r
528 );\r
529\r
530/**\r
531 Initialize a random seed using current time.\r
532\r
533 Get current time first. Then initialize a random seed based on some basic\r
534 mathematical operations on the hour, day, minute, second, nanosecond and year\r
535 of the current time.\r
536\r
537 @return The random seed, initialized with current time.\r
538\r
539**/\r
540UINT32\r
541EFIAPI\r
542NetRandomInitSeed (\r
543 VOID\r
544 );\r
545\r
546\r
547#define NET_LIST_USER_STRUCT(Entry, Type, Field) \\r
548 BASE_CR(Entry, Type, Field)\r
549\r
550#define NET_LIST_USER_STRUCT_S(Entry, Type, Field, Sig) \\r
551 CR(Entry, Type, Field, Sig)\r
552\r
553//\r
554// Iterate through the double linked list. It is NOT delete safe\r
555//\r
556#define NET_LIST_FOR_EACH(Entry, ListHead) \\r
557 for(Entry = (ListHead)->ForwardLink; Entry != (ListHead); Entry = Entry->ForwardLink)\r
558\r
559//\r
560// Iterate through the double linked list. This is delete-safe.\r
561// Don't touch NextEntry. Also, don't use this macro if list\r
562// entries other than the Entry may be deleted when processing\r
563// the current Entry.\r
564//\r
565#define NET_LIST_FOR_EACH_SAFE(Entry, NextEntry, ListHead) \\r
566 for(Entry = (ListHead)->ForwardLink, NextEntry = Entry->ForwardLink; \\r
567 Entry != (ListHead); \\r
568 Entry = NextEntry, NextEntry = Entry->ForwardLink \\r
569 )\r
570\r
571//\r
572// Make sure the list isn't empty before getting the first/last record.\r
573//\r
574#define NET_LIST_HEAD(ListHead, Type, Field) \\r
575 NET_LIST_USER_STRUCT((ListHead)->ForwardLink, Type, Field)\r
576\r
577#define NET_LIST_TAIL(ListHead, Type, Field) \\r
578 NET_LIST_USER_STRUCT((ListHead)->BackLink, Type, Field)\r
579\r
580\r
581/**\r
582 Remove the first node entry on the list, and return the removed node entry.\r
583\r
584 Removes the first node entry from a doubly linked list. It is up to the caller of\r
585 this function to release the memory used by the first node, if that is required. On\r
586 exit, the removed node is returned.\r
587\r
588 If Head is NULL, then ASSERT().\r
589 If Head was not initialized, then ASSERT().\r
590 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the\r
591 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,\r
592 then ASSERT().\r
593\r
594 @param[in, out] Head The list header.\r
595\r
596 @return The first node entry that is removed from the list, NULL if the list is empty.\r
597\r
598**/\r
599LIST_ENTRY *\r
600EFIAPI\r
601NetListRemoveHead (\r
602 IN OUT LIST_ENTRY *Head\r
603 );\r
604\r
605/**\r
606 Remove the last node entry on the list and return the removed node entry.\r
607\r
608 Removes the last node entry from a doubly linked list. It is up to the caller of\r
609 this function to release the memory used by the first node, if that is required. On\r
610 exit, the removed node is returned.\r
611\r
612 If Head is NULL, then ASSERT().\r
613 If Head was not initialized, then ASSERT().\r
614 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the\r
615 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,\r
616 then ASSERT().\r
617\r
618 @param[in, out] Head The list head.\r
619\r
620 @return The last node entry that is removed from the list, NULL if the list is empty.\r
621\r
622**/\r
623LIST_ENTRY *\r
624EFIAPI\r
625NetListRemoveTail (\r
626 IN OUT LIST_ENTRY *Head\r
627 );\r
628\r
629/**\r
630 Insert a new node entry after a designated node entry of a doubly linked list.\r
631\r
632 Inserts a new node entry designated by NewEntry after the node entry designated by PrevEntry\r
633 of the doubly linked list.\r
634\r
635 @param[in, out] PrevEntry The entry after which to insert.\r
636 @param[in, out] NewEntry The new entry to insert.\r
637\r
638**/\r
639VOID\r
640EFIAPI\r
641NetListInsertAfter (\r
642 IN OUT LIST_ENTRY *PrevEntry,\r
643 IN OUT LIST_ENTRY *NewEntry\r
644 );\r
645\r
646/**\r
647 Insert a new node entry before a designated node entry of a doubly linked list.\r
648\r
649 Inserts a new node entry designated by NewEntry before the node entry designated by PostEntry\r
650 of the doubly linked list.\r
651\r
652 @param[in, out] PostEntry The entry to insert before.\r
653 @param[in, out] NewEntry The new entry to insert.\r
654\r
655**/\r
656VOID\r
657EFIAPI\r
658NetListInsertBefore (\r
659 IN OUT LIST_ENTRY *PostEntry,\r
660 IN OUT LIST_ENTRY *NewEntry\r
661 );\r
662\r
663\r
664//\r
665// Object container: EFI network stack spec defines various kinds of\r
666// tokens. The drivers can share code to manage those objects.\r
667//\r
668typedef struct {\r
669 LIST_ENTRY Link;\r
670 VOID *Key;\r
671 VOID *Value;\r
672} NET_MAP_ITEM;\r
673\r
674typedef struct {\r
675 LIST_ENTRY Used;\r
676 LIST_ENTRY Recycled;\r
677 UINTN Count;\r
678} NET_MAP;\r
679\r
680#define NET_MAP_INCREAMENT 64\r
681\r
682/**\r
683 Initialize the netmap. Netmap is a reposity to keep the <Key, Value> pairs.\r
684\r
685 Initialize the forward and backward links of two head nodes donated by Map->Used\r
686 and Map->Recycled of two doubly linked lists.\r
687 Initializes the count of the <Key, Value> pairs in the netmap to zero.\r
688\r
689 If Map is NULL, then ASSERT().\r
690 If the address of Map->Used is NULL, then ASSERT().\r
691 If the address of Map->Recycled is NULl, then ASSERT().\r
692\r
693 @param[in, out] Map The netmap to initialize.\r
694\r
695**/\r
696VOID\r
697EFIAPI\r
698NetMapInit (\r
699 IN OUT NET_MAP *Map\r
700 );\r
701\r
702/**\r
703 To clean up the netmap, that is, release allocated memories.\r
704\r
705 Removes all nodes of the Used doubly linked list and frees memory of all related netmap items.\r
706 Removes all nodes of the Recycled doubly linked list and free memory of all related netmap items.\r
707 The number of the <Key, Value> pairs in the netmap is set to zero.\r
708\r
709 If Map is NULL, then ASSERT().\r
710\r
711 @param[in, out] Map The netmap to clean up.\r
712\r
713**/\r
714VOID\r
715EFIAPI\r
716NetMapClean (\r
717 IN OUT NET_MAP *Map\r
718 );\r
719\r
720/**\r
721 Test whether the netmap is empty and return true if it is.\r
722\r
723 If the number of the <Key, Value> pairs in the netmap is zero, return TRUE.\r
724\r
725 If Map is NULL, then ASSERT().\r
726\r
727\r
728 @param[in] Map The net map to test.\r
729\r
730 @return TRUE if the netmap is empty, otherwise FALSE.\r
731\r
732**/\r
733BOOLEAN\r
734EFIAPI\r
735NetMapIsEmpty (\r
736 IN NET_MAP *Map\r
737 );\r
738\r
739/**\r
740 Return the number of the <Key, Value> pairs in the netmap.\r
741\r
742 @param[in] Map The netmap to get the entry number.\r
743\r
744 @return The entry number in the netmap.\r
745\r
746**/\r
747UINTN\r
748EFIAPI\r
749NetMapGetCount (\r
750 IN NET_MAP *Map\r
751 );\r
752\r
753/**\r
754 Allocate an item to save the <Key, Value> pair to the head of the netmap.\r
755\r
756 Allocate an item to save the <Key, Value> pair and add corresponding node entry\r
757 to the beginning of the Used doubly linked list. The number of the <Key, Value>\r
758 pairs in the netmap increase by 1.\r
759\r
760 If Map is NULL, then ASSERT().\r
761\r
762 @param[in, out] Map The netmap to insert into.\r
763 @param[in] Key The user's key.\r
764 @param[in] Value The user's value for the key.\r
765\r
766 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.\r
767 @retval EFI_SUCCESS The item is inserted to the head.\r
768\r
769**/\r
770EFI_STATUS\r
771EFIAPI\r
772NetMapInsertHead (\r
773 IN OUT NET_MAP *Map,\r
774 IN VOID *Key,\r
775 IN VOID *Value OPTIONAL\r
776 );\r
777\r
778/**\r
779 Allocate an item to save the <Key, Value> pair to the tail of the netmap.\r
780\r
781 Allocate an item to save the <Key, Value> pair and add corresponding node entry\r
782 to the tail of the Used doubly linked list. The number of the <Key, Value>\r
783 pairs in the netmap increase by 1.\r
784\r
785 If Map is NULL, then ASSERT().\r
786\r
787 @param[in, out] Map The netmap to insert into.\r
788 @param[in] Key The user's key.\r
789 @param[in] Value The user's value for the key.\r
790\r
791 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.\r
792 @retval EFI_SUCCESS The item is inserted to the tail.\r
793\r
794**/\r
795EFI_STATUS\r
796EFIAPI\r
797NetMapInsertTail (\r
798 IN OUT NET_MAP *Map,\r
799 IN VOID *Key,\r
800 IN VOID *Value OPTIONAL\r
801 );\r
802\r
803/**\r
804 Finds the key in the netmap and returns the point to the item containing the Key.\r
805\r
806 Iterate the Used doubly linked list of the netmap to get every item. Compare the key of every\r
807 item with the key to search. It returns the point to the item contains the Key if found.\r
808\r
809 If Map is NULL, then ASSERT().\r
810\r
811 @param[in] Map The netmap to search within.\r
812 @param[in] Key The key to search.\r
813\r
814 @return The point to the item contains the Key, or NULL if Key isn't in the map.\r
815\r
816**/\r
817NET_MAP_ITEM *\r
818EFIAPI\r
819NetMapFindKey (\r
820 IN NET_MAP *Map,\r
821 IN VOID *Key\r
822 );\r
823\r
824/**\r
825 Remove the node entry of the item from the netmap and return the key of the removed item.\r
826\r
827 Remove the node entry of the item from the Used doubly linked list of the netmap.\r
828 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node\r
829 entry of the item to the Recycled doubly linked list of the netmap. If Value is not NULL,\r
830 Value will point to the value of the item. It returns the key of the removed item.\r
831\r
832 If Map is NULL, then ASSERT().\r
833 If Item is NULL, then ASSERT().\r
834 if item in not in the netmap, then ASSERT().\r
835\r
836 @param[in, out] Map The netmap to remove the item from.\r
837 @param[in, out] Item The item to remove.\r
838 @param[out] Value The variable to receive the value if not NULL.\r
839\r
840 @return The key of the removed item.\r
841\r
842**/\r
843VOID *\r
844EFIAPI\r
845NetMapRemoveItem (\r
846 IN OUT NET_MAP *Map,\r
847 IN OUT NET_MAP_ITEM *Item,\r
848 OUT VOID **Value OPTIONAL\r
849 );\r
850\r
851/**\r
852 Remove the first node entry on the netmap and return the key of the removed item.\r
853\r
854 Remove the first node entry from the Used doubly linked list of the netmap.\r
855 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node\r
856 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,\r
857 parameter Value will point to the value of the item. It returns the key of the removed item.\r
858\r
859 If Map is NULL, then ASSERT().\r
860 If the Used doubly linked list is empty, then ASSERT().\r
861\r
862 @param[in, out] Map The netmap to remove the head from.\r
863 @param[out] Value The variable to receive the value if not NULL.\r
864\r
865 @return The key of the item removed.\r
866\r
867**/\r
868VOID *\r
869EFIAPI\r
870NetMapRemoveHead (\r
871 IN OUT NET_MAP *Map,\r
872 OUT VOID **Value OPTIONAL\r
873 );\r
874\r
875/**\r
876 Remove the last node entry on the netmap and return the key of the removed item.\r
877\r
878 Remove the last node entry from the Used doubly linked list of the netmap.\r
879 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node\r
880 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,\r
881 parameter Value will point to the value of the item. It returns the key of the removed item.\r
882\r
883 If Map is NULL, then ASSERT().\r
884 If the Used doubly linked list is empty, then ASSERT().\r
885\r
886 @param[in, out] Map The netmap to remove the tail from.\r
887 @param[out] Value The variable to receive the value if not NULL.\r
888\r
889 @return The key of the item removed.\r
890\r
891**/\r
892VOID *\r
893EFIAPI\r
894NetMapRemoveTail (\r
895 IN OUT NET_MAP *Map,\r
896 OUT VOID **Value OPTIONAL\r
897 );\r
898\r
899typedef\r
900EFI_STATUS\r
901(EFIAPI *NET_MAP_CALLBACK) (\r
902 IN NET_MAP *Map,\r
903 IN NET_MAP_ITEM *Item,\r
904 IN VOID *Arg\r
905 );\r
906\r
907/**\r
908 Iterate through the netmap and call CallBack for each item.\r
909\r
910 It will contiue the traverse if CallBack returns EFI_SUCCESS, otherwise, break\r
911 from the loop. It returns the CallBack's last return value. This function is\r
912 delete safe for the current item.\r
913\r
914 If Map is NULL, then ASSERT().\r
915 If CallBack is NULL, then ASSERT().\r
916\r
917 @param[in] Map The Map to iterate through.\r
918 @param[in] CallBack The callback function to call for each item.\r
919 @param[in] Arg The opaque parameter to the callback.\r
920\r
921 @retval EFI_SUCCESS There is no item in the netmap, or CallBack for each item\r
922 returns EFI_SUCCESS.\r
923 @retval Others It returns the CallBack's last return value.\r
924\r
925**/\r
926EFI_STATUS\r
927EFIAPI\r
928NetMapIterate (\r
929 IN NET_MAP *Map,\r
930 IN NET_MAP_CALLBACK CallBack,\r
931 IN VOID *Arg OPTIONAL\r
932 );\r
933\r
934\r
935//\r
936// Helper functions to implement driver binding and service binding protocols.\r
937//\r
938/**\r
939 Create a child of the service that is identified by ServiceBindingGuid.\r
940\r
941 Get the ServiceBinding Protocol first, then use it to create a child.\r
942\r
943 If ServiceBindingGuid is NULL, then ASSERT().\r
944 If ChildHandle is NULL, then ASSERT().\r
945\r
946 @param[in] Controller The controller which has the service installed.\r
947 @param[in] Image The image handle used to open service.\r
948 @param[in] ServiceBindingGuid The service's Guid.\r
949 @param[in, out] ChildHandle The handle to receive the created child.\r
950\r
951 @retval EFI_SUCCESS The child was successfully created.\r
952 @retval Others Failed to create the child.\r
953\r
954**/\r
955EFI_STATUS\r
956EFIAPI\r
957NetLibCreateServiceChild (\r
958 IN EFI_HANDLE Controller,\r
959 IN EFI_HANDLE Image,\r
960 IN EFI_GUID *ServiceBindingGuid,\r
961 IN OUT EFI_HANDLE *ChildHandle\r
962 );\r
963\r
964/**\r
965 Destroy a child of the service that is identified by ServiceBindingGuid.\r
966\r
967 Get the ServiceBinding Protocol first, then use it to destroy a child.\r
968\r
969 If ServiceBindingGuid is NULL, then ASSERT().\r
970\r
971 @param[in] Controller The controller which has the service installed.\r
972 @param[in] Image The image handle used to open service.\r
973 @param[in] ServiceBindingGuid The service's Guid.\r
974 @param[in] ChildHandle The child to destroy.\r
975\r
976 @retval EFI_SUCCESS The child was destroyed.\r
977 @retval Others Failed to destroy the child.\r
978\r
979**/\r
980EFI_STATUS\r
981EFIAPI\r
982NetLibDestroyServiceChild (\r
983 IN EFI_HANDLE Controller,\r
984 IN EFI_HANDLE Image,\r
985 IN EFI_GUID *ServiceBindingGuid,\r
986 IN EFI_HANDLE ChildHandle\r
987 );\r
988\r
989/**\r
990 Get handle with Simple Network Protocol installed on it.\r
991\r
992 There should be MNP Service Binding Protocol installed on the input ServiceHandle.\r
993 If Simple Network Protocol is already installed on the ServiceHandle, the\r
994 ServiceHandle will be returned. If SNP is not installed on the ServiceHandle,\r
995 try to find its parent handle with SNP installed.\r
996\r
997 @param[in] ServiceHandle The handle where network service binding protocols are\r
998 installed on.\r
999 @param[out] Snp The pointer to store the address of the SNP instance.\r
1000 This is an optional parameter that may be NULL.\r
1001\r
1002 @return The SNP handle, or NULL if not found.\r
1003\r
1004**/\r
1005EFI_HANDLE\r
1006EFIAPI\r
1007NetLibGetSnpHandle (\r
1008 IN EFI_HANDLE ServiceHandle,\r
1009 OUT EFI_SIMPLE_NETWORK_PROTOCOL **Snp OPTIONAL\r
1010 );\r
1011\r
1012/**\r
1013 Retrieve VLAN ID of a VLAN device handle.\r
1014\r
1015 Search VLAN device path node in Device Path of specified ServiceHandle and\r
1016 return its VLAN ID. If no VLAN device path node found, then this ServiceHandle\r
1017 is not a VLAN device handle, and 0 will be returned.\r
1018\r
1019 @param[in] ServiceHandle The handle where network service binding protocols are\r
1020 installed on.\r
1021\r
1022 @return VLAN ID of the device handle, or 0 if not a VLAN device.\r
1023\r
1024**/\r
1025UINT16\r
1026EFIAPI\r
1027NetLibGetVlanId (\r
1028 IN EFI_HANDLE ServiceHandle\r
1029 );\r
1030\r
1031/**\r
1032 Find VLAN device handle with specified VLAN ID.\r
1033\r
1034 The VLAN child device handle is created by VLAN Config Protocol on ControllerHandle.\r
1035 This function will append VLAN device path node to the parent device path,\r
1036 and then use LocateDevicePath() to find the correct VLAN device handle.\r
1037\r
1038 @param[in] ControllerHandle The handle where network service binding protocols are\r
1039 installed on.\r
1040 @param[in] VlanId The configured VLAN ID for the VLAN device.\r
1041\r
1042 @return The VLAN device handle, or NULL if not found.\r
1043\r
1044**/\r
1045EFI_HANDLE\r
1046EFIAPI\r
1047NetLibGetVlanHandle (\r
1048 IN EFI_HANDLE ControllerHandle,\r
1049 IN UINT16 VlanId\r
1050 );\r
1051\r
1052/**\r
1053 Get MAC address associated with the network service handle.\r
1054\r
1055 There should be MNP Service Binding Protocol installed on the input ServiceHandle.\r
1056 If SNP is installed on the ServiceHandle or its parent handle, MAC address will\r
1057 be retrieved from SNP. If no SNP found, try to get SNP mode data use MNP.\r
1058\r
1059 @param[in] ServiceHandle The handle where network service binding protocols are\r
1060 installed on.\r
1061 @param[out] MacAddress The pointer to store the returned MAC address.\r
1062 @param[out] AddressSize The length of returned MAC address.\r
1063\r
1064 @retval EFI_SUCCESS MAC address was returned successfully.\r
1065 @retval Others Failed to get SNP mode data.\r
1066\r
1067**/\r
1068EFI_STATUS\r
1069EFIAPI\r
1070NetLibGetMacAddress (\r
1071 IN EFI_HANDLE ServiceHandle,\r
1072 OUT EFI_MAC_ADDRESS *MacAddress,\r
1073 OUT UINTN *AddressSize\r
1074 );\r
1075\r
1076/**\r
1077 Convert MAC address of the NIC associated with specified Service Binding Handle\r
1078 to a unicode string. Callers are responsible for freeing the string storage.\r
1079\r
1080 Locate simple network protocol associated with the Service Binding Handle and\r
1081 get the mac address from SNP. Then convert the mac address into a unicode\r
1082 string. It takes 2 unicode characters to represent a 1 byte binary buffer.\r
1083 Plus one unicode character for the null-terminator.\r
1084\r
1085 @param[in] ServiceHandle The handle where network service binding protocol is\r
1086 installed.\r
1087 @param[in] ImageHandle The image handle used to act as the agent handle to\r
1088 get the simple network protocol.\r
1089 @param[out] MacString The pointer to store the address of the string\r
1090 representation of the mac address.\r
1091\r
1092 @retval EFI_SUCCESS Converted the mac address a unicode string successfully.\r
1093 @retval EFI_OUT_OF_RESOURCES There are not enough memory resources.\r
1094 @retval Others Failed to open the simple network protocol.\r
1095\r
1096**/\r
1097EFI_STATUS\r
1098EFIAPI\r
1099NetLibGetMacString (\r
1100 IN EFI_HANDLE ServiceHandle,\r
1101 IN EFI_HANDLE ImageHandle,\r
1102 OUT CHAR16 **MacString\r
1103 );\r
1104\r
1105/**\r
1106 Detect media status for specified network device.\r
1107\r
1108 The underlying UNDI driver may or may not support reporting media status from\r
1109 GET_STATUS command (PXE_STATFLAGS_GET_STATUS_NO_MEDIA_SUPPORTED). This routine\r
1110 will try to invoke Snp->GetStatus() to get the media status. If media is already\r
1111 present, it returns directly. If media is not present, it will stop SNP and then\r
1112 restart SNP to get the latest media status. This provides an opportunity to get \r
1113 the correct media status for old UNDI driver, which doesn't support reporting \r
1114 media status from GET_STATUS command.\r
1115 Note: there are two limitations for the current algorithm:\r
1116 1) For UNDI with this capability, when the cable is not attached, there will\r
1117 be an redundant Stop/Start() process.\r
1118 2) for UNDI without this capability, in case that network cable is attached when\r
1119 Snp->Initialize() is invoked while network cable is unattached later,\r
1120 NetLibDetectMedia() will report MediaPresent as TRUE, causing upper layer\r
1121 apps to wait for timeout time.\r
1122\r
1123 @param[in] ServiceHandle The handle where network service binding protocols are\r
1124 installed.\r
1125 @param[out] MediaPresent The pointer to store the media status.\r
1126\r
1127 @retval EFI_SUCCESS Media detection success.\r
1128 @retval EFI_INVALID_PARAMETER ServiceHandle is not a valid network device handle.\r
1129 @retval EFI_UNSUPPORTED The network device does not support media detection.\r
1130 @retval EFI_DEVICE_ERROR SNP is in an unknown state.\r
1131\r
1132**/\r
1133EFI_STATUS\r
1134EFIAPI\r
1135NetLibDetectMedia (\r
1136 IN EFI_HANDLE ServiceHandle,\r
1137 OUT BOOLEAN *MediaPresent\r
1138 );\r
1139\r
1140/**\r
1141 Create an IPv4 device path node.\r
1142\r
1143 The header type of IPv4 device path node is MESSAGING_DEVICE_PATH.\r
1144 The header subtype of IPv4 device path node is MSG_IPv4_DP.\r
1145 The length of the IPv4 device path node in bytes is 19.\r
1146 Get other information from parameters to make up the whole IPv4 device path node.\r
1147\r
1148 @param[in, out] Node The pointer to the IPv4 device path node.\r
1149 @param[in] Controller The controller handle.\r
1150 @param[in] LocalIp The local IPv4 address.\r
1151 @param[in] LocalPort The local port.\r
1152 @param[in] RemoteIp The remote IPv4 address.\r
1153 @param[in] RemotePort The remote port.\r
1154 @param[in] Protocol The protocol type in the IP header.\r
1155 @param[in] UseDefaultAddress Whether this instance is using default address or not.\r
1156\r
1157**/\r
1158VOID\r
1159EFIAPI\r
1160NetLibCreateIPv4DPathNode (\r
1161 IN OUT IPv4_DEVICE_PATH *Node,\r
1162 IN EFI_HANDLE Controller,\r
1163 IN IP4_ADDR LocalIp,\r
1164 IN UINT16 LocalPort,\r
1165 IN IP4_ADDR RemoteIp,\r
1166 IN UINT16 RemotePort,\r
1167 IN UINT16 Protocol,\r
1168 IN BOOLEAN UseDefaultAddress\r
1169 );\r
1170\r
1171/**\r
1172 Create an IPv6 device path node.\r
1173\r
1174 The header type of IPv6 device path node is MESSAGING_DEVICE_PATH.\r
1175 The header subtype of IPv6 device path node is MSG_IPv6_DP.\r
1176 The length of the IPv6 device path node in bytes is 43.\r
1177 Get other information from parameters to make up the whole IPv6 device path node.\r
1178\r
1179 @param[in, out] Node The pointer to the IPv6 device path node.\r
1180 @param[in] Controller The controller handle.\r
1181 @param[in] LocalIp The local IPv6 address.\r
1182 @param[in] LocalPort The local port.\r
1183 @param[in] RemoteIp The remote IPv6 address.\r
1184 @param[in] RemotePort The remote port.\r
1185 @param[in] Protocol The protocol type in the IP header.\r
1186\r
1187**/\r
1188VOID\r
1189EFIAPI\r
1190NetLibCreateIPv6DPathNode (\r
1191 IN OUT IPv6_DEVICE_PATH *Node,\r
1192 IN EFI_HANDLE Controller,\r
1193 IN EFI_IPv6_ADDRESS *LocalIp,\r
1194 IN UINT16 LocalPort,\r
1195 IN EFI_IPv6_ADDRESS *RemoteIp,\r
1196 IN UINT16 RemotePort,\r
1197 IN UINT16 Protocol\r
1198 );\r
1199\r
1200\r
1201/**\r
1202 Find the UNDI/SNP handle from controller and protocol GUID.\r
1203\r
1204 For example, IP will open an MNP child to transmit/receive\r
1205 packets. When MNP is stopped, IP should also be stopped. IP\r
1206 needs to find its own private data that is related the IP's\r
1207 service binding instance that is installed on the UNDI/SNP handle.\r
1208 The controller is then either an MNP or an ARP child handle. Note that\r
1209 IP opens these handles using BY_DRIVER. Use that infomation to get the\r
1210 UNDI/SNP handle.\r
1211\r
1212 @param[in] Controller The protocol handle to check.\r
1213 @param[in] ProtocolGuid The protocol that is related with the handle.\r
1214\r
1215 @return The UNDI/SNP handle or NULL for errors.\r
1216\r
1217**/\r
1218EFI_HANDLE\r
1219EFIAPI\r
1220NetLibGetNicHandle (\r
1221 IN EFI_HANDLE Controller,\r
1222 IN EFI_GUID *ProtocolGuid\r
1223 );\r
1224\r
1225/**\r
1226 This is the default unload handle for all the network drivers.\r
1227\r
1228 Disconnect the driver specified by ImageHandle from all the devices in the handle database.\r
1229 Uninstall all the protocols installed in the driver entry point.\r
1230\r
1231 @param[in] ImageHandle The drivers' driver image.\r
1232\r
1233 @retval EFI_SUCCESS The image is unloaded.\r
1234 @retval Others Failed to unload the image.\r
1235\r
1236**/\r
1237EFI_STATUS\r
1238EFIAPI\r
1239NetLibDefaultUnload (\r
1240 IN EFI_HANDLE ImageHandle\r
1241 );\r
1242\r
1243/**\r
1244 Convert one Null-terminated ASCII string (decimal dotted) to EFI_IPv4_ADDRESS.\r
1245\r
1246 @param[in] String The pointer to the Ascii string.\r
1247 @param[out] Ip4Address The pointer to the converted IPv4 address.\r
1248\r
1249 @retval EFI_SUCCESS Converted to an IPv4 address successfully.\r
1250 @retval EFI_INVALID_PARAMETER The string is malformated, or Ip4Address is NULL.\r
1251\r
1252**/\r
1253EFI_STATUS\r
1254EFIAPI\r
1255NetLibAsciiStrToIp4 (\r
1256 IN CONST CHAR8 *String,\r
1257 OUT EFI_IPv4_ADDRESS *Ip4Address\r
1258 );\r
1259\r
1260/**\r
1261 Convert one Null-terminated ASCII string to EFI_IPv6_ADDRESS. The format of the\r
1262 string is defined in RFC 4291 - Text Pepresentation of Addresses.\r
1263\r
1264 @param[in] String The pointer to the Ascii string.\r
1265 @param[out] Ip6Address The pointer to the converted IPv6 address.\r
1266\r
1267 @retval EFI_SUCCESS Converted to an IPv6 address successfully.\r
1268 @retval EFI_INVALID_PARAMETER The string is malformated, or Ip6Address is NULL.\r
1269\r
1270**/\r
1271EFI_STATUS\r
1272EFIAPI\r
1273NetLibAsciiStrToIp6 (\r
1274 IN CONST CHAR8 *String,\r
1275 OUT EFI_IPv6_ADDRESS *Ip6Address\r
1276 );\r
1277\r
1278/**\r
1279 Convert one Null-terminated Unicode string (decimal dotted) to EFI_IPv4_ADDRESS.\r
1280\r
1281 @param[in] String The pointer to the Ascii string.\r
1282 @param[out] Ip4Address The pointer to the converted IPv4 address.\r
1283\r
1284 @retval EFI_SUCCESS Converted to an IPv4 address successfully.\r
1285 @retval EFI_INVALID_PARAMETER The string is mal-formated or Ip4Address is NULL.\r
1286 @retval EFI_OUT_OF_RESOURCES Failed to perform the operation due to lack of resources.\r
1287\r
1288**/\r
1289EFI_STATUS\r
1290EFIAPI\r
1291NetLibStrToIp4 (\r
1292 IN CONST CHAR16 *String,\r
1293 OUT EFI_IPv4_ADDRESS *Ip4Address\r
1294 );\r
1295\r
1296/**\r
1297 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS. The format of\r
1298 the string is defined in RFC 4291 - Text Pepresentation of Addresses.\r
1299\r
1300 @param[in] String The pointer to the Ascii string.\r
1301 @param[out] Ip6Address The pointer to the converted IPv6 address.\r
1302\r
1303 @retval EFI_SUCCESS Converted to an IPv6 address successfully.\r
1304 @retval EFI_INVALID_PARAMETER The string is malformated or Ip6Address is NULL.\r
1305 @retval EFI_OUT_OF_RESOURCES Failed to perform the operation due to a lack of resources.\r
1306\r
1307**/\r
1308EFI_STATUS\r
1309EFIAPI\r
1310NetLibStrToIp6 (\r
1311 IN CONST CHAR16 *String,\r
1312 OUT EFI_IPv6_ADDRESS *Ip6Address\r
1313 );\r
1314\r
1315/**\r
1316 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS and prefix length.\r
1317 The format of the string is defined in RFC 4291 - Text Pepresentation of Addresses\r
1318 Prefixes: ipv6-address/prefix-length.\r
1319\r
1320 @param[in] String The pointer to the Ascii string.\r
1321 @param[out] Ip6Address The pointer to the converted IPv6 address.\r
1322 @param[out] PrefixLength The pointer to the converted prefix length.\r
1323\r
1324 @retval EFI_SUCCESS Converted to an IPv6 address successfully.\r
1325 @retval EFI_INVALID_PARAMETER The string is malformated, or Ip6Address is NULL.\r
1326 @retval EFI_OUT_OF_RESOURCES Failed to perform the operation due to a lack of resources.\r
1327\r
1328**/\r
1329EFI_STATUS\r
1330EFIAPI\r
1331NetLibStrToIp6andPrefix (\r
1332 IN CONST CHAR16 *String,\r
1333 OUT EFI_IPv6_ADDRESS *Ip6Address,\r
1334 OUT UINT8 *PrefixLength\r
1335 );\r
1336\r
1337//\r
1338// Various signatures\r
1339//\r
1340#define NET_BUF_SIGNATURE SIGNATURE_32 ('n', 'b', 'u', 'f')\r
1341#define NET_VECTOR_SIGNATURE SIGNATURE_32 ('n', 'v', 'e', 'c')\r
1342#define NET_QUE_SIGNATURE SIGNATURE_32 ('n', 'b', 'q', 'u')\r
1343\r
1344\r
1345#define NET_PROTO_DATA 64 // Opaque buffer for protocols\r
1346#define NET_BUF_HEAD 1 // Trim or allocate space from head\r
1347#define NET_BUF_TAIL 0 // Trim or allocate space from tail\r
1348#define NET_VECTOR_OWN_FIRST 0x01 // We allocated the 1st block in the vector\r
1349\r
1350#define NET_CHECK_SIGNATURE(PData, SIGNATURE) \\r
1351 ASSERT (((PData) != NULL) && ((PData)->Signature == (SIGNATURE)))\r
1352\r
1353//\r
1354// Single memory block in the vector.\r
1355//\r
1356typedef struct {\r
1357 UINT32 Len; // The block's length\r
1358 UINT8 *Bulk; // The block's Data\r
1359} NET_BLOCK;\r
1360\r
1361typedef VOID (EFIAPI *NET_VECTOR_EXT_FREE) (VOID *Arg);\r
1362\r
1363//\r
1364//NET_VECTOR contains several blocks to hold all packet's\r
1365//fragments and other house-keeping stuff for sharing. It\r
1366//doesn't specify the where actual packet fragment begins.\r
1367//\r
1368typedef struct {\r
1369 UINT32 Signature;\r
1370 INTN RefCnt; // Reference count to share NET_VECTOR.\r
1371 NET_VECTOR_EXT_FREE Free; // external function to free NET_VECTOR\r
1372 VOID *Arg; // opeque argument to Free\r
1373 UINT32 Flag; // Flags, NET_VECTOR_OWN_FIRST\r
1374 UINT32 Len; // Total length of the assocated BLOCKs\r
1375\r
1376 UINT32 BlockNum;\r
1377 NET_BLOCK Block[1];\r
1378} NET_VECTOR;\r
1379\r
1380//\r
1381//NET_BLOCK_OP operates on the NET_BLOCK. It specifies\r
1382//where the actual fragment begins and ends\r
1383//\r
1384typedef struct {\r
1385 UINT8 *BlockHead; // Block's head, or the smallest valid Head\r
1386 UINT8 *BlockTail; // Block's tail. BlockTail-BlockHead=block length\r
1387 UINT8 *Head; // 1st byte of the data in the block\r
1388 UINT8 *Tail; // Tail of the data in the block, Tail-Head=Size\r
1389 UINT32 Size; // The size of the data\r
1390} NET_BLOCK_OP;\r
1391\r
1392typedef union {\r
1393 IP4_HEAD *Ip4;\r
1394 EFI_IP6_HEADER *Ip6;\r
1395} NET_IP_HEAD;\r
1396\r
1397//\r
1398//NET_BUF is the buffer manage structure used by the\r
1399//network stack. Every network packet may be fragmented. The Vector points to\r
1400//memory blocks used by each fragment, and BlockOp\r
1401//specifies where each fragment begins and ends.\r
1402//\r
1403//It also contains an opaque area for the protocol to store\r
1404//per-packet information. Protocol must be careful not\r
1405//to overwrite the members after that.\r
1406//\r
1407typedef struct {\r
1408 UINT32 Signature;\r
1409 INTN RefCnt;\r
1410 LIST_ENTRY List; // The List this NET_BUF is on\r
1411\r
1412 NET_IP_HEAD Ip; // Network layer header, for fast access\r
1413 TCP_HEAD *Tcp; // Transport layer header, for fast access\r
1414 EFI_UDP_HEADER *Udp; // User Datagram Protocol header\r
1415 UINT8 ProtoData [NET_PROTO_DATA]; //Protocol specific data\r
1416\r
1417 NET_VECTOR *Vector; // The vector containing the packet\r
1418\r
1419 UINT32 BlockOpNum; // Total number of BlockOp in the buffer\r
1420 UINT32 TotalSize; // Total size of the actual packet\r
1421 NET_BLOCK_OP BlockOp[1]; // Specify the position of actual packet\r
1422} NET_BUF;\r
1423\r
1424//\r
1425//A queue of NET_BUFs. It is a thin extension of\r
1426//NET_BUF functions.\r
1427//\r
1428typedef struct {\r
1429 UINT32 Signature;\r
1430 INTN RefCnt;\r
1431 LIST_ENTRY List; // The List this buffer queue is on\r
1432\r
1433 LIST_ENTRY BufList; // list of queued buffers\r
1434 UINT32 BufSize; // total length of DATA in the buffers\r
1435 UINT32 BufNum; // total number of buffers on the chain\r
1436} NET_BUF_QUEUE;\r
1437\r
1438//\r
1439// Pseudo header for TCP and UDP checksum\r
1440//\r
1441#pragma pack(1)\r
1442typedef struct {\r
1443 IP4_ADDR SrcIp;\r
1444 IP4_ADDR DstIp;\r
1445 UINT8 Reserved;\r
1446 UINT8 Protocol;\r
1447 UINT16 Len;\r
1448} NET_PSEUDO_HDR;\r
1449\r
1450typedef struct {\r
1451 EFI_IPv6_ADDRESS SrcIp;\r
1452 EFI_IPv6_ADDRESS DstIp;\r
1453 UINT32 Len;\r
1454 UINT32 Reserved:24;\r
1455 UINT32 NextHeader:8;\r
1456} NET_IP6_PSEUDO_HDR;\r
1457#pragma pack()\r
1458\r
1459//\r
1460// The fragment entry table used in network interfaces. This is\r
1461// the same as NET_BLOCK now. Use two different to distinguish\r
1462// the two in case that NET_BLOCK be enhanced later.\r
1463//\r
1464typedef struct {\r
1465 UINT32 Len;\r
1466 UINT8 *Bulk;\r
1467} NET_FRAGMENT;\r
1468\r
1469#define NET_GET_REF(PData) ((PData)->RefCnt++)\r
1470#define NET_PUT_REF(PData) ((PData)->RefCnt--)\r
1471#define NETBUF_FROM_PROTODATA(Info) BASE_CR((Info), NET_BUF, ProtoData)\r
1472\r
1473#define NET_BUF_SHARED(Buf) \\r
1474 (((Buf)->RefCnt > 1) || ((Buf)->Vector->RefCnt > 1))\r
1475\r
1476#define NET_VECTOR_SIZE(BlockNum) \\r
1477 (sizeof (NET_VECTOR) + ((BlockNum) - 1) * sizeof (NET_BLOCK))\r
1478\r
1479#define NET_BUF_SIZE(BlockOpNum) \\r
1480 (sizeof (NET_BUF) + ((BlockOpNum) - 1) * sizeof (NET_BLOCK_OP))\r
1481\r
1482#define NET_HEADSPACE(BlockOp) \\r
1483 (UINTN)((BlockOp)->Head - (BlockOp)->BlockHead)\r
1484\r
1485#define NET_TAILSPACE(BlockOp) \\r
1486 (UINTN)((BlockOp)->BlockTail - (BlockOp)->Tail)\r
1487\r
1488/**\r
1489 Allocate a single block NET_BUF. Upon allocation, all the\r
1490 free space is in the tail room.\r
1491\r
1492 @param[in] Len The length of the block.\r
1493\r
1494 @return The pointer to the allocated NET_BUF, or NULL if the\r
1495 allocation failed due to resource limitations.\r
1496\r
1497**/\r
1498NET_BUF *\r
1499EFIAPI\r
1500NetbufAlloc (\r
1501 IN UINT32 Len\r
1502 );\r
1503\r
1504/**\r
1505 Free the net buffer and its associated NET_VECTOR.\r
1506\r
1507 Decrease the reference count of the net buffer by one. Free the associated net\r
1508 vector and itself if the reference count of the net buffer is decreased to 0.\r
1509 The net vector free operation decreases the reference count of the net\r
1510 vector by one, and performs the resource free operation when the reference count\r
1511 of the net vector is 0.\r
1512\r
1513 @param[in] Nbuf The pointer to the NET_BUF to be freed.\r
1514\r
1515**/\r
1516VOID\r
1517EFIAPI\r
1518NetbufFree (\r
1519 IN NET_BUF *Nbuf\r
1520 );\r
1521\r
1522/**\r
1523 Get the index of NET_BLOCK_OP that contains the byte at Offset in the net\r
1524 buffer.\r
1525\r
1526 For example, this function can be used to retrieve the IP header in the packet. It\r
1527 also can be used to get the fragment that contains the byte used\r
1528 mainly by the library implementation itself.\r
1529\r
1530 @param[in] Nbuf The pointer to the net buffer.\r
1531 @param[in] Offset The offset of the byte.\r
1532 @param[out] Index Index of the NET_BLOCK_OP that contains the byte at\r
1533 Offset.\r
1534\r
1535 @return The pointer to the Offset'th byte of data in the net buffer, or NULL\r
1536 if there is no such data in the net buffer.\r
1537\r
1538**/\r
1539UINT8 *\r
1540EFIAPI\r
1541NetbufGetByte (\r
1542 IN NET_BUF *Nbuf,\r
1543 IN UINT32 Offset,\r
1544 OUT UINT32 *Index OPTIONAL\r
1545 );\r
1546\r
1547/**\r
1548 Create a copy of the net buffer that shares the associated net vector.\r
1549\r
1550 The reference count of the newly created net buffer is set to 1. The reference\r
1551 count of the associated net vector is increased by one.\r
1552\r
1553 @param[in] Nbuf The pointer to the net buffer to be cloned.\r
1554\r
1555 @return The pointer to the cloned net buffer, or NULL if the\r
1556 allocation failed due to resource limitations.\r
1557\r
1558**/\r
1559NET_BUF *\r
1560EFIAPI\r
1561NetbufClone (\r
1562 IN NET_BUF *Nbuf\r
1563 );\r
1564\r
1565/**\r
1566 Create a duplicated copy of the net buffer with data copied and HeadSpace\r
1567 bytes of head space reserved.\r
1568\r
1569 The duplicated net buffer will allocate its own memory to hold the data of the\r
1570 source net buffer.\r
1571\r
1572 @param[in] Nbuf The pointer to the net buffer to be duplicated from.\r
1573 @param[in, out] Duplicate The pointer to the net buffer to duplicate to. If\r
1574 NULL, a new net buffer is allocated.\r
1575 @param[in] HeadSpace The length of the head space to reserve.\r
1576\r
1577 @return The pointer to the duplicated net buffer, or NULL if\r
1578 the allocation failed due to resource limitations.\r
1579\r
1580**/\r
1581NET_BUF *\r
1582EFIAPI\r
1583NetbufDuplicate (\r
1584 IN NET_BUF *Nbuf,\r
1585 IN OUT NET_BUF *Duplicate OPTIONAL,\r
1586 IN UINT32 HeadSpace\r
1587 );\r
1588\r
1589/**\r
1590 Create a NET_BUF structure which contains Len byte data of Nbuf starting from\r
1591 Offset.\r
1592\r
1593 A new NET_BUF structure will be created but the associated data in NET_VECTOR\r
1594 is shared. This function exists to perform IP packet fragmentation.\r
1595\r
1596 @param[in] Nbuf The pointer to the net buffer to be extracted.\r
1597 @param[in] Offset Starting point of the data to be included in the new\r
1598 net buffer.\r
1599 @param[in] Len The bytes of data to be included in the new net buffer.\r
1600 @param[in] HeadSpace The bytes of the head space to reserve for the protocol header.\r
1601\r
1602 @return The pointer to the cloned net buffer, or NULL if the\r
1603 allocation failed due to resource limitations.\r
1604\r
1605**/\r
1606NET_BUF *\r
1607EFIAPI\r
1608NetbufGetFragment (\r
1609 IN NET_BUF *Nbuf,\r
1610 IN UINT32 Offset,\r
1611 IN UINT32 Len,\r
1612 IN UINT32 HeadSpace\r
1613 );\r
1614\r
1615/**\r
1616 Reserve some space in the header room of the net buffer.\r
1617\r
1618 Upon allocation, all the space is in the tail room of the buffer. Call this\r
1619 function to move space to the header room. This function is quite limited\r
1620 in that it can only reserve space from the first block of an empty NET_BUF not\r
1621 built from the external. However, it should be enough for the network stack.\r
1622\r
1623 @param[in, out] Nbuf The pointer to the net buffer.\r
1624 @param[in] Len The length of buffer to be reserved from the header.\r
1625\r
1626**/\r
1627VOID\r
1628EFIAPI\r
1629NetbufReserve (\r
1630 IN OUT NET_BUF *Nbuf,\r
1631 IN UINT32 Len\r
1632 );\r
1633\r
1634/**\r
1635 Allocate Len bytes of space from the header or tail of the buffer.\r
1636\r
1637 @param[in, out] Nbuf The pointer to the net buffer.\r
1638 @param[in] Len The length of the buffer to be allocated.\r
1639 @param[in] FromHead The flag to indicate whether to reserve the data\r
1640 from head (TRUE) or tail (FALSE).\r
1641\r
1642 @return The pointer to the first byte of the allocated buffer,\r
1643 or NULL, if there is no sufficient space.\r
1644\r
1645**/\r
1646UINT8*\r
1647EFIAPI\r
1648NetbufAllocSpace (\r
1649 IN OUT NET_BUF *Nbuf,\r
1650 IN UINT32 Len,\r
1651 IN BOOLEAN FromHead\r
1652 );\r
1653\r
1654/**\r
1655 Trim Len bytes from the header or the tail of the net buffer.\r
1656\r
1657 @param[in, out] Nbuf The pointer to the net buffer.\r
1658 @param[in] Len The length of the data to be trimmed.\r
1659 @param[in] FromHead The flag to indicate whether trim data is from the \r
1660 head (TRUE) or the tail (FALSE).\r
1661\r
1662 @return The length of the actual trimmed data, which may be less\r
1663 than Len if the TotalSize of Nbuf is less than Len.\r
1664\r
1665**/\r
1666UINT32\r
1667EFIAPI\r
1668NetbufTrim (\r
1669 IN OUT NET_BUF *Nbuf,\r
1670 IN UINT32 Len,\r
1671 IN BOOLEAN FromHead\r
1672 );\r
1673\r
1674/**\r
1675 Copy Len bytes of data from the specific offset of the net buffer to the\r
1676 destination memory.\r
1677\r
1678 The Len bytes of data may cross several fragments of the net buffer.\r
1679\r
1680 @param[in] Nbuf The pointer to the net buffer.\r
1681 @param[in] Offset The sequence number of the first byte to copy.\r
1682 @param[in] Len The length of the data to copy.\r
1683 @param[in] Dest The destination of the data to copy to.\r
1684\r
1685 @return The length of the actual copied data, or 0 if the offset\r
1686 specified exceeds the total size of net buffer.\r
1687\r
1688**/\r
1689UINT32\r
1690EFIAPI\r
1691NetbufCopy (\r
1692 IN NET_BUF *Nbuf,\r
1693 IN UINT32 Offset,\r
1694 IN UINT32 Len,\r
1695 IN UINT8 *Dest\r
1696 );\r
1697\r
1698/**\r
1699 Build a NET_BUF from external blocks.\r
1700\r
1701 A new NET_BUF structure will be created from external blocks. An additional block\r
1702 of memory will be allocated to hold reserved HeadSpace bytes of header room\r
1703 and existing HeadLen bytes of header, but the external blocks are shared by the\r
1704 net buffer to avoid data copying.\r
1705\r
1706 @param[in] ExtFragment The pointer to the data block.\r
1707 @param[in] ExtNum The number of the data blocks.\r
1708 @param[in] HeadSpace The head space to be reserved.\r
1709 @param[in] HeadLen The length of the protocol header. The function\r
1710 pulls this amount of data into a linear block.\r
1711 @param[in] ExtFree The pointer to the caller-provided free function.\r
1712 @param[in] Arg The argument passed to ExtFree when ExtFree is\r
1713 called.\r
1714\r
1715 @return The pointer to the net buffer built from the data blocks,\r
1716 or NULL if the allocation failed due to resource\r
1717 limit.\r
1718\r
1719**/\r
1720NET_BUF *\r
1721EFIAPI\r
1722NetbufFromExt (\r
1723 IN NET_FRAGMENT *ExtFragment,\r
1724 IN UINT32 ExtNum,\r
1725 IN UINT32 HeadSpace,\r
1726 IN UINT32 HeadLen,\r
1727 IN NET_VECTOR_EXT_FREE ExtFree,\r
1728 IN VOID *Arg OPTIONAL\r
1729 );\r
1730\r
1731/**\r
1732 Build a fragment table to contain the fragments in the net buffer. This is the\r
1733 opposite operation of the NetbufFromExt.\r
1734\r
1735 @param[in] Nbuf Points to the net buffer.\r
1736 @param[in, out] ExtFragment The pointer to the data block.\r
1737 @param[in, out] ExtNum The number of the data blocks.\r
1738\r
1739 @retval EFI_BUFFER_TOO_SMALL The number of non-empty blocks is bigger than\r
1740 ExtNum.\r
1741 @retval EFI_SUCCESS The fragment table was built successfully.\r
1742\r
1743**/\r
1744EFI_STATUS\r
1745EFIAPI\r
1746NetbufBuildExt (\r
1747 IN NET_BUF *Nbuf,\r
1748 IN OUT NET_FRAGMENT *ExtFragment,\r
1749 IN OUT UINT32 *ExtNum\r
1750 );\r
1751\r
1752/**\r
1753 Build a net buffer from a list of net buffers.\r
1754\r
1755 All the fragments will be collected from the list of NEW_BUF, and then a new\r
1756 net buffer will be created through NetbufFromExt.\r
1757\r
1758 @param[in] BufList A List of the net buffer.\r
1759 @param[in] HeadSpace The head space to be reserved.\r
1760 @param[in] HeaderLen The length of the protocol header. The function\r
1761 pulls this amount of data into a linear block.\r
1762 @param[in] ExtFree The pointer to the caller provided free function.\r
1763 @param[in] Arg The argument passed to ExtFree when ExtFree is called.\r
1764\r
1765 @return The pointer to the net buffer built from the list of net\r
1766 buffers.\r
1767\r
1768**/\r
1769NET_BUF *\r
1770EFIAPI\r
1771NetbufFromBufList (\r
1772 IN LIST_ENTRY *BufList,\r
1773 IN UINT32 HeadSpace,\r
1774 IN UINT32 HeaderLen,\r
1775 IN NET_VECTOR_EXT_FREE ExtFree,\r
1776 IN VOID *Arg OPTIONAL\r
1777 );\r
1778\r
1779/**\r
1780 Free a list of net buffers.\r
1781\r
1782 @param[in, out] Head The pointer to the head of linked net buffers.\r
1783\r
1784**/\r
1785VOID\r
1786EFIAPI\r
1787NetbufFreeList (\r
1788 IN OUT LIST_ENTRY *Head\r
1789 );\r
1790\r
1791/**\r
1792 Initiate the net buffer queue.\r
1793\r
1794 @param[in, out] NbufQue The pointer to the net buffer queue to be initialized.\r
1795\r
1796**/\r
1797VOID\r
1798EFIAPI\r
1799NetbufQueInit (\r
1800 IN OUT NET_BUF_QUEUE *NbufQue\r
1801 );\r
1802\r
1803/**\r
1804 Allocate and initialize a net buffer queue.\r
1805\r
1806 @return The pointer to the allocated net buffer queue, or NULL if the\r
1807 allocation failed due to resource limit.\r
1808\r
1809**/\r
1810NET_BUF_QUEUE *\r
1811EFIAPI\r
1812NetbufQueAlloc (\r
1813 VOID\r
1814 );\r
1815\r
1816/**\r
1817 Free a net buffer queue.\r
1818\r
1819 Decrease the reference count of the net buffer queue by one. The real resource\r
1820 free operation isn't performed until the reference count of the net buffer\r
1821 queue is decreased to 0.\r
1822\r
1823 @param[in] NbufQue The pointer to the net buffer queue to be freed.\r
1824\r
1825**/\r
1826VOID\r
1827EFIAPI\r
1828NetbufQueFree (\r
1829 IN NET_BUF_QUEUE *NbufQue\r
1830 );\r
1831\r
1832/**\r
1833 Remove a net buffer from the head in the specific queue and return it.\r
1834\r
1835 @param[in, out] NbufQue The pointer to the net buffer queue.\r
1836\r
1837 @return The pointer to the net buffer removed from the specific queue,\r
1838 or NULL if there is no net buffer in the specific queue.\r
1839\r
1840**/\r
1841NET_BUF *\r
1842EFIAPI\r
1843NetbufQueRemove (\r
1844 IN OUT NET_BUF_QUEUE *NbufQue\r
1845 );\r
1846\r
1847/**\r
1848 Append a net buffer to the net buffer queue.\r
1849\r
1850 @param[in, out] NbufQue The pointer to the net buffer queue.\r
1851 @param[in, out] Nbuf The pointer to the net buffer to be appended.\r
1852\r
1853**/\r
1854VOID\r
1855EFIAPI\r
1856NetbufQueAppend (\r
1857 IN OUT NET_BUF_QUEUE *NbufQue,\r
1858 IN OUT NET_BUF *Nbuf\r
1859 );\r
1860\r
1861/**\r
1862 Copy Len bytes of data from the net buffer queue at the specific offset to the\r
1863 destination memory.\r
1864\r
1865 The copying operation is the same as NetbufCopy, but applies to the net buffer\r
1866 queue instead of the net buffer.\r
1867\r
1868 @param[in] NbufQue The pointer to the net buffer queue.\r
1869 @param[in] Offset The sequence number of the first byte to copy.\r
1870 @param[in] Len The length of the data to copy.\r
1871 @param[out] Dest The destination of the data to copy to.\r
1872\r
1873 @return The length of the actual copied data, or 0 if the offset\r
1874 specified exceeds the total size of net buffer queue.\r
1875\r
1876**/\r
1877UINT32\r
1878EFIAPI\r
1879NetbufQueCopy (\r
1880 IN NET_BUF_QUEUE *NbufQue,\r
1881 IN UINT32 Offset,\r
1882 IN UINT32 Len,\r
1883 OUT UINT8 *Dest\r
1884 );\r
1885\r
1886/**\r
1887 Trim Len bytes of data from the buffer queue and free any net buffer\r
1888 that is completely trimmed.\r
1889\r
1890 The trimming operation is the same as NetbufTrim but applies to the net buffer\r
1891 queue instead of the net buffer.\r
1892\r
1893 @param[in, out] NbufQue The pointer to the net buffer queue.\r
1894 @param[in] Len The length of the data to trim.\r
1895\r
1896 @return The actual length of the data trimmed.\r
1897\r
1898**/\r
1899UINT32\r
1900EFIAPI\r
1901NetbufQueTrim (\r
1902 IN OUT NET_BUF_QUEUE *NbufQue,\r
1903 IN UINT32 Len\r
1904 );\r
1905\r
1906\r
1907/**\r
1908 Flush the net buffer queue.\r
1909\r
1910 @param[in, out] NbufQue The pointer to the queue to be flushed.\r
1911\r
1912**/\r
1913VOID\r
1914EFIAPI\r
1915NetbufQueFlush (\r
1916 IN OUT NET_BUF_QUEUE *NbufQue\r
1917 );\r
1918\r
1919/**\r
1920 Compute the checksum for a bulk of data.\r
1921\r
1922 @param[in] Bulk The pointer to the data.\r
1923 @param[in] Len The length of the data, in bytes.\r
1924\r
1925 @return The computed checksum.\r
1926\r
1927**/\r
1928UINT16\r
1929EFIAPI\r
1930NetblockChecksum (\r
1931 IN UINT8 *Bulk,\r
1932 IN UINT32 Len\r
1933 );\r
1934\r
1935/**\r
1936 Add two checksums.\r
1937\r
1938 @param[in] Checksum1 The first checksum to be added.\r
1939 @param[in] Checksum2 The second checksum to be added.\r
1940\r
1941 @return The new checksum.\r
1942\r
1943**/\r
1944UINT16\r
1945EFIAPI\r
1946NetAddChecksum (\r
1947 IN UINT16 Checksum1,\r
1948 IN UINT16 Checksum2\r
1949 );\r
1950\r
1951/**\r
1952 Compute the checksum for a NET_BUF.\r
1953\r
1954 @param[in] Nbuf The pointer to the net buffer.\r
1955\r
1956 @return The computed checksum.\r
1957\r
1958**/\r
1959UINT16\r
1960EFIAPI\r
1961NetbufChecksum (\r
1962 IN NET_BUF *Nbuf\r
1963 );\r
1964\r
1965/**\r
1966 Compute the checksum for TCP/UDP pseudo header.\r
1967\r
1968 Src and Dst are in network byte order, and Len is in host byte order.\r
1969\r
1970 @param[in] Src The source address of the packet.\r
1971 @param[in] Dst The destination address of the packet.\r
1972 @param[in] Proto The protocol type of the packet.\r
1973 @param[in] Len The length of the packet.\r
1974\r
1975 @return The computed checksum.\r
1976\r
1977**/\r
1978UINT16\r
1979EFIAPI\r
1980NetPseudoHeadChecksum (\r
1981 IN IP4_ADDR Src,\r
1982 IN IP4_ADDR Dst,\r
1983 IN UINT8 Proto,\r
1984 IN UINT16 Len\r
1985 );\r
1986\r
1987/**\r
1988 Compute the checksum for the TCP6/UDP6 pseudo header.\r
1989\r
1990 Src and Dst are in network byte order, and Len is in host byte order.\r
1991\r
1992 @param[in] Src The source address of the packet.\r
1993 @param[in] Dst The destination address of the packet.\r
1994 @param[in] NextHeader The protocol type of the packet.\r
1995 @param[in] Len The length of the packet.\r
1996\r
1997 @return The computed checksum.\r
1998\r
1999**/\r
2000UINT16\r
2001EFIAPI\r
2002NetIp6PseudoHeadChecksum (\r
2003 IN EFI_IPv6_ADDRESS *Src,\r
2004 IN EFI_IPv6_ADDRESS *Dst,\r
2005 IN UINT8 NextHeader,\r
2006 IN UINT32 Len\r
2007 );\r
2008\r
2009/**\r
2010 The function frees the net buffer which allocated by the IP protocol. It releases \r
2011 only the net buffer and doesn't call the external free function. \r
2012\r
2013 This function should be called after finishing the process of mIpSec->ProcessExt() \r
2014 for outbound traffic. The (EFI_IPSEC2_PROTOCOL)->ProcessExt() allocates a new \r
2015 buffer for the ESP, so there needs a function to free the old net buffer.\r
2016\r
2017 @param[in] Nbuf The network buffer to be freed.\r
2018\r
2019**/\r
2020VOID\r
2021NetIpSecNetbufFree (\r
2022 NET_BUF *Nbuf\r
2023 );\r
2024\r
2025/**\r
2026 This function obtains the system guid from the smbios table.\r
2027\r
2028 @param[out] SystemGuid The pointer of the returned system guid.\r
2029\r
2030 @retval EFI_SUCCESS Successfully obtained the system guid.\r
2031 @retval EFI_NOT_FOUND Did not find the SMBIOS table.\r
2032\r
2033**/\r
2034EFI_STATUS\r
2035EFIAPI\r
2036NetLibGetSystemGuid (\r
2037 OUT EFI_GUID *SystemGuid\r
2038 );\r
2039\r
2040#endif\r