]> git.proxmox.com Git - mirror_edk2.git/blame_incremental - MdeModulePkg/Universal/EbcDxe/Ia32/EbcSupport.c
MdeModulePkg: Replace BSD License with BSD+Patent License
[mirror_edk2.git] / MdeModulePkg / Universal / EbcDxe / Ia32 / EbcSupport.c
... / ...
CommitLineData
1/** @file\r
2 This module contains EBC support routines that are customized based on\r
3 the target ia32 processor.\r
4\r
5Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.<BR>\r
6SPDX-License-Identifier: BSD-2-Clause-Patent\r
7\r
8**/\r
9\r
10#include "EbcInt.h"\r
11#include "EbcExecute.h"\r
12#include "EbcDebuggerHook.h"\r
13\r
14//\r
15// NOTE: This is the stack size allocated for the interpreter\r
16// when it executes an EBC image. The requirements can change\r
17// based on whether or not a debugger is present, and other\r
18// platform-specific configurations.\r
19//\r
20#define VM_STACK_SIZE (1024 * 4)\r
21\r
22#define STACK_REMAIN_SIZE (1024 * 4)\r
23\r
24//\r
25// This is instruction buffer used to create EBC thunk\r
26//\r
27#define EBC_ENTRYPOINT_SIGNATURE 0xAFAFAFAF\r
28#define EBC_LL_EBC_ENTRYPOINT_SIGNATURE 0xFAFAFAFA\r
29UINT8 mInstructionBufferTemplate[] = {\r
30 //\r
31 // Add a magic code here to help the VM recognize the thunk..\r
32 // mov eax, 0xca112ebc => B8 BC 2E 11 CA\r
33 //\r
34 0xB8, 0xBC, 0x2E, 0x11, 0xCA,\r
35 //\r
36 // Add code bytes to load up a processor register with the EBC entry point.\r
37 // mov eax, EbcEntryPoint => B8 XX XX XX XX (To be fixed at runtime)\r
38 // These 4 bytes of the thunk entry is the address of the EBC\r
39 // entry point.\r
40 //\r
41 0xB8,\r
42 (UINT8)(EBC_ENTRYPOINT_SIGNATURE & 0xFF),\r
43 (UINT8)((EBC_ENTRYPOINT_SIGNATURE >> 8) & 0xFF),\r
44 (UINT8)((EBC_ENTRYPOINT_SIGNATURE >> 16) & 0xFF),\r
45 (UINT8)((EBC_ENTRYPOINT_SIGNATURE >> 24) & 0xFF),\r
46 //\r
47 // Stick in a load of ecx with the address of appropriate VM function.\r
48 // mov ecx, EbcLLEbcInterpret => B9 XX XX XX XX (To be fixed at runtime)\r
49 //\r
50 0xB9,\r
51 (UINT8)(EBC_LL_EBC_ENTRYPOINT_SIGNATURE & 0xFF),\r
52 (UINT8)((EBC_LL_EBC_ENTRYPOINT_SIGNATURE >> 8) & 0xFF),\r
53 (UINT8)((EBC_LL_EBC_ENTRYPOINT_SIGNATURE >> 16) & 0xFF),\r
54 (UINT8)((EBC_LL_EBC_ENTRYPOINT_SIGNATURE >> 24) & 0xFF),\r
55 //\r
56 // Stick in jump opcode bytes\r
57 // jmp ecx => FF E1\r
58 //\r
59 0xFF, 0xE1,\r
60};\r
61\r
62/**\r
63 Begin executing an EBC image.\r
64 This is used for Ebc Thunk call.\r
65\r
66 @return The value returned by the EBC application we're going to run.\r
67\r
68**/\r
69UINT64\r
70EFIAPI\r
71EbcLLEbcInterpret (\r
72 VOID\r
73 );\r
74\r
75/**\r
76 Begin executing an EBC image.\r
77 This is used for Ebc image entrypoint.\r
78\r
79 @return The value returned by the EBC application we're going to run.\r
80\r
81**/\r
82UINT64\r
83EFIAPI\r
84EbcLLExecuteEbcImageEntryPoint (\r
85 VOID\r
86 );\r
87\r
88/**\r
89 This function is called to execute an EBC CALLEX instruction.\r
90 The function check the callee's content to see whether it is common native\r
91 code or a thunk to another piece of EBC code.\r
92 If the callee is common native code, use EbcLLCAllEXASM to manipulate,\r
93 otherwise, set the VM->IP to target EBC code directly to avoid another VM\r
94 be startup which cost time and stack space.\r
95\r
96 @param VmPtr Pointer to a VM context.\r
97 @param FuncAddr Callee's address\r
98 @param NewStackPointer New stack pointer after the call\r
99 @param FramePtr New frame pointer after the call\r
100 @param Size The size of call instruction\r
101\r
102**/\r
103VOID\r
104EbcLLCALLEX (\r
105 IN VM_CONTEXT *VmPtr,\r
106 IN UINTN FuncAddr,\r
107 IN UINTN NewStackPointer,\r
108 IN VOID *FramePtr,\r
109 IN UINT8 Size\r
110 )\r
111{\r
112 UINTN IsThunk;\r
113 UINTN TargetEbcAddr;\r
114 UINT8 InstructionBuffer[sizeof(mInstructionBufferTemplate)];\r
115 UINTN Index;\r
116 UINTN IndexOfEbcEntrypoint;\r
117\r
118 IsThunk = 1;\r
119 TargetEbcAddr = 0;\r
120 IndexOfEbcEntrypoint = 0;\r
121\r
122 //\r
123 // Processor specific code to check whether the callee is a thunk to EBC.\r
124 //\r
125 CopyMem (InstructionBuffer, (VOID *)FuncAddr, sizeof(InstructionBuffer));\r
126 //\r
127 // Fill the signature according to mInstructionBufferTemplate\r
128 //\r
129 for (Index = 0; Index < sizeof(mInstructionBufferTemplate) - sizeof(UINTN); Index++) {\r
130 if (*(UINTN *)&mInstructionBufferTemplate[Index] == EBC_ENTRYPOINT_SIGNATURE) {\r
131 *(UINTN *)&InstructionBuffer[Index] = EBC_ENTRYPOINT_SIGNATURE;\r
132 IndexOfEbcEntrypoint = Index;\r
133 }\r
134 if (*(UINTN *)&mInstructionBufferTemplate[Index] == EBC_LL_EBC_ENTRYPOINT_SIGNATURE) {\r
135 *(UINTN *)&InstructionBuffer[Index] = EBC_LL_EBC_ENTRYPOINT_SIGNATURE;\r
136 }\r
137 }\r
138 //\r
139 // Check if we need thunk to native\r
140 //\r
141 if (CompareMem (InstructionBuffer, mInstructionBufferTemplate, sizeof(mInstructionBufferTemplate)) != 0) {\r
142 IsThunk = 0;\r
143 }\r
144\r
145 if (IsThunk == 1){\r
146 //\r
147 // The callee is a thunk to EBC, adjust the stack pointer down 16 bytes and\r
148 // put our return address and frame pointer on the VM stack.\r
149 // Then set the VM's IP to new EBC code.\r
150 //\r
151 VmPtr->Gpr[0] -= 8;\r
152 VmWriteMemN (VmPtr, (UINTN) VmPtr->Gpr[0], (UINTN) FramePtr);\r
153 VmPtr->FramePtr = (VOID *) (UINTN) VmPtr->Gpr[0];\r
154 VmPtr->Gpr[0] -= 8;\r
155 VmWriteMem64 (VmPtr, (UINTN) VmPtr->Gpr[0], (UINT64) (UINTN) (VmPtr->Ip + Size));\r
156\r
157 CopyMem (&TargetEbcAddr, (UINT8 *)FuncAddr + IndexOfEbcEntrypoint, sizeof(UINTN));\r
158 VmPtr->Ip = (VMIP) (UINTN) TargetEbcAddr;\r
159 } else {\r
160 //\r
161 // The callee is not a thunk to EBC, call native code,\r
162 // and get return value.\r
163 //\r
164 VmPtr->Gpr[7] = EbcLLCALLEXNative (FuncAddr, NewStackPointer, FramePtr);\r
165\r
166 //\r
167 // Advance the IP.\r
168 //\r
169 VmPtr->Ip += Size;\r
170 }\r
171}\r
172\r
173\r
174/**\r
175 Begin executing an EBC image.\r
176\r
177 This is a thunk function. Microsoft x64 compiler only provide fast_call\r
178 calling convention, so the first four arguments are passed by rcx, rdx,\r
179 r8, and r9, while other arguments are passed in stack.\r
180\r
181 @param EntryPoint The entrypoint of EBC code.\r
182 @param Arg1 The 1st argument.\r
183 @param Arg2 The 2nd argument.\r
184 @param Arg3 The 3rd argument.\r
185 @param Arg4 The 4th argument.\r
186 @param Arg5 The 5th argument.\r
187 @param Arg6 The 6th argument.\r
188 @param Arg7 The 7th argument.\r
189 @param Arg8 The 8th argument.\r
190 @param Arg9 The 9th argument.\r
191 @param Arg10 The 10th argument.\r
192 @param Arg11 The 11th argument.\r
193 @param Arg12 The 12th argument.\r
194 @param Arg13 The 13th argument.\r
195 @param Arg14 The 14th argument.\r
196 @param Arg15 The 15th argument.\r
197 @param Arg16 The 16th argument.\r
198\r
199 @return The value returned by the EBC application we're going to run.\r
200\r
201**/\r
202UINT64\r
203EFIAPI\r
204EbcInterpret (\r
205 IN UINTN EntryPoint,\r
206 IN UINTN Arg1,\r
207 IN UINTN Arg2,\r
208 IN UINTN Arg3,\r
209 IN UINTN Arg4,\r
210 IN UINTN Arg5,\r
211 IN UINTN Arg6,\r
212 IN UINTN Arg7,\r
213 IN UINTN Arg8,\r
214 IN UINTN Arg9,\r
215 IN UINTN Arg10,\r
216 IN UINTN Arg11,\r
217 IN UINTN Arg12,\r
218 IN UINTN Arg13,\r
219 IN UINTN Arg14,\r
220 IN UINTN Arg15,\r
221 IN UINTN Arg16\r
222 )\r
223{\r
224 //\r
225 // Create a new VM context on the stack\r
226 //\r
227 VM_CONTEXT VmContext;\r
228 UINTN Addr;\r
229 EFI_STATUS Status;\r
230 UINTN StackIndex;\r
231\r
232 //\r
233 // Get the EBC entry point\r
234 //\r
235 Addr = EntryPoint;\r
236\r
237 //\r
238 // Now clear out our context\r
239 //\r
240 ZeroMem ((VOID *) &VmContext, sizeof (VM_CONTEXT));\r
241\r
242 //\r
243 // Set the VM instruction pointer to the correct location in memory.\r
244 //\r
245 VmContext.Ip = (VMIP) Addr;\r
246 //\r
247 // Initialize the stack pointer for the EBC. Get the current system stack\r
248 // pointer and adjust it down by the max needed for the interpreter.\r
249 //\r
250\r
251 //\r
252 // Align the stack on a natural boundary\r
253 //\r
254\r
255 //\r
256 // Allocate stack pool\r
257 //\r
258 Status = GetEBCStack((EFI_HANDLE)-1, &VmContext.StackPool, &StackIndex);\r
259 if (EFI_ERROR(Status)) {\r
260 return Status;\r
261 }\r
262 VmContext.StackTop = (UINT8*)VmContext.StackPool + (STACK_REMAIN_SIZE);\r
263 VmContext.Gpr[0] = (UINT64)(UINTN) ((UINT8*)VmContext.StackPool + STACK_POOL_SIZE);\r
264 VmContext.HighStackBottom = (UINTN)VmContext.Gpr[0];\r
265 VmContext.Gpr[0] &= ~((VM_REGISTER)(sizeof (UINTN) - 1));\r
266 VmContext.Gpr[0] -= sizeof (UINTN);\r
267\r
268 //\r
269 // Put a magic value in the stack gap, then adjust down again\r
270 //\r
271 *(UINTN *) (UINTN) (VmContext.Gpr[0]) = (UINTN) VM_STACK_KEY_VALUE;\r
272 VmContext.StackMagicPtr = (UINTN *) (UINTN) VmContext.Gpr[0];\r
273 VmContext.LowStackTop = (UINTN) VmContext.Gpr[0];\r
274\r
275 //\r
276 // For IA32, this is where we say our return address is\r
277 //\r
278 VmContext.Gpr[0] -= sizeof (UINTN);\r
279 *(UINTN *) (UINTN) (VmContext.Gpr[0]) = (UINTN) Arg16;\r
280 VmContext.Gpr[0] -= sizeof (UINTN);\r
281 *(UINTN *) (UINTN) (VmContext.Gpr[0]) = (UINTN) Arg15;\r
282 VmContext.Gpr[0] -= sizeof (UINTN);\r
283 *(UINTN *) (UINTN) (VmContext.Gpr[0]) = (UINTN) Arg14;\r
284 VmContext.Gpr[0] -= sizeof (UINTN);\r
285 *(UINTN *) (UINTN) (VmContext.Gpr[0]) = (UINTN) Arg13;\r
286 VmContext.Gpr[0] -= sizeof (UINTN);\r
287 *(UINTN *) (UINTN) (VmContext.Gpr[0]) = (UINTN) Arg12;\r
288 VmContext.Gpr[0] -= sizeof (UINTN);\r
289 *(UINTN *) (UINTN) (VmContext.Gpr[0]) = (UINTN) Arg11;\r
290 VmContext.Gpr[0] -= sizeof (UINTN);\r
291 *(UINTN *) (UINTN) (VmContext.Gpr[0]) = (UINTN) Arg10;\r
292 VmContext.Gpr[0] -= sizeof (UINTN);\r
293 *(UINTN *) (UINTN) (VmContext.Gpr[0]) = (UINTN) Arg9;\r
294 VmContext.Gpr[0] -= sizeof (UINTN);\r
295 *(UINTN *) (UINTN) (VmContext.Gpr[0]) = (UINTN) Arg8;\r
296 VmContext.Gpr[0] -= sizeof (UINTN);\r
297 *(UINTN *) (UINTN) (VmContext.Gpr[0]) = (UINTN) Arg7;\r
298 VmContext.Gpr[0] -= sizeof (UINTN);\r
299 *(UINTN *) (UINTN) (VmContext.Gpr[0]) = (UINTN) Arg6;\r
300 VmContext.Gpr[0] -= sizeof (UINTN);\r
301 *(UINTN *) (UINTN) (VmContext.Gpr[0]) = (UINTN) Arg5;\r
302 VmContext.Gpr[0] -= sizeof (UINTN);\r
303 *(UINTN *) (UINTN) (VmContext.Gpr[0]) = (UINTN) Arg4;\r
304 VmContext.Gpr[0] -= sizeof (UINTN);\r
305 *(UINTN *) (UINTN) (VmContext.Gpr[0]) = (UINTN) Arg3;\r
306 VmContext.Gpr[0] -= sizeof (UINTN);\r
307 *(UINTN *) (UINTN) (VmContext.Gpr[0]) = (UINTN) Arg2;\r
308 VmContext.Gpr[0] -= sizeof (UINTN);\r
309 *(UINTN *) (UINTN) (VmContext.Gpr[0]) = (UINTN) Arg1;\r
310 VmContext.Gpr[0] -= 16;\r
311 VmContext.StackRetAddr = (UINT64) VmContext.Gpr[0];\r
312\r
313 //\r
314 // We need to keep track of where the EBC stack starts. This way, if the EBC\r
315 // accesses any stack variables above its initial stack setting, then we know\r
316 // it's accessing variables passed into it, which means the data is on the\r
317 // VM's stack.\r
318 // When we're called, on the stack (high to low) we have the parameters, the\r
319 // return address, then the saved ebp. Save the pointer to the return address.\r
320 // EBC code knows that's there, so should look above it for function parameters.\r
321 // The offset is the size of locals (VMContext + Addr + saved ebp).\r
322 // Note that the interpreter assumes there is a 16 bytes of return address on\r
323 // the stack too, so adjust accordingly.\r
324 // VmContext.HighStackBottom = (UINTN)(Addr + sizeof (VmContext) + sizeof (Addr));\r
325 //\r
326\r
327 //\r
328 // Begin executing the EBC code\r
329 //\r
330 EbcDebuggerHookEbcInterpret (&VmContext);\r
331 EbcExecute (&VmContext);\r
332\r
333 //\r
334 // Return the value in Gpr[7] unless there was an error\r
335 //\r
336 ReturnEBCStack(StackIndex);\r
337 return (UINT64) VmContext.Gpr[7];\r
338}\r
339\r
340\r
341/**\r
342 Begin executing an EBC image.\r
343\r
344 @param EntryPoint The entrypoint of EBC code.\r
345 @param ImageHandle image handle for the EBC application we're executing\r
346 @param SystemTable standard system table passed into an driver's entry\r
347 point\r
348\r
349 @return The value returned by the EBC application we're going to run.\r
350\r
351**/\r
352UINT64\r
353EFIAPI\r
354ExecuteEbcImageEntryPoint (\r
355 IN UINTN EntryPoint,\r
356 IN EFI_HANDLE ImageHandle,\r
357 IN EFI_SYSTEM_TABLE *SystemTable\r
358 )\r
359{\r
360 //\r
361 // Create a new VM context on the stack\r
362 //\r
363 VM_CONTEXT VmContext;\r
364 UINTN Addr;\r
365 EFI_STATUS Status;\r
366 UINTN StackIndex;\r
367\r
368 //\r
369 // Get the EBC entry point\r
370 //\r
371 Addr = EntryPoint;\r
372\r
373 //\r
374 // Now clear out our context\r
375 //\r
376 ZeroMem ((VOID *) &VmContext, sizeof (VM_CONTEXT));\r
377\r
378 //\r
379 // Save the image handle so we can track the thunks created for this image\r
380 //\r
381 VmContext.ImageHandle = ImageHandle;\r
382 VmContext.SystemTable = SystemTable;\r
383\r
384 //\r
385 // Set the VM instruction pointer to the correct location in memory.\r
386 //\r
387 VmContext.Ip = (VMIP) Addr;\r
388\r
389 //\r
390 // Initialize the stack pointer for the EBC. Get the current system stack\r
391 // pointer and adjust it down by the max needed for the interpreter.\r
392 //\r
393\r
394 //\r
395 // Allocate stack pool\r
396 //\r
397 Status = GetEBCStack(ImageHandle, &VmContext.StackPool, &StackIndex);\r
398 if (EFI_ERROR(Status)) {\r
399 return Status;\r
400 }\r
401 VmContext.StackTop = (UINT8*)VmContext.StackPool + (STACK_REMAIN_SIZE);\r
402 VmContext.Gpr[0] = (UINT64)(UINTN) ((UINT8*)VmContext.StackPool + STACK_POOL_SIZE);\r
403 VmContext.HighStackBottom = (UINTN)VmContext.Gpr[0];\r
404 VmContext.Gpr[0] -= sizeof (UINTN);\r
405\r
406 //\r
407 // Put a magic value in the stack gap, then adjust down again\r
408 //\r
409 *(UINTN *) (UINTN) (VmContext.Gpr[0]) = (UINTN) VM_STACK_KEY_VALUE;\r
410 VmContext.StackMagicPtr = (UINTN *) (UINTN) VmContext.Gpr[0];\r
411\r
412 //\r
413 // Align the stack on a natural boundary\r
414 // VmContext.Gpr[0] &= ~(sizeof(UINTN) - 1);\r
415 //\r
416 VmContext.LowStackTop = (UINTN) VmContext.Gpr[0];\r
417 VmContext.Gpr[0] -= sizeof (UINTN);\r
418 *(UINTN *) (UINTN) (VmContext.Gpr[0]) = (UINTN) SystemTable;\r
419 VmContext.Gpr[0] -= sizeof (UINTN);\r
420 *(UINTN *) (UINTN) (VmContext.Gpr[0]) = (UINTN) ImageHandle;\r
421\r
422 VmContext.Gpr[0] -= 16;\r
423 VmContext.StackRetAddr = (UINT64) VmContext.Gpr[0];\r
424 //\r
425 // VM pushes 16-bytes for return address. Simulate that here.\r
426 //\r
427\r
428 //\r
429 // Begin executing the EBC code\r
430 //\r
431 EbcDebuggerHookExecuteEbcImageEntryPoint (&VmContext);\r
432 EbcExecute (&VmContext);\r
433\r
434 //\r
435 // Return the value in Gpr[7] unless there was an error\r
436 //\r
437 ReturnEBCStack(StackIndex);\r
438 return (UINT64) VmContext.Gpr[7];\r
439}\r
440\r
441\r
442/**\r
443 Create thunks for an EBC image entry point, or an EBC protocol service.\r
444\r
445 @param ImageHandle Image handle for the EBC image. If not null, then\r
446 we're creating a thunk for an image entry point.\r
447 @param EbcEntryPoint Address of the EBC code that the thunk is to call\r
448 @param Thunk Returned thunk we create here\r
449 @param Flags Flags indicating options for creating the thunk\r
450\r
451 @retval EFI_SUCCESS The thunk was created successfully.\r
452 @retval EFI_INVALID_PARAMETER The parameter of EbcEntryPoint is not 16-bit\r
453 aligned.\r
454 @retval EFI_OUT_OF_RESOURCES There is not enough memory to created the EBC\r
455 Thunk.\r
456 @retval EFI_BUFFER_TOO_SMALL EBC_THUNK_SIZE is not larger enough.\r
457\r
458**/\r
459EFI_STATUS\r
460EbcCreateThunks (\r
461 IN EFI_HANDLE ImageHandle,\r
462 IN VOID *EbcEntryPoint,\r
463 OUT VOID **Thunk,\r
464 IN UINT32 Flags\r
465 )\r
466{\r
467 UINT8 *Ptr;\r
468 UINT8 *ThunkBase;\r
469 UINT32 Index;\r
470 INT32 ThunkSize;\r
471\r
472 //\r
473 // Check alignment of pointer to EBC code\r
474 //\r
475 if ((UINT32) (UINTN) EbcEntryPoint & 0x01) {\r
476 return EFI_INVALID_PARAMETER;\r
477 }\r
478\r
479 ThunkSize = sizeof(mInstructionBufferTemplate);\r
480\r
481 Ptr = EbcAllocatePoolForThunk (sizeof(mInstructionBufferTemplate));\r
482\r
483 if (Ptr == NULL) {\r
484 return EFI_OUT_OF_RESOURCES;\r
485 }\r
486 //\r
487 // Print(L"Allocate TH: 0x%X\n", (UINT32)Ptr);\r
488 //\r
489 // Save the start address so we can add a pointer to it to a list later.\r
490 //\r
491 ThunkBase = Ptr;\r
492\r
493 //\r
494 // Give them the address of our buffer we're going to fix up\r
495 //\r
496 *Thunk = (VOID *) Ptr;\r
497\r
498 //\r
499 // Copy whole thunk instruction buffer template\r
500 //\r
501 CopyMem (Ptr, mInstructionBufferTemplate, sizeof(mInstructionBufferTemplate));\r
502\r
503 //\r
504 // Patch EbcEntryPoint and EbcLLEbcInterpret\r
505 //\r
506 for (Index = 0; Index < sizeof(mInstructionBufferTemplate) - sizeof(UINTN); Index++) {\r
507 if (*(UINTN *)&Ptr[Index] == EBC_ENTRYPOINT_SIGNATURE) {\r
508 *(UINTN *)&Ptr[Index] = (UINTN)EbcEntryPoint;\r
509 }\r
510 if (*(UINTN *)&Ptr[Index] == EBC_LL_EBC_ENTRYPOINT_SIGNATURE) {\r
511 if ((Flags & FLAG_THUNK_ENTRY_POINT) != 0) {\r
512 *(UINTN *)&Ptr[Index] = (UINTN)EbcLLExecuteEbcImageEntryPoint;\r
513 } else {\r
514 *(UINTN *)&Ptr[Index] = (UINTN)EbcLLEbcInterpret;\r
515 }\r
516 }\r
517 }\r
518\r
519 //\r
520 // Add the thunk to the list for this image. Do this last since the add\r
521 // function flushes the cache for us.\r
522 //\r
523 EbcAddImageThunk (ImageHandle, (VOID *) ThunkBase, ThunkSize);\r
524\r
525 return EFI_SUCCESS;\r
526}\r