]> git.proxmox.com Git - mirror_edk2.git/blame_incremental - MdeModulePkg/Universal/Network/Ip4Dxe/Ip4Input.c
MdeModulePkg/Network: Fix potential ASSERT if NetIp4IsUnicast is called
[mirror_edk2.git] / MdeModulePkg / Universal / Network / Ip4Dxe / Ip4Input.c
... / ...
CommitLineData
1/** @file\r
2 IP4 input process.\r
3 \r
4Copyright (c) 2005 - 2014, Intel Corporation. All rights reserved.<BR>\r
5(C) Copyright 2015 Hewlett-Packard Development Company, L.P.<BR>\r
6\r
7This program and the accompanying materials\r
8are licensed and made available under the terms and conditions of the BSD License\r
9which accompanies this distribution. The full text of the license may be found at\r
10http://opensource.org/licenses/bsd-license.php\r
11\r
12THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
13WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
14\r
15**/\r
16\r
17#include "Ip4Impl.h"\r
18\r
19\r
20/**\r
21 Create an empty assemble entry for the packet identified by\r
22 (Dst, Src, Id, Protocol). The default life for the packet is\r
23 120 seconds.\r
24\r
25 @param[in] Dst The destination address\r
26 @param[in] Src The source address\r
27 @param[in] Id The ID field in IP header\r
28 @param[in] Protocol The protocol field in IP header\r
29\r
30 @return NULL if failed to allocate memory for the entry, otherwise\r
31 the point to just created reassemble entry.\r
32\r
33**/\r
34IP4_ASSEMBLE_ENTRY *\r
35Ip4CreateAssembleEntry (\r
36 IN IP4_ADDR Dst,\r
37 IN IP4_ADDR Src,\r
38 IN UINT16 Id,\r
39 IN UINT8 Protocol\r
40 )\r
41{\r
42\r
43 IP4_ASSEMBLE_ENTRY *Assemble;\r
44\r
45 Assemble = AllocatePool (sizeof (IP4_ASSEMBLE_ENTRY));\r
46\r
47 if (Assemble == NULL) {\r
48 return NULL;\r
49 }\r
50\r
51 InitializeListHead (&Assemble->Link);\r
52 InitializeListHead (&Assemble->Fragments);\r
53\r
54 Assemble->Dst = Dst;\r
55 Assemble->Src = Src;\r
56 Assemble->Id = Id;\r
57 Assemble->Protocol = Protocol;\r
58 Assemble->TotalLen = 0;\r
59 Assemble->CurLen = 0;\r
60 Assemble->Head = NULL;\r
61 Assemble->Info = NULL;\r
62 Assemble->Life = IP4_FRAGMENT_LIFE;\r
63\r
64 return Assemble;\r
65}\r
66\r
67\r
68/**\r
69 Release all the fragments of a packet, then free the assemble entry.\r
70\r
71 @param[in] Assemble The assemble entry to free\r
72\r
73**/\r
74VOID\r
75Ip4FreeAssembleEntry (\r
76 IN IP4_ASSEMBLE_ENTRY *Assemble\r
77 )\r
78{\r
79 LIST_ENTRY *Entry;\r
80 LIST_ENTRY *Next;\r
81 NET_BUF *Fragment;\r
82\r
83 NET_LIST_FOR_EACH_SAFE (Entry, Next, &Assemble->Fragments) {\r
84 Fragment = NET_LIST_USER_STRUCT (Entry, NET_BUF, List);\r
85\r
86 RemoveEntryList (Entry);\r
87 NetbufFree (Fragment);\r
88 }\r
89\r
90 FreePool (Assemble);\r
91}\r
92\r
93\r
94/**\r
95 Initialize an already allocated assemble table. This is generally\r
96 the assemble table embedded in the IP4 service instance.\r
97\r
98 @param[in, out] Table The assemble table to initialize.\r
99\r
100**/\r
101VOID\r
102Ip4InitAssembleTable (\r
103 IN OUT IP4_ASSEMBLE_TABLE *Table\r
104 )\r
105{\r
106 UINT32 Index;\r
107\r
108 for (Index = 0; Index < IP4_ASSEMLE_HASH_SIZE; Index++) {\r
109 InitializeListHead (&Table->Bucket[Index]);\r
110 }\r
111}\r
112\r
113\r
114/**\r
115 Clean up the assemble table: remove all the fragments\r
116 and assemble entries.\r
117\r
118 @param[in] Table The assemble table to clean up\r
119\r
120**/\r
121VOID\r
122Ip4CleanAssembleTable (\r
123 IN IP4_ASSEMBLE_TABLE *Table\r
124 )\r
125{\r
126 LIST_ENTRY *Entry;\r
127 LIST_ENTRY *Next;\r
128 IP4_ASSEMBLE_ENTRY *Assemble;\r
129 UINT32 Index;\r
130\r
131 for (Index = 0; Index < IP4_ASSEMLE_HASH_SIZE; Index++) {\r
132 NET_LIST_FOR_EACH_SAFE (Entry, Next, &Table->Bucket[Index]) {\r
133 Assemble = NET_LIST_USER_STRUCT (Entry, IP4_ASSEMBLE_ENTRY, Link);\r
134\r
135 RemoveEntryList (Entry);\r
136 Ip4FreeAssembleEntry (Assemble);\r
137 }\r
138 }\r
139}\r
140\r
141\r
142/**\r
143 Trim the packet to fit in [Start, End), and update the per\r
144 packet information.\r
145\r
146 @param Packet Packet to trim\r
147 @param Start The sequence of the first byte to fit in\r
148 @param End One beyond the sequence of last byte to fit in.\r
149\r
150**/\r
151VOID\r
152Ip4TrimPacket (\r
153 IN OUT NET_BUF *Packet,\r
154 IN INTN Start,\r
155 IN INTN End\r
156 )\r
157{\r
158 IP4_CLIP_INFO *Info;\r
159 INTN Len;\r
160\r
161 Info = IP4_GET_CLIP_INFO (Packet);\r
162\r
163 ASSERT (Info->Start + Info->Length == Info->End);\r
164 ASSERT ((Info->Start < End) && (Start < Info->End));\r
165\r
166 if (Info->Start < Start) {\r
167 Len = Start - Info->Start;\r
168\r
169 NetbufTrim (Packet, (UINT32) Len, NET_BUF_HEAD);\r
170 Info->Start = Start;\r
171 Info->Length -= Len;\r
172 }\r
173\r
174 if (End < Info->End) {\r
175 Len = End - Info->End;\r
176\r
177 NetbufTrim (Packet, (UINT32) Len, NET_BUF_TAIL);\r
178 Info->End = End;\r
179 Info->Length -= Len;\r
180 }\r
181}\r
182\r
183\r
184/**\r
185 Release all the fragments of the packet. This is the callback for\r
186 the assembled packet's OnFree. It will free the assemble entry,\r
187 which in turn will free all the fragments of the packet.\r
188\r
189 @param[in] Arg The assemble entry to free\r
190\r
191**/\r
192VOID\r
193EFIAPI\r
194Ip4OnFreeFragments (\r
195 IN VOID *Arg\r
196 )\r
197{\r
198 Ip4FreeAssembleEntry ((IP4_ASSEMBLE_ENTRY *) Arg);\r
199}\r
200\r
201\r
202/**\r
203 Reassemble the IP fragments. If all the fragments of the packet\r
204 have been received, it will wrap the packet in a net buffer then\r
205 return it to caller. If the packet can't be assembled, NULL is\r
206 return.\r
207\r
208 @param Table The assemble table used. New assemble entry will be created\r
209 if the Packet is from a new chain of fragments.\r
210 @param Packet The fragment to assemble. It might be freed if the fragment\r
211 can't be re-assembled.\r
212\r
213 @return NULL if the packet can't be reassemble. The point to just assembled\r
214 packet if all the fragments of the packet have arrived.\r
215\r
216**/\r
217NET_BUF *\r
218Ip4Reassemble (\r
219 IN OUT IP4_ASSEMBLE_TABLE *Table,\r
220 IN OUT NET_BUF *Packet\r
221 )\r
222{\r
223 IP4_HEAD *IpHead;\r
224 IP4_CLIP_INFO *This;\r
225 IP4_CLIP_INFO *Node;\r
226 IP4_ASSEMBLE_ENTRY *Assemble;\r
227 LIST_ENTRY *Head;\r
228 LIST_ENTRY *Prev;\r
229 LIST_ENTRY *Cur;\r
230 NET_BUF *Fragment;\r
231 NET_BUF *NewPacket;\r
232 INTN Index;\r
233\r
234 IpHead = Packet->Ip.Ip4;\r
235 This = IP4_GET_CLIP_INFO (Packet);\r
236\r
237 ASSERT (IpHead != NULL);\r
238\r
239 //\r
240 // First: find the related assemble entry\r
241 //\r
242 Assemble = NULL;\r
243 Index = IP4_ASSEMBLE_HASH (IpHead->Dst, IpHead->Src, IpHead->Id, IpHead->Protocol);\r
244\r
245 NET_LIST_FOR_EACH (Cur, &Table->Bucket[Index]) {\r
246 Assemble = NET_LIST_USER_STRUCT (Cur, IP4_ASSEMBLE_ENTRY, Link);\r
247\r
248 if ((Assemble->Dst == IpHead->Dst) && (Assemble->Src == IpHead->Src) &&\r
249 (Assemble->Id == IpHead->Id) && (Assemble->Protocol == IpHead->Protocol)) {\r
250 break;\r
251 }\r
252 }\r
253\r
254 //\r
255 // Create a new assemble entry if no assemble entry is related to this packet\r
256 //\r
257 if (Cur == &Table->Bucket[Index]) {\r
258 Assemble = Ip4CreateAssembleEntry (\r
259 IpHead->Dst,\r
260 IpHead->Src,\r
261 IpHead->Id,\r
262 IpHead->Protocol\r
263 );\r
264\r
265 if (Assemble == NULL) {\r
266 goto DROP;\r
267 }\r
268\r
269 InsertHeadList (&Table->Bucket[Index], &Assemble->Link);\r
270 }\r
271 //\r
272 // Assemble shouldn't be NULL here\r
273 //\r
274 ASSERT (Assemble != NULL);\r
275\r
276 //\r
277 // Find the point to insert the packet: before the first\r
278 // fragment with THIS.Start < CUR.Start. the previous one\r
279 // has PREV.Start <= THIS.Start < CUR.Start.\r
280 //\r
281 Head = &Assemble->Fragments;\r
282\r
283 NET_LIST_FOR_EACH (Cur, Head) {\r
284 Fragment = NET_LIST_USER_STRUCT (Cur, NET_BUF, List);\r
285\r
286 if (This->Start < IP4_GET_CLIP_INFO (Fragment)->Start) {\r
287 break;\r
288 }\r
289 }\r
290\r
291 //\r
292 // Check whether the current fragment overlaps with the previous one.\r
293 // It holds that: PREV.Start <= THIS.Start < THIS.End. Only need to\r
294 // check whether THIS.Start < PREV.End for overlap. If two fragments\r
295 // overlaps, trim the overlapped part off THIS fragment.\r
296 //\r
297 if ((Prev = Cur->BackLink) != Head) {\r
298 Fragment = NET_LIST_USER_STRUCT (Prev, NET_BUF, List);\r
299 Node = IP4_GET_CLIP_INFO (Fragment);\r
300\r
301 if (This->Start < Node->End) {\r
302 if (This->End <= Node->End) {\r
303 NetbufFree (Packet);\r
304 return NULL;\r
305 }\r
306\r
307 Ip4TrimPacket (Packet, Node->End, This->End);\r
308 }\r
309 }\r
310\r
311 //\r
312 // Insert the fragment into the packet. The fragment may be removed\r
313 // from the list by the following checks.\r
314 //\r
315 NetListInsertBefore (Cur, &Packet->List);\r
316\r
317 //\r
318 // Check the packets after the insert point. It holds that:\r
319 // THIS.Start <= NODE.Start < NODE.End. The equality holds\r
320 // if PREV and NEXT are continuous. THIS fragment may fill\r
321 // several holes. Remove the completely overlapped fragments\r
322 //\r
323 while (Cur != Head) {\r
324 Fragment = NET_LIST_USER_STRUCT (Cur, NET_BUF, List);\r
325 Node = IP4_GET_CLIP_INFO (Fragment);\r
326\r
327 //\r
328 // Remove fragments completely overlapped by this fragment\r
329 //\r
330 if (Node->End <= This->End) {\r
331 Cur = Cur->ForwardLink;\r
332\r
333 RemoveEntryList (&Fragment->List);\r
334 Assemble->CurLen -= Node->Length;\r
335\r
336 NetbufFree (Fragment);\r
337 continue;\r
338 }\r
339\r
340 //\r
341 // The conditions are: THIS.Start <= NODE.Start, and THIS.End <\r
342 // NODE.End. Two fragments overlaps if NODE.Start < THIS.End.\r
343 // If two fragments start at the same offset, remove THIS fragment\r
344 // because ((THIS.Start == NODE.Start) && (THIS.End < NODE.End)).\r
345 //\r
346 if (Node->Start < This->End) {\r
347 if (This->Start == Node->Start) {\r
348 RemoveEntryList (&Packet->List);\r
349 goto DROP;\r
350 }\r
351\r
352 Ip4TrimPacket (Packet, This->Start, Node->Start);\r
353 }\r
354\r
355 break;\r
356 }\r
357\r
358 //\r
359 // Update the assemble info: increase the current length. If it is\r
360 // the frist fragment, update the packet's IP head and per packet\r
361 // info. If it is the last fragment, update the total length.\r
362 //\r
363 Assemble->CurLen += This->Length;\r
364\r
365 if (This->Start == 0) {\r
366 //\r
367 // Once the first fragment is enqueued, it can't be removed\r
368 // from the fragment list. So, Assemble->Head always point\r
369 // to valid memory area.\r
370 //\r
371 ASSERT (Assemble->Head == NULL);\r
372\r
373 Assemble->Head = IpHead;\r
374 Assemble->Info = IP4_GET_CLIP_INFO (Packet);\r
375 }\r
376\r
377 //\r
378 // Don't update the length more than once.\r
379 //\r
380 if (IP4_LAST_FRAGMENT (IpHead->Fragment) && (Assemble->TotalLen == 0)) {\r
381 Assemble->TotalLen = This->End;\r
382 }\r
383\r
384 //\r
385 // Deliver the whole packet if all the fragments received.\r
386 // All fragments received if:\r
387 // 1. received the last one, so, the total length is know\r
388 // 2. received all the data. If the last fragment on the\r
389 // queue ends at the total length, all data is received.\r
390 //\r
391 if ((Assemble->TotalLen != 0) && (Assemble->CurLen >= Assemble->TotalLen)) {\r
392\r
393 RemoveEntryList (&Assemble->Link);\r
394\r
395 //\r
396 // If the packet is properly formated, the last fragment's End\r
397 // equals to the packet's total length. Otherwise, the packet\r
398 // is a fake, drop it now.\r
399 //\r
400 Fragment = NET_LIST_USER_STRUCT (Head->BackLink, NET_BUF, List);\r
401\r
402 if (IP4_GET_CLIP_INFO (Fragment)->End != Assemble->TotalLen) {\r
403 Ip4FreeAssembleEntry (Assemble);\r
404 return NULL;\r
405 }\r
406\r
407 //\r
408 // Wrap the packet in a net buffer then deliver it up\r
409 //\r
410 NewPacket = NetbufFromBufList (\r
411 &Assemble->Fragments,\r
412 0,\r
413 0,\r
414 Ip4OnFreeFragments,\r
415 Assemble\r
416 );\r
417\r
418 if (NewPacket == NULL) {\r
419 Ip4FreeAssembleEntry (Assemble);\r
420 return NULL;\r
421 }\r
422\r
423 NewPacket->Ip.Ip4 = Assemble->Head;\r
424\r
425 ASSERT (Assemble->Info != NULL);\r
426\r
427 CopyMem (\r
428 IP4_GET_CLIP_INFO (NewPacket),\r
429 Assemble->Info,\r
430 sizeof (*IP4_GET_CLIP_INFO (NewPacket))\r
431 );\r
432\r
433 return NewPacket;\r
434 }\r
435\r
436 return NULL;\r
437\r
438DROP:\r
439 NetbufFree (Packet);\r
440 return NULL;\r
441}\r
442\r
443/**\r
444 The callback function for the net buffer which wraps the packet processed by \r
445 IPsec. It releases the wrap packet and also signals IPsec to free the resources. \r
446\r
447 @param[in] Arg The wrap context\r
448\r
449**/\r
450VOID\r
451EFIAPI\r
452Ip4IpSecFree (\r
453 IN VOID *Arg\r
454 )\r
455{\r
456 IP4_IPSEC_WRAP *Wrap;\r
457\r
458 Wrap = (IP4_IPSEC_WRAP *) Arg;\r
459\r
460 if (Wrap->IpSecRecycleSignal != NULL) {\r
461 gBS->SignalEvent (Wrap->IpSecRecycleSignal);\r
462 }\r
463\r
464 NetbufFree (Wrap->Packet);\r
465\r
466 FreePool (Wrap);\r
467\r
468 return;\r
469}\r
470\r
471/**\r
472 The work function to locate IPsec protocol to process the inbound or \r
473 outbound IP packets. The process routine handls the packet with following\r
474 actions: bypass the packet, discard the packet, or protect the packet. \r
475\r
476 @param[in] IpSb The IP4 service instance.\r
477 @param[in, out] Head The The caller supplied IP4 header.\r
478 @param[in, out] Netbuf The IP4 packet to be processed by IPsec.\r
479 @param[in, out] Options The caller supplied options.\r
480 @param[in, out] OptionsLen The length of the option.\r
481 @param[in] Direction The directionality in an SPD entry, \r
482 EfiIPsecInBound or EfiIPsecOutBound.\r
483 @param[in] Context The token's wrap.\r
484\r
485 @retval EFI_SUCCESS The IPsec protocol is not available or disabled.\r
486 @retval EFI_SUCCESS The packet was bypassed and all buffers remain the same.\r
487 @retval EFI_SUCCESS The packet was protected.\r
488 @retval EFI_ACCESS_DENIED The packet was discarded. \r
489 @retval EFI_OUT_OF_RESOURCES There is no suffcient resource to complete the operation.\r
490 @retval EFI_BUFFER_TOO_SMALL The number of non-empty block is bigger than the \r
491 number of input data blocks when build a fragment table.\r
492\r
493**/\r
494EFI_STATUS\r
495Ip4IpSecProcessPacket (\r
496 IN IP4_SERVICE *IpSb,\r
497 IN OUT IP4_HEAD **Head,\r
498 IN OUT NET_BUF **Netbuf,\r
499 IN OUT UINT8 **Options,\r
500 IN OUT UINT32 *OptionsLen,\r
501 IN EFI_IPSEC_TRAFFIC_DIR Direction,\r
502 IN VOID *Context\r
503 )\r
504{\r
505 NET_FRAGMENT *FragmentTable;\r
506 NET_FRAGMENT *OriginalFragmentTable;\r
507 UINT32 FragmentCount;\r
508 UINT32 OriginalFragmentCount;\r
509 EFI_EVENT RecycleEvent;\r
510 NET_BUF *Packet;\r
511 IP4_TXTOKEN_WRAP *TxWrap;\r
512 IP4_IPSEC_WRAP *IpSecWrap;\r
513 EFI_STATUS Status;\r
514 IP4_HEAD ZeroHead;\r
515\r
516 Status = EFI_SUCCESS;\r
517\r
518 if (!mIpSec2Installed) {\r
519 goto ON_EXIT;\r
520 }\r
521 \r
522 Packet = *Netbuf;\r
523 RecycleEvent = NULL;\r
524 IpSecWrap = NULL;\r
525 FragmentTable = NULL;\r
526 TxWrap = (IP4_TXTOKEN_WRAP *) Context; \r
527 FragmentCount = Packet->BlockOpNum;\r
528\r
529 ZeroMem (&ZeroHead, sizeof (IP4_HEAD));\r
530 \r
531 if (mIpSec == NULL) {\r
532 gBS->LocateProtocol (&gEfiIpSec2ProtocolGuid, NULL, (VOID **) &mIpSec);\r
533 if (mIpSec == NULL) {\r
534 goto ON_EXIT;\r
535 }\r
536 }\r
537\r
538 //\r
539 // Check whether the IPsec enable variable is set.\r
540 //\r
541 if (mIpSec->DisabledFlag) {\r
542 //\r
543 // If IPsec is disabled, restore the original MTU\r
544 // \r
545 IpSb->MaxPacketSize = IpSb->OldMaxPacketSize;\r
546 goto ON_EXIT;\r
547 } else {\r
548 //\r
549 // If IPsec is enabled, use the MTU which reduce the IPsec header length. \r
550 //\r
551 IpSb->MaxPacketSize = IpSb->OldMaxPacketSize - IP4_MAX_IPSEC_HEADLEN; \r
552 }\r
553\r
554 //\r
555 // Rebuild fragment table from netbuf to ease IPsec process.\r
556 //\r
557 FragmentTable = AllocateZeroPool (FragmentCount * sizeof (NET_FRAGMENT));\r
558\r
559 if (FragmentTable == NULL) {\r
560 Status = EFI_OUT_OF_RESOURCES;\r
561 goto ON_EXIT;\r
562 }\r
563 \r
564 Status = NetbufBuildExt (Packet, FragmentTable, &FragmentCount);\r
565 \r
566 //\r
567 // Record the original FragmentTable and count.\r
568 //\r
569 OriginalFragmentTable = FragmentTable;\r
570 OriginalFragmentCount = FragmentCount;\r
571\r
572 if (EFI_ERROR (Status)) {\r
573 FreePool (FragmentTable);\r
574 goto ON_EXIT;\r
575 }\r
576\r
577 //\r
578 // Convert host byte order to network byte order\r
579 //\r
580 Ip4NtohHead (*Head);\r
581 \r
582 Status = mIpSec->ProcessExt (\r
583 mIpSec,\r
584 IpSb->Controller,\r
585 IP_VERSION_4,\r
586 (VOID *) (*Head),\r
587 &(*Head)->Protocol,\r
588 (VOID **) Options,\r
589 OptionsLen,\r
590 (EFI_IPSEC_FRAGMENT_DATA **) (&FragmentTable),\r
591 &FragmentCount,\r
592 Direction,\r
593 &RecycleEvent\r
594 );\r
595 //\r
596 // Convert back to host byte order\r
597 //\r
598 Ip4NtohHead (*Head);\r
599 \r
600 if (EFI_ERROR (Status)) {\r
601 FreePool (OriginalFragmentTable);\r
602 goto ON_EXIT;\r
603 }\r
604\r
605 if (OriginalFragmentTable == FragmentTable && OriginalFragmentCount == FragmentCount) {\r
606 //\r
607 // For ByPass Packet\r
608 //\r
609 FreePool (FragmentTable);\r
610 goto ON_EXIT;\r
611 } else {\r
612 //\r
613 // Free the FragmentTable which allocated before calling the IPsec.\r
614 //\r
615 FreePool (OriginalFragmentTable);\r
616 }\r
617\r
618 if (Direction == EfiIPsecOutBound && TxWrap != NULL) {\r
619 \r
620 TxWrap->IpSecRecycleSignal = RecycleEvent;\r
621 TxWrap->Packet = NetbufFromExt (\r
622 FragmentTable,\r
623 FragmentCount,\r
624 IP4_MAX_HEADLEN,\r
625 0,\r
626 Ip4FreeTxToken,\r
627 TxWrap\r
628 );\r
629 if (TxWrap->Packet == NULL) {\r
630 //\r
631 // Recover the TxWrap->Packet, if meet a error, and the caller will free\r
632 // the TxWrap.\r
633 //\r
634 TxWrap->Packet = *Netbuf;\r
635 Status = EFI_OUT_OF_RESOURCES;\r
636 goto ON_EXIT;\r
637 }\r
638\r
639 //\r
640 // Free orginal Netbuf.\r
641 //\r
642 NetIpSecNetbufFree (*Netbuf);\r
643 *Netbuf = TxWrap->Packet;\r
644 \r
645 } else {\r
646 \r
647 IpSecWrap = AllocateZeroPool (sizeof (IP4_IPSEC_WRAP));\r
648 \r
649 if (IpSecWrap == NULL) {\r
650 Status = EFI_OUT_OF_RESOURCES;\r
651 gBS->SignalEvent (RecycleEvent);\r
652 goto ON_EXIT;\r
653 }\r
654 \r
655 IpSecWrap->IpSecRecycleSignal = RecycleEvent;\r
656 IpSecWrap->Packet = Packet;\r
657 Packet = NetbufFromExt (\r
658 FragmentTable, \r
659 FragmentCount, \r
660 IP4_MAX_HEADLEN, \r
661 0, \r
662 Ip4IpSecFree, \r
663 IpSecWrap\r
664 );\r
665 \r
666 if (Packet == NULL) {\r
667 Packet = IpSecWrap->Packet;\r
668 gBS->SignalEvent (RecycleEvent);\r
669 FreePool (IpSecWrap);\r
670 Status = EFI_OUT_OF_RESOURCES;\r
671 goto ON_EXIT;\r
672 }\r
673\r
674 if (Direction == EfiIPsecInBound && 0 != CompareMem (*Head, &ZeroHead, sizeof (IP4_HEAD))) {\r
675 Ip4PrependHead (Packet, *Head, *Options, *OptionsLen);\r
676 Ip4NtohHead (Packet->Ip.Ip4);\r
677 NetbufTrim (Packet, ((*Head)->HeadLen << 2), TRUE);\r
678\r
679 CopyMem (\r
680 IP4_GET_CLIP_INFO (Packet),\r
681 IP4_GET_CLIP_INFO (IpSecWrap->Packet),\r
682 sizeof (IP4_CLIP_INFO)\r
683 );\r
684 }\r
685 *Netbuf = Packet;\r
686 }\r
687\r
688ON_EXIT:\r
689 return Status;\r
690}\r
691\r
692/**\r
693 Pre-process the IPv4 packet. First validates the IPv4 packet, and\r
694 then reassembles packet if it is necessary.\r
695 \r
696 @param[in] IpSb Pointer to IP4_SERVICE.\r
697 @param[in, out] Packet Pointer to the Packet to be processed.\r
698 @param[in] Head Pointer to the IP4_HEAD.\r
699 @param[in] Option Pointer to a buffer which contains the IPv4 option.\r
700 @param[in] OptionLen The length of Option in bytes.\r
701 @param[in] Flag The link layer flag for the packet received, such\r
702 as multicast.\r
703\r
704 @retval EFI_SEUCCESS The recieved packet is in well form.\r
705 @retval EFI_INVAILD_PARAMETER The recieved packet is malformed. \r
706\r
707**/\r
708EFI_STATUS\r
709Ip4PreProcessPacket (\r
710 IN IP4_SERVICE *IpSb,\r
711 IN OUT NET_BUF **Packet,\r
712 IN IP4_HEAD *Head,\r
713 IN UINT8 *Option,\r
714 IN UINT32 OptionLen, \r
715 IN UINT32 Flag\r
716 ) \r
717{\r
718 IP4_CLIP_INFO *Info;\r
719 UINT32 HeadLen;\r
720 UINT32 TotalLen;\r
721 UINT16 Checksum;\r
722\r
723 //\r
724 // Check if the IP4 header is correctly formatted.\r
725 //\r
726 if ((*Packet)->TotalSize < IP4_MIN_HEADLEN) {\r
727 return EFI_INVALID_PARAMETER;\r
728 }\r
729 \r
730 HeadLen = (Head->HeadLen << 2);\r
731 TotalLen = NTOHS (Head->TotalLen);\r
732\r
733 //\r
734 // Mnp may deliver frame trailer sequence up, trim it off.\r
735 //\r
736 if (TotalLen < (*Packet)->TotalSize) {\r
737 NetbufTrim (*Packet, (*Packet)->TotalSize - TotalLen, FALSE);\r
738 }\r
739\r
740 if ((Head->Ver != 4) || (HeadLen < IP4_MIN_HEADLEN) ||\r
741 (TotalLen < HeadLen) || (TotalLen != (*Packet)->TotalSize)) {\r
742 return EFI_INVALID_PARAMETER;\r
743 }\r
744\r
745 //\r
746 // Some OS may send IP packets without checksum.\r
747 //\r
748 Checksum = (UINT16) (~NetblockChecksum ((UINT8 *) Head, HeadLen));\r
749\r
750 if ((Head->Checksum != 0) && (Checksum != 0)) {\r
751 return EFI_INVALID_PARAMETER;\r
752 }\r
753\r
754 //\r
755 // Convert the IP header to host byte order, then get the per packet info.\r
756 //\r
757 (*Packet)->Ip.Ip4 = Ip4NtohHead (Head);\r
758\r
759 Info = IP4_GET_CLIP_INFO (*Packet);\r
760 Info->LinkFlag = Flag;\r
761 Info->CastType = Ip4GetHostCast (IpSb, Head->Dst, Head->Src);\r
762 Info->Start = (Head->Fragment & IP4_HEAD_OFFSET_MASK) << 3;\r
763 Info->Length = Head->TotalLen - HeadLen;\r
764 Info->End = Info->Start + Info->Length;\r
765 Info->Status = EFI_SUCCESS;\r
766\r
767 //\r
768 // The packet is destinated to us if the CastType is non-zero.\r
769 //\r
770 if ((Info->CastType == 0) || (Info->End > IP4_MAX_PACKET_SIZE)) {\r
771 return EFI_INVALID_PARAMETER;\r
772 }\r
773\r
774 //\r
775 // Validate the options. Don't call the Ip4OptionIsValid if\r
776 // there is no option to save some CPU process.\r
777 //\r
778 \r
779 if ((OptionLen > 0) && !Ip4OptionIsValid (Option, OptionLen, TRUE)) {\r
780 return EFI_INVALID_PARAMETER;\r
781 }\r
782\r
783 //\r
784 // Trim the head off, after this point, the packet is headless,\r
785 // and Packet->TotalLen == Info->Length.\r
786 //\r
787 NetbufTrim (*Packet, HeadLen, TRUE);\r
788\r
789 //\r
790 // Reassemble the packet if this is a fragment. The packet is a\r
791 // fragment if its head has MF (more fragment) set, or it starts\r
792 // at non-zero byte.\r
793 //\r
794 if (((Head->Fragment & IP4_HEAD_MF_MASK) != 0) || (Info->Start != 0)) {\r
795 //\r
796 // Drop the fragment if DF is set but it is fragmented. Gateway\r
797 // need to send a type 4 destination unreache ICMP message here.\r
798 //\r
799 if ((Head->Fragment & IP4_HEAD_DF_MASK) != 0) {\r
800 return EFI_INVALID_PARAMETER;\r
801 }\r
802\r
803 //\r
804 // The length of all but the last fragments is in the unit of 8 bytes.\r
805 //\r
806 if (((Head->Fragment & IP4_HEAD_MF_MASK) != 0) && (Info->Length % 8 != 0)) {\r
807 return EFI_INVALID_PARAMETER;\r
808 }\r
809\r
810 *Packet = Ip4Reassemble (&IpSb->Assemble, *Packet);\r
811\r
812 //\r
813 // Packet assembly isn't complete, start receive more packet.\r
814 //\r
815 if (*Packet == NULL) {\r
816 return EFI_INVALID_PARAMETER;\r
817 }\r
818 }\r
819 \r
820 return EFI_SUCCESS;\r
821}\r
822\r
823/**\r
824 The IP4 input routine. It is called by the IP4_INTERFACE when a\r
825 IP4 fragment is received from MNP.\r
826\r
827 @param[in] Ip4Instance The IP4 child that request the receive, most like\r
828 it is NULL.\r
829 @param[in] Packet The IP4 packet received.\r
830 @param[in] IoStatus The return status of receive request.\r
831 @param[in] Flag The link layer flag for the packet received, such\r
832 as multicast.\r
833 @param[in] Context The IP4 service instance that own the MNP.\r
834\r
835**/\r
836VOID\r
837Ip4AccpetFrame (\r
838 IN IP4_PROTOCOL *Ip4Instance,\r
839 IN NET_BUF *Packet,\r
840 IN EFI_STATUS IoStatus,\r
841 IN UINT32 Flag,\r
842 IN VOID *Context\r
843 )\r
844{\r
845 IP4_SERVICE *IpSb;\r
846 IP4_HEAD *Head;\r
847 EFI_STATUS Status;\r
848 IP4_HEAD ZeroHead;\r
849 UINT8 *Option;\r
850 UINT32 OptionLen;\r
851 \r
852 IpSb = (IP4_SERVICE *) Context;\r
853 Option = NULL;\r
854\r
855 if (EFI_ERROR (IoStatus) || (IpSb->State == IP4_SERVICE_DESTROY)) {\r
856 goto DROP;\r
857 }\r
858\r
859 Head = (IP4_HEAD *) NetbufGetByte (Packet, 0, NULL);\r
860 ASSERT (Head != NULL);\r
861 OptionLen = (Head->HeadLen << 2) - IP4_MIN_HEADLEN;\r
862 if (OptionLen > 0) {\r
863 Option = (UINT8 *) (Head + 1);\r
864 }\r
865\r
866 //\r
867 // Validate packet format and reassemble packet if it is necessary.\r
868 //\r
869 Status = Ip4PreProcessPacket (\r
870 IpSb, \r
871 &Packet, \r
872 Head, \r
873 Option,\r
874 OptionLen, \r
875 Flag\r
876 );\r
877\r
878 if (EFI_ERROR (Status)) {\r
879 goto RESTART;\r
880 }\r
881\r
882 //\r
883 // After trim off, the packet is a esp/ah/udp/tcp/icmp6 net buffer,\r
884 // and no need consider any other ahead ext headers.\r
885 //\r
886 Status = Ip4IpSecProcessPacket (\r
887 IpSb,\r
888 &Head,\r
889 &Packet,\r
890 &Option,\r
891 &OptionLen,\r
892 EfiIPsecInBound,\r
893 NULL\r
894 );\r
895\r
896 if (EFI_ERROR (Status)) {\r
897 goto RESTART;\r
898 }\r
899 \r
900 //\r
901 // If the packet is protected by tunnel mode, parse the inner Ip Packet.\r
902 //\r
903 ZeroMem (&ZeroHead, sizeof (IP4_HEAD));\r
904 if (0 == CompareMem (Head, &ZeroHead, sizeof (IP4_HEAD))) {\r
905 // Packet may have been changed. Head, HeadLen, TotalLen, and\r
906 // info must be reloaded bofore use. The ownership of the packet\r
907 // is transfered to the packet process logic.\r
908 //\r
909 Head = (IP4_HEAD *) NetbufGetByte (Packet, 0, NULL);\r
910 ASSERT (Head != NULL);\r
911 Status = Ip4PreProcessPacket (\r
912 IpSb,\r
913 &Packet,\r
914 Head,\r
915 Option,\r
916 OptionLen,\r
917 Flag\r
918 );\r
919 if (EFI_ERROR (Status)) {\r
920 goto RESTART;\r
921 }\r
922 }\r
923 \r
924 ASSERT (Packet != NULL);\r
925 Head = Packet->Ip.Ip4;\r
926 IP4_GET_CLIP_INFO (Packet)->Status = EFI_SUCCESS;\r
927\r
928 switch (Head->Protocol) {\r
929 case EFI_IP_PROTO_ICMP:\r
930 Ip4IcmpHandle (IpSb, Head, Packet);\r
931 break;\r
932\r
933 case IP4_PROTO_IGMP:\r
934 Ip4IgmpHandle (IpSb, Head, Packet);\r
935 break;\r
936\r
937 default:\r
938 Ip4Demultiplex (IpSb, Head, Packet, Option, OptionLen);\r
939 }\r
940\r
941 Packet = NULL;\r
942\r
943 //\r
944 // Dispatch the DPCs queued by the NotifyFunction of the rx token's events\r
945 // which are signaled with received data.\r
946 //\r
947 DispatchDpc ();\r
948\r
949RESTART:\r
950 Ip4ReceiveFrame (IpSb->DefaultInterface, NULL, Ip4AccpetFrame, IpSb);\r
951\r
952DROP:\r
953 if (Packet != NULL) {\r
954 NetbufFree (Packet);\r
955 }\r
956\r
957 return ;\r
958}\r
959\r
960\r
961/**\r
962 Check whether this IP child accepts the packet.\r
963\r
964 @param[in] IpInstance The IP child to check\r
965 @param[in] Head The IP header of the packet\r
966 @param[in] Packet The data of the packet\r
967\r
968 @retval TRUE If the child wants to receive the packet.\r
969 @retval FALSE Otherwise.\r
970\r
971**/\r
972BOOLEAN\r
973Ip4InstanceFrameAcceptable (\r
974 IN IP4_PROTOCOL *IpInstance,\r
975 IN IP4_HEAD *Head,\r
976 IN NET_BUF *Packet\r
977 )\r
978{\r
979 IP4_ICMP_ERROR_HEAD Icmp;\r
980 EFI_IP4_CONFIG_DATA *Config;\r
981 IP4_CLIP_INFO *Info;\r
982 UINT16 Proto;\r
983 UINT32 Index;\r
984\r
985 Config = &IpInstance->ConfigData;\r
986\r
987 //\r
988 // Dirty trick for the Tiano UEFI network stack implmentation. If\r
989 // ReceiveTimeout == -1, the receive of the packet for this instance\r
990 // is disabled. The UEFI spec don't have such capability. We add\r
991 // this to improve the performance because IP will make a copy of\r
992 // the received packet for each accepting instance. Some IP instances\r
993 // used by UDP/TCP only send packets, they don't wants to receive.\r
994 //\r
995 if (Config->ReceiveTimeout == (UINT32)(-1)) {\r
996 return FALSE;\r
997 }\r
998\r
999 if (Config->AcceptPromiscuous) {\r
1000 return TRUE;\r
1001 }\r
1002\r
1003 //\r
1004 // Use protocol from the IP header embedded in the ICMP error\r
1005 // message to filter, instead of ICMP itself. ICMP handle will\r
1006 // call Ip4Demultiplex to deliver ICMP errors.\r
1007 //\r
1008 Proto = Head->Protocol;\r
1009\r
1010 if ((Proto == EFI_IP_PROTO_ICMP) && (!Config->AcceptAnyProtocol) && (Proto != Config->DefaultProtocol)) {\r
1011 NetbufCopy (Packet, 0, sizeof (Icmp.Head), (UINT8 *) &Icmp.Head);\r
1012\r
1013 if (mIcmpClass[Icmp.Head.Type].IcmpClass == ICMP_ERROR_MESSAGE) {\r
1014 if (!Config->AcceptIcmpErrors) {\r
1015 return FALSE;\r
1016 }\r
1017\r
1018 NetbufCopy (Packet, 0, sizeof (Icmp), (UINT8 *) &Icmp);\r
1019 Proto = Icmp.IpHead.Protocol;\r
1020 }\r
1021 }\r
1022\r
1023 //\r
1024 // Match the protocol\r
1025 //\r
1026 if (!Config->AcceptAnyProtocol && (Proto != Config->DefaultProtocol)) {\r
1027 return FALSE;\r
1028 }\r
1029\r
1030 //\r
1031 // Check for broadcast, the caller has computed the packet's\r
1032 // cast type for this child's interface.\r
1033 //\r
1034 Info = IP4_GET_CLIP_INFO (Packet);\r
1035\r
1036 if (IP4_IS_BROADCAST (Info->CastType)) {\r
1037 return Config->AcceptBroadcast;\r
1038 }\r
1039\r
1040 //\r
1041 // If it is a multicast packet, check whether we are in the group.\r
1042 //\r
1043 if (Info->CastType == IP4_MULTICAST) {\r
1044 //\r
1045 // Receive the multicast if the instance wants to receive all packets.\r
1046 //\r
1047 if (!IpInstance->ConfigData.UseDefaultAddress && (IpInstance->Interface->Ip == 0)) {\r
1048 return TRUE;\r
1049 }\r
1050\r
1051 for (Index = 0; Index < IpInstance->GroupCount; Index++) {\r
1052 if (IpInstance->Groups[Index] == HTONL (Head->Dst)) {\r
1053 break;\r
1054 }\r
1055 }\r
1056\r
1057 return (BOOLEAN)(Index < IpInstance->GroupCount);\r
1058 }\r
1059\r
1060 return TRUE;\r
1061}\r
1062\r
1063\r
1064/**\r
1065 Enqueue a shared copy of the packet to the IP4 child if the\r
1066 packet is acceptable to it. Here the data of the packet is\r
1067 shared, but the net buffer isn't.\r
1068\r
1069 @param[in] IpInstance The IP4 child to enqueue the packet to\r
1070 @param[in] Head The IP header of the received packet\r
1071 @param[in] Packet The data of the received packet\r
1072\r
1073 @retval EFI_NOT_STARTED The IP child hasn't been configured.\r
1074 @retval EFI_INVALID_PARAMETER The child doesn't want to receive the packet\r
1075 @retval EFI_OUT_OF_RESOURCES Failed to allocate some resource\r
1076 @retval EFI_SUCCESS A shared copy the packet is enqueued to the child.\r
1077\r
1078**/\r
1079EFI_STATUS\r
1080Ip4InstanceEnquePacket (\r
1081 IN IP4_PROTOCOL *IpInstance,\r
1082 IN IP4_HEAD *Head,\r
1083 IN NET_BUF *Packet\r
1084 )\r
1085{\r
1086 IP4_CLIP_INFO *Info;\r
1087 NET_BUF *Clone;\r
1088\r
1089 //\r
1090 // Check whether the packet is acceptable to this instance.\r
1091 //\r
1092 if (IpInstance->State != IP4_STATE_CONFIGED) {\r
1093 return EFI_NOT_STARTED;\r
1094 }\r
1095\r
1096 if (!Ip4InstanceFrameAcceptable (IpInstance, Head, Packet)) {\r
1097 return EFI_INVALID_PARAMETER;\r
1098 }\r
1099\r
1100 //\r
1101 // Enque a shared copy of the packet.\r
1102 //\r
1103 Clone = NetbufClone (Packet);\r
1104\r
1105 if (Clone == NULL) {\r
1106 return EFI_OUT_OF_RESOURCES;\r
1107 }\r
1108\r
1109 //\r
1110 // Set the receive time out for the assembled packet. If it expires,\r
1111 // packet will be removed from the queue.\r
1112 //\r
1113 Info = IP4_GET_CLIP_INFO (Clone);\r
1114 Info->Life = IP4_US_TO_SEC (IpInstance->ConfigData.ReceiveTimeout);\r
1115\r
1116 InsertTailList (&IpInstance->Received, &Clone->List);\r
1117 return EFI_SUCCESS;\r
1118}\r
1119\r
1120\r
1121/**\r
1122 The signal handle of IP4's recycle event. It is called back\r
1123 when the upper layer release the packet.\r
1124\r
1125 @param Event The IP4's recycle event.\r
1126 @param Context The context of the handle, which is a\r
1127 IP4_RXDATA_WRAP\r
1128\r
1129**/\r
1130VOID\r
1131EFIAPI\r
1132Ip4OnRecyclePacket (\r
1133 IN EFI_EVENT Event,\r
1134 IN VOID *Context\r
1135 )\r
1136{\r
1137 IP4_RXDATA_WRAP *Wrap;\r
1138\r
1139 Wrap = (IP4_RXDATA_WRAP *) Context;\r
1140\r
1141 EfiAcquireLockOrFail (&Wrap->IpInstance->RecycleLock);\r
1142 RemoveEntryList (&Wrap->Link);\r
1143 EfiReleaseLock (&Wrap->IpInstance->RecycleLock);\r
1144\r
1145 ASSERT (!NET_BUF_SHARED (Wrap->Packet));\r
1146 NetbufFree (Wrap->Packet);\r
1147\r
1148 gBS->CloseEvent (Wrap->RxData.RecycleSignal);\r
1149 FreePool (Wrap);\r
1150}\r
1151\r
1152\r
1153/**\r
1154 Wrap the received packet to a IP4_RXDATA_WRAP, which will be\r
1155 delivered to the upper layer. Each IP4 child that accepts the\r
1156 packet will get a not-shared copy of the packet which is wrapped\r
1157 in the IP4_RXDATA_WRAP. The IP4_RXDATA_WRAP->RxData is passed\r
1158 to the upper layer. Upper layer will signal the recycle event in\r
1159 it when it is done with the packet.\r
1160\r
1161 @param[in] IpInstance The IP4 child to receive the packet.\r
1162 @param[in] Packet The packet to deliver up.\r
1163\r
1164 @retval Wrap if warp the packet succeed.\r
1165 @retval NULL failed to wrap the packet .\r
1166\r
1167**/\r
1168IP4_RXDATA_WRAP *\r
1169Ip4WrapRxData (\r
1170 IN IP4_PROTOCOL *IpInstance,\r
1171 IN NET_BUF *Packet\r
1172 )\r
1173{\r
1174 IP4_RXDATA_WRAP *Wrap;\r
1175 EFI_IP4_RECEIVE_DATA *RxData;\r
1176 EFI_STATUS Status;\r
1177 BOOLEAN RawData;\r
1178\r
1179 Wrap = AllocatePool (IP4_RXDATA_WRAP_SIZE (Packet->BlockOpNum));\r
1180\r
1181 if (Wrap == NULL) {\r
1182 return NULL;\r
1183 }\r
1184\r
1185 InitializeListHead (&Wrap->Link);\r
1186\r
1187 Wrap->IpInstance = IpInstance;\r
1188 Wrap->Packet = Packet;\r
1189 RxData = &Wrap->RxData;\r
1190\r
1191 ZeroMem (RxData, sizeof (EFI_IP4_RECEIVE_DATA));\r
1192\r
1193 Status = gBS->CreateEvent (\r
1194 EVT_NOTIFY_SIGNAL,\r
1195 TPL_NOTIFY,\r
1196 Ip4OnRecyclePacket,\r
1197 Wrap,\r
1198 &RxData->RecycleSignal\r
1199 );\r
1200\r
1201 if (EFI_ERROR (Status)) {\r
1202 FreePool (Wrap);\r
1203 return NULL;\r
1204 }\r
1205\r
1206 ASSERT (Packet->Ip.Ip4 != NULL);\r
1207\r
1208 ASSERT (IpInstance != NULL);\r
1209 RawData = IpInstance->ConfigData.RawData;\r
1210\r
1211 //\r
1212 // The application expects a network byte order header.\r
1213 //\r
1214 if (!RawData) {\r
1215 RxData->HeaderLength = (Packet->Ip.Ip4->HeadLen << 2);\r
1216 RxData->Header = (EFI_IP4_HEADER *) Ip4NtohHead (Packet->Ip.Ip4);\r
1217 RxData->OptionsLength = RxData->HeaderLength - IP4_MIN_HEADLEN;\r
1218 RxData->Options = NULL;\r
1219\r
1220 if (RxData->OptionsLength != 0) {\r
1221 RxData->Options = (VOID *) (RxData->Header + 1);\r
1222 }\r
1223 }\r
1224\r
1225 RxData->DataLength = Packet->TotalSize;\r
1226\r
1227 //\r
1228 // Build the fragment table to be delivered up.\r
1229 //\r
1230 RxData->FragmentCount = Packet->BlockOpNum;\r
1231 NetbufBuildExt (Packet, (NET_FRAGMENT *) RxData->FragmentTable, &RxData->FragmentCount);\r
1232\r
1233 return Wrap;\r
1234}\r
1235\r
1236\r
1237/**\r
1238 Deliver the received packets to upper layer if there are both received\r
1239 requests and enqueued packets. If the enqueued packet is shared, it will\r
1240 duplicate it to a non-shared packet, release the shared packet, then\r
1241 deliver the non-shared packet up.\r
1242\r
1243 @param[in] IpInstance The IP child to deliver the packet up.\r
1244\r
1245 @retval EFI_OUT_OF_RESOURCES Failed to allocate resources to deliver the\r
1246 packets.\r
1247 @retval EFI_SUCCESS All the enqueued packets that can be delivered\r
1248 are delivered up.\r
1249\r
1250**/\r
1251EFI_STATUS\r
1252Ip4InstanceDeliverPacket (\r
1253 IN IP4_PROTOCOL *IpInstance\r
1254 )\r
1255{\r
1256 EFI_IP4_COMPLETION_TOKEN *Token;\r
1257 IP4_RXDATA_WRAP *Wrap;\r
1258 NET_BUF *Packet;\r
1259 NET_BUF *Dup;\r
1260 UINT8 *Head;\r
1261 UINT32 HeadLen;\r
1262\r
1263 //\r
1264 // Deliver a packet if there are both a packet and a receive token.\r
1265 //\r
1266 while (!IsListEmpty (&IpInstance->Received) &&\r
1267 !NetMapIsEmpty (&IpInstance->RxTokens)) {\r
1268\r
1269 Packet = NET_LIST_HEAD (&IpInstance->Received, NET_BUF, List);\r
1270\r
1271 if (!NET_BUF_SHARED (Packet)) {\r
1272 //\r
1273 // If this is the only instance that wants the packet, wrap it up.\r
1274 //\r
1275 Wrap = Ip4WrapRxData (IpInstance, Packet);\r
1276\r
1277 if (Wrap == NULL) {\r
1278 return EFI_OUT_OF_RESOURCES;\r
1279 }\r
1280\r
1281 RemoveEntryList (&Packet->List);\r
1282\r
1283 } else {\r
1284 //\r
1285 // Create a duplicated packet if this packet is shared\r
1286 //\r
1287 if (IpInstance->ConfigData.RawData) {\r
1288 HeadLen = 0;\r
1289 } else {\r
1290 HeadLen = IP4_MAX_HEADLEN;\r
1291 }\r
1292\r
1293 Dup = NetbufDuplicate (Packet, NULL, HeadLen);\r
1294\r
1295 if (Dup == NULL) {\r
1296 return EFI_OUT_OF_RESOURCES;\r
1297 }\r
1298\r
1299 if (!IpInstance->ConfigData.RawData) {\r
1300 //\r
1301 // Copy the IP head over. The packet to deliver up is\r
1302 // headless. Trim the head off after copy. The IP head\r
1303 // may be not continuous before the data.\r
1304 //\r
1305 Head = NetbufAllocSpace (Dup, IP4_MAX_HEADLEN, NET_BUF_HEAD);\r
1306 ASSERT (Head != NULL);\r
1307 \r
1308 Dup->Ip.Ip4 = (IP4_HEAD *) Head;\r
1309\r
1310 CopyMem (Head, Packet->Ip.Ip4, Packet->Ip.Ip4->HeadLen << 2);\r
1311 NetbufTrim (Dup, IP4_MAX_HEADLEN, TRUE);\r
1312 }\r
1313\r
1314 Wrap = Ip4WrapRxData (IpInstance, Dup);\r
1315\r
1316 if (Wrap == NULL) {\r
1317 NetbufFree (Dup);\r
1318 return EFI_OUT_OF_RESOURCES;\r
1319 }\r
1320\r
1321 RemoveEntryList (&Packet->List);\r
1322 NetbufFree (Packet);\r
1323\r
1324 Packet = Dup;\r
1325 }\r
1326\r
1327 //\r
1328 // Insert it into the delivered packet, then get a user's\r
1329 // receive token, pass the wrapped packet up.\r
1330 //\r
1331 EfiAcquireLockOrFail (&IpInstance->RecycleLock);\r
1332 InsertHeadList (&IpInstance->Delivered, &Wrap->Link);\r
1333 EfiReleaseLock (&IpInstance->RecycleLock);\r
1334\r
1335 Token = NetMapRemoveHead (&IpInstance->RxTokens, NULL);\r
1336 Token->Status = IP4_GET_CLIP_INFO (Packet)->Status;\r
1337 Token->Packet.RxData = &Wrap->RxData;\r
1338\r
1339 gBS->SignalEvent (Token->Event);\r
1340 }\r
1341\r
1342 return EFI_SUCCESS;\r
1343}\r
1344\r
1345\r
1346/**\r
1347 Enqueue a received packet to all the IP children that share\r
1348 the same interface.\r
1349\r
1350 @param[in] IpSb The IP4 service instance that receive the packet.\r
1351 @param[in] Head The header of the received packet.\r
1352 @param[in] Packet The data of the received packet.\r
1353 @param[in] Option Point to the IP4 packet header options.\r
1354 @param[in] OptionLen Length of the IP4 packet header options. \r
1355 @param[in] IpIf The interface to enqueue the packet to.\r
1356\r
1357 @return The number of the IP4 children that accepts the packet\r
1358\r
1359**/\r
1360INTN\r
1361Ip4InterfaceEnquePacket (\r
1362 IN IP4_SERVICE *IpSb,\r
1363 IN IP4_HEAD *Head,\r
1364 IN NET_BUF *Packet,\r
1365 IN UINT8 *Option,\r
1366 IN UINT32 OptionLen,\r
1367 IN IP4_INTERFACE *IpIf\r
1368 )\r
1369{\r
1370 IP4_PROTOCOL *IpInstance;\r
1371 IP4_CLIP_INFO *Info;\r
1372 LIST_ENTRY *Entry;\r
1373 INTN Enqueued;\r
1374 INTN LocalType;\r
1375 INTN SavedType;\r
1376\r
1377 //\r
1378 // First, check that the packet is acceptable to this interface\r
1379 // and find the local cast type for the interface. A packet sent\r
1380 // to say 192.168.1.1 should NOT be delliever to 10.0.0.1 unless\r
1381 // promiscuous receiving.\r
1382 //\r
1383 LocalType = 0;\r
1384 Info = IP4_GET_CLIP_INFO (Packet);\r
1385\r
1386 if ((Info->CastType == IP4_MULTICAST) || (Info->CastType == IP4_LOCAL_BROADCAST)) {\r
1387 //\r
1388 // If the CastType is multicast, don't need to filter against\r
1389 // the group address here, Ip4InstanceFrameAcceptable will do\r
1390 // that later.\r
1391 //\r
1392 LocalType = Info->CastType;\r
1393\r
1394 } else {\r
1395 //\r
1396 // Check the destination againist local IP. If the station\r
1397 // address is 0.0.0.0, it means receiving all the IP destined\r
1398 // to local non-zero IP. Otherwise, it is necessary to compare\r
1399 // the destination to the interface's IP address.\r
1400 //\r
1401 if (IpIf->Ip == IP4_ALLZERO_ADDRESS) {\r
1402 LocalType = IP4_LOCAL_HOST;\r
1403\r
1404 } else {\r
1405 LocalType = Ip4GetNetCast (Head->Dst, IpIf);\r
1406\r
1407 if ((LocalType == 0) && IpIf->PromiscRecv) {\r
1408 LocalType = IP4_PROMISCUOUS;\r
1409 }\r
1410 }\r
1411 }\r
1412\r
1413 if (LocalType == 0) {\r
1414 return 0;\r
1415 }\r
1416\r
1417 //\r
1418 // Iterate through the ip instances on the interface, enqueue\r
1419 // the packet if filter passed. Save the original cast type,\r
1420 // and pass the local cast type to the IP children on the\r
1421 // interface. The global cast type will be restored later.\r
1422 //\r
1423 SavedType = Info->CastType;\r
1424 Info->CastType = LocalType;\r
1425\r
1426 Enqueued = 0;\r
1427\r
1428 NET_LIST_FOR_EACH (Entry, &IpIf->IpInstances) {\r
1429 IpInstance = NET_LIST_USER_STRUCT (Entry, IP4_PROTOCOL, AddrLink);\r
1430 NET_CHECK_SIGNATURE (IpInstance, IP4_PROTOCOL_SIGNATURE);\r
1431\r
1432 //\r
1433 // In RawData mode, add IPv4 headers and options back to packet.\r
1434 //\r
1435 if ((IpInstance->ConfigData.RawData) && (Option != NULL) && (OptionLen != 0)){\r
1436 Ip4PrependHead (Packet, Head, Option, OptionLen);\r
1437 }\r
1438\r
1439 if (Ip4InstanceEnquePacket (IpInstance, Head, Packet) == EFI_SUCCESS) {\r
1440 Enqueued++;\r
1441 }\r
1442 }\r
1443\r
1444 Info->CastType = SavedType;\r
1445 return Enqueued;\r
1446}\r
1447\r
1448\r
1449/**\r
1450 Deliver the packet for each IP4 child on the interface.\r
1451\r
1452 @param[in] IpSb The IP4 service instance that received the packet\r
1453 @param[in] IpIf The IP4 interface to deliver the packet.\r
1454\r
1455 @retval EFI_SUCCESS It always returns EFI_SUCCESS now\r
1456\r
1457**/\r
1458EFI_STATUS\r
1459Ip4InterfaceDeliverPacket (\r
1460 IN IP4_SERVICE *IpSb,\r
1461 IN IP4_INTERFACE *IpIf\r
1462 )\r
1463{\r
1464 IP4_PROTOCOL *Ip4Instance;\r
1465 LIST_ENTRY *Entry;\r
1466\r
1467 NET_LIST_FOR_EACH (Entry, &IpIf->IpInstances) {\r
1468 Ip4Instance = NET_LIST_USER_STRUCT (Entry, IP4_PROTOCOL, AddrLink);\r
1469 Ip4InstanceDeliverPacket (Ip4Instance);\r
1470 }\r
1471\r
1472 return EFI_SUCCESS;\r
1473}\r
1474\r
1475\r
1476/**\r
1477 Demultiple the packet. the packet delivery is processed in two\r
1478 passes. The first pass will enque a shared copy of the packet\r
1479 to each IP4 child that accepts the packet. The second pass will\r
1480 deliver a non-shared copy of the packet to each IP4 child that\r
1481 has pending receive requests. Data is copied if more than one\r
1482 child wants to consume the packet because each IP child needs\r
1483 its own copy of the packet to make changes.\r
1484\r
1485 @param[in] IpSb The IP4 service instance that received the packet.\r
1486 @param[in] Head The header of the received packet.\r
1487 @param[in] Packet The data of the received packet.\r
1488 @param[in] Option Point to the IP4 packet header options.\r
1489 @param[in] OptionLen Length of the IP4 packet header options.\r
1490\r
1491 @retval EFI_NOT_FOUND No IP child accepts the packet.\r
1492 @retval EFI_SUCCESS The packet is enqueued or delivered to some IP\r
1493 children.\r
1494\r
1495**/\r
1496EFI_STATUS\r
1497Ip4Demultiplex (\r
1498 IN IP4_SERVICE *IpSb,\r
1499 IN IP4_HEAD *Head,\r
1500 IN NET_BUF *Packet,\r
1501 IN UINT8 *Option,\r
1502 IN UINT32 OptionLen\r
1503 )\r
1504{\r
1505 LIST_ENTRY *Entry;\r
1506 IP4_INTERFACE *IpIf;\r
1507 INTN Enqueued;\r
1508\r
1509 //\r
1510 // Two pass delivery: first, enque a shared copy of the packet\r
1511 // to each instance that accept the packet.\r
1512 //\r
1513 Enqueued = 0;\r
1514\r
1515 NET_LIST_FOR_EACH (Entry, &IpSb->Interfaces) {\r
1516 IpIf = NET_LIST_USER_STRUCT (Entry, IP4_INTERFACE, Link);\r
1517\r
1518 if (IpIf->Configured) {\r
1519 Enqueued += Ip4InterfaceEnquePacket (\r
1520 IpSb,\r
1521 Head,\r
1522 Packet,\r
1523 Option,\r
1524 OptionLen,\r
1525 IpIf\r
1526 );\r
1527 }\r
1528 }\r
1529\r
1530 //\r
1531 // Second: deliver a duplicate of the packet to each instance.\r
1532 // Release the local reference first, so that the last instance\r
1533 // getting the packet will not copy the data.\r
1534 //\r
1535 NetbufFree (Packet);\r
1536\r
1537 if (Enqueued == 0) {\r
1538 return EFI_NOT_FOUND;\r
1539 }\r
1540\r
1541 NET_LIST_FOR_EACH (Entry, &IpSb->Interfaces) {\r
1542 IpIf = NET_LIST_USER_STRUCT (Entry, IP4_INTERFACE, Link);\r
1543\r
1544 if (IpIf->Configured) {\r
1545 Ip4InterfaceDeliverPacket (IpSb, IpIf);\r
1546 }\r
1547 }\r
1548\r
1549 return EFI_SUCCESS;\r
1550}\r
1551\r
1552\r
1553/**\r
1554 Timeout the fragment and enqueued packets.\r
1555\r
1556 @param[in] IpSb The IP4 service instance to timeout\r
1557\r
1558**/\r
1559VOID\r
1560Ip4PacketTimerTicking (\r
1561 IN IP4_SERVICE *IpSb\r
1562 )\r
1563{\r
1564 LIST_ENTRY *InstanceEntry;\r
1565 LIST_ENTRY *Entry;\r
1566 LIST_ENTRY *Next;\r
1567 IP4_PROTOCOL *IpInstance;\r
1568 IP4_ASSEMBLE_ENTRY *Assemble;\r
1569 NET_BUF *Packet;\r
1570 IP4_CLIP_INFO *Info;\r
1571 UINT32 Index;\r
1572\r
1573 //\r
1574 // First, time out the fragments. The packet's life is counting down\r
1575 // once the first-arrived fragment was received.\r
1576 //\r
1577 for (Index = 0; Index < IP4_ASSEMLE_HASH_SIZE; Index++) {\r
1578 NET_LIST_FOR_EACH_SAFE (Entry, Next, &IpSb->Assemble.Bucket[Index]) {\r
1579 Assemble = NET_LIST_USER_STRUCT (Entry, IP4_ASSEMBLE_ENTRY, Link);\r
1580\r
1581 if ((Assemble->Life > 0) && (--Assemble->Life == 0)) {\r
1582 RemoveEntryList (Entry);\r
1583 Ip4FreeAssembleEntry (Assemble);\r
1584 }\r
1585 }\r
1586 }\r
1587\r
1588 NET_LIST_FOR_EACH (InstanceEntry, &IpSb->Children) {\r
1589 IpInstance = NET_LIST_USER_STRUCT (InstanceEntry, IP4_PROTOCOL, Link);\r
1590\r
1591 //\r
1592 // Second, time out the assembled packets enqueued on each IP child.\r
1593 //\r
1594 NET_LIST_FOR_EACH_SAFE (Entry, Next, &IpInstance->Received) {\r
1595 Packet = NET_LIST_USER_STRUCT (Entry, NET_BUF, List);\r
1596 Info = IP4_GET_CLIP_INFO (Packet);\r
1597\r
1598 if ((Info->Life > 0) && (--Info->Life == 0)) {\r
1599 RemoveEntryList (Entry);\r
1600 NetbufFree (Packet);\r
1601 }\r
1602 }\r
1603\r
1604 //\r
1605 // Third: time out the transmitted packets.\r
1606 //\r
1607 NetMapIterate (&IpInstance->TxTokens, Ip4SentPacketTicking, NULL);\r
1608 }\r
1609}\r