]> git.proxmox.com Git - mirror_edk2.git/blame_incremental - MdePkg/Include/Library/BaseLib.h
MdePkg: Indicate UnicodeStrToAsciiStr/AsciiStrToUnicodeStr to be deprecated
[mirror_edk2.git] / MdePkg / Include / Library / BaseLib.h
... / ...
CommitLineData
1/** @file\r
2 Provides string functions, linked list functions, math functions, synchronization\r
3 functions, file path functions, and CPU architecture-specific functions.\r
4\r
5Copyright (c) 2006 - 2016, Intel Corporation. All rights reserved.<BR>\r
6Portions copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR>\r
7This program and the accompanying materials\r
8are licensed and made available under the terms and conditions of the BSD License\r
9which accompanies this distribution. The full text of the license may be found at\r
10http://opensource.org/licenses/bsd-license.php.\r
11\r
12THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
13WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
14\r
15**/\r
16\r
17#ifndef __BASE_LIB__\r
18#define __BASE_LIB__\r
19\r
20//\r
21// Definitions for architecture-specific types\r
22//\r
23#if defined (MDE_CPU_IA32)\r
24///\r
25/// The IA-32 architecture context buffer used by SetJump() and LongJump().\r
26///\r
27typedef struct {\r
28 UINT32 Ebx;\r
29 UINT32 Esi;\r
30 UINT32 Edi;\r
31 UINT32 Ebp;\r
32 UINT32 Esp;\r
33 UINT32 Eip;\r
34} BASE_LIBRARY_JUMP_BUFFER;\r
35\r
36#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 4\r
37\r
38#endif // defined (MDE_CPU_IA32)\r
39\r
40#if defined (MDE_CPU_IPF)\r
41\r
42///\r
43/// The Itanium architecture context buffer used by SetJump() and LongJump().\r
44///\r
45typedef struct {\r
46 UINT64 F2[2];\r
47 UINT64 F3[2];\r
48 UINT64 F4[2];\r
49 UINT64 F5[2];\r
50 UINT64 F16[2];\r
51 UINT64 F17[2];\r
52 UINT64 F18[2];\r
53 UINT64 F19[2];\r
54 UINT64 F20[2];\r
55 UINT64 F21[2];\r
56 UINT64 F22[2];\r
57 UINT64 F23[2];\r
58 UINT64 F24[2];\r
59 UINT64 F25[2];\r
60 UINT64 F26[2];\r
61 UINT64 F27[2];\r
62 UINT64 F28[2];\r
63 UINT64 F29[2];\r
64 UINT64 F30[2];\r
65 UINT64 F31[2];\r
66 UINT64 R4;\r
67 UINT64 R5;\r
68 UINT64 R6;\r
69 UINT64 R7;\r
70 UINT64 SP;\r
71 UINT64 BR0;\r
72 UINT64 BR1;\r
73 UINT64 BR2;\r
74 UINT64 BR3;\r
75 UINT64 BR4;\r
76 UINT64 BR5;\r
77 UINT64 InitialUNAT;\r
78 UINT64 AfterSpillUNAT;\r
79 UINT64 PFS;\r
80 UINT64 BSP;\r
81 UINT64 Predicates;\r
82 UINT64 LoopCount;\r
83 UINT64 FPSR;\r
84} BASE_LIBRARY_JUMP_BUFFER;\r
85\r
86#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 0x10\r
87\r
88#endif // defined (MDE_CPU_IPF)\r
89\r
90#if defined (MDE_CPU_X64)\r
91///\r
92/// The x64 architecture context buffer used by SetJump() and LongJump().\r
93///\r
94typedef struct {\r
95 UINT64 Rbx;\r
96 UINT64 Rsp;\r
97 UINT64 Rbp;\r
98 UINT64 Rdi;\r
99 UINT64 Rsi;\r
100 UINT64 R12;\r
101 UINT64 R13;\r
102 UINT64 R14;\r
103 UINT64 R15;\r
104 UINT64 Rip;\r
105 UINT64 MxCsr;\r
106 UINT8 XmmBuffer[160]; ///< XMM6-XMM15.\r
107} BASE_LIBRARY_JUMP_BUFFER;\r
108\r
109#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8\r
110\r
111#endif // defined (MDE_CPU_X64)\r
112\r
113#if defined (MDE_CPU_EBC)\r
114///\r
115/// The EBC context buffer used by SetJump() and LongJump().\r
116///\r
117typedef struct {\r
118 UINT64 R0;\r
119 UINT64 R1;\r
120 UINT64 R2;\r
121 UINT64 R3;\r
122 UINT64 IP;\r
123} BASE_LIBRARY_JUMP_BUFFER;\r
124\r
125#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8\r
126\r
127#endif // defined (MDE_CPU_EBC)\r
128\r
129#if defined (MDE_CPU_ARM)\r
130\r
131typedef struct {\r
132 UINT32 R3; ///< A copy of R13.\r
133 UINT32 R4;\r
134 UINT32 R5;\r
135 UINT32 R6;\r
136 UINT32 R7;\r
137 UINT32 R8;\r
138 UINT32 R9;\r
139 UINT32 R10;\r
140 UINT32 R11;\r
141 UINT32 R12;\r
142 UINT32 R14;\r
143} BASE_LIBRARY_JUMP_BUFFER;\r
144\r
145#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 4\r
146\r
147#endif // defined (MDE_CPU_ARM)\r
148\r
149#if defined (MDE_CPU_AARCH64)\r
150typedef struct {\r
151 // GP regs\r
152 UINT64 X19;\r
153 UINT64 X20;\r
154 UINT64 X21;\r
155 UINT64 X22;\r
156 UINT64 X23;\r
157 UINT64 X24;\r
158 UINT64 X25;\r
159 UINT64 X26;\r
160 UINT64 X27;\r
161 UINT64 X28;\r
162 UINT64 FP;\r
163 UINT64 LR;\r
164 UINT64 IP0;\r
165\r
166 // FP regs\r
167 UINT64 D8;\r
168 UINT64 D9;\r
169 UINT64 D10;\r
170 UINT64 D11;\r
171 UINT64 D12;\r
172 UINT64 D13;\r
173 UINT64 D14;\r
174 UINT64 D15;\r
175} BASE_LIBRARY_JUMP_BUFFER;\r
176\r
177#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8\r
178\r
179#endif // defined (MDE_CPU_AARCH64)\r
180\r
181\r
182//\r
183// String Services\r
184//\r
185\r
186\r
187/**\r
188 Returns the length of a Null-terminated Unicode string.\r
189\r
190 This function is similar as strlen_s defined in C11.\r
191\r
192 If String is not aligned on a 16-bit boundary, then ASSERT().\r
193\r
194 @param String A pointer to a Null-terminated Unicode string.\r
195 @param MaxSize The maximum number of Destination Unicode\r
196 char, including terminating null char.\r
197\r
198 @retval 0 If String is NULL.\r
199 @retval MaxSize If there is no null character in the first MaxSize characters of String.\r
200 @return The number of characters that percede the terminating null character.\r
201\r
202**/\r
203UINTN\r
204EFIAPI\r
205StrnLenS (\r
206 IN CONST CHAR16 *String,\r
207 IN UINTN MaxSize\r
208 );\r
209\r
210/**\r
211 Copies the string pointed to by Source (including the terminating null char)\r
212 to the array pointed to by Destination.\r
213\r
214 This function is similar as strcpy_s defined in C11.\r
215\r
216 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
217 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
218 If an error would be returned, then the function will also ASSERT().\r
219\r
220 If an error is returned, then the Destination is unmodified.\r
221\r
222 @param Destination A pointer to a Null-terminated Unicode string.\r
223 @param DestMax The maximum number of Destination Unicode\r
224 char, including terminating null char.\r
225 @param Source A pointer to a Null-terminated Unicode string.\r
226\r
227 @retval RETURN_SUCCESS String is copied.\r
228 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than StrLen(Source).\r
229 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
230 If Source is NULL.\r
231 If PcdMaximumUnicodeStringLength is not zero,\r
232 and DestMax is greater than \r
233 PcdMaximumUnicodeStringLength.\r
234 If DestMax is 0.\r
235 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
236**/\r
237RETURN_STATUS\r
238EFIAPI\r
239StrCpyS (\r
240 OUT CHAR16 *Destination,\r
241 IN UINTN DestMax,\r
242 IN CONST CHAR16 *Source\r
243 );\r
244\r
245/**\r
246 Copies not more than Length successive char from the string pointed to by\r
247 Source to the array pointed to by Destination. If no null char is copied from\r
248 Source, then Destination[Length] is always set to null.\r
249\r
250 This function is similar as strncpy_s defined in C11.\r
251\r
252 If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().\r
253 If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT().\r
254 If an error would be returned, then the function will also ASSERT().\r
255\r
256 If an error is returned, then the Destination is unmodified.\r
257\r
258 @param Destination A pointer to a Null-terminated Unicode string.\r
259 @param DestMax The maximum number of Destination Unicode\r
260 char, including terminating null char.\r
261 @param Source A pointer to a Null-terminated Unicode string.\r
262 @param Length The maximum number of Unicode characters to copy.\r
263\r
264 @retval RETURN_SUCCESS String is copied.\r
265 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than \r
266 MIN(StrLen(Source), Length).\r
267 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
268 If Source is NULL.\r
269 If PcdMaximumUnicodeStringLength is not zero,\r
270 and DestMax is greater than \r
271 PcdMaximumUnicodeStringLength.\r
272 If DestMax is 0.\r
273 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
274**/\r
275RETURN_STATUS\r
276EFIAPI\r
277StrnCpyS (\r
278 OUT CHAR16 *Destination,\r
279 IN UINTN DestMax,\r
280 IN CONST CHAR16 *Source,\r
281 IN UINTN Length\r
282 );\r
283\r
284/**\r
285 Appends a copy of the string pointed to by Source (including the terminating\r
286 null char) to the end of the string pointed to by Destination.\r
287\r
288 This function is similar as strcat_s defined in C11.\r
289\r
290 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
291 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
292 If an error would be returned, then the function will also ASSERT().\r
293\r
294 If an error is returned, then the Destination is unmodified.\r
295\r
296 @param Destination A pointer to a Null-terminated Unicode string.\r
297 @param DestMax The maximum number of Destination Unicode\r
298 char, including terminating null char.\r
299 @param Source A pointer to a Null-terminated Unicode string.\r
300\r
301 @retval RETURN_SUCCESS String is appended.\r
302 @retval RETURN_BAD_BUFFER_SIZE If DestMax is NOT greater than \r
303 StrLen(Destination).\r
304 @retval RETURN_BUFFER_TOO_SMALL If (DestMax - StrLen(Destination)) is NOT\r
305 greater than StrLen(Source).\r
306 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
307 If Source is NULL.\r
308 If PcdMaximumUnicodeStringLength is not zero,\r
309 and DestMax is greater than \r
310 PcdMaximumUnicodeStringLength.\r
311 If DestMax is 0.\r
312 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
313**/\r
314RETURN_STATUS\r
315EFIAPI\r
316StrCatS (\r
317 IN OUT CHAR16 *Destination,\r
318 IN UINTN DestMax,\r
319 IN CONST CHAR16 *Source\r
320 );\r
321\r
322/**\r
323 Appends not more than Length successive char from the string pointed to by\r
324 Source to the end of the string pointed to by Destination. If no null char is\r
325 copied from Source, then Destination[StrLen(Destination) + Length] is always\r
326 set to null.\r
327\r
328 This function is similar as strncat_s defined in C11.\r
329\r
330 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
331 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
332 If an error would be returned, then the function will also ASSERT().\r
333\r
334 If an error is returned, then the Destination is unmodified.\r
335\r
336 @param Destination A pointer to a Null-terminated Unicode string.\r
337 @param DestMax The maximum number of Destination Unicode\r
338 char, including terminating null char.\r
339 @param Source A pointer to a Null-terminated Unicode string.\r
340 @param Length The maximum number of Unicode characters to copy.\r
341\r
342 @retval RETURN_SUCCESS String is appended.\r
343 @retval RETURN_BAD_BUFFER_SIZE If DestMax is NOT greater than\r
344 StrLen(Destination).\r
345 @retval RETURN_BUFFER_TOO_SMALL If (DestMax - StrLen(Destination)) is NOT\r
346 greater than MIN(StrLen(Source), Length).\r
347 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
348 If Source is NULL.\r
349 If PcdMaximumUnicodeStringLength is not zero,\r
350 and DestMax is greater than \r
351 PcdMaximumUnicodeStringLength.\r
352 If DestMax is 0.\r
353 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
354**/\r
355RETURN_STATUS\r
356EFIAPI\r
357StrnCatS (\r
358 IN OUT CHAR16 *Destination,\r
359 IN UINTN DestMax,\r
360 IN CONST CHAR16 *Source,\r
361 IN UINTN Length\r
362 );\r
363\r
364/**\r
365 Returns the length of a Null-terminated Ascii string.\r
366\r
367 This function is similar as strlen_s defined in C11.\r
368\r
369 @param String A pointer to a Null-terminated Ascii string.\r
370 @param MaxSize The maximum number of Destination Ascii\r
371 char, including terminating null char.\r
372\r
373 @retval 0 If String is NULL.\r
374 @retval MaxSize If there is no null character in the first MaxSize characters of String.\r
375 @return The number of characters that percede the terminating null character.\r
376\r
377**/\r
378UINTN\r
379EFIAPI\r
380AsciiStrnLenS (\r
381 IN CONST CHAR8 *String,\r
382 IN UINTN MaxSize\r
383 );\r
384\r
385/**\r
386 Copies the string pointed to by Source (including the terminating null char)\r
387 to the array pointed to by Destination.\r
388\r
389 This function is similar as strcpy_s defined in C11.\r
390\r
391 If an error would be returned, then the function will also ASSERT().\r
392\r
393 If an error is returned, then the Destination is unmodified.\r
394\r
395 @param Destination A pointer to a Null-terminated Ascii string.\r
396 @param DestMax The maximum number of Destination Ascii\r
397 char, including terminating null char.\r
398 @param Source A pointer to a Null-terminated Ascii string.\r
399\r
400 @retval RETURN_SUCCESS String is copied.\r
401 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than StrLen(Source).\r
402 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
403 If Source is NULL.\r
404 If PcdMaximumAsciiStringLength is not zero,\r
405 and DestMax is greater than \r
406 PcdMaximumAsciiStringLength.\r
407 If DestMax is 0.\r
408 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
409**/\r
410RETURN_STATUS\r
411EFIAPI\r
412AsciiStrCpyS (\r
413 OUT CHAR8 *Destination,\r
414 IN UINTN DestMax,\r
415 IN CONST CHAR8 *Source\r
416 );\r
417\r
418/**\r
419 Copies not more than Length successive char from the string pointed to by\r
420 Source to the array pointed to by Destination. If no null char is copied from\r
421 Source, then Destination[Length] is always set to null.\r
422\r
423 This function is similar as strncpy_s defined in C11.\r
424\r
425 If an error would be returned, then the function will also ASSERT().\r
426\r
427 If an error is returned, then the Destination is unmodified.\r
428\r
429 @param Destination A pointer to a Null-terminated Ascii string.\r
430 @param DestMax The maximum number of Destination Ascii\r
431 char, including terminating null char.\r
432 @param Source A pointer to a Null-terminated Ascii string.\r
433 @param Length The maximum number of Ascii characters to copy.\r
434\r
435 @retval RETURN_SUCCESS String is copied.\r
436 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than \r
437 MIN(StrLen(Source), Length).\r
438 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
439 If Source is NULL.\r
440 If PcdMaximumAsciiStringLength is not zero,\r
441 and DestMax is greater than \r
442 PcdMaximumAsciiStringLength.\r
443 If DestMax is 0.\r
444 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
445**/\r
446RETURN_STATUS\r
447EFIAPI\r
448AsciiStrnCpyS (\r
449 OUT CHAR8 *Destination,\r
450 IN UINTN DestMax,\r
451 IN CONST CHAR8 *Source,\r
452 IN UINTN Length\r
453 );\r
454\r
455/**\r
456 Appends a copy of the string pointed to by Source (including the terminating\r
457 null char) to the end of the string pointed to by Destination.\r
458\r
459 This function is similar as strcat_s defined in C11.\r
460\r
461 If an error would be returned, then the function will also ASSERT().\r
462\r
463 If an error is returned, then the Destination is unmodified.\r
464\r
465 @param Destination A pointer to a Null-terminated Ascii string.\r
466 @param DestMax The maximum number of Destination Ascii\r
467 char, including terminating null char.\r
468 @param Source A pointer to a Null-terminated Ascii string.\r
469\r
470 @retval RETURN_SUCCESS String is appended.\r
471 @retval RETURN_BAD_BUFFER_SIZE If DestMax is NOT greater than \r
472 StrLen(Destination).\r
473 @retval RETURN_BUFFER_TOO_SMALL If (DestMax - StrLen(Destination)) is NOT\r
474 greater than StrLen(Source).\r
475 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
476 If Source is NULL.\r
477 If PcdMaximumAsciiStringLength is not zero,\r
478 and DestMax is greater than \r
479 PcdMaximumAsciiStringLength.\r
480 If DestMax is 0.\r
481 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
482**/\r
483RETURN_STATUS\r
484EFIAPI\r
485AsciiStrCatS (\r
486 IN OUT CHAR8 *Destination,\r
487 IN UINTN DestMax,\r
488 IN CONST CHAR8 *Source\r
489 );\r
490\r
491/**\r
492 Appends not more than Length successive char from the string pointed to by\r
493 Source to the end of the string pointed to by Destination. If no null char is\r
494 copied from Source, then Destination[StrLen(Destination) + Length] is always\r
495 set to null.\r
496\r
497 This function is similar as strncat_s defined in C11.\r
498\r
499 If an error would be returned, then the function will also ASSERT().\r
500\r
501 If an error is returned, then the Destination is unmodified.\r
502\r
503 @param Destination A pointer to a Null-terminated Ascii string.\r
504 @param DestMax The maximum number of Destination Ascii\r
505 char, including terminating null char.\r
506 @param Source A pointer to a Null-terminated Ascii string.\r
507 @param Length The maximum number of Ascii characters to copy.\r
508\r
509 @retval RETURN_SUCCESS String is appended.\r
510 @retval RETURN_BAD_BUFFER_SIZE If DestMax is NOT greater than\r
511 StrLen(Destination).\r
512 @retval RETURN_BUFFER_TOO_SMALL If (DestMax - StrLen(Destination)) is NOT\r
513 greater than MIN(StrLen(Source), Length).\r
514 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
515 If Source is NULL.\r
516 If PcdMaximumAsciiStringLength is not zero,\r
517 and DestMax is greater than \r
518 PcdMaximumAsciiStringLength.\r
519 If DestMax is 0.\r
520 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
521**/\r
522RETURN_STATUS\r
523EFIAPI\r
524AsciiStrnCatS (\r
525 IN OUT CHAR8 *Destination,\r
526 IN UINTN DestMax,\r
527 IN CONST CHAR8 *Source,\r
528 IN UINTN Length\r
529 );\r
530\r
531\r
532#ifndef DISABLE_NEW_DEPRECATED_INTERFACES\r
533\r
534/**\r
535 [ATTENTION] This function is deprecated for security reason.\r
536\r
537 Copies one Null-terminated Unicode string to another Null-terminated Unicode\r
538 string and returns the new Unicode string.\r
539\r
540 This function copies the contents of the Unicode string Source to the Unicode\r
541 string Destination, and returns Destination. If Source and Destination\r
542 overlap, then the results are undefined.\r
543\r
544 If Destination is NULL, then ASSERT().\r
545 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
546 If Source is NULL, then ASSERT().\r
547 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
548 If Source and Destination overlap, then ASSERT().\r
549 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
550 PcdMaximumUnicodeStringLength Unicode characters not including the\r
551 Null-terminator, then ASSERT().\r
552\r
553 @param Destination The pointer to a Null-terminated Unicode string.\r
554 @param Source The pointer to a Null-terminated Unicode string.\r
555\r
556 @return Destination.\r
557\r
558**/\r
559CHAR16 *\r
560EFIAPI\r
561StrCpy (\r
562 OUT CHAR16 *Destination,\r
563 IN CONST CHAR16 *Source\r
564 );\r
565\r
566\r
567/**\r
568 [ATTENTION] This function is deprecated for security reason.\r
569\r
570 Copies up to a specified length from one Null-terminated Unicode string to \r
571 another Null-terminated Unicode string and returns the new Unicode string.\r
572\r
573 This function copies the contents of the Unicode string Source to the Unicode\r
574 string Destination, and returns Destination. At most, Length Unicode\r
575 characters are copied from Source to Destination. If Length is 0, then\r
576 Destination is returned unmodified. If Length is greater that the number of\r
577 Unicode characters in Source, then Destination is padded with Null Unicode\r
578 characters. If Source and Destination overlap, then the results are\r
579 undefined.\r
580\r
581 If Length > 0 and Destination is NULL, then ASSERT().\r
582 If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().\r
583 If Length > 0 and Source is NULL, then ASSERT().\r
584 If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT().\r
585 If Source and Destination overlap, then ASSERT().\r
586 If PcdMaximumUnicodeStringLength is not zero, and Length is greater than \r
587 PcdMaximumUnicodeStringLength, then ASSERT().\r
588 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
589 PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator,\r
590 then ASSERT().\r
591\r
592 @param Destination The pointer to a Null-terminated Unicode string.\r
593 @param Source The pointer to a Null-terminated Unicode string.\r
594 @param Length The maximum number of Unicode characters to copy.\r
595\r
596 @return Destination.\r
597\r
598**/\r
599CHAR16 *\r
600EFIAPI\r
601StrnCpy (\r
602 OUT CHAR16 *Destination,\r
603 IN CONST CHAR16 *Source,\r
604 IN UINTN Length\r
605 );\r
606#endif\r
607\r
608/**\r
609 Returns the length of a Null-terminated Unicode string.\r
610\r
611 This function returns the number of Unicode characters in the Null-terminated\r
612 Unicode string specified by String.\r
613\r
614 If String is NULL, then ASSERT().\r
615 If String is not aligned on a 16-bit boundary, then ASSERT().\r
616 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
617 PcdMaximumUnicodeStringLength Unicode characters not including the\r
618 Null-terminator, then ASSERT().\r
619\r
620 @param String Pointer to a Null-terminated Unicode string.\r
621\r
622 @return The length of String.\r
623\r
624**/\r
625UINTN\r
626EFIAPI\r
627StrLen (\r
628 IN CONST CHAR16 *String\r
629 );\r
630\r
631\r
632/**\r
633 Returns the size of a Null-terminated Unicode string in bytes, including the\r
634 Null terminator.\r
635\r
636 This function returns the size, in bytes, of the Null-terminated Unicode string \r
637 specified by String.\r
638\r
639 If String is NULL, then ASSERT().\r
640 If String is not aligned on a 16-bit boundary, then ASSERT().\r
641 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
642 PcdMaximumUnicodeStringLength Unicode characters not including the\r
643 Null-terminator, then ASSERT().\r
644\r
645 @param String The pointer to a Null-terminated Unicode string.\r
646\r
647 @return The size of String.\r
648\r
649**/\r
650UINTN\r
651EFIAPI\r
652StrSize (\r
653 IN CONST CHAR16 *String\r
654 );\r
655\r
656\r
657/**\r
658 Compares two Null-terminated Unicode strings, and returns the difference\r
659 between the first mismatched Unicode characters.\r
660\r
661 This function compares the Null-terminated Unicode string FirstString to the\r
662 Null-terminated Unicode string SecondString. If FirstString is identical to\r
663 SecondString, then 0 is returned. Otherwise, the value returned is the first\r
664 mismatched Unicode character in SecondString subtracted from the first\r
665 mismatched Unicode character in FirstString.\r
666\r
667 If FirstString is NULL, then ASSERT().\r
668 If FirstString is not aligned on a 16-bit boundary, then ASSERT().\r
669 If SecondString is NULL, then ASSERT().\r
670 If SecondString is not aligned on a 16-bit boundary, then ASSERT().\r
671 If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more\r
672 than PcdMaximumUnicodeStringLength Unicode characters not including the\r
673 Null-terminator, then ASSERT().\r
674 If PcdMaximumUnicodeStringLength is not zero, and SecondString contains more\r
675 than PcdMaximumUnicodeStringLength Unicode characters, not including the\r
676 Null-terminator, then ASSERT().\r
677\r
678 @param FirstString The pointer to a Null-terminated Unicode string.\r
679 @param SecondString The pointer to a Null-terminated Unicode string.\r
680\r
681 @retval 0 FirstString is identical to SecondString.\r
682 @return others FirstString is not identical to SecondString.\r
683\r
684**/\r
685INTN\r
686EFIAPI\r
687StrCmp (\r
688 IN CONST CHAR16 *FirstString,\r
689 IN CONST CHAR16 *SecondString\r
690 );\r
691\r
692\r
693/**\r
694 Compares up to a specified length the contents of two Null-terminated Unicode strings,\r
695 and returns the difference between the first mismatched Unicode characters.\r
696 \r
697 This function compares the Null-terminated Unicode string FirstString to the\r
698 Null-terminated Unicode string SecondString. At most, Length Unicode\r
699 characters will be compared. If Length is 0, then 0 is returned. If\r
700 FirstString is identical to SecondString, then 0 is returned. Otherwise, the\r
701 value returned is the first mismatched Unicode character in SecondString\r
702 subtracted from the first mismatched Unicode character in FirstString.\r
703\r
704 If Length > 0 and FirstString is NULL, then ASSERT().\r
705 If Length > 0 and FirstString is not aligned on a 16-bit boundary, then ASSERT().\r
706 If Length > 0 and SecondString is NULL, then ASSERT().\r
707 If Length > 0 and SecondString is not aligned on a 16-bit boundary, then ASSERT().\r
708 If PcdMaximumUnicodeStringLength is not zero, and Length is greater than\r
709 PcdMaximumUnicodeStringLength, then ASSERT().\r
710 If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more than\r
711 PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator,\r
712 then ASSERT().\r
713 If PcdMaximumUnicodeStringLength is not zero, and SecondString contains more than\r
714 PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator,\r
715 then ASSERT().\r
716\r
717 @param FirstString The pointer to a Null-terminated Unicode string.\r
718 @param SecondString The pointer to a Null-terminated Unicode string.\r
719 @param Length The maximum number of Unicode characters to compare.\r
720\r
721 @retval 0 FirstString is identical to SecondString.\r
722 @return others FirstString is not identical to SecondString.\r
723\r
724**/\r
725INTN\r
726EFIAPI\r
727StrnCmp (\r
728 IN CONST CHAR16 *FirstString,\r
729 IN CONST CHAR16 *SecondString,\r
730 IN UINTN Length\r
731 );\r
732\r
733\r
734#ifndef DISABLE_NEW_DEPRECATED_INTERFACES\r
735\r
736/**\r
737 [ATTENTION] This function is deprecated for security reason.\r
738\r
739 Concatenates one Null-terminated Unicode string to another Null-terminated\r
740 Unicode string, and returns the concatenated Unicode string.\r
741\r
742 This function concatenates two Null-terminated Unicode strings. The contents\r
743 of Null-terminated Unicode string Source are concatenated to the end of\r
744 Null-terminated Unicode string Destination. The Null-terminated concatenated\r
745 Unicode String is returned. If Source and Destination overlap, then the\r
746 results are undefined.\r
747\r
748 If Destination is NULL, then ASSERT().\r
749 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
750 If Source is NULL, then ASSERT().\r
751 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
752 If Source and Destination overlap, then ASSERT().\r
753 If PcdMaximumUnicodeStringLength is not zero, and Destination contains more\r
754 than PcdMaximumUnicodeStringLength Unicode characters, not including the\r
755 Null-terminator, then ASSERT().\r
756 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
757 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
758 Null-terminator, then ASSERT().\r
759 If PcdMaximumUnicodeStringLength is not zero, and concatenating Destination\r
760 and Source results in a Unicode string with more than\r
761 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
762 Null-terminator, then ASSERT().\r
763\r
764 @param Destination The pointer to a Null-terminated Unicode string.\r
765 @param Source The pointer to a Null-terminated Unicode string.\r
766\r
767 @return Destination.\r
768\r
769**/\r
770CHAR16 *\r
771EFIAPI\r
772StrCat (\r
773 IN OUT CHAR16 *Destination,\r
774 IN CONST CHAR16 *Source\r
775 );\r
776\r
777\r
778/**\r
779 [ATTENTION] This function is deprecated for security reason.\r
780\r
781 Concatenates up to a specified length one Null-terminated Unicode to the end \r
782 of another Null-terminated Unicode string, and returns the concatenated \r
783 Unicode string.\r
784\r
785 This function concatenates two Null-terminated Unicode strings. The contents\r
786 of Null-terminated Unicode string Source are concatenated to the end of\r
787 Null-terminated Unicode string Destination, and Destination is returned. At\r
788 most, Length Unicode characters are concatenated from Source to the end of\r
789 Destination, and Destination is always Null-terminated. If Length is 0, then\r
790 Destination is returned unmodified. If Source and Destination overlap, then\r
791 the results are undefined.\r
792\r
793 If Destination is NULL, then ASSERT().\r
794 If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().\r
795 If Length > 0 and Source is NULL, then ASSERT().\r
796 If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT().\r
797 If Source and Destination overlap, then ASSERT().\r
798 If PcdMaximumUnicodeStringLength is not zero, and Length is greater than \r
799 PcdMaximumUnicodeStringLength, then ASSERT().\r
800 If PcdMaximumUnicodeStringLength is not zero, and Destination contains more\r
801 than PcdMaximumUnicodeStringLength Unicode characters, not including the\r
802 Null-terminator, then ASSERT().\r
803 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
804 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
805 Null-terminator, then ASSERT().\r
806 If PcdMaximumUnicodeStringLength is not zero, and concatenating Destination\r
807 and Source results in a Unicode string with more than PcdMaximumUnicodeStringLength\r
808 Unicode characters, not including the Null-terminator, then ASSERT().\r
809\r
810 @param Destination The pointer to a Null-terminated Unicode string.\r
811 @param Source The pointer to a Null-terminated Unicode string.\r
812 @param Length The maximum number of Unicode characters to concatenate from\r
813 Source.\r
814\r
815 @return Destination.\r
816\r
817**/\r
818CHAR16 *\r
819EFIAPI\r
820StrnCat (\r
821 IN OUT CHAR16 *Destination,\r
822 IN CONST CHAR16 *Source,\r
823 IN UINTN Length\r
824 );\r
825#endif\r
826\r
827/**\r
828 Returns the first occurrence of a Null-terminated Unicode sub-string\r
829 in a Null-terminated Unicode string.\r
830\r
831 This function scans the contents of the Null-terminated Unicode string\r
832 specified by String and returns the first occurrence of SearchString.\r
833 If SearchString is not found in String, then NULL is returned. If\r
834 the length of SearchString is zero, then String is returned.\r
835\r
836 If String is NULL, then ASSERT().\r
837 If String is not aligned on a 16-bit boundary, then ASSERT().\r
838 If SearchString is NULL, then ASSERT().\r
839 If SearchString is not aligned on a 16-bit boundary, then ASSERT().\r
840\r
841 If PcdMaximumUnicodeStringLength is not zero, and SearchString\r
842 or String contains more than PcdMaximumUnicodeStringLength Unicode\r
843 characters, not including the Null-terminator, then ASSERT().\r
844\r
845 @param String The pointer to a Null-terminated Unicode string.\r
846 @param SearchString The pointer to a Null-terminated Unicode string to search for.\r
847\r
848 @retval NULL If the SearchString does not appear in String.\r
849 @return others If there is a match.\r
850\r
851**/\r
852CHAR16 *\r
853EFIAPI\r
854StrStr (\r
855 IN CONST CHAR16 *String,\r
856 IN CONST CHAR16 *SearchString\r
857 );\r
858\r
859/**\r
860 Convert a Null-terminated Unicode decimal string to a value of\r
861 type UINTN.\r
862\r
863 This function returns a value of type UINTN by interpreting the contents\r
864 of the Unicode string specified by String as a decimal number. The format\r
865 of the input Unicode string String is:\r
866\r
867 [spaces] [decimal digits].\r
868\r
869 The valid decimal digit character is in the range [0-9]. The\r
870 function will ignore the pad space, which includes spaces or\r
871 tab characters, before [decimal digits]. The running zero in the\r
872 beginning of [decimal digits] will be ignored. Then, the function\r
873 stops at the first character that is a not a valid decimal character\r
874 or a Null-terminator, whichever one comes first.\r
875\r
876 If String is NULL, then ASSERT().\r
877 If String is not aligned in a 16-bit boundary, then ASSERT().\r
878 If String has only pad spaces, then 0 is returned.\r
879 If String has no pad spaces or valid decimal digits,\r
880 then 0 is returned.\r
881 If the number represented by String overflows according\r
882 to the range defined by UINTN, then ASSERT().\r
883\r
884 If PcdMaximumUnicodeStringLength is not zero, and String contains\r
885 more than PcdMaximumUnicodeStringLength Unicode characters not including\r
886 the Null-terminator, then ASSERT().\r
887\r
888 @param String The pointer to a Null-terminated Unicode string.\r
889\r
890 @retval Value translated from String.\r
891\r
892**/\r
893UINTN\r
894EFIAPI\r
895StrDecimalToUintn (\r
896 IN CONST CHAR16 *String\r
897 );\r
898\r
899/**\r
900 Convert a Null-terminated Unicode decimal string to a value of\r
901 type UINT64.\r
902\r
903 This function returns a value of type UINT64 by interpreting the contents\r
904 of the Unicode string specified by String as a decimal number. The format\r
905 of the input Unicode string String is:\r
906\r
907 [spaces] [decimal digits].\r
908\r
909 The valid decimal digit character is in the range [0-9]. The\r
910 function will ignore the pad space, which includes spaces or\r
911 tab characters, before [decimal digits]. The running zero in the\r
912 beginning of [decimal digits] will be ignored. Then, the function\r
913 stops at the first character that is a not a valid decimal character\r
914 or a Null-terminator, whichever one comes first.\r
915\r
916 If String is NULL, then ASSERT().\r
917 If String is not aligned in a 16-bit boundary, then ASSERT().\r
918 If String has only pad spaces, then 0 is returned.\r
919 If String has no pad spaces or valid decimal digits,\r
920 then 0 is returned.\r
921 If the number represented by String overflows according\r
922 to the range defined by UINT64, then ASSERT().\r
923\r
924 If PcdMaximumUnicodeStringLength is not zero, and String contains\r
925 more than PcdMaximumUnicodeStringLength Unicode characters not including\r
926 the Null-terminator, then ASSERT().\r
927\r
928 @param String The pointer to a Null-terminated Unicode string.\r
929\r
930 @retval Value translated from String.\r
931\r
932**/\r
933UINT64\r
934EFIAPI\r
935StrDecimalToUint64 (\r
936 IN CONST CHAR16 *String\r
937 );\r
938 \r
939\r
940/**\r
941 Convert a Null-terminated Unicode hexadecimal string to a value of type UINTN.\r
942\r
943 This function returns a value of type UINTN by interpreting the contents\r
944 of the Unicode string specified by String as a hexadecimal number.\r
945 The format of the input Unicode string String is:\r
946\r
947 [spaces][zeros][x][hexadecimal digits].\r
948\r
949 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
950 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.\r
951 If "x" appears in the input string, it must be prefixed with at least one 0.\r
952 The function will ignore the pad space, which includes spaces or tab characters,\r
953 before [zeros], [x] or [hexadecimal digit]. The running zero before [x] or\r
954 [hexadecimal digit] will be ignored. Then, the decoding starts after [x] or the\r
955 first valid hexadecimal digit. Then, the function stops at the first character \r
956 that is a not a valid hexadecimal character or NULL, whichever one comes first.\r
957\r
958 If String is NULL, then ASSERT().\r
959 If String is not aligned in a 16-bit boundary, then ASSERT().\r
960 If String has only pad spaces, then zero is returned.\r
961 If String has no leading pad spaces, leading zeros or valid hexadecimal digits,\r
962 then zero is returned.\r
963 If the number represented by String overflows according to the range defined by\r
964 UINTN, then ASSERT().\r
965\r
966 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
967 PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator,\r
968 then ASSERT().\r
969\r
970 @param String The pointer to a Null-terminated Unicode string.\r
971\r
972 @retval Value translated from String.\r
973\r
974**/\r
975UINTN\r
976EFIAPI\r
977StrHexToUintn (\r
978 IN CONST CHAR16 *String\r
979 );\r
980\r
981\r
982/**\r
983 Convert a Null-terminated Unicode hexadecimal string to a value of type UINT64.\r
984\r
985 This function returns a value of type UINT64 by interpreting the contents\r
986 of the Unicode string specified by String as a hexadecimal number.\r
987 The format of the input Unicode string String is\r
988\r
989 [spaces][zeros][x][hexadecimal digits].\r
990\r
991 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
992 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.\r
993 If "x" appears in the input string, it must be prefixed with at least one 0.\r
994 The function will ignore the pad space, which includes spaces or tab characters,\r
995 before [zeros], [x] or [hexadecimal digit]. The running zero before [x] or\r
996 [hexadecimal digit] will be ignored. Then, the decoding starts after [x] or the\r
997 first valid hexadecimal digit. Then, the function stops at the first character that is\r
998 a not a valid hexadecimal character or NULL, whichever one comes first.\r
999\r
1000 If String is NULL, then ASSERT().\r
1001 If String is not aligned in a 16-bit boundary, then ASSERT().\r
1002 If String has only pad spaces, then zero is returned.\r
1003 If String has no leading pad spaces, leading zeros or valid hexadecimal digits,\r
1004 then zero is returned.\r
1005 If the number represented by String overflows according to the range defined by\r
1006 UINT64, then ASSERT().\r
1007\r
1008 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
1009 PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator,\r
1010 then ASSERT().\r
1011\r
1012 @param String The pointer to a Null-terminated Unicode string.\r
1013\r
1014 @retval Value translated from String.\r
1015\r
1016**/\r
1017UINT64\r
1018EFIAPI\r
1019StrHexToUint64 (\r
1020 IN CONST CHAR16 *String\r
1021 );\r
1022\r
1023#ifndef DISABLE_NEW_DEPRECATED_INTERFACES\r
1024\r
1025/**\r
1026 [ATTENTION] This function is deprecated for security reason.\r
1027\r
1028 Convert a Null-terminated Unicode string to a Null-terminated\r
1029 ASCII string and returns the ASCII string.\r
1030\r
1031 This function converts the content of the Unicode string Source\r
1032 to the ASCII string Destination by copying the lower 8 bits of\r
1033 each Unicode character. It returns Destination.\r
1034\r
1035 The caller is responsible to make sure Destination points to a buffer with size\r
1036 equal or greater than ((StrLen (Source) + 1) * sizeof (CHAR8)) in bytes.\r
1037\r
1038 If any Unicode characters in Source contain non-zero value in\r
1039 the upper 8 bits, then ASSERT().\r
1040\r
1041 If Destination is NULL, then ASSERT().\r
1042 If Source is NULL, then ASSERT().\r
1043 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
1044 If Source and Destination overlap, then ASSERT().\r
1045\r
1046 If PcdMaximumUnicodeStringLength is not zero, and Source contains\r
1047 more than PcdMaximumUnicodeStringLength Unicode characters not including\r
1048 the Null-terminator, then ASSERT().\r
1049\r
1050 If PcdMaximumAsciiStringLength is not zero, and Source contains more\r
1051 than PcdMaximumAsciiStringLength Unicode characters not including the\r
1052 Null-terminator, then ASSERT().\r
1053\r
1054 @param Source The pointer to a Null-terminated Unicode string.\r
1055 @param Destination The pointer to a Null-terminated ASCII string.\r
1056\r
1057 @return Destination.\r
1058\r
1059**/\r
1060CHAR8 *\r
1061EFIAPI\r
1062UnicodeStrToAsciiStr (\r
1063 IN CONST CHAR16 *Source,\r
1064 OUT CHAR8 *Destination\r
1065 );\r
1066\r
1067#endif\r
1068\r
1069/**\r
1070 Convert a Null-terminated Unicode string to a Null-terminated\r
1071 ASCII string.\r
1072\r
1073 This function is similar to AsciiStrCpyS.\r
1074\r
1075 This function converts the content of the Unicode string Source\r
1076 to the ASCII string Destination by copying the lower 8 bits of\r
1077 each Unicode character. The function terminates the ASCII string\r
1078 Destination by appending a Null-terminator character at the end.\r
1079\r
1080 The caller is responsible to make sure Destination points to a buffer with size\r
1081 equal or greater than ((StrLen (Source) + 1) * sizeof (CHAR8)) in bytes.\r
1082\r
1083 If any Unicode characters in Source contain non-zero value in\r
1084 the upper 8 bits, then ASSERT().\r
1085\r
1086 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
1087 If an error would be returned, then the function will also ASSERT().\r
1088\r
1089 If an error is returned, then the Destination is unmodified.\r
1090\r
1091 @param Source The pointer to a Null-terminated Unicode string.\r
1092 @param Destination The pointer to a Null-terminated ASCII string.\r
1093 @param DestMax The maximum number of Destination Ascii\r
1094 char, including terminating null char.\r
1095\r
1096 @retval RETURN_SUCCESS String is converted.\r
1097 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than StrLen(Source).\r
1098 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
1099 If Source is NULL.\r
1100 If PcdMaximumAsciiStringLength is not zero,\r
1101 and DestMax is greater than\r
1102 PcdMaximumAsciiStringLength.\r
1103 If PcdMaximumUnicodeStringLength is not zero,\r
1104 and DestMax is greater than\r
1105 PcdMaximumUnicodeStringLength.\r
1106 If DestMax is 0.\r
1107 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
1108\r
1109**/\r
1110RETURN_STATUS\r
1111EFIAPI\r
1112UnicodeStrToAsciiStrS (\r
1113 IN CONST CHAR16 *Source,\r
1114 OUT CHAR8 *Destination,\r
1115 IN UINTN DestMax\r
1116 );\r
1117\r
1118#ifndef DISABLE_NEW_DEPRECATED_INTERFACES\r
1119\r
1120/**\r
1121 [ATTENTION] This function is deprecated for security reason.\r
1122\r
1123 Copies one Null-terminated ASCII string to another Null-terminated ASCII\r
1124 string and returns the new ASCII string.\r
1125\r
1126 This function copies the contents of the ASCII string Source to the ASCII\r
1127 string Destination, and returns Destination. If Source and Destination\r
1128 overlap, then the results are undefined.\r
1129\r
1130 If Destination is NULL, then ASSERT().\r
1131 If Source is NULL, then ASSERT().\r
1132 If Source and Destination overlap, then ASSERT().\r
1133 If PcdMaximumAsciiStringLength is not zero and Source contains more than\r
1134 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
1135 then ASSERT().\r
1136\r
1137 @param Destination The pointer to a Null-terminated ASCII string.\r
1138 @param Source The pointer to a Null-terminated ASCII string.\r
1139\r
1140 @return Destination\r
1141\r
1142**/\r
1143CHAR8 *\r
1144EFIAPI\r
1145AsciiStrCpy (\r
1146 OUT CHAR8 *Destination,\r
1147 IN CONST CHAR8 *Source\r
1148 );\r
1149\r
1150\r
1151/**\r
1152 [ATTENTION] This function is deprecated for security reason.\r
1153\r
1154 Copies up to a specified length one Null-terminated ASCII string to another \r
1155 Null-terminated ASCII string and returns the new ASCII string.\r
1156\r
1157 This function copies the contents of the ASCII string Source to the ASCII\r
1158 string Destination, and returns Destination. At most, Length ASCII characters\r
1159 are copied from Source to Destination. If Length is 0, then Destination is\r
1160 returned unmodified. If Length is greater that the number of ASCII characters\r
1161 in Source, then Destination is padded with Null ASCII characters. If Source\r
1162 and Destination overlap, then the results are undefined.\r
1163\r
1164 If Destination is NULL, then ASSERT().\r
1165 If Source is NULL, then ASSERT().\r
1166 If Source and Destination overlap, then ASSERT().\r
1167 If PcdMaximumAsciiStringLength is not zero, and Length is greater than \r
1168 PcdMaximumAsciiStringLength, then ASSERT().\r
1169 If PcdMaximumAsciiStringLength is not zero, and Source contains more than\r
1170 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
1171 then ASSERT().\r
1172\r
1173 @param Destination The pointer to a Null-terminated ASCII string.\r
1174 @param Source The pointer to a Null-terminated ASCII string.\r
1175 @param Length The maximum number of ASCII characters to copy.\r
1176\r
1177 @return Destination\r
1178\r
1179**/\r
1180CHAR8 *\r
1181EFIAPI\r
1182AsciiStrnCpy (\r
1183 OUT CHAR8 *Destination,\r
1184 IN CONST CHAR8 *Source,\r
1185 IN UINTN Length\r
1186 );\r
1187#endif\r
1188\r
1189/**\r
1190 Returns the length of a Null-terminated ASCII string.\r
1191\r
1192 This function returns the number of ASCII characters in the Null-terminated\r
1193 ASCII string specified by String.\r
1194\r
1195 If Length > 0 and Destination is NULL, then ASSERT().\r
1196 If Length > 0 and Source is NULL, then ASSERT().\r
1197 If PcdMaximumAsciiStringLength is not zero and String contains more than\r
1198 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
1199 then ASSERT().\r
1200\r
1201 @param String The pointer to a Null-terminated ASCII string.\r
1202\r
1203 @return The length of String.\r
1204\r
1205**/\r
1206UINTN\r
1207EFIAPI\r
1208AsciiStrLen (\r
1209 IN CONST CHAR8 *String\r
1210 );\r
1211\r
1212\r
1213/**\r
1214 Returns the size of a Null-terminated ASCII string in bytes, including the\r
1215 Null terminator.\r
1216\r
1217 This function returns the size, in bytes, of the Null-terminated ASCII string\r
1218 specified by String.\r
1219\r
1220 If String is NULL, then ASSERT().\r
1221 If PcdMaximumAsciiStringLength is not zero and String contains more than\r
1222 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
1223 then ASSERT().\r
1224\r
1225 @param String The pointer to a Null-terminated ASCII string.\r
1226\r
1227 @return The size of String.\r
1228\r
1229**/\r
1230UINTN\r
1231EFIAPI\r
1232AsciiStrSize (\r
1233 IN CONST CHAR8 *String\r
1234 );\r
1235\r
1236\r
1237/**\r
1238 Compares two Null-terminated ASCII strings, and returns the difference\r
1239 between the first mismatched ASCII characters.\r
1240\r
1241 This function compares the Null-terminated ASCII string FirstString to the\r
1242 Null-terminated ASCII string SecondString. If FirstString is identical to\r
1243 SecondString, then 0 is returned. Otherwise, the value returned is the first\r
1244 mismatched ASCII character in SecondString subtracted from the first\r
1245 mismatched ASCII character in FirstString.\r
1246\r
1247 If FirstString is NULL, then ASSERT().\r
1248 If SecondString is NULL, then ASSERT().\r
1249 If PcdMaximumAsciiStringLength is not zero and FirstString contains more than\r
1250 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
1251 then ASSERT().\r
1252 If PcdMaximumAsciiStringLength is not zero and SecondString contains more\r
1253 than PcdMaximumAsciiStringLength ASCII characters not including the\r
1254 Null-terminator, then ASSERT().\r
1255\r
1256 @param FirstString The pointer to a Null-terminated ASCII string.\r
1257 @param SecondString The pointer to a Null-terminated ASCII string.\r
1258\r
1259 @retval ==0 FirstString is identical to SecondString.\r
1260 @retval !=0 FirstString is not identical to SecondString.\r
1261\r
1262**/\r
1263INTN\r
1264EFIAPI\r
1265AsciiStrCmp (\r
1266 IN CONST CHAR8 *FirstString,\r
1267 IN CONST CHAR8 *SecondString\r
1268 );\r
1269\r
1270\r
1271/**\r
1272 Performs a case insensitive comparison of two Null-terminated ASCII strings,\r
1273 and returns the difference between the first mismatched ASCII characters.\r
1274\r
1275 This function performs a case insensitive comparison of the Null-terminated\r
1276 ASCII string FirstString to the Null-terminated ASCII string SecondString. If\r
1277 FirstString is identical to SecondString, then 0 is returned. Otherwise, the\r
1278 value returned is the first mismatched lower case ASCII character in\r
1279 SecondString subtracted from the first mismatched lower case ASCII character\r
1280 in FirstString.\r
1281\r
1282 If FirstString is NULL, then ASSERT().\r
1283 If SecondString is NULL, then ASSERT().\r
1284 If PcdMaximumAsciiStringLength is not zero and FirstString contains more than\r
1285 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
1286 then ASSERT().\r
1287 If PcdMaximumAsciiStringLength is not zero and SecondString contains more\r
1288 than PcdMaximumAsciiStringLength ASCII characters not including the\r
1289 Null-terminator, then ASSERT().\r
1290\r
1291 @param FirstString The pointer to a Null-terminated ASCII string.\r
1292 @param SecondString The pointer to a Null-terminated ASCII string.\r
1293\r
1294 @retval ==0 FirstString is identical to SecondString using case insensitive\r
1295 comparisons.\r
1296 @retval !=0 FirstString is not identical to SecondString using case\r
1297 insensitive comparisons.\r
1298\r
1299**/\r
1300INTN\r
1301EFIAPI\r
1302AsciiStriCmp (\r
1303 IN CONST CHAR8 *FirstString,\r
1304 IN CONST CHAR8 *SecondString\r
1305 );\r
1306\r
1307\r
1308/**\r
1309 Compares two Null-terminated ASCII strings with maximum lengths, and returns\r
1310 the difference between the first mismatched ASCII characters.\r
1311\r
1312 This function compares the Null-terminated ASCII string FirstString to the\r
1313 Null-terminated ASCII string SecondString. At most, Length ASCII characters\r
1314 will be compared. If Length is 0, then 0 is returned. If FirstString is\r
1315 identical to SecondString, then 0 is returned. Otherwise, the value returned\r
1316 is the first mismatched ASCII character in SecondString subtracted from the\r
1317 first mismatched ASCII character in FirstString.\r
1318\r
1319 If Length > 0 and FirstString is NULL, then ASSERT().\r
1320 If Length > 0 and SecondString is NULL, then ASSERT().\r
1321 If PcdMaximumAsciiStringLength is not zero, and Length is greater than \r
1322 PcdMaximumAsciiStringLength, then ASSERT().\r
1323 If PcdMaximumAsciiStringLength is not zero, and FirstString contains more than\r
1324 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
1325 then ASSERT().\r
1326 If PcdMaximumAsciiStringLength is not zero, and SecondString contains more than\r
1327 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
1328 then ASSERT().\r
1329\r
1330 @param FirstString The pointer to a Null-terminated ASCII string.\r
1331 @param SecondString The pointer to a Null-terminated ASCII string.\r
1332 @param Length The maximum number of ASCII characters for compare.\r
1333 \r
1334 @retval ==0 FirstString is identical to SecondString.\r
1335 @retval !=0 FirstString is not identical to SecondString.\r
1336\r
1337**/\r
1338INTN\r
1339EFIAPI\r
1340AsciiStrnCmp (\r
1341 IN CONST CHAR8 *FirstString,\r
1342 IN CONST CHAR8 *SecondString,\r
1343 IN UINTN Length\r
1344 );\r
1345\r
1346\r
1347#ifndef DISABLE_NEW_DEPRECATED_INTERFACES\r
1348\r
1349/**\r
1350 [ATTENTION] This function is deprecated for security reason.\r
1351\r
1352 Concatenates one Null-terminated ASCII string to another Null-terminated\r
1353 ASCII string, and returns the concatenated ASCII string.\r
1354\r
1355 This function concatenates two Null-terminated ASCII strings. The contents of\r
1356 Null-terminated ASCII string Source are concatenated to the end of Null-\r
1357 terminated ASCII string Destination. The Null-terminated concatenated ASCII\r
1358 String is returned.\r
1359\r
1360 If Destination is NULL, then ASSERT().\r
1361 If Source is NULL, then ASSERT().\r
1362 If PcdMaximumAsciiStringLength is not zero and Destination contains more than\r
1363 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
1364 then ASSERT().\r
1365 If PcdMaximumAsciiStringLength is not zero and Source contains more than\r
1366 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
1367 then ASSERT().\r
1368 If PcdMaximumAsciiStringLength is not zero and concatenating Destination and\r
1369 Source results in a ASCII string with more than PcdMaximumAsciiStringLength\r
1370 ASCII characters, then ASSERT().\r
1371\r
1372 @param Destination The pointer to a Null-terminated ASCII string.\r
1373 @param Source The pointer to a Null-terminated ASCII string.\r
1374\r
1375 @return Destination\r
1376\r
1377**/\r
1378CHAR8 *\r
1379EFIAPI\r
1380AsciiStrCat (\r
1381 IN OUT CHAR8 *Destination,\r
1382 IN CONST CHAR8 *Source\r
1383 );\r
1384\r
1385\r
1386/**\r
1387 [ATTENTION] This function is deprecated for security reason.\r
1388\r
1389 Concatenates up to a specified length one Null-terminated ASCII string to \r
1390 the end of another Null-terminated ASCII string, and returns the \r
1391 concatenated ASCII string.\r
1392\r
1393 This function concatenates two Null-terminated ASCII strings. The contents\r
1394 of Null-terminated ASCII string Source are concatenated to the end of Null-\r
1395 terminated ASCII string Destination, and Destination is returned. At most,\r
1396 Length ASCII characters are concatenated from Source to the end of\r
1397 Destination, and Destination is always Null-terminated. If Length is 0, then\r
1398 Destination is returned unmodified. If Source and Destination overlap, then\r
1399 the results are undefined.\r
1400\r
1401 If Length > 0 and Destination is NULL, then ASSERT().\r
1402 If Length > 0 and Source is NULL, then ASSERT().\r
1403 If Source and Destination overlap, then ASSERT().\r
1404 If PcdMaximumAsciiStringLength is not zero, and Length is greater than\r
1405 PcdMaximumAsciiStringLength, then ASSERT().\r
1406 If PcdMaximumAsciiStringLength is not zero, and Destination contains more than\r
1407 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
1408 then ASSERT().\r
1409 If PcdMaximumAsciiStringLength is not zero, and Source contains more than\r
1410 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
1411 then ASSERT().\r
1412 If PcdMaximumAsciiStringLength is not zero, and concatenating Destination and\r
1413 Source results in a ASCII string with more than PcdMaximumAsciiStringLength\r
1414 ASCII characters, not including the Null-terminator, then ASSERT().\r
1415\r
1416 @param Destination The pointer to a Null-terminated ASCII string.\r
1417 @param Source The pointer to a Null-terminated ASCII string.\r
1418 @param Length The maximum number of ASCII characters to concatenate from\r
1419 Source.\r
1420\r
1421 @return Destination\r
1422\r
1423**/\r
1424CHAR8 *\r
1425EFIAPI\r
1426AsciiStrnCat (\r
1427 IN OUT CHAR8 *Destination,\r
1428 IN CONST CHAR8 *Source,\r
1429 IN UINTN Length\r
1430 );\r
1431#endif\r
1432\r
1433/**\r
1434 Returns the first occurrence of a Null-terminated ASCII sub-string\r
1435 in a Null-terminated ASCII string.\r
1436\r
1437 This function scans the contents of the ASCII string specified by String\r
1438 and returns the first occurrence of SearchString. If SearchString is not\r
1439 found in String, then NULL is returned. If the length of SearchString is zero,\r
1440 then String is returned.\r
1441\r
1442 If String is NULL, then ASSERT().\r
1443 If SearchString is NULL, then ASSERT().\r
1444\r
1445 If PcdMaximumAsciiStringLength is not zero, and SearchString or\r
1446 String contains more than PcdMaximumAsciiStringLength Unicode characters\r
1447 not including the Null-terminator, then ASSERT().\r
1448\r
1449 @param String The pointer to a Null-terminated ASCII string.\r
1450 @param SearchString The pointer to a Null-terminated ASCII string to search for.\r
1451\r
1452 @retval NULL If the SearchString does not appear in String.\r
1453 @retval others If there is a match return the first occurrence of SearchingString.\r
1454 If the length of SearchString is zero,return String.\r
1455\r
1456**/\r
1457CHAR8 *\r
1458EFIAPI\r
1459AsciiStrStr (\r
1460 IN CONST CHAR8 *String,\r
1461 IN CONST CHAR8 *SearchString\r
1462 );\r
1463\r
1464\r
1465/**\r
1466 Convert a Null-terminated ASCII decimal string to a value of type\r
1467 UINTN.\r
1468\r
1469 This function returns a value of type UINTN by interpreting the contents\r
1470 of the ASCII string String as a decimal number. The format of the input\r
1471 ASCII string String is:\r
1472\r
1473 [spaces] [decimal digits].\r
1474\r
1475 The valid decimal digit character is in the range [0-9]. The function will\r
1476 ignore the pad space, which includes spaces or tab characters, before the digits.\r
1477 The running zero in the beginning of [decimal digits] will be ignored. Then, the\r
1478 function stops at the first character that is a not a valid decimal character or\r
1479 Null-terminator, whichever on comes first.\r
1480\r
1481 If String has only pad spaces, then 0 is returned.\r
1482 If String has no pad spaces or valid decimal digits, then 0 is returned.\r
1483 If the number represented by String overflows according to the range defined by\r
1484 UINTN, then ASSERT().\r
1485 If String is NULL, then ASSERT().\r
1486 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
1487 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
1488 then ASSERT().\r
1489\r
1490 @param String The pointer to a Null-terminated ASCII string.\r
1491\r
1492 @retval The value translated from String.\r
1493\r
1494**/\r
1495UINTN\r
1496EFIAPI\r
1497AsciiStrDecimalToUintn (\r
1498 IN CONST CHAR8 *String\r
1499 );\r
1500\r
1501\r
1502/**\r
1503 Convert a Null-terminated ASCII decimal string to a value of type\r
1504 UINT64.\r
1505\r
1506 This function returns a value of type UINT64 by interpreting the contents\r
1507 of the ASCII string String as a decimal number. The format of the input\r
1508 ASCII string String is:\r
1509\r
1510 [spaces] [decimal digits].\r
1511\r
1512 The valid decimal digit character is in the range [0-9]. The function will\r
1513 ignore the pad space, which includes spaces or tab characters, before the digits.\r
1514 The running zero in the beginning of [decimal digits] will be ignored. Then, the\r
1515 function stops at the first character that is a not a valid decimal character or\r
1516 Null-terminator, whichever on comes first.\r
1517\r
1518 If String has only pad spaces, then 0 is returned.\r
1519 If String has no pad spaces or valid decimal digits, then 0 is returned.\r
1520 If the number represented by String overflows according to the range defined by\r
1521 UINT64, then ASSERT().\r
1522 If String is NULL, then ASSERT().\r
1523 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
1524 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
1525 then ASSERT().\r
1526\r
1527 @param String The pointer to a Null-terminated ASCII string.\r
1528\r
1529 @retval Value translated from String.\r
1530\r
1531**/\r
1532UINT64\r
1533EFIAPI\r
1534AsciiStrDecimalToUint64 (\r
1535 IN CONST CHAR8 *String\r
1536 );\r
1537\r
1538\r
1539/**\r
1540 Convert a Null-terminated ASCII hexadecimal string to a value of type UINTN.\r
1541\r
1542 This function returns a value of type UINTN by interpreting the contents of\r
1543 the ASCII string String as a hexadecimal number. The format of the input ASCII\r
1544 string String is:\r
1545\r
1546 [spaces][zeros][x][hexadecimal digits].\r
1547\r
1548 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
1549 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x"\r
1550 appears in the input string, it must be prefixed with at least one 0. The function\r
1551 will ignore the pad space, which includes spaces or tab characters, before [zeros],\r
1552 [x] or [hexadecimal digits]. The running zero before [x] or [hexadecimal digits]\r
1553 will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal\r
1554 digit. Then, the function stops at the first character that is a not a valid\r
1555 hexadecimal character or Null-terminator, whichever on comes first.\r
1556\r
1557 If String has only pad spaces, then 0 is returned.\r
1558 If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then\r
1559 0 is returned.\r
1560\r
1561 If the number represented by String overflows according to the range defined by UINTN,\r
1562 then ASSERT().\r
1563 If String is NULL, then ASSERT().\r
1564 If PcdMaximumAsciiStringLength is not zero,\r
1565 and String contains more than PcdMaximumAsciiStringLength ASCII characters not including\r
1566 the Null-terminator, then ASSERT().\r
1567\r
1568 @param String The pointer to a Null-terminated ASCII string.\r
1569\r
1570 @retval Value translated from String.\r
1571\r
1572**/\r
1573UINTN\r
1574EFIAPI\r
1575AsciiStrHexToUintn (\r
1576 IN CONST CHAR8 *String\r
1577 );\r
1578\r
1579\r
1580/**\r
1581 Convert a Null-terminated ASCII hexadecimal string to a value of type UINT64.\r
1582\r
1583 This function returns a value of type UINT64 by interpreting the contents of\r
1584 the ASCII string String as a hexadecimal number. The format of the input ASCII\r
1585 string String is:\r
1586\r
1587 [spaces][zeros][x][hexadecimal digits].\r
1588\r
1589 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
1590 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x"\r
1591 appears in the input string, it must be prefixed with at least one 0. The function\r
1592 will ignore the pad space, which includes spaces or tab characters, before [zeros],\r
1593 [x] or [hexadecimal digits]. The running zero before [x] or [hexadecimal digits]\r
1594 will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal\r
1595 digit. Then, the function stops at the first character that is a not a valid\r
1596 hexadecimal character or Null-terminator, whichever on comes first.\r
1597\r
1598 If String has only pad spaces, then 0 is returned.\r
1599 If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then\r
1600 0 is returned.\r
1601\r
1602 If the number represented by String overflows according to the range defined by UINT64,\r
1603 then ASSERT().\r
1604 If String is NULL, then ASSERT().\r
1605 If PcdMaximumAsciiStringLength is not zero,\r
1606 and String contains more than PcdMaximumAsciiStringLength ASCII characters not including\r
1607 the Null-terminator, then ASSERT().\r
1608\r
1609 @param String The pointer to a Null-terminated ASCII string.\r
1610\r
1611 @retval Value translated from String.\r
1612\r
1613**/\r
1614UINT64\r
1615EFIAPI\r
1616AsciiStrHexToUint64 (\r
1617 IN CONST CHAR8 *String\r
1618 );\r
1619\r
1620#ifndef DISABLE_NEW_DEPRECATED_INTERFACES\r
1621\r
1622/**\r
1623 [ATTENTION] This function is deprecated for security reason.\r
1624\r
1625 Convert one Null-terminated ASCII string to a Null-terminated\r
1626 Unicode string and returns the Unicode string.\r
1627\r
1628 This function converts the contents of the ASCII string Source to the Unicode\r
1629 string Destination, and returns Destination. The function terminates the\r
1630 Unicode string Destination by appending a Null-terminator character at the end.\r
1631 The caller is responsible to make sure Destination points to a buffer with size\r
1632 equal or greater than ((AsciiStrLen (Source) + 1) * sizeof (CHAR16)) in bytes.\r
1633\r
1634 If Destination is NULL, then ASSERT().\r
1635 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
1636 If Source is NULL, then ASSERT().\r
1637 If Source and Destination overlap, then ASSERT().\r
1638 If PcdMaximumAsciiStringLength is not zero, and Source contains more than\r
1639 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
1640 then ASSERT().\r
1641 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
1642 PcdMaximumUnicodeStringLength ASCII characters not including the\r
1643 Null-terminator, then ASSERT().\r
1644\r
1645 @param Source The pointer to a Null-terminated ASCII string.\r
1646 @param Destination The pointer to a Null-terminated Unicode string.\r
1647\r
1648 @return Destination.\r
1649\r
1650**/\r
1651CHAR16 *\r
1652EFIAPI\r
1653AsciiStrToUnicodeStr (\r
1654 IN CONST CHAR8 *Source,\r
1655 OUT CHAR16 *Destination\r
1656 );\r
1657\r
1658#endif\r
1659\r
1660/**\r
1661 Convert one Null-terminated ASCII string to a Null-terminated\r
1662 Unicode string.\r
1663\r
1664 This function is similar to StrCpyS.\r
1665\r
1666 This function converts the contents of the ASCII string Source to the Unicode\r
1667 string Destination. The function terminates the Unicode string Destination by\r
1668 appending a Null-terminator character at the end.\r
1669\r
1670 The caller is responsible to make sure Destination points to a buffer with size\r
1671 equal or greater than ((AsciiStrLen (Source) + 1) * sizeof (CHAR16)) in bytes.\r
1672\r
1673 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
1674 If an error would be returned, then the function will also ASSERT().\r
1675\r
1676 If an error is returned, then the Destination is unmodified.\r
1677\r
1678 @param Source The pointer to a Null-terminated ASCII string.\r
1679 @param Destination The pointer to a Null-terminated Unicode string.\r
1680 @param DestMax The maximum number of Destination Unicode\r
1681 char, including terminating null char.\r
1682\r
1683 @retval RETURN_SUCCESS String is converted.\r
1684 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than StrLen(Source).\r
1685 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
1686 If Source is NULL.\r
1687 If PcdMaximumUnicodeStringLength is not zero,\r
1688 and DestMax is greater than\r
1689 PcdMaximumUnicodeStringLength.\r
1690 If PcdMaximumAsciiStringLength is not zero,\r
1691 and DestMax is greater than\r
1692 PcdMaximumAsciiStringLength.\r
1693 If DestMax is 0.\r
1694 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
1695\r
1696**/\r
1697RETURN_STATUS\r
1698EFIAPI\r
1699AsciiStrToUnicodeStrS (\r
1700 IN CONST CHAR8 *Source,\r
1701 OUT CHAR16 *Destination,\r
1702 IN UINTN DestMax\r
1703 );\r
1704\r
1705/**\r
1706 Converts an 8-bit value to an 8-bit BCD value.\r
1707\r
1708 Converts the 8-bit value specified by Value to BCD. The BCD value is\r
1709 returned.\r
1710\r
1711 If Value >= 100, then ASSERT().\r
1712\r
1713 @param Value The 8-bit value to convert to BCD. Range 0..99.\r
1714\r
1715 @return The BCD value.\r
1716\r
1717**/\r
1718UINT8\r
1719EFIAPI\r
1720DecimalToBcd8 (\r
1721 IN UINT8 Value\r
1722 );\r
1723\r
1724\r
1725/**\r
1726 Converts an 8-bit BCD value to an 8-bit value.\r
1727\r
1728 Converts the 8-bit BCD value specified by Value to an 8-bit value. The 8-bit\r
1729 value is returned.\r
1730\r
1731 If Value >= 0xA0, then ASSERT().\r
1732 If (Value & 0x0F) >= 0x0A, then ASSERT().\r
1733\r
1734 @param Value The 8-bit BCD value to convert to an 8-bit value.\r
1735\r
1736 @return The 8-bit value is returned.\r
1737\r
1738**/\r
1739UINT8\r
1740EFIAPI\r
1741BcdToDecimal8 (\r
1742 IN UINT8 Value\r
1743 );\r
1744\r
1745//\r
1746// File Path Manipulation Functions\r
1747//\r
1748\r
1749/**\r
1750 Removes the last directory or file entry in a path by changing the last\r
1751 L'\' to a CHAR_NULL.\r
1752\r
1753 @param[in, out] Path The pointer to the path to modify.\r
1754\r
1755 @retval FALSE Nothing was found to remove.\r
1756 @retval TRUE A directory or file was removed.\r
1757**/\r
1758BOOLEAN\r
1759EFIAPI\r
1760PathRemoveLastItem(\r
1761 IN OUT CHAR16 *Path\r
1762 );\r
1763\r
1764/**\r
1765 Function to clean up paths.\r
1766 - Single periods in the path are removed.\r
1767 - Double periods in the path are removed along with a single parent directory.\r
1768 - Forward slashes L'/' are converted to backward slashes L'\'.\r
1769\r
1770 This will be done inline and the existing buffer may be larger than required\r
1771 upon completion.\r
1772\r
1773 @param[in] Path The pointer to the string containing the path.\r
1774\r
1775 @return Returns Path, otherwise returns NULL to indicate that an error has occured.\r
1776**/\r
1777CHAR16*\r
1778EFIAPI\r
1779PathCleanUpDirectories(\r
1780 IN CHAR16 *Path\r
1781 );\r
1782\r
1783//\r
1784// Linked List Functions and Macros\r
1785//\r
1786\r
1787/**\r
1788 Initializes the head node of a doubly linked list that is declared as a\r
1789 global variable in a module.\r
1790\r
1791 Initializes the forward and backward links of a new linked list. After\r
1792 initializing a linked list with this macro, the other linked list functions\r
1793 may be used to add and remove nodes from the linked list. This macro results\r
1794 in smaller executables by initializing the linked list in the data section,\r
1795 instead if calling the InitializeListHead() function to perform the\r
1796 equivalent operation.\r
1797\r
1798 @param ListHead The head note of a list to initialize.\r
1799\r
1800**/\r
1801#define INITIALIZE_LIST_HEAD_VARIABLE(ListHead) {&(ListHead), &(ListHead)}\r
1802\r
1803\r
1804/**\r
1805 Initializes the head node of a doubly linked list, and returns the pointer to\r
1806 the head node of the doubly linked list.\r
1807\r
1808 Initializes the forward and backward links of a new linked list. After\r
1809 initializing a linked list with this function, the other linked list\r
1810 functions may be used to add and remove nodes from the linked list. It is up\r
1811 to the caller of this function to allocate the memory for ListHead.\r
1812\r
1813 If ListHead is NULL, then ASSERT().\r
1814\r
1815 @param ListHead A pointer to the head node of a new doubly linked list.\r
1816\r
1817 @return ListHead\r
1818\r
1819**/\r
1820LIST_ENTRY *\r
1821EFIAPI\r
1822InitializeListHead (\r
1823 IN OUT LIST_ENTRY *ListHead\r
1824 );\r
1825\r
1826\r
1827/**\r
1828 Adds a node to the beginning of a doubly linked list, and returns the pointer\r
1829 to the head node of the doubly linked list.\r
1830\r
1831 Adds the node Entry at the beginning of the doubly linked list denoted by\r
1832 ListHead, and returns ListHead.\r
1833\r
1834 If ListHead is NULL, then ASSERT().\r
1835 If Entry is NULL, then ASSERT().\r
1836 If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or\r
1837 InitializeListHead(), then ASSERT().\r
1838 If PcdMaximumLinkedListLength is not zero, and prior to insertion the number\r
1839 of nodes in ListHead, including the ListHead node, is greater than or\r
1840 equal to PcdMaximumLinkedListLength, then ASSERT().\r
1841\r
1842 @param ListHead A pointer to the head node of a doubly linked list.\r
1843 @param Entry A pointer to a node that is to be inserted at the beginning\r
1844 of a doubly linked list.\r
1845\r
1846 @return ListHead\r
1847\r
1848**/\r
1849LIST_ENTRY *\r
1850EFIAPI\r
1851InsertHeadList (\r
1852 IN OUT LIST_ENTRY *ListHead,\r
1853 IN OUT LIST_ENTRY *Entry\r
1854 );\r
1855\r
1856\r
1857/**\r
1858 Adds a node to the end of a doubly linked list, and returns the pointer to\r
1859 the head node of the doubly linked list.\r
1860\r
1861 Adds the node Entry to the end of the doubly linked list denoted by ListHead,\r
1862 and returns ListHead.\r
1863\r
1864 If ListHead is NULL, then ASSERT().\r
1865 If Entry is NULL, then ASSERT().\r
1866 If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
1867 InitializeListHead(), then ASSERT().\r
1868 If PcdMaximumLinkedListLength is not zero, and prior to insertion the number\r
1869 of nodes in ListHead, including the ListHead node, is greater than or\r
1870 equal to PcdMaximumLinkedListLength, then ASSERT().\r
1871\r
1872 @param ListHead A pointer to the head node of a doubly linked list.\r
1873 @param Entry A pointer to a node that is to be added at the end of the\r
1874 doubly linked list.\r
1875\r
1876 @return ListHead\r
1877\r
1878**/\r
1879LIST_ENTRY *\r
1880EFIAPI\r
1881InsertTailList (\r
1882 IN OUT LIST_ENTRY *ListHead,\r
1883 IN OUT LIST_ENTRY *Entry\r
1884 );\r
1885\r
1886\r
1887/**\r
1888 Retrieves the first node of a doubly linked list.\r
1889\r
1890 Returns the first node of a doubly linked list. List must have been \r
1891 initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().\r
1892 If List is empty, then List is returned.\r
1893\r
1894 If List is NULL, then ASSERT().\r
1895 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
1896 InitializeListHead(), then ASSERT().\r
1897 If PcdMaximumLinkedListLength is not zero, and the number of nodes\r
1898 in List, including the List node, is greater than or equal to\r
1899 PcdMaximumLinkedListLength, then ASSERT().\r
1900\r
1901 @param List A pointer to the head node of a doubly linked list.\r
1902\r
1903 @return The first node of a doubly linked list.\r
1904 @retval List The list is empty.\r
1905\r
1906**/\r
1907LIST_ENTRY *\r
1908EFIAPI\r
1909GetFirstNode (\r
1910 IN CONST LIST_ENTRY *List\r
1911 );\r
1912\r
1913\r
1914/**\r
1915 Retrieves the next node of a doubly linked list.\r
1916\r
1917 Returns the node of a doubly linked list that follows Node. \r
1918 List must have been initialized with INTIALIZE_LIST_HEAD_VARIABLE()\r
1919 or InitializeListHead(). If List is empty, then List is returned.\r
1920\r
1921 If List is NULL, then ASSERT().\r
1922 If Node is NULL, then ASSERT().\r
1923 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
1924 InitializeListHead(), then ASSERT().\r
1925 If PcdMaximumLinkedListLength is not zero, and List contains more than\r
1926 PcdMaximumLinkedListLength nodes, then ASSERT().\r
1927 If PcdVerifyNodeInList is TRUE and Node is not a node in List, then ASSERT().\r
1928\r
1929 @param List A pointer to the head node of a doubly linked list.\r
1930 @param Node A pointer to a node in the doubly linked list.\r
1931\r
1932 @return The pointer to the next node if one exists. Otherwise List is returned.\r
1933\r
1934**/\r
1935LIST_ENTRY *\r
1936EFIAPI\r
1937GetNextNode (\r
1938 IN CONST LIST_ENTRY *List,\r
1939 IN CONST LIST_ENTRY *Node\r
1940 );\r
1941\r
1942 \r
1943/**\r
1944 Retrieves the previous node of a doubly linked list.\r
1945 \r
1946 Returns the node of a doubly linked list that precedes Node. \r
1947 List must have been initialized with INTIALIZE_LIST_HEAD_VARIABLE()\r
1948 or InitializeListHead(). If List is empty, then List is returned.\r
1949 \r
1950 If List is NULL, then ASSERT().\r
1951 If Node is NULL, then ASSERT().\r
1952 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
1953 InitializeListHead(), then ASSERT().\r
1954 If PcdMaximumLinkedListLength is not zero, and List contains more than\r
1955 PcdMaximumLinkedListLength nodes, then ASSERT().\r
1956 If PcdVerifyNodeInList is TRUE and Node is not a node in List, then ASSERT().\r
1957 \r
1958 @param List A pointer to the head node of a doubly linked list.\r
1959 @param Node A pointer to a node in the doubly linked list.\r
1960 \r
1961 @return The pointer to the previous node if one exists. Otherwise List is returned.\r
1962 \r
1963**/\r
1964LIST_ENTRY *\r
1965EFIAPI\r
1966GetPreviousNode (\r
1967 IN CONST LIST_ENTRY *List,\r
1968 IN CONST LIST_ENTRY *Node\r
1969 );\r
1970\r
1971 \r
1972/**\r
1973 Checks to see if a doubly linked list is empty or not.\r
1974\r
1975 Checks to see if the doubly linked list is empty. If the linked list contains\r
1976 zero nodes, this function returns TRUE. Otherwise, it returns FALSE.\r
1977\r
1978 If ListHead is NULL, then ASSERT().\r
1979 If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
1980 InitializeListHead(), then ASSERT().\r
1981 If PcdMaximumLinkedListLength is not zero, and the number of nodes\r
1982 in List, including the List node, is greater than or equal to\r
1983 PcdMaximumLinkedListLength, then ASSERT().\r
1984\r
1985 @param ListHead A pointer to the head node of a doubly linked list.\r
1986\r
1987 @retval TRUE The linked list is empty.\r
1988 @retval FALSE The linked list is not empty.\r
1989\r
1990**/\r
1991BOOLEAN\r
1992EFIAPI\r
1993IsListEmpty (\r
1994 IN CONST LIST_ENTRY *ListHead\r
1995 );\r
1996\r
1997\r
1998/**\r
1999 Determines if a node in a doubly linked list is the head node of a the same\r
2000 doubly linked list. This function is typically used to terminate a loop that\r
2001 traverses all the nodes in a doubly linked list starting with the head node.\r
2002\r
2003 Returns TRUE if Node is equal to List. Returns FALSE if Node is one of the\r
2004 nodes in the doubly linked list specified by List. List must have been\r
2005 initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().\r
2006\r
2007 If List is NULL, then ASSERT().\r
2008 If Node is NULL, then ASSERT().\r
2009 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(), \r
2010 then ASSERT().\r
2011 If PcdMaximumLinkedListLength is not zero, and the number of nodes\r
2012 in List, including the List node, is greater than or equal to\r
2013 PcdMaximumLinkedListLength, then ASSERT().\r
2014 If PcdVerifyNodeInList is TRUE and Node is not a node in List the and Node is not equal \r
2015 to List, then ASSERT().\r
2016\r
2017 @param List A pointer to the head node of a doubly linked list.\r
2018 @param Node A pointer to a node in the doubly linked list.\r
2019\r
2020 @retval TRUE Node is the head of the doubly-linked list pointed by List.\r
2021 @retval FALSE Node is not the head of the doubly-linked list pointed by List.\r
2022\r
2023**/\r
2024BOOLEAN\r
2025EFIAPI\r
2026IsNull (\r
2027 IN CONST LIST_ENTRY *List,\r
2028 IN CONST LIST_ENTRY *Node\r
2029 );\r
2030\r
2031\r
2032/**\r
2033 Determines if a node the last node in a doubly linked list.\r
2034\r
2035 Returns TRUE if Node is the last node in the doubly linked list specified by\r
2036 List. Otherwise, FALSE is returned. List must have been initialized with\r
2037 INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().\r
2038\r
2039 If List is NULL, then ASSERT().\r
2040 If Node is NULL, then ASSERT().\r
2041 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or\r
2042 InitializeListHead(), then ASSERT().\r
2043 If PcdMaximumLinkedListLength is not zero, and the number of nodes\r
2044 in List, including the List node, is greater than or equal to\r
2045 PcdMaximumLinkedListLength, then ASSERT().\r
2046 If PcdVerifyNodeInList is TRUE and Node is not a node in List, then ASSERT().\r
2047\r
2048 @param List A pointer to the head node of a doubly linked list.\r
2049 @param Node A pointer to a node in the doubly linked list.\r
2050\r
2051 @retval TRUE Node is the last node in the linked list.\r
2052 @retval FALSE Node is not the last node in the linked list.\r
2053\r
2054**/\r
2055BOOLEAN\r
2056EFIAPI\r
2057IsNodeAtEnd (\r
2058 IN CONST LIST_ENTRY *List,\r
2059 IN CONST LIST_ENTRY *Node\r
2060 );\r
2061\r
2062\r
2063/**\r
2064 Swaps the location of two nodes in a doubly linked list, and returns the\r
2065 first node after the swap.\r
2066\r
2067 If FirstEntry is identical to SecondEntry, then SecondEntry is returned.\r
2068 Otherwise, the location of the FirstEntry node is swapped with the location\r
2069 of the SecondEntry node in a doubly linked list. SecondEntry must be in the\r
2070 same double linked list as FirstEntry and that double linked list must have\r
2071 been initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(). \r
2072 SecondEntry is returned after the nodes are swapped.\r
2073\r
2074 If FirstEntry is NULL, then ASSERT().\r
2075 If SecondEntry is NULL, then ASSERT().\r
2076 If PcdVerifyNodeInList is TRUE and SecondEntry and FirstEntry are not in the \r
2077 same linked list, then ASSERT().\r
2078 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the\r
2079 linked list containing the FirstEntry and SecondEntry nodes, including\r
2080 the FirstEntry and SecondEntry nodes, is greater than or equal to\r
2081 PcdMaximumLinkedListLength, then ASSERT().\r
2082\r
2083 @param FirstEntry A pointer to a node in a linked list.\r
2084 @param SecondEntry A pointer to another node in the same linked list.\r
2085 \r
2086 @return SecondEntry.\r
2087\r
2088**/\r
2089LIST_ENTRY *\r
2090EFIAPI\r
2091SwapListEntries (\r
2092 IN OUT LIST_ENTRY *FirstEntry,\r
2093 IN OUT LIST_ENTRY *SecondEntry\r
2094 );\r
2095\r
2096\r
2097/**\r
2098 Removes a node from a doubly linked list, and returns the node that follows\r
2099 the removed node.\r
2100\r
2101 Removes the node Entry from a doubly linked list. It is up to the caller of\r
2102 this function to release the memory used by this node if that is required. On\r
2103 exit, the node following Entry in the doubly linked list is returned. If\r
2104 Entry is the only node in the linked list, then the head node of the linked\r
2105 list is returned.\r
2106\r
2107 If Entry is NULL, then ASSERT().\r
2108 If Entry is the head node of an empty list, then ASSERT().\r
2109 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the\r
2110 linked list containing Entry, including the Entry node, is greater than\r
2111 or equal to PcdMaximumLinkedListLength, then ASSERT().\r
2112\r
2113 @param Entry A pointer to a node in a linked list.\r
2114\r
2115 @return Entry.\r
2116\r
2117**/\r
2118LIST_ENTRY *\r
2119EFIAPI\r
2120RemoveEntryList (\r
2121 IN CONST LIST_ENTRY *Entry\r
2122 );\r
2123\r
2124//\r
2125// Math Services\r
2126//\r
2127\r
2128/**\r
2129 Shifts a 64-bit integer left between 0 and 63 bits. The low bits are filled\r
2130 with zeros. The shifted value is returned.\r
2131\r
2132 This function shifts the 64-bit value Operand to the left by Count bits. The\r
2133 low Count bits are set to zero. The shifted value is returned.\r
2134\r
2135 If Count is greater than 63, then ASSERT().\r
2136\r
2137 @param Operand The 64-bit operand to shift left.\r
2138 @param Count The number of bits to shift left.\r
2139\r
2140 @return Operand << Count.\r
2141\r
2142**/\r
2143UINT64\r
2144EFIAPI\r
2145LShiftU64 (\r
2146 IN UINT64 Operand,\r
2147 IN UINTN Count\r
2148 );\r
2149\r
2150\r
2151/**\r
2152 Shifts a 64-bit integer right between 0 and 63 bits. This high bits are\r
2153 filled with zeros. The shifted value is returned.\r
2154\r
2155 This function shifts the 64-bit value Operand to the right by Count bits. The\r
2156 high Count bits are set to zero. The shifted value is returned.\r
2157\r
2158 If Count is greater than 63, then ASSERT().\r
2159\r
2160 @param Operand The 64-bit operand to shift right.\r
2161 @param Count The number of bits to shift right.\r
2162\r
2163 @return Operand >> Count\r
2164\r
2165**/\r
2166UINT64\r
2167EFIAPI\r
2168RShiftU64 (\r
2169 IN UINT64 Operand,\r
2170 IN UINTN Count\r
2171 );\r
2172\r
2173\r
2174/**\r
2175 Shifts a 64-bit integer right between 0 and 63 bits. The high bits are filled\r
2176 with original integer's bit 63. The shifted value is returned.\r
2177\r
2178 This function shifts the 64-bit value Operand to the right by Count bits. The\r
2179 high Count bits are set to bit 63 of Operand. The shifted value is returned.\r
2180\r
2181 If Count is greater than 63, then ASSERT().\r
2182\r
2183 @param Operand The 64-bit operand to shift right.\r
2184 @param Count The number of bits to shift right.\r
2185\r
2186 @return Operand >> Count\r
2187\r
2188**/\r
2189UINT64\r
2190EFIAPI\r
2191ARShiftU64 (\r
2192 IN UINT64 Operand,\r
2193 IN UINTN Count\r
2194 );\r
2195\r
2196\r
2197/**\r
2198 Rotates a 32-bit integer left between 0 and 31 bits, filling the low bits\r
2199 with the high bits that were rotated.\r
2200\r
2201 This function rotates the 32-bit value Operand to the left by Count bits. The\r
2202 low Count bits are fill with the high Count bits of Operand. The rotated\r
2203 value is returned.\r
2204\r
2205 If Count is greater than 31, then ASSERT().\r
2206\r
2207 @param Operand The 32-bit operand to rotate left.\r
2208 @param Count The number of bits to rotate left.\r
2209\r
2210 @return Operand << Count\r
2211\r
2212**/\r
2213UINT32\r
2214EFIAPI\r
2215LRotU32 (\r
2216 IN UINT32 Operand,\r
2217 IN UINTN Count\r
2218 );\r
2219\r
2220\r
2221/**\r
2222 Rotates a 32-bit integer right between 0 and 31 bits, filling the high bits\r
2223 with the low bits that were rotated.\r
2224\r
2225 This function rotates the 32-bit value Operand to the right by Count bits.\r
2226 The high Count bits are fill with the low Count bits of Operand. The rotated\r
2227 value is returned.\r
2228\r
2229 If Count is greater than 31, then ASSERT().\r
2230\r
2231 @param Operand The 32-bit operand to rotate right.\r
2232 @param Count The number of bits to rotate right.\r
2233\r
2234 @return Operand >> Count\r
2235\r
2236**/\r
2237UINT32\r
2238EFIAPI\r
2239RRotU32 (\r
2240 IN UINT32 Operand,\r
2241 IN UINTN Count\r
2242 );\r
2243\r
2244\r
2245/**\r
2246 Rotates a 64-bit integer left between 0 and 63 bits, filling the low bits\r
2247 with the high bits that were rotated.\r
2248\r
2249 This function rotates the 64-bit value Operand to the left by Count bits. The\r
2250 low Count bits are fill with the high Count bits of Operand. The rotated\r
2251 value is returned.\r
2252\r
2253 If Count is greater than 63, then ASSERT().\r
2254\r
2255 @param Operand The 64-bit operand to rotate left.\r
2256 @param Count The number of bits to rotate left.\r
2257\r
2258 @return Operand << Count\r
2259\r
2260**/\r
2261UINT64\r
2262EFIAPI\r
2263LRotU64 (\r
2264 IN UINT64 Operand,\r
2265 IN UINTN Count\r
2266 );\r
2267\r
2268\r
2269/**\r
2270 Rotates a 64-bit integer right between 0 and 63 bits, filling the high bits\r
2271 with the high low bits that were rotated.\r
2272\r
2273 This function rotates the 64-bit value Operand to the right by Count bits.\r
2274 The high Count bits are fill with the low Count bits of Operand. The rotated\r
2275 value is returned.\r
2276\r
2277 If Count is greater than 63, then ASSERT().\r
2278\r
2279 @param Operand The 64-bit operand to rotate right.\r
2280 @param Count The number of bits to rotate right.\r
2281\r
2282 @return Operand >> Count\r
2283\r
2284**/\r
2285UINT64\r
2286EFIAPI\r
2287RRotU64 (\r
2288 IN UINT64 Operand,\r
2289 IN UINTN Count\r
2290 );\r
2291\r
2292\r
2293/**\r
2294 Returns the bit position of the lowest bit set in a 32-bit value.\r
2295\r
2296 This function computes the bit position of the lowest bit set in the 32-bit\r
2297 value specified by Operand. If Operand is zero, then -1 is returned.\r
2298 Otherwise, a value between 0 and 31 is returned.\r
2299\r
2300 @param Operand The 32-bit operand to evaluate.\r
2301\r
2302 @retval 0..31 The lowest bit set in Operand was found.\r
2303 @retval -1 Operand is zero.\r
2304\r
2305**/\r
2306INTN\r
2307EFIAPI\r
2308LowBitSet32 (\r
2309 IN UINT32 Operand\r
2310 );\r
2311\r
2312\r
2313/**\r
2314 Returns the bit position of the lowest bit set in a 64-bit value.\r
2315\r
2316 This function computes the bit position of the lowest bit set in the 64-bit\r
2317 value specified by Operand. If Operand is zero, then -1 is returned.\r
2318 Otherwise, a value between 0 and 63 is returned.\r
2319\r
2320 @param Operand The 64-bit operand to evaluate.\r
2321\r
2322 @retval 0..63 The lowest bit set in Operand was found.\r
2323 @retval -1 Operand is zero.\r
2324\r
2325\r
2326**/\r
2327INTN\r
2328EFIAPI\r
2329LowBitSet64 (\r
2330 IN UINT64 Operand\r
2331 );\r
2332\r
2333\r
2334/**\r
2335 Returns the bit position of the highest bit set in a 32-bit value. Equivalent\r
2336 to log2(x).\r
2337\r
2338 This function computes the bit position of the highest bit set in the 32-bit\r
2339 value specified by Operand. If Operand is zero, then -1 is returned.\r
2340 Otherwise, a value between 0 and 31 is returned.\r
2341\r
2342 @param Operand The 32-bit operand to evaluate.\r
2343\r
2344 @retval 0..31 Position of the highest bit set in Operand if found.\r
2345 @retval -1 Operand is zero.\r
2346\r
2347**/\r
2348INTN\r
2349EFIAPI\r
2350HighBitSet32 (\r
2351 IN UINT32 Operand\r
2352 );\r
2353\r
2354\r
2355/**\r
2356 Returns the bit position of the highest bit set in a 64-bit value. Equivalent\r
2357 to log2(x).\r
2358\r
2359 This function computes the bit position of the highest bit set in the 64-bit\r
2360 value specified by Operand. If Operand is zero, then -1 is returned.\r
2361 Otherwise, a value between 0 and 63 is returned.\r
2362\r
2363 @param Operand The 64-bit operand to evaluate.\r
2364\r
2365 @retval 0..63 Position of the highest bit set in Operand if found.\r
2366 @retval -1 Operand is zero.\r
2367\r
2368**/\r
2369INTN\r
2370EFIAPI\r
2371HighBitSet64 (\r
2372 IN UINT64 Operand\r
2373 );\r
2374\r
2375\r
2376/**\r
2377 Returns the value of the highest bit set in a 32-bit value. Equivalent to\r
2378 1 << log2(x).\r
2379\r
2380 This function computes the value of the highest bit set in the 32-bit value\r
2381 specified by Operand. If Operand is zero, then zero is returned.\r
2382\r
2383 @param Operand The 32-bit operand to evaluate.\r
2384\r
2385 @return 1 << HighBitSet32(Operand)\r
2386 @retval 0 Operand is zero.\r
2387\r
2388**/\r
2389UINT32\r
2390EFIAPI\r
2391GetPowerOfTwo32 (\r
2392 IN UINT32 Operand\r
2393 );\r
2394\r
2395\r
2396/**\r
2397 Returns the value of the highest bit set in a 64-bit value. Equivalent to\r
2398 1 << log2(x).\r
2399\r
2400 This function computes the value of the highest bit set in the 64-bit value\r
2401 specified by Operand. If Operand is zero, then zero is returned.\r
2402\r
2403 @param Operand The 64-bit operand to evaluate.\r
2404\r
2405 @return 1 << HighBitSet64(Operand)\r
2406 @retval 0 Operand is zero.\r
2407\r
2408**/\r
2409UINT64\r
2410EFIAPI\r
2411GetPowerOfTwo64 (\r
2412 IN UINT64 Operand\r
2413 );\r
2414\r
2415\r
2416/**\r
2417 Switches the endianness of a 16-bit integer.\r
2418\r
2419 This function swaps the bytes in a 16-bit unsigned value to switch the value\r
2420 from little endian to big endian or vice versa. The byte swapped value is\r
2421 returned.\r
2422\r
2423 @param Value A 16-bit unsigned value.\r
2424\r
2425 @return The byte swapped Value.\r
2426\r
2427**/\r
2428UINT16\r
2429EFIAPI\r
2430SwapBytes16 (\r
2431 IN UINT16 Value\r
2432 );\r
2433\r
2434\r
2435/**\r
2436 Switches the endianness of a 32-bit integer.\r
2437\r
2438 This function swaps the bytes in a 32-bit unsigned value to switch the value\r
2439 from little endian to big endian or vice versa. The byte swapped value is\r
2440 returned.\r
2441\r
2442 @param Value A 32-bit unsigned value.\r
2443\r
2444 @return The byte swapped Value.\r
2445\r
2446**/\r
2447UINT32\r
2448EFIAPI\r
2449SwapBytes32 (\r
2450 IN UINT32 Value\r
2451 );\r
2452\r
2453\r
2454/**\r
2455 Switches the endianness of a 64-bit integer.\r
2456\r
2457 This function swaps the bytes in a 64-bit unsigned value to switch the value\r
2458 from little endian to big endian or vice versa. The byte swapped value is\r
2459 returned.\r
2460\r
2461 @param Value A 64-bit unsigned value.\r
2462\r
2463 @return The byte swapped Value.\r
2464\r
2465**/\r
2466UINT64\r
2467EFIAPI\r
2468SwapBytes64 (\r
2469 IN UINT64 Value\r
2470 );\r
2471\r
2472\r
2473/**\r
2474 Multiples a 64-bit unsigned integer by a 32-bit unsigned integer and\r
2475 generates a 64-bit unsigned result.\r
2476\r
2477 This function multiples the 64-bit unsigned value Multiplicand by the 32-bit\r
2478 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-\r
2479 bit unsigned result is returned.\r
2480\r
2481 @param Multiplicand A 64-bit unsigned value.\r
2482 @param Multiplier A 32-bit unsigned value.\r
2483\r
2484 @return Multiplicand * Multiplier\r
2485\r
2486**/\r
2487UINT64\r
2488EFIAPI\r
2489MultU64x32 (\r
2490 IN UINT64 Multiplicand,\r
2491 IN UINT32 Multiplier\r
2492 );\r
2493\r
2494\r
2495/**\r
2496 Multiples a 64-bit unsigned integer by a 64-bit unsigned integer and\r
2497 generates a 64-bit unsigned result.\r
2498\r
2499 This function multiples the 64-bit unsigned value Multiplicand by the 64-bit\r
2500 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-\r
2501 bit unsigned result is returned.\r
2502\r
2503 @param Multiplicand A 64-bit unsigned value.\r
2504 @param Multiplier A 64-bit unsigned value.\r
2505\r
2506 @return Multiplicand * Multiplier.\r
2507\r
2508**/\r
2509UINT64\r
2510EFIAPI\r
2511MultU64x64 (\r
2512 IN UINT64 Multiplicand,\r
2513 IN UINT64 Multiplier\r
2514 );\r
2515\r
2516\r
2517/**\r
2518 Multiples a 64-bit signed integer by a 64-bit signed integer and generates a\r
2519 64-bit signed result.\r
2520\r
2521 This function multiples the 64-bit signed value Multiplicand by the 64-bit\r
2522 signed value Multiplier and generates a 64-bit signed result. This 64-bit\r
2523 signed result is returned.\r
2524\r
2525 @param Multiplicand A 64-bit signed value.\r
2526 @param Multiplier A 64-bit signed value.\r
2527\r
2528 @return Multiplicand * Multiplier\r
2529\r
2530**/\r
2531INT64\r
2532EFIAPI\r
2533MultS64x64 (\r
2534 IN INT64 Multiplicand,\r
2535 IN INT64 Multiplier\r
2536 );\r
2537\r
2538\r
2539/**\r
2540 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates\r
2541 a 64-bit unsigned result.\r
2542\r
2543 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
2544 unsigned value Divisor and generates a 64-bit unsigned quotient. This\r
2545 function returns the 64-bit unsigned quotient.\r
2546\r
2547 If Divisor is 0, then ASSERT().\r
2548\r
2549 @param Dividend A 64-bit unsigned value.\r
2550 @param Divisor A 32-bit unsigned value.\r
2551\r
2552 @return Dividend / Divisor.\r
2553\r
2554**/\r
2555UINT64\r
2556EFIAPI\r
2557DivU64x32 (\r
2558 IN UINT64 Dividend,\r
2559 IN UINT32 Divisor\r
2560 );\r
2561\r
2562\r
2563/**\r
2564 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates\r
2565 a 32-bit unsigned remainder.\r
2566\r
2567 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
2568 unsigned value Divisor and generates a 32-bit remainder. This function\r
2569 returns the 32-bit unsigned remainder.\r
2570\r
2571 If Divisor is 0, then ASSERT().\r
2572\r
2573 @param Dividend A 64-bit unsigned value.\r
2574 @param Divisor A 32-bit unsigned value.\r
2575\r
2576 @return Dividend % Divisor.\r
2577\r
2578**/\r
2579UINT32\r
2580EFIAPI\r
2581ModU64x32 (\r
2582 IN UINT64 Dividend,\r
2583 IN UINT32 Divisor\r
2584 );\r
2585\r
2586\r
2587/**\r
2588 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates\r
2589 a 64-bit unsigned result and an optional 32-bit unsigned remainder.\r
2590\r
2591 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
2592 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder\r
2593 is not NULL, then the 32-bit unsigned remainder is returned in Remainder.\r
2594 This function returns the 64-bit unsigned quotient.\r
2595\r
2596 If Divisor is 0, then ASSERT().\r
2597\r
2598 @param Dividend A 64-bit unsigned value.\r
2599 @param Divisor A 32-bit unsigned value.\r
2600 @param Remainder A pointer to a 32-bit unsigned value. This parameter is\r
2601 optional and may be NULL.\r
2602\r
2603 @return Dividend / Divisor.\r
2604\r
2605**/\r
2606UINT64\r
2607EFIAPI\r
2608DivU64x32Remainder (\r
2609 IN UINT64 Dividend,\r
2610 IN UINT32 Divisor,\r
2611 OUT UINT32 *Remainder OPTIONAL\r
2612 );\r
2613\r
2614\r
2615/**\r
2616 Divides a 64-bit unsigned integer by a 64-bit unsigned integer and generates\r
2617 a 64-bit unsigned result and an optional 64-bit unsigned remainder.\r
2618\r
2619 This function divides the 64-bit unsigned value Dividend by the 64-bit\r
2620 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder\r
2621 is not NULL, then the 64-bit unsigned remainder is returned in Remainder.\r
2622 This function returns the 64-bit unsigned quotient.\r
2623\r
2624 If Divisor is 0, then ASSERT().\r
2625\r
2626 @param Dividend A 64-bit unsigned value.\r
2627 @param Divisor A 64-bit unsigned value.\r
2628 @param Remainder A pointer to a 64-bit unsigned value. This parameter is\r
2629 optional and may be NULL.\r
2630\r
2631 @return Dividend / Divisor.\r
2632\r
2633**/\r
2634UINT64\r
2635EFIAPI\r
2636DivU64x64Remainder (\r
2637 IN UINT64 Dividend,\r
2638 IN UINT64 Divisor,\r
2639 OUT UINT64 *Remainder OPTIONAL\r
2640 );\r
2641\r
2642\r
2643/**\r
2644 Divides a 64-bit signed integer by a 64-bit signed integer and generates a\r
2645 64-bit signed result and a optional 64-bit signed remainder.\r
2646\r
2647 This function divides the 64-bit signed value Dividend by the 64-bit signed\r
2648 value Divisor and generates a 64-bit signed quotient. If Remainder is not\r
2649 NULL, then the 64-bit signed remainder is returned in Remainder. This\r
2650 function returns the 64-bit signed quotient.\r
2651\r
2652 It is the caller's responsibility to not call this function with a Divisor of 0.\r
2653 If Divisor is 0, then the quotient and remainder should be assumed to be \r
2654 the largest negative integer.\r
2655\r
2656 If Divisor is 0, then ASSERT().\r
2657\r
2658 @param Dividend A 64-bit signed value.\r
2659 @param Divisor A 64-bit signed value.\r
2660 @param Remainder A pointer to a 64-bit signed value. This parameter is\r
2661 optional and may be NULL.\r
2662\r
2663 @return Dividend / Divisor.\r
2664\r
2665**/\r
2666INT64\r
2667EFIAPI\r
2668DivS64x64Remainder (\r
2669 IN INT64 Dividend,\r
2670 IN INT64 Divisor,\r
2671 OUT INT64 *Remainder OPTIONAL\r
2672 );\r
2673\r
2674\r
2675/**\r
2676 Reads a 16-bit value from memory that may be unaligned.\r
2677\r
2678 This function returns the 16-bit value pointed to by Buffer. The function\r
2679 guarantees that the read operation does not produce an alignment fault.\r
2680\r
2681 If the Buffer is NULL, then ASSERT().\r
2682\r
2683 @param Buffer The pointer to a 16-bit value that may be unaligned.\r
2684\r
2685 @return The 16-bit value read from Buffer.\r
2686\r
2687**/\r
2688UINT16\r
2689EFIAPI\r
2690ReadUnaligned16 (\r
2691 IN CONST UINT16 *Buffer\r
2692 );\r
2693\r
2694\r
2695/**\r
2696 Writes a 16-bit value to memory that may be unaligned.\r
2697\r
2698 This function writes the 16-bit value specified by Value to Buffer. Value is\r
2699 returned. The function guarantees that the write operation does not produce\r
2700 an alignment fault.\r
2701\r
2702 If the Buffer is NULL, then ASSERT().\r
2703\r
2704 @param Buffer The pointer to a 16-bit value that may be unaligned.\r
2705 @param Value 16-bit value to write to Buffer.\r
2706\r
2707 @return The 16-bit value to write to Buffer.\r
2708\r
2709**/\r
2710UINT16\r
2711EFIAPI\r
2712WriteUnaligned16 (\r
2713 OUT UINT16 *Buffer,\r
2714 IN UINT16 Value\r
2715 );\r
2716\r
2717\r
2718/**\r
2719 Reads a 24-bit value from memory that may be unaligned.\r
2720\r
2721 This function returns the 24-bit value pointed to by Buffer. The function\r
2722 guarantees that the read operation does not produce an alignment fault.\r
2723\r
2724 If the Buffer is NULL, then ASSERT().\r
2725\r
2726 @param Buffer The pointer to a 24-bit value that may be unaligned.\r
2727\r
2728 @return The 24-bit value read from Buffer.\r
2729\r
2730**/\r
2731UINT32\r
2732EFIAPI\r
2733ReadUnaligned24 (\r
2734 IN CONST UINT32 *Buffer\r
2735 );\r
2736\r
2737\r
2738/**\r
2739 Writes a 24-bit value to memory that may be unaligned.\r
2740\r
2741 This function writes the 24-bit value specified by Value to Buffer. Value is\r
2742 returned. The function guarantees that the write operation does not produce\r
2743 an alignment fault.\r
2744\r
2745 If the Buffer is NULL, then ASSERT().\r
2746\r
2747 @param Buffer The pointer to a 24-bit value that may be unaligned.\r
2748 @param Value 24-bit value to write to Buffer.\r
2749\r
2750 @return The 24-bit value to write to Buffer.\r
2751\r
2752**/\r
2753UINT32\r
2754EFIAPI\r
2755WriteUnaligned24 (\r
2756 OUT UINT32 *Buffer,\r
2757 IN UINT32 Value\r
2758 );\r
2759\r
2760\r
2761/**\r
2762 Reads a 32-bit value from memory that may be unaligned.\r
2763\r
2764 This function returns the 32-bit value pointed to by Buffer. The function\r
2765 guarantees that the read operation does not produce an alignment fault.\r
2766\r
2767 If the Buffer is NULL, then ASSERT().\r
2768\r
2769 @param Buffer The pointer to a 32-bit value that may be unaligned.\r
2770\r
2771 @return The 32-bit value read from Buffer.\r
2772\r
2773**/\r
2774UINT32\r
2775EFIAPI\r
2776ReadUnaligned32 (\r
2777 IN CONST UINT32 *Buffer\r
2778 );\r
2779\r
2780\r
2781/**\r
2782 Writes a 32-bit value to memory that may be unaligned.\r
2783\r
2784 This function writes the 32-bit value specified by Value to Buffer. Value is\r
2785 returned. The function guarantees that the write operation does not produce\r
2786 an alignment fault.\r
2787\r
2788 If the Buffer is NULL, then ASSERT().\r
2789\r
2790 @param Buffer The pointer to a 32-bit value that may be unaligned.\r
2791 @param Value 32-bit value to write to Buffer.\r
2792\r
2793 @return The 32-bit value to write to Buffer.\r
2794\r
2795**/\r
2796UINT32\r
2797EFIAPI\r
2798WriteUnaligned32 (\r
2799 OUT UINT32 *Buffer,\r
2800 IN UINT32 Value\r
2801 );\r
2802\r
2803\r
2804/**\r
2805 Reads a 64-bit value from memory that may be unaligned.\r
2806\r
2807 This function returns the 64-bit value pointed to by Buffer. The function\r
2808 guarantees that the read operation does not produce an alignment fault.\r
2809\r
2810 If the Buffer is NULL, then ASSERT().\r
2811\r
2812 @param Buffer The pointer to a 64-bit value that may be unaligned.\r
2813\r
2814 @return The 64-bit value read from Buffer.\r
2815\r
2816**/\r
2817UINT64\r
2818EFIAPI\r
2819ReadUnaligned64 (\r
2820 IN CONST UINT64 *Buffer\r
2821 );\r
2822\r
2823\r
2824/**\r
2825 Writes a 64-bit value to memory that may be unaligned.\r
2826\r
2827 This function writes the 64-bit value specified by Value to Buffer. Value is\r
2828 returned. The function guarantees that the write operation does not produce\r
2829 an alignment fault.\r
2830\r
2831 If the Buffer is NULL, then ASSERT().\r
2832\r
2833 @param Buffer The pointer to a 64-bit value that may be unaligned.\r
2834 @param Value 64-bit value to write to Buffer.\r
2835\r
2836 @return The 64-bit value to write to Buffer.\r
2837\r
2838**/\r
2839UINT64\r
2840EFIAPI\r
2841WriteUnaligned64 (\r
2842 OUT UINT64 *Buffer,\r
2843 IN UINT64 Value\r
2844 );\r
2845\r
2846\r
2847//\r
2848// Bit Field Functions\r
2849//\r
2850\r
2851/**\r
2852 Returns a bit field from an 8-bit value.\r
2853\r
2854 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
2855\r
2856 If 8-bit operations are not supported, then ASSERT().\r
2857 If StartBit is greater than 7, then ASSERT().\r
2858 If EndBit is greater than 7, then ASSERT().\r
2859 If EndBit is less than StartBit, then ASSERT().\r
2860\r
2861 @param Operand Operand on which to perform the bitfield operation.\r
2862 @param StartBit The ordinal of the least significant bit in the bit field.\r
2863 Range 0..7.\r
2864 @param EndBit The ordinal of the most significant bit in the bit field.\r
2865 Range 0..7.\r
2866\r
2867 @return The bit field read.\r
2868\r
2869**/\r
2870UINT8\r
2871EFIAPI\r
2872BitFieldRead8 (\r
2873 IN UINT8 Operand,\r
2874 IN UINTN StartBit,\r
2875 IN UINTN EndBit\r
2876 );\r
2877\r
2878\r
2879/**\r
2880 Writes a bit field to an 8-bit value, and returns the result.\r
2881\r
2882 Writes Value to the bit field specified by the StartBit and the EndBit in\r
2883 Operand. All other bits in Operand are preserved. The new 8-bit value is\r
2884 returned.\r
2885\r
2886 If 8-bit operations are not supported, then ASSERT().\r
2887 If StartBit is greater than 7, then ASSERT().\r
2888 If EndBit is greater than 7, then ASSERT().\r
2889 If EndBit is less than StartBit, then ASSERT().\r
2890 If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
2891\r
2892 @param Operand Operand on which to perform the bitfield operation.\r
2893 @param StartBit The ordinal of the least significant bit in the bit field.\r
2894 Range 0..7.\r
2895 @param EndBit The ordinal of the most significant bit in the bit field.\r
2896 Range 0..7.\r
2897 @param Value New value of the bit field.\r
2898\r
2899 @return The new 8-bit value.\r
2900\r
2901**/\r
2902UINT8\r
2903EFIAPI\r
2904BitFieldWrite8 (\r
2905 IN UINT8 Operand,\r
2906 IN UINTN StartBit,\r
2907 IN UINTN EndBit,\r
2908 IN UINT8 Value\r
2909 );\r
2910\r
2911\r
2912/**\r
2913 Reads a bit field from an 8-bit value, performs a bitwise OR, and returns the\r
2914 result.\r
2915\r
2916 Performs a bitwise OR between the bit field specified by StartBit\r
2917 and EndBit in Operand and the value specified by OrData. All other bits in\r
2918 Operand are preserved. The new 8-bit value is returned.\r
2919\r
2920 If 8-bit operations are not supported, then ASSERT().\r
2921 If StartBit is greater than 7, then ASSERT().\r
2922 If EndBit is greater than 7, then ASSERT().\r
2923 If EndBit is less than StartBit, then ASSERT().\r
2924 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
2925\r
2926 @param Operand Operand on which to perform the bitfield operation.\r
2927 @param StartBit The ordinal of the least significant bit in the bit field.\r
2928 Range 0..7.\r
2929 @param EndBit The ordinal of the most significant bit in the bit field.\r
2930 Range 0..7.\r
2931 @param OrData The value to OR with the read value from the value\r
2932\r
2933 @return The new 8-bit value.\r
2934\r
2935**/\r
2936UINT8\r
2937EFIAPI\r
2938BitFieldOr8 (\r
2939 IN UINT8 Operand,\r
2940 IN UINTN StartBit,\r
2941 IN UINTN EndBit,\r
2942 IN UINT8 OrData\r
2943 );\r
2944\r
2945\r
2946/**\r
2947 Reads a bit field from an 8-bit value, performs a bitwise AND, and returns\r
2948 the result.\r
2949\r
2950 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
2951 in Operand and the value specified by AndData. All other bits in Operand are\r
2952 preserved. The new 8-bit value is returned.\r
2953\r
2954 If 8-bit operations are not supported, then ASSERT().\r
2955 If StartBit is greater than 7, then ASSERT().\r
2956 If EndBit is greater than 7, then ASSERT().\r
2957 If EndBit is less than StartBit, then ASSERT().\r
2958 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
2959\r
2960 @param Operand Operand on which to perform the bitfield operation.\r
2961 @param StartBit The ordinal of the least significant bit in the bit field.\r
2962 Range 0..7.\r
2963 @param EndBit The ordinal of the most significant bit in the bit field.\r
2964 Range 0..7.\r
2965 @param AndData The value to AND with the read value from the value.\r
2966\r
2967 @return The new 8-bit value.\r
2968\r
2969**/\r
2970UINT8\r
2971EFIAPI\r
2972BitFieldAnd8 (\r
2973 IN UINT8 Operand,\r
2974 IN UINTN StartBit,\r
2975 IN UINTN EndBit,\r
2976 IN UINT8 AndData\r
2977 );\r
2978\r
2979\r
2980/**\r
2981 Reads a bit field from an 8-bit value, performs a bitwise AND followed by a\r
2982 bitwise OR, and returns the result.\r
2983\r
2984 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
2985 in Operand and the value specified by AndData, followed by a bitwise \r
2986 OR with value specified by OrData. All other bits in Operand are\r
2987 preserved. The new 8-bit value is returned.\r
2988\r
2989 If 8-bit operations are not supported, then ASSERT().\r
2990 If StartBit is greater than 7, then ASSERT().\r
2991 If EndBit is greater than 7, then ASSERT().\r
2992 If EndBit is less than StartBit, then ASSERT().\r
2993 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
2994 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
2995\r
2996 @param Operand Operand on which to perform the bitfield operation.\r
2997 @param StartBit The ordinal of the least significant bit in the bit field.\r
2998 Range 0..7.\r
2999 @param EndBit The ordinal of the most significant bit in the bit field.\r
3000 Range 0..7.\r
3001 @param AndData The value to AND with the read value from the value.\r
3002 @param OrData The value to OR with the result of the AND operation.\r
3003\r
3004 @return The new 8-bit value.\r
3005\r
3006**/\r
3007UINT8\r
3008EFIAPI\r
3009BitFieldAndThenOr8 (\r
3010 IN UINT8 Operand,\r
3011 IN UINTN StartBit,\r
3012 IN UINTN EndBit,\r
3013 IN UINT8 AndData,\r
3014 IN UINT8 OrData\r
3015 );\r
3016\r
3017\r
3018/**\r
3019 Returns a bit field from a 16-bit value.\r
3020\r
3021 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
3022\r
3023 If 16-bit operations are not supported, then ASSERT().\r
3024 If StartBit is greater than 15, then ASSERT().\r
3025 If EndBit is greater than 15, then ASSERT().\r
3026 If EndBit is less than StartBit, then ASSERT().\r
3027\r
3028 @param Operand Operand on which to perform the bitfield operation.\r
3029 @param StartBit The ordinal of the least significant bit in the bit field.\r
3030 Range 0..15.\r
3031 @param EndBit The ordinal of the most significant bit in the bit field.\r
3032 Range 0..15.\r
3033\r
3034 @return The bit field read.\r
3035\r
3036**/\r
3037UINT16\r
3038EFIAPI\r
3039BitFieldRead16 (\r
3040 IN UINT16 Operand,\r
3041 IN UINTN StartBit,\r
3042 IN UINTN EndBit\r
3043 );\r
3044\r
3045\r
3046/**\r
3047 Writes a bit field to a 16-bit value, and returns the result.\r
3048\r
3049 Writes Value to the bit field specified by the StartBit and the EndBit in\r
3050 Operand. All other bits in Operand are preserved. The new 16-bit value is\r
3051 returned.\r
3052\r
3053 If 16-bit operations are not supported, then ASSERT().\r
3054 If StartBit is greater than 15, then ASSERT().\r
3055 If EndBit is greater than 15, then ASSERT().\r
3056 If EndBit is less than StartBit, then ASSERT().\r
3057 If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
3058\r
3059 @param Operand Operand on which to perform the bitfield operation.\r
3060 @param StartBit The ordinal of the least significant bit in the bit field.\r
3061 Range 0..15.\r
3062 @param EndBit The ordinal of the most significant bit in the bit field.\r
3063 Range 0..15.\r
3064 @param Value New value of the bit field.\r
3065\r
3066 @return The new 16-bit value.\r
3067\r
3068**/\r
3069UINT16\r
3070EFIAPI\r
3071BitFieldWrite16 (\r
3072 IN UINT16 Operand,\r
3073 IN UINTN StartBit,\r
3074 IN UINTN EndBit,\r
3075 IN UINT16 Value\r
3076 );\r
3077\r
3078\r
3079/**\r
3080 Reads a bit field from a 16-bit value, performs a bitwise OR, and returns the\r
3081 result.\r
3082\r
3083 Performs a bitwise OR between the bit field specified by StartBit\r
3084 and EndBit in Operand and the value specified by OrData. All other bits in\r
3085 Operand are preserved. The new 16-bit value is returned.\r
3086\r
3087 If 16-bit operations are not supported, then ASSERT().\r
3088 If StartBit is greater than 15, then ASSERT().\r
3089 If EndBit is greater than 15, then ASSERT().\r
3090 If EndBit is less than StartBit, then ASSERT().\r
3091 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
3092\r
3093 @param Operand Operand on which to perform the bitfield operation.\r
3094 @param StartBit The ordinal of the least significant bit in the bit field.\r
3095 Range 0..15.\r
3096 @param EndBit The ordinal of the most significant bit in the bit field.\r
3097 Range 0..15.\r
3098 @param OrData The value to OR with the read value from the value\r
3099\r
3100 @return The new 16-bit value.\r
3101\r
3102**/\r
3103UINT16\r
3104EFIAPI\r
3105BitFieldOr16 (\r
3106 IN UINT16 Operand,\r
3107 IN UINTN StartBit,\r
3108 IN UINTN EndBit,\r
3109 IN UINT16 OrData\r
3110 );\r
3111\r
3112\r
3113/**\r
3114 Reads a bit field from a 16-bit value, performs a bitwise AND, and returns\r
3115 the result.\r
3116\r
3117 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
3118 in Operand and the value specified by AndData. All other bits in Operand are\r
3119 preserved. The new 16-bit value is returned.\r
3120\r
3121 If 16-bit operations are not supported, then ASSERT().\r
3122 If StartBit is greater than 15, then ASSERT().\r
3123 If EndBit is greater than 15, then ASSERT().\r
3124 If EndBit is less than StartBit, then ASSERT().\r
3125 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
3126\r
3127 @param Operand Operand on which to perform the bitfield operation.\r
3128 @param StartBit The ordinal of the least significant bit in the bit field.\r
3129 Range 0..15.\r
3130 @param EndBit The ordinal of the most significant bit in the bit field.\r
3131 Range 0..15.\r
3132 @param AndData The value to AND with the read value from the value\r
3133\r
3134 @return The new 16-bit value.\r
3135\r
3136**/\r
3137UINT16\r
3138EFIAPI\r
3139BitFieldAnd16 (\r
3140 IN UINT16 Operand,\r
3141 IN UINTN StartBit,\r
3142 IN UINTN EndBit,\r
3143 IN UINT16 AndData\r
3144 );\r
3145\r
3146\r
3147/**\r
3148 Reads a bit field from a 16-bit value, performs a bitwise AND followed by a\r
3149 bitwise OR, and returns the result.\r
3150\r
3151 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
3152 in Operand and the value specified by AndData, followed by a bitwise \r
3153 OR with value specified by OrData. All other bits in Operand are\r
3154 preserved. The new 16-bit value is returned.\r
3155\r
3156 If 16-bit operations are not supported, then ASSERT().\r
3157 If StartBit is greater than 15, then ASSERT().\r
3158 If EndBit is greater than 15, then ASSERT().\r
3159 If EndBit is less than StartBit, then ASSERT().\r
3160 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
3161 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
3162\r
3163 @param Operand Operand on which to perform the bitfield operation.\r
3164 @param StartBit The ordinal of the least significant bit in the bit field.\r
3165 Range 0..15.\r
3166 @param EndBit The ordinal of the most significant bit in the bit field.\r
3167 Range 0..15.\r
3168 @param AndData The value to AND with the read value from the value.\r
3169 @param OrData The value to OR with the result of the AND operation.\r
3170\r
3171 @return The new 16-bit value.\r
3172\r
3173**/\r
3174UINT16\r
3175EFIAPI\r
3176BitFieldAndThenOr16 (\r
3177 IN UINT16 Operand,\r
3178 IN UINTN StartBit,\r
3179 IN UINTN EndBit,\r
3180 IN UINT16 AndData,\r
3181 IN UINT16 OrData\r
3182 );\r
3183\r
3184\r
3185/**\r
3186 Returns a bit field from a 32-bit value.\r
3187\r
3188 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
3189\r
3190 If 32-bit operations are not supported, then ASSERT().\r
3191 If StartBit is greater than 31, then ASSERT().\r
3192 If EndBit is greater than 31, then ASSERT().\r
3193 If EndBit is less than StartBit, then ASSERT().\r
3194\r
3195 @param Operand Operand on which to perform the bitfield operation.\r
3196 @param StartBit The ordinal of the least significant bit in the bit field.\r
3197 Range 0..31.\r
3198 @param EndBit The ordinal of the most significant bit in the bit field.\r
3199 Range 0..31.\r
3200\r
3201 @return The bit field read.\r
3202\r
3203**/\r
3204UINT32\r
3205EFIAPI\r
3206BitFieldRead32 (\r
3207 IN UINT32 Operand,\r
3208 IN UINTN StartBit,\r
3209 IN UINTN EndBit\r
3210 );\r
3211\r
3212\r
3213/**\r
3214 Writes a bit field to a 32-bit value, and returns the result.\r
3215\r
3216 Writes Value to the bit field specified by the StartBit and the EndBit in\r
3217 Operand. All other bits in Operand are preserved. The new 32-bit value is\r
3218 returned.\r
3219\r
3220 If 32-bit operations are not supported, then ASSERT().\r
3221 If StartBit is greater than 31, then ASSERT().\r
3222 If EndBit is greater than 31, then ASSERT().\r
3223 If EndBit is less than StartBit, then ASSERT().\r
3224 If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
3225\r
3226 @param Operand Operand on which to perform the bitfield operation.\r
3227 @param StartBit The ordinal of the least significant bit in the bit field.\r
3228 Range 0..31.\r
3229 @param EndBit The ordinal of the most significant bit in the bit field.\r
3230 Range 0..31.\r
3231 @param Value New value of the bit field.\r
3232\r
3233 @return The new 32-bit value.\r
3234\r
3235**/\r
3236UINT32\r
3237EFIAPI\r
3238BitFieldWrite32 (\r
3239 IN UINT32 Operand,\r
3240 IN UINTN StartBit,\r
3241 IN UINTN EndBit,\r
3242 IN UINT32 Value\r
3243 );\r
3244\r
3245\r
3246/**\r
3247 Reads a bit field from a 32-bit value, performs a bitwise OR, and returns the\r
3248 result.\r
3249\r
3250 Performs a bitwise OR between the bit field specified by StartBit\r
3251 and EndBit in Operand and the value specified by OrData. All other bits in\r
3252 Operand are preserved. The new 32-bit value is returned.\r
3253\r
3254 If 32-bit operations are not supported, then ASSERT().\r
3255 If StartBit is greater than 31, then ASSERT().\r
3256 If EndBit is greater than 31, then ASSERT().\r
3257 If EndBit is less than StartBit, then ASSERT().\r
3258 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
3259\r
3260 @param Operand Operand on which to perform the bitfield operation.\r
3261 @param StartBit The ordinal of the least significant bit in the bit field.\r
3262 Range 0..31.\r
3263 @param EndBit The ordinal of the most significant bit in the bit field.\r
3264 Range 0..31.\r
3265 @param OrData The value to OR with the read value from the value.\r
3266\r
3267 @return The new 32-bit value.\r
3268\r
3269**/\r
3270UINT32\r
3271EFIAPI\r
3272BitFieldOr32 (\r
3273 IN UINT32 Operand,\r
3274 IN UINTN StartBit,\r
3275 IN UINTN EndBit,\r
3276 IN UINT32 OrData\r
3277 );\r
3278\r
3279\r
3280/**\r
3281 Reads a bit field from a 32-bit value, performs a bitwise AND, and returns\r
3282 the result.\r
3283\r
3284 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
3285 in Operand and the value specified by AndData. All other bits in Operand are\r
3286 preserved. The new 32-bit value is returned.\r
3287\r
3288 If 32-bit operations are not supported, then ASSERT().\r
3289 If StartBit is greater than 31, then ASSERT().\r
3290 If EndBit is greater than 31, then ASSERT().\r
3291 If EndBit is less than StartBit, then ASSERT().\r
3292 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
3293\r
3294 @param Operand Operand on which to perform the bitfield operation.\r
3295 @param StartBit The ordinal of the least significant bit in the bit field.\r
3296 Range 0..31.\r
3297 @param EndBit The ordinal of the most significant bit in the bit field.\r
3298 Range 0..31.\r
3299 @param AndData The value to AND with the read value from the value\r
3300\r
3301 @return The new 32-bit value.\r
3302\r
3303**/\r
3304UINT32\r
3305EFIAPI\r
3306BitFieldAnd32 (\r
3307 IN UINT32 Operand,\r
3308 IN UINTN StartBit,\r
3309 IN UINTN EndBit,\r
3310 IN UINT32 AndData\r
3311 );\r
3312\r
3313\r
3314/**\r
3315 Reads a bit field from a 32-bit value, performs a bitwise AND followed by a\r
3316 bitwise OR, and returns the result.\r
3317\r
3318 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
3319 in Operand and the value specified by AndData, followed by a bitwise \r
3320 OR with value specified by OrData. All other bits in Operand are\r
3321 preserved. The new 32-bit value is returned.\r
3322\r
3323 If 32-bit operations are not supported, then ASSERT().\r
3324 If StartBit is greater than 31, then ASSERT().\r
3325 If EndBit is greater than 31, then ASSERT().\r
3326 If EndBit is less than StartBit, then ASSERT().\r
3327 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
3328 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
3329\r
3330 @param Operand Operand on which to perform the bitfield operation.\r
3331 @param StartBit The ordinal of the least significant bit in the bit field.\r
3332 Range 0..31.\r
3333 @param EndBit The ordinal of the most significant bit in the bit field.\r
3334 Range 0..31.\r
3335 @param AndData The value to AND with the read value from the value.\r
3336 @param OrData The value to OR with the result of the AND operation.\r
3337\r
3338 @return The new 32-bit value.\r
3339\r
3340**/\r
3341UINT32\r
3342EFIAPI\r
3343BitFieldAndThenOr32 (\r
3344 IN UINT32 Operand,\r
3345 IN UINTN StartBit,\r
3346 IN UINTN EndBit,\r
3347 IN UINT32 AndData,\r
3348 IN UINT32 OrData\r
3349 );\r
3350\r
3351\r
3352/**\r
3353 Returns a bit field from a 64-bit value.\r
3354\r
3355 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
3356\r
3357 If 64-bit operations are not supported, then ASSERT().\r
3358 If StartBit is greater than 63, then ASSERT().\r
3359 If EndBit is greater than 63, then ASSERT().\r
3360 If EndBit is less than StartBit, then ASSERT().\r
3361\r
3362 @param Operand Operand on which to perform the bitfield operation.\r
3363 @param StartBit The ordinal of the least significant bit in the bit field.\r
3364 Range 0..63.\r
3365 @param EndBit The ordinal of the most significant bit in the bit field.\r
3366 Range 0..63.\r
3367\r
3368 @return The bit field read.\r
3369\r
3370**/\r
3371UINT64\r
3372EFIAPI\r
3373BitFieldRead64 (\r
3374 IN UINT64 Operand,\r
3375 IN UINTN StartBit,\r
3376 IN UINTN EndBit\r
3377 );\r
3378\r
3379\r
3380/**\r
3381 Writes a bit field to a 64-bit value, and returns the result.\r
3382\r
3383 Writes Value to the bit field specified by the StartBit and the EndBit in\r
3384 Operand. All other bits in Operand are preserved. The new 64-bit value is\r
3385 returned.\r
3386\r
3387 If 64-bit operations are not supported, then ASSERT().\r
3388 If StartBit is greater than 63, then ASSERT().\r
3389 If EndBit is greater than 63, then ASSERT().\r
3390 If EndBit is less than StartBit, then ASSERT().\r
3391 If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
3392\r
3393 @param Operand Operand on which to perform the bitfield operation.\r
3394 @param StartBit The ordinal of the least significant bit in the bit field.\r
3395 Range 0..63.\r
3396 @param EndBit The ordinal of the most significant bit in the bit field.\r
3397 Range 0..63.\r
3398 @param Value New value of the bit field.\r
3399\r
3400 @return The new 64-bit value.\r
3401\r
3402**/\r
3403UINT64\r
3404EFIAPI\r
3405BitFieldWrite64 (\r
3406 IN UINT64 Operand,\r
3407 IN UINTN StartBit,\r
3408 IN UINTN EndBit,\r
3409 IN UINT64 Value\r
3410 );\r
3411\r
3412\r
3413/**\r
3414 Reads a bit field from a 64-bit value, performs a bitwise OR, and returns the\r
3415 result.\r
3416\r
3417 Performs a bitwise OR between the bit field specified by StartBit\r
3418 and EndBit in Operand and the value specified by OrData. All other bits in\r
3419 Operand are preserved. The new 64-bit value is returned.\r
3420\r
3421 If 64-bit operations are not supported, then ASSERT().\r
3422 If StartBit is greater than 63, then ASSERT().\r
3423 If EndBit is greater than 63, then ASSERT().\r
3424 If EndBit is less than StartBit, then ASSERT().\r
3425 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
3426\r
3427 @param Operand Operand on which to perform the bitfield operation.\r
3428 @param StartBit The ordinal of the least significant bit in the bit field.\r
3429 Range 0..63.\r
3430 @param EndBit The ordinal of the most significant bit in the bit field.\r
3431 Range 0..63.\r
3432 @param OrData The value to OR with the read value from the value\r
3433\r
3434 @return The new 64-bit value.\r
3435\r
3436**/\r
3437UINT64\r
3438EFIAPI\r
3439BitFieldOr64 (\r
3440 IN UINT64 Operand,\r
3441 IN UINTN StartBit,\r
3442 IN UINTN EndBit,\r
3443 IN UINT64 OrData\r
3444 );\r
3445\r
3446\r
3447/**\r
3448 Reads a bit field from a 64-bit value, performs a bitwise AND, and returns\r
3449 the result.\r
3450\r
3451 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
3452 in Operand and the value specified by AndData. All other bits in Operand are\r
3453 preserved. The new 64-bit value is returned.\r
3454\r
3455 If 64-bit operations are not supported, then ASSERT().\r
3456 If StartBit is greater than 63, then ASSERT().\r
3457 If EndBit is greater than 63, then ASSERT().\r
3458 If EndBit is less than StartBit, then ASSERT().\r
3459 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
3460\r
3461 @param Operand Operand on which to perform the bitfield operation.\r
3462 @param StartBit The ordinal of the least significant bit in the bit field.\r
3463 Range 0..63.\r
3464 @param EndBit The ordinal of the most significant bit in the bit field.\r
3465 Range 0..63.\r
3466 @param AndData The value to AND with the read value from the value\r
3467\r
3468 @return The new 64-bit value.\r
3469\r
3470**/\r
3471UINT64\r
3472EFIAPI\r
3473BitFieldAnd64 (\r
3474 IN UINT64 Operand,\r
3475 IN UINTN StartBit,\r
3476 IN UINTN EndBit,\r
3477 IN UINT64 AndData\r
3478 );\r
3479\r
3480\r
3481/**\r
3482 Reads a bit field from a 64-bit value, performs a bitwise AND followed by a\r
3483 bitwise OR, and returns the result.\r
3484\r
3485 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
3486 in Operand and the value specified by AndData, followed by a bitwise \r
3487 OR with value specified by OrData. All other bits in Operand are\r
3488 preserved. The new 64-bit value is returned.\r
3489\r
3490 If 64-bit operations are not supported, then ASSERT().\r
3491 If StartBit is greater than 63, then ASSERT().\r
3492 If EndBit is greater than 63, then ASSERT().\r
3493 If EndBit is less than StartBit, then ASSERT().\r
3494 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
3495 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
3496\r
3497 @param Operand Operand on which to perform the bitfield operation.\r
3498 @param StartBit The ordinal of the least significant bit in the bit field.\r
3499 Range 0..63.\r
3500 @param EndBit The ordinal of the most significant bit in the bit field.\r
3501 Range 0..63.\r
3502 @param AndData The value to AND with the read value from the value.\r
3503 @param OrData The value to OR with the result of the AND operation.\r
3504\r
3505 @return The new 64-bit value.\r
3506\r
3507**/\r
3508UINT64\r
3509EFIAPI\r
3510BitFieldAndThenOr64 (\r
3511 IN UINT64 Operand,\r
3512 IN UINTN StartBit,\r
3513 IN UINTN EndBit,\r
3514 IN UINT64 AndData,\r
3515 IN UINT64 OrData\r
3516 );\r
3517\r
3518//\r
3519// Base Library Checksum Functions\r
3520//\r
3521\r
3522/**\r
3523 Returns the sum of all elements in a buffer in unit of UINT8.\r
3524 During calculation, the carry bits are dropped.\r
3525\r
3526 This function calculates the sum of all elements in a buffer\r
3527 in unit of UINT8. The carry bits in result of addition are dropped.\r
3528 The result is returned as UINT8. If Length is Zero, then Zero is\r
3529 returned.\r
3530\r
3531 If Buffer is NULL, then ASSERT().\r
3532 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
3533\r
3534 @param Buffer The pointer to the buffer to carry out the sum operation.\r
3535 @param Length The size, in bytes, of Buffer.\r
3536\r
3537 @return Sum The sum of Buffer with carry bits dropped during additions.\r
3538\r
3539**/\r
3540UINT8\r
3541EFIAPI\r
3542CalculateSum8 (\r
3543 IN CONST UINT8 *Buffer,\r
3544 IN UINTN Length\r
3545 );\r
3546\r
3547\r
3548/**\r
3549 Returns the two's complement checksum of all elements in a buffer\r
3550 of 8-bit values.\r
3551\r
3552 This function first calculates the sum of the 8-bit values in the\r
3553 buffer specified by Buffer and Length. The carry bits in the result\r
3554 of addition are dropped. Then, the two's complement of the sum is\r
3555 returned. If Length is 0, then 0 is returned.\r
3556\r
3557 If Buffer is NULL, then ASSERT().\r
3558 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
3559\r
3560 @param Buffer The pointer to the buffer to carry out the checksum operation.\r
3561 @param Length The size, in bytes, of Buffer.\r
3562\r
3563 @return Checksum The two's complement checksum of Buffer.\r
3564\r
3565**/\r
3566UINT8\r
3567EFIAPI\r
3568CalculateCheckSum8 (\r
3569 IN CONST UINT8 *Buffer,\r
3570 IN UINTN Length\r
3571 );\r
3572\r
3573\r
3574/**\r
3575 Returns the sum of all elements in a buffer of 16-bit values. During\r
3576 calculation, the carry bits are dropped.\r
3577\r
3578 This function calculates the sum of the 16-bit values in the buffer\r
3579 specified by Buffer and Length. The carry bits in result of addition are dropped.\r
3580 The 16-bit result is returned. If Length is 0, then 0 is returned.\r
3581\r
3582 If Buffer is NULL, then ASSERT().\r
3583 If Buffer is not aligned on a 16-bit boundary, then ASSERT().\r
3584 If Length is not aligned on a 16-bit boundary, then ASSERT().\r
3585 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
3586\r
3587 @param Buffer The pointer to the buffer to carry out the sum operation.\r
3588 @param Length The size, in bytes, of Buffer.\r
3589\r
3590 @return Sum The sum of Buffer with carry bits dropped during additions.\r
3591\r
3592**/\r
3593UINT16\r
3594EFIAPI\r
3595CalculateSum16 (\r
3596 IN CONST UINT16 *Buffer,\r
3597 IN UINTN Length\r
3598 );\r
3599\r
3600\r
3601/**\r
3602 Returns the two's complement checksum of all elements in a buffer of\r
3603 16-bit values.\r
3604\r
3605 This function first calculates the sum of the 16-bit values in the buffer\r
3606 specified by Buffer and Length. The carry bits in the result of addition\r
3607 are dropped. Then, the two's complement of the sum is returned. If Length\r
3608 is 0, then 0 is returned.\r
3609\r
3610 If Buffer is NULL, then ASSERT().\r
3611 If Buffer is not aligned on a 16-bit boundary, then ASSERT().\r
3612 If Length is not aligned on a 16-bit boundary, then ASSERT().\r
3613 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
3614\r
3615 @param Buffer The pointer to the buffer to carry out the checksum operation.\r
3616 @param Length The size, in bytes, of Buffer.\r
3617\r
3618 @return Checksum The two's complement checksum of Buffer.\r
3619\r
3620**/\r
3621UINT16\r
3622EFIAPI\r
3623CalculateCheckSum16 (\r
3624 IN CONST UINT16 *Buffer,\r
3625 IN UINTN Length\r
3626 );\r
3627\r
3628\r
3629/**\r
3630 Returns the sum of all elements in a buffer of 32-bit values. During\r
3631 calculation, the carry bits are dropped.\r
3632\r
3633 This function calculates the sum of the 32-bit values in the buffer\r
3634 specified by Buffer and Length. The carry bits in result of addition are dropped.\r
3635 The 32-bit result is returned. If Length is 0, then 0 is returned.\r
3636\r
3637 If Buffer is NULL, then ASSERT().\r
3638 If Buffer is not aligned on a 32-bit boundary, then ASSERT().\r
3639 If Length is not aligned on a 32-bit boundary, then ASSERT().\r
3640 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
3641\r
3642 @param Buffer The pointer to the buffer to carry out the sum operation.\r
3643 @param Length The size, in bytes, of Buffer.\r
3644\r
3645 @return Sum The sum of Buffer with carry bits dropped during additions.\r
3646\r
3647**/\r
3648UINT32\r
3649EFIAPI\r
3650CalculateSum32 (\r
3651 IN CONST UINT32 *Buffer,\r
3652 IN UINTN Length\r
3653 );\r
3654\r
3655\r
3656/**\r
3657 Returns the two's complement checksum of all elements in a buffer of\r
3658 32-bit values.\r
3659\r
3660 This function first calculates the sum of the 32-bit values in the buffer\r
3661 specified by Buffer and Length. The carry bits in the result of addition\r
3662 are dropped. Then, the two's complement of the sum is returned. If Length\r
3663 is 0, then 0 is returned.\r
3664\r
3665 If Buffer is NULL, then ASSERT().\r
3666 If Buffer is not aligned on a 32-bit boundary, then ASSERT().\r
3667 If Length is not aligned on a 32-bit boundary, then ASSERT().\r
3668 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
3669\r
3670 @param Buffer The pointer to the buffer to carry out the checksum operation.\r
3671 @param Length The size, in bytes, of Buffer.\r
3672\r
3673 @return Checksum The two's complement checksum of Buffer.\r
3674\r
3675**/\r
3676UINT32\r
3677EFIAPI\r
3678CalculateCheckSum32 (\r
3679 IN CONST UINT32 *Buffer,\r
3680 IN UINTN Length\r
3681 );\r
3682\r
3683\r
3684/**\r
3685 Returns the sum of all elements in a buffer of 64-bit values. During\r
3686 calculation, the carry bits are dropped.\r
3687\r
3688 This function calculates the sum of the 64-bit values in the buffer\r
3689 specified by Buffer and Length. The carry bits in result of addition are dropped.\r
3690 The 64-bit result is returned. If Length is 0, then 0 is returned.\r
3691\r
3692 If Buffer is NULL, then ASSERT().\r
3693 If Buffer is not aligned on a 64-bit boundary, then ASSERT().\r
3694 If Length is not aligned on a 64-bit boundary, then ASSERT().\r
3695 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
3696\r
3697 @param Buffer The pointer to the buffer to carry out the sum operation.\r
3698 @param Length The size, in bytes, of Buffer.\r
3699\r
3700 @return Sum The sum of Buffer with carry bits dropped during additions.\r
3701\r
3702**/\r
3703UINT64\r
3704EFIAPI\r
3705CalculateSum64 (\r
3706 IN CONST UINT64 *Buffer,\r
3707 IN UINTN Length\r
3708 );\r
3709\r
3710\r
3711/**\r
3712 Returns the two's complement checksum of all elements in a buffer of\r
3713 64-bit values.\r
3714\r
3715 This function first calculates the sum of the 64-bit values in the buffer\r
3716 specified by Buffer and Length. The carry bits in the result of addition\r
3717 are dropped. Then, the two's complement of the sum is returned. If Length\r
3718 is 0, then 0 is returned.\r
3719\r
3720 If Buffer is NULL, then ASSERT().\r
3721 If Buffer is not aligned on a 64-bit boundary, then ASSERT().\r
3722 If Length is not aligned on a 64-bit boundary, then ASSERT().\r
3723 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
3724\r
3725 @param Buffer The pointer to the buffer to carry out the checksum operation.\r
3726 @param Length The size, in bytes, of Buffer.\r
3727\r
3728 @return Checksum The two's complement checksum of Buffer.\r
3729\r
3730**/\r
3731UINT64\r
3732EFIAPI\r
3733CalculateCheckSum64 (\r
3734 IN CONST UINT64 *Buffer,\r
3735 IN UINTN Length\r
3736 );\r
3737\r
3738\r
3739//\r
3740// Base Library CPU Functions\r
3741//\r
3742\r
3743/**\r
3744 Function entry point used when a stack switch is requested with SwitchStack()\r
3745\r
3746 @param Context1 Context1 parameter passed into SwitchStack().\r
3747 @param Context2 Context2 parameter passed into SwitchStack().\r
3748\r
3749**/\r
3750typedef\r
3751VOID\r
3752(EFIAPI *SWITCH_STACK_ENTRY_POINT)(\r
3753 IN VOID *Context1, OPTIONAL\r
3754 IN VOID *Context2 OPTIONAL\r
3755 );\r
3756\r
3757\r
3758/**\r
3759 Used to serialize load and store operations.\r
3760\r
3761 All loads and stores that proceed calls to this function are guaranteed to be\r
3762 globally visible when this function returns.\r
3763\r
3764**/\r
3765VOID\r
3766EFIAPI\r
3767MemoryFence (\r
3768 VOID\r
3769 );\r
3770\r
3771\r
3772/**\r
3773 Saves the current CPU context that can be restored with a call to LongJump()\r
3774 and returns 0.\r
3775\r
3776 Saves the current CPU context in the buffer specified by JumpBuffer and\r
3777 returns 0. The initial call to SetJump() must always return 0. Subsequent\r
3778 calls to LongJump() cause a non-zero value to be returned by SetJump().\r
3779\r
3780 If JumpBuffer is NULL, then ASSERT().\r
3781 For Itanium processors, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().\r
3782 \r
3783 NOTE: The structure BASE_LIBRARY_JUMP_BUFFER is CPU architecture specific.\r
3784 The same structure must never be used for more than one CPU architecture context.\r
3785 For example, a BASE_LIBRARY_JUMP_BUFFER allocated by an IA-32 module must never be used from an x64 module. \r
3786 SetJump()/LongJump() is not currently supported for the EBC processor type. \r
3787\r
3788 @param JumpBuffer A pointer to CPU context buffer.\r
3789\r
3790 @retval 0 Indicates a return from SetJump().\r
3791\r
3792**/\r
3793UINTN\r
3794EFIAPI\r
3795SetJump (\r
3796 OUT BASE_LIBRARY_JUMP_BUFFER *JumpBuffer\r
3797 );\r
3798\r
3799\r
3800/**\r
3801 Restores the CPU context that was saved with SetJump().\r
3802\r
3803 Restores the CPU context from the buffer specified by JumpBuffer. This\r
3804 function never returns to the caller. Instead is resumes execution based on\r
3805 the state of JumpBuffer.\r
3806\r
3807 If JumpBuffer is NULL, then ASSERT().\r
3808 For Itanium processors, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().\r
3809 If Value is 0, then ASSERT().\r
3810\r
3811 @param JumpBuffer A pointer to CPU context buffer.\r
3812 @param Value The value to return when the SetJump() context is\r
3813 restored and must be non-zero.\r
3814\r
3815**/\r
3816VOID\r
3817EFIAPI\r
3818LongJump (\r
3819 IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer,\r
3820 IN UINTN Value\r
3821 );\r
3822\r
3823\r
3824/**\r
3825 Enables CPU interrupts.\r
3826\r
3827**/\r
3828VOID\r
3829EFIAPI\r
3830EnableInterrupts (\r
3831 VOID\r
3832 );\r
3833\r
3834\r
3835/**\r
3836 Disables CPU interrupts.\r
3837\r
3838**/\r
3839VOID\r
3840EFIAPI\r
3841DisableInterrupts (\r
3842 VOID\r
3843 );\r
3844\r
3845\r
3846/**\r
3847 Disables CPU interrupts and returns the interrupt state prior to the disable\r
3848 operation.\r
3849\r
3850 @retval TRUE CPU interrupts were enabled on entry to this call.\r
3851 @retval FALSE CPU interrupts were disabled on entry to this call.\r
3852\r
3853**/\r
3854BOOLEAN\r
3855EFIAPI\r
3856SaveAndDisableInterrupts (\r
3857 VOID\r
3858 );\r
3859\r
3860\r
3861/**\r
3862 Enables CPU interrupts for the smallest window required to capture any\r
3863 pending interrupts.\r
3864\r
3865**/\r
3866VOID\r
3867EFIAPI\r
3868EnableDisableInterrupts (\r
3869 VOID\r
3870 );\r
3871\r
3872\r
3873/**\r
3874 Retrieves the current CPU interrupt state.\r
3875\r
3876 Returns TRUE if interrupts are currently enabled. Otherwise\r
3877 returns FALSE.\r
3878\r
3879 @retval TRUE CPU interrupts are enabled.\r
3880 @retval FALSE CPU interrupts are disabled.\r
3881\r
3882**/\r
3883BOOLEAN\r
3884EFIAPI\r
3885GetInterruptState (\r
3886 VOID\r
3887 );\r
3888\r
3889\r
3890/**\r
3891 Set the current CPU interrupt state.\r
3892\r
3893 Sets the current CPU interrupt state to the state specified by\r
3894 InterruptState. If InterruptState is TRUE, then interrupts are enabled. If\r
3895 InterruptState is FALSE, then interrupts are disabled. InterruptState is\r
3896 returned.\r
3897\r
3898 @param InterruptState TRUE if interrupts should enabled. FALSE if\r
3899 interrupts should be disabled.\r
3900\r
3901 @return InterruptState\r
3902\r
3903**/\r
3904BOOLEAN\r
3905EFIAPI\r
3906SetInterruptState (\r
3907 IN BOOLEAN InterruptState\r
3908 );\r
3909\r
3910\r
3911/**\r
3912 Requests CPU to pause for a short period of time.\r
3913\r
3914 Requests CPU to pause for a short period of time. Typically used in MP\r
3915 systems to prevent memory starvation while waiting for a spin lock.\r
3916\r
3917**/\r
3918VOID\r
3919EFIAPI\r
3920CpuPause (\r
3921 VOID\r
3922 );\r
3923\r
3924\r
3925/**\r
3926 Transfers control to a function starting with a new stack.\r
3927\r
3928 Transfers control to the function specified by EntryPoint using the\r
3929 new stack specified by NewStack and passing in the parameters specified\r
3930 by Context1 and Context2. Context1 and Context2 are optional and may\r
3931 be NULL. The function EntryPoint must never return. This function\r
3932 supports a variable number of arguments following the NewStack parameter.\r
3933 These additional arguments are ignored on IA-32, x64, and EBC architectures.\r
3934 Itanium processors expect one additional parameter of type VOID * that specifies\r
3935 the new backing store pointer.\r
3936\r
3937 If EntryPoint is NULL, then ASSERT().\r
3938 If NewStack is NULL, then ASSERT().\r
3939\r
3940 @param EntryPoint A pointer to function to call with the new stack.\r
3941 @param Context1 A pointer to the context to pass into the EntryPoint\r
3942 function.\r
3943 @param Context2 A pointer to the context to pass into the EntryPoint\r
3944 function.\r
3945 @param NewStack A pointer to the new stack to use for the EntryPoint\r
3946 function.\r
3947 @param ... This variable argument list is ignored for IA-32, x64, and \r
3948 EBC architectures. For Itanium processors, this variable \r
3949 argument list is expected to contain a single parameter of \r
3950 type VOID * that specifies the new backing store pointer.\r
3951\r
3952\r
3953**/\r
3954VOID\r
3955EFIAPI\r
3956SwitchStack (\r
3957 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
3958 IN VOID *Context1, OPTIONAL\r
3959 IN VOID *Context2, OPTIONAL\r
3960 IN VOID *NewStack,\r
3961 ...\r
3962 );\r
3963\r
3964\r
3965/**\r
3966 Generates a breakpoint on the CPU.\r
3967\r
3968 Generates a breakpoint on the CPU. The breakpoint must be implemented such\r
3969 that code can resume normal execution after the breakpoint.\r
3970\r
3971**/\r
3972VOID\r
3973EFIAPI\r
3974CpuBreakpoint (\r
3975 VOID\r
3976 );\r
3977\r
3978\r
3979/**\r
3980 Executes an infinite loop.\r
3981\r
3982 Forces the CPU to execute an infinite loop. A debugger may be used to skip\r
3983 past the loop and the code that follows the loop must execute properly. This\r
3984 implies that the infinite loop must not cause the code that follow it to be\r
3985 optimized away.\r
3986\r
3987**/\r
3988VOID\r
3989EFIAPI\r
3990CpuDeadLoop (\r
3991 VOID\r
3992 );\r
3993 \r
3994#if defined (MDE_CPU_IPF)\r
3995\r
3996/**\r
3997 Flush a range of cache lines in the cache coherency domain of the calling\r
3998 CPU.\r
3999\r
4000 Flushes the cache lines specified by Address and Length. If Address is not aligned \r
4001 on a cache line boundary, then entire cache line containing Address is flushed. \r
4002 If Address + Length is not aligned on a cache line boundary, then the entire cache \r
4003 line containing Address + Length - 1 is flushed. This function may choose to flush \r
4004 the entire cache if that is more efficient than flushing the specified range. If \r
4005 Length is 0, the no cache lines are flushed. Address is returned. \r
4006 This function is only available on Itanium processors.\r
4007\r
4008 If Length is greater than (MAX_ADDRESS - Address + 1), then ASSERT().\r
4009\r
4010 @param Address The base address of the instruction lines to invalidate. If\r
4011 the CPU is in a physical addressing mode, then Address is a\r
4012 physical address. If the CPU is in a virtual addressing mode,\r
4013 then Address is a virtual address.\r
4014\r
4015 @param Length The number of bytes to invalidate from the instruction cache.\r
4016\r
4017 @return Address.\r
4018\r
4019**/\r
4020VOID *\r
4021EFIAPI\r
4022AsmFlushCacheRange (\r
4023 IN VOID *Address,\r
4024 IN UINTN Length\r
4025 );\r
4026\r
4027\r
4028/**\r
4029 Executes an FC instruction.\r
4030 Executes an FC instruction on the cache line specified by Address.\r
4031 The cache line size affected is at least 32-bytes (aligned on a 32-byte boundary).\r
4032 An implementation may flush a larger region. This function is only available on Itanium processors.\r
4033\r
4034 @param Address The Address of cache line to be flushed.\r
4035\r
4036 @return The address of FC instruction executed.\r
4037\r
4038**/\r
4039UINT64\r
4040EFIAPI\r
4041AsmFc (\r
4042 IN UINT64 Address\r
4043 );\r
4044\r
4045\r
4046/**\r
4047 Executes an FC.I instruction.\r
4048 Executes an FC.I instruction on the cache line specified by Address.\r
4049 The cache line size affected is at least 32-bytes (aligned on a 32-byte boundary).\r
4050 An implementation may flush a larger region. This function is only available on Itanium processors.\r
4051\r
4052 @param Address The Address of cache line to be flushed.\r
4053\r
4054 @return The address of the FC.I instruction executed.\r
4055\r
4056**/\r
4057UINT64\r
4058EFIAPI\r
4059AsmFci (\r
4060 IN UINT64 Address\r
4061 );\r
4062\r
4063\r
4064/**\r
4065 Reads the current value of a Processor Identifier Register (CPUID).\r
4066 \r
4067 Reads and returns the current value of Processor Identifier Register specified by Index. \r
4068 The Index of largest implemented CPUID (One less than the number of implemented CPUID\r
4069 registers) is determined by CPUID [3] bits {7:0}.\r
4070 No parameter checking is performed on Index. If the Index value is beyond the\r
4071 implemented CPUID register range, a Reserved Register/Field fault may occur. The caller\r
4072 must either guarantee that Index is valid, or the caller must set up fault handlers to\r
4073 catch the faults. This function is only available on Itanium processors.\r
4074\r
4075 @param Index The 8-bit Processor Identifier Register index to read.\r
4076\r
4077 @return The current value of Processor Identifier Register specified by Index.\r
4078\r
4079**/\r
4080UINT64\r
4081EFIAPI\r
4082AsmReadCpuid (\r
4083 IN UINT8 Index\r
4084 );\r
4085\r
4086\r
4087/**\r
4088 Reads the current value of 64-bit Processor Status Register (PSR).\r
4089 This function is only available on Itanium processors.\r
4090\r
4091 @return The current value of PSR.\r
4092\r
4093**/\r
4094UINT64\r
4095EFIAPI\r
4096AsmReadPsr (\r
4097 VOID\r
4098 );\r
4099\r
4100\r
4101/**\r
4102 Writes the current value of 64-bit Processor Status Register (PSR).\r
4103\r
4104 No parameter checking is performed on Value. All bits of Value corresponding to\r
4105 reserved fields of PSR must be 0 or a Reserved Register/Field fault may occur.\r
4106 The caller must either guarantee that Value is valid, or the caller must set up\r
4107 fault handlers to catch the faults. This function is only available on Itanium processors.\r
4108\r
4109 @param Value The 64-bit value to write to PSR.\r
4110\r
4111 @return The 64-bit value written to the PSR.\r
4112\r
4113**/\r
4114UINT64\r
4115EFIAPI\r
4116AsmWritePsr (\r
4117 IN UINT64 Value\r
4118 );\r
4119\r
4120\r
4121/**\r
4122 Reads the current value of 64-bit Kernel Register #0 (KR0).\r
4123 \r
4124 Reads and returns the current value of KR0. \r
4125 This function is only available on Itanium processors.\r
4126\r
4127 @return The current value of KR0.\r
4128\r
4129**/\r
4130UINT64\r
4131EFIAPI\r
4132AsmReadKr0 (\r
4133 VOID\r
4134 );\r
4135\r
4136\r
4137/**\r
4138 Reads the current value of 64-bit Kernel Register #1 (KR1).\r
4139\r
4140 Reads and returns the current value of KR1. \r
4141 This function is only available on Itanium processors.\r
4142\r
4143 @return The current value of KR1.\r
4144\r
4145**/\r
4146UINT64\r
4147EFIAPI\r
4148AsmReadKr1 (\r
4149 VOID\r
4150 );\r
4151\r
4152\r
4153/**\r
4154 Reads the current value of 64-bit Kernel Register #2 (KR2).\r
4155\r
4156 Reads and returns the current value of KR2. \r
4157 This function is only available on Itanium processors.\r
4158\r
4159 @return The current value of KR2.\r
4160\r
4161**/\r
4162UINT64\r
4163EFIAPI\r
4164AsmReadKr2 (\r
4165 VOID\r
4166 );\r
4167\r
4168\r
4169/**\r
4170 Reads the current value of 64-bit Kernel Register #3 (KR3).\r
4171\r
4172 Reads and returns the current value of KR3. \r
4173 This function is only available on Itanium processors.\r
4174\r
4175 @return The current value of KR3.\r
4176\r
4177**/\r
4178UINT64\r
4179EFIAPI\r
4180AsmReadKr3 (\r
4181 VOID\r
4182 );\r
4183\r
4184\r
4185/**\r
4186 Reads the current value of 64-bit Kernel Register #4 (KR4).\r
4187\r
4188 Reads and returns the current value of KR4. \r
4189 This function is only available on Itanium processors.\r
4190 \r
4191 @return The current value of KR4.\r
4192\r
4193**/\r
4194UINT64\r
4195EFIAPI\r
4196AsmReadKr4 (\r
4197 VOID\r
4198 );\r
4199\r
4200\r
4201/**\r
4202 Reads the current value of 64-bit Kernel Register #5 (KR5).\r
4203\r
4204 Reads and returns the current value of KR5. \r
4205 This function is only available on Itanium processors.\r
4206\r
4207 @return The current value of KR5.\r
4208\r
4209**/\r
4210UINT64\r
4211EFIAPI\r
4212AsmReadKr5 (\r
4213 VOID\r
4214 );\r
4215\r
4216\r
4217/**\r
4218 Reads the current value of 64-bit Kernel Register #6 (KR6).\r
4219\r
4220 Reads and returns the current value of KR6. \r
4221 This function is only available on Itanium processors.\r
4222\r
4223 @return The current value of KR6.\r
4224\r
4225**/\r
4226UINT64\r
4227EFIAPI\r
4228AsmReadKr6 (\r
4229 VOID\r
4230 );\r
4231\r
4232\r
4233/**\r
4234 Reads the current value of 64-bit Kernel Register #7 (KR7).\r
4235\r
4236 Reads and returns the current value of KR7. \r
4237 This function is only available on Itanium processors.\r
4238\r
4239 @return The current value of KR7.\r
4240\r
4241**/\r
4242UINT64\r
4243EFIAPI\r
4244AsmReadKr7 (\r
4245 VOID\r
4246 );\r
4247\r
4248\r
4249/**\r
4250 Write the current value of 64-bit Kernel Register #0 (KR0).\r
4251 \r
4252 Writes the current value of KR0. The 64-bit value written to \r
4253 the KR0 is returned. This function is only available on Itanium processors.\r
4254\r
4255 @param Value The 64-bit value to write to KR0.\r
4256\r
4257 @return The 64-bit value written to the KR0.\r
4258\r
4259**/\r
4260UINT64\r
4261EFIAPI\r
4262AsmWriteKr0 (\r
4263 IN UINT64 Value\r
4264 );\r
4265\r
4266\r
4267/**\r
4268 Write the current value of 64-bit Kernel Register #1 (KR1).\r
4269\r
4270 Writes the current value of KR1. The 64-bit value written to \r
4271 the KR1 is returned. This function is only available on Itanium processors.\r
4272\r
4273 @param Value The 64-bit value to write to KR1.\r
4274\r
4275 @return The 64-bit value written to the KR1.\r
4276\r
4277**/\r
4278UINT64\r
4279EFIAPI\r
4280AsmWriteKr1 (\r
4281 IN UINT64 Value\r
4282 );\r
4283\r
4284\r
4285/**\r
4286 Write the current value of 64-bit Kernel Register #2 (KR2).\r
4287\r
4288 Writes the current value of KR2. The 64-bit value written to \r
4289 the KR2 is returned. This function is only available on Itanium processors.\r
4290\r
4291 @param Value The 64-bit value to write to KR2.\r
4292\r
4293 @return The 64-bit value written to the KR2.\r
4294\r
4295**/\r
4296UINT64\r
4297EFIAPI\r
4298AsmWriteKr2 (\r
4299 IN UINT64 Value\r
4300 );\r
4301\r
4302\r
4303/**\r
4304 Write the current value of 64-bit Kernel Register #3 (KR3).\r
4305\r
4306 Writes the current value of KR3. The 64-bit value written to \r
4307 the KR3 is returned. This function is only available on Itanium processors.\r
4308\r
4309 @param Value The 64-bit value to write to KR3.\r
4310\r
4311 @return The 64-bit value written to the KR3.\r
4312\r
4313**/\r
4314UINT64\r
4315EFIAPI\r
4316AsmWriteKr3 (\r
4317 IN UINT64 Value\r
4318 );\r
4319\r
4320\r
4321/**\r
4322 Write the current value of 64-bit Kernel Register #4 (KR4).\r
4323\r
4324 Writes the current value of KR4. The 64-bit value written to \r
4325 the KR4 is returned. This function is only available on Itanium processors.\r
4326\r
4327 @param Value The 64-bit value to write to KR4.\r
4328\r
4329 @return The 64-bit value written to the KR4.\r
4330\r
4331**/\r
4332UINT64\r
4333EFIAPI\r
4334AsmWriteKr4 (\r
4335 IN UINT64 Value\r
4336 );\r
4337\r
4338\r
4339/**\r
4340 Write the current value of 64-bit Kernel Register #5 (KR5).\r
4341\r
4342 Writes the current value of KR5. The 64-bit value written to \r
4343 the KR5 is returned. This function is only available on Itanium processors.\r
4344\r
4345 @param Value The 64-bit value to write to KR5.\r
4346\r
4347 @return The 64-bit value written to the KR5.\r
4348\r
4349**/\r
4350UINT64\r
4351EFIAPI\r
4352AsmWriteKr5 (\r
4353 IN UINT64 Value\r
4354 );\r
4355\r
4356\r
4357/**\r
4358 Write the current value of 64-bit Kernel Register #6 (KR6).\r
4359\r
4360 Writes the current value of KR6. The 64-bit value written to \r
4361 the KR6 is returned. This function is only available on Itanium processors.\r
4362\r
4363 @param Value The 64-bit value to write to KR6.\r
4364\r
4365 @return The 64-bit value written to the KR6.\r
4366\r
4367**/\r
4368UINT64\r
4369EFIAPI\r
4370AsmWriteKr6 (\r
4371 IN UINT64 Value\r
4372 );\r
4373\r
4374\r
4375/**\r
4376 Write the current value of 64-bit Kernel Register #7 (KR7).\r
4377\r
4378 Writes the current value of KR7. The 64-bit value written to \r
4379 the KR7 is returned. This function is only available on Itanium processors.\r
4380\r
4381 @param Value The 64-bit value to write to KR7.\r
4382\r
4383 @return The 64-bit value written to the KR7.\r
4384\r
4385**/\r
4386UINT64\r
4387EFIAPI\r
4388AsmWriteKr7 (\r
4389 IN UINT64 Value\r
4390 );\r
4391\r
4392\r
4393/**\r
4394 Reads the current value of Interval Timer Counter Register (ITC).\r
4395 \r
4396 Reads and returns the current value of ITC.\r
4397 This function is only available on Itanium processors.\r
4398\r
4399 @return The current value of ITC.\r
4400\r
4401**/\r
4402UINT64\r
4403EFIAPI\r
4404AsmReadItc (\r
4405 VOID\r
4406 );\r
4407\r
4408\r
4409/**\r
4410 Reads the current value of Interval Timer Vector Register (ITV).\r
4411 \r
4412 Reads and returns the current value of ITV. \r
4413 This function is only available on Itanium processors.\r
4414\r
4415 @return The current value of ITV.\r
4416\r
4417**/\r
4418UINT64\r
4419EFIAPI\r
4420AsmReadItv (\r
4421 VOID\r
4422 );\r
4423\r
4424\r
4425/**\r
4426 Reads the current value of Interval Timer Match Register (ITM).\r
4427 \r
4428 Reads and returns the current value of ITM.\r
4429 This function is only available on Itanium processors.\r
4430\r
4431 @return The current value of ITM.\r
4432**/\r
4433UINT64\r
4434EFIAPI\r
4435AsmReadItm (\r
4436 VOID\r
4437 );\r
4438\r
4439\r
4440/**\r
4441 Writes the current value of 64-bit Interval Timer Counter Register (ITC).\r
4442 \r
4443 Writes the current value of ITC. The 64-bit value written to the ITC is returned. \r
4444 This function is only available on Itanium processors.\r
4445\r
4446 @param Value The 64-bit value to write to ITC.\r
4447\r
4448 @return The 64-bit value written to the ITC.\r
4449\r
4450**/\r
4451UINT64\r
4452EFIAPI\r
4453AsmWriteItc (\r
4454 IN UINT64 Value\r
4455 );\r
4456\r
4457\r
4458/**\r
4459 Writes the current value of 64-bit Interval Timer Match Register (ITM).\r
4460 \r
4461 Writes the current value of ITM. The 64-bit value written to the ITM is returned. \r
4462 This function is only available on Itanium processors.\r
4463\r
4464 @param Value The 64-bit value to write to ITM.\r
4465\r
4466 @return The 64-bit value written to the ITM.\r
4467\r
4468**/\r
4469UINT64\r
4470EFIAPI\r
4471AsmWriteItm (\r
4472 IN UINT64 Value\r
4473 );\r
4474\r
4475\r
4476/**\r
4477 Writes the current value of 64-bit Interval Timer Vector Register (ITV).\r
4478 \r
4479 Writes the current value of ITV. The 64-bit value written to the ITV is returned. \r
4480 No parameter checking is performed on Value. All bits of Value corresponding to\r
4481 reserved fields of ITV must be 0 or a Reserved Register/Field fault may occur.\r
4482 The caller must either guarantee that Value is valid, or the caller must set up\r
4483 fault handlers to catch the faults.\r
4484 This function is only available on Itanium processors.\r
4485\r
4486 @param Value The 64-bit value to write to ITV.\r
4487\r
4488 @return The 64-bit value written to the ITV.\r
4489\r
4490**/\r
4491UINT64\r
4492EFIAPI\r
4493AsmWriteItv (\r
4494 IN UINT64 Value\r
4495 );\r
4496\r
4497\r
4498/**\r
4499 Reads the current value of Default Control Register (DCR).\r
4500 \r
4501 Reads and returns the current value of DCR. This function is only available on Itanium processors.\r
4502\r
4503 @return The current value of DCR.\r
4504\r
4505**/\r
4506UINT64\r
4507EFIAPI\r
4508AsmReadDcr (\r
4509 VOID\r
4510 );\r
4511\r
4512\r
4513/**\r
4514 Reads the current value of Interruption Vector Address Register (IVA).\r
4515 \r
4516 Reads and returns the current value of IVA. This function is only available on Itanium processors.\r
4517\r
4518 @return The current value of IVA.\r
4519**/\r
4520UINT64\r
4521EFIAPI\r
4522AsmReadIva (\r
4523 VOID\r
4524 );\r
4525\r
4526\r
4527/**\r
4528 Reads the current value of Page Table Address Register (PTA).\r
4529 \r
4530 Reads and returns the current value of PTA. This function is only available on Itanium processors.\r
4531\r
4532 @return The current value of PTA.\r
4533\r
4534**/\r
4535UINT64\r
4536EFIAPI\r
4537AsmReadPta (\r
4538 VOID\r
4539 );\r
4540\r
4541\r
4542/**\r
4543 Writes the current value of 64-bit Default Control Register (DCR).\r
4544 \r
4545 Writes the current value of DCR. The 64-bit value written to the DCR is returned. \r
4546 No parameter checking is performed on Value. All bits of Value corresponding to\r
4547 reserved fields of DCR must be 0 or a Reserved Register/Field fault may occur.\r
4548 The caller must either guarantee that Value is valid, or the caller must set up\r
4549 fault handlers to catch the faults.\r
4550 This function is only available on Itanium processors.\r
4551\r
4552 @param Value The 64-bit value to write to DCR.\r
4553\r
4554 @return The 64-bit value written to the DCR.\r
4555\r
4556**/\r
4557UINT64\r
4558EFIAPI\r
4559AsmWriteDcr (\r
4560 IN UINT64 Value\r
4561 );\r
4562\r
4563\r
4564/**\r
4565 Writes the current value of 64-bit Interruption Vector Address Register (IVA).\r
4566 \r
4567 Writes the current value of IVA. The 64-bit value written to the IVA is returned. \r
4568 The size of vector table is 32 K bytes and is 32 K bytes aligned\r
4569 the low 15 bits of Value is ignored when written.\r
4570 This function is only available on Itanium processors.\r
4571\r
4572 @param Value The 64-bit value to write to IVA.\r
4573\r
4574 @return The 64-bit value written to the IVA.\r
4575\r
4576**/\r
4577UINT64\r
4578EFIAPI\r
4579AsmWriteIva (\r
4580 IN UINT64 Value\r
4581 );\r
4582\r
4583\r
4584/**\r
4585 Writes the current value of 64-bit Page Table Address Register (PTA).\r
4586 \r
4587 Writes the current value of PTA. The 64-bit value written to the PTA is returned. \r
4588 No parameter checking is performed on Value. All bits of Value corresponding to\r
4589 reserved fields of DCR must be 0 or a Reserved Register/Field fault may occur.\r
4590 The caller must either guarantee that Value is valid, or the caller must set up\r
4591 fault handlers to catch the faults.\r
4592 This function is only available on Itanium processors.\r
4593\r
4594 @param Value The 64-bit value to write to PTA.\r
4595\r
4596 @return The 64-bit value written to the PTA.\r
4597**/\r
4598UINT64\r
4599EFIAPI\r
4600AsmWritePta (\r
4601 IN UINT64 Value\r
4602 );\r
4603\r
4604\r
4605/**\r
4606 Reads the current value of Local Interrupt ID Register (LID).\r
4607 \r
4608 Reads and returns the current value of LID. This function is only available on Itanium processors.\r
4609\r
4610 @return The current value of LID.\r
4611\r
4612**/\r
4613UINT64\r
4614EFIAPI\r
4615AsmReadLid (\r
4616 VOID\r
4617 );\r
4618\r
4619\r
4620/**\r
4621 Reads the current value of External Interrupt Vector Register (IVR).\r
4622 \r
4623 Reads and returns the current value of IVR. This function is only available on Itanium processors. \r
4624\r
4625 @return The current value of IVR.\r
4626\r
4627**/\r
4628UINT64\r
4629EFIAPI\r
4630AsmReadIvr (\r
4631 VOID\r
4632 );\r
4633\r
4634\r
4635/**\r
4636 Reads the current value of Task Priority Register (TPR).\r
4637 \r
4638 Reads and returns the current value of TPR. This function is only available on Itanium processors. \r
4639\r
4640 @return The current value of TPR.\r
4641\r
4642**/\r
4643UINT64\r
4644EFIAPI\r
4645AsmReadTpr (\r
4646 VOID\r
4647 );\r
4648\r
4649\r
4650/**\r
4651 Reads the current value of External Interrupt Request Register #0 (IRR0).\r
4652 \r
4653 Reads and returns the current value of IRR0. This function is only available on Itanium processors. \r
4654\r
4655 @return The current value of IRR0.\r
4656\r
4657**/\r
4658UINT64\r
4659EFIAPI\r
4660AsmReadIrr0 (\r
4661 VOID\r
4662 );\r
4663\r
4664\r
4665/**\r
4666 Reads the current value of External Interrupt Request Register #1 (IRR1).\r
4667 \r
4668 Reads and returns the current value of IRR1. This function is only available on Itanium processors. \r
4669\r
4670 @return The current value of IRR1.\r
4671\r
4672**/\r
4673UINT64\r
4674EFIAPI\r
4675AsmReadIrr1 (\r
4676 VOID\r
4677 );\r
4678\r
4679\r
4680/**\r
4681 Reads the current value of External Interrupt Request Register #2 (IRR2).\r
4682 \r
4683 Reads and returns the current value of IRR2. This function is only available on Itanium processors.\r
4684\r
4685 @return The current value of IRR2.\r
4686\r
4687**/\r
4688UINT64\r
4689EFIAPI\r
4690AsmReadIrr2 (\r
4691 VOID\r
4692 );\r
4693\r
4694\r
4695/**\r
4696 Reads the current value of External Interrupt Request Register #3 (IRR3).\r
4697 \r
4698 Reads and returns the current value of IRR3. This function is only available on Itanium processors. \r
4699\r
4700 @return The current value of IRR3.\r
4701\r
4702**/\r
4703UINT64\r
4704EFIAPI\r
4705AsmReadIrr3 (\r
4706 VOID\r
4707 );\r
4708\r
4709\r
4710/**\r
4711 Reads the current value of Performance Monitor Vector Register (PMV).\r
4712 \r
4713 Reads and returns the current value of PMV. This function is only available on Itanium processors. \r
4714\r
4715 @return The current value of PMV.\r
4716\r
4717**/\r
4718UINT64\r
4719EFIAPI\r
4720AsmReadPmv (\r
4721 VOID\r
4722 );\r
4723\r
4724\r
4725/**\r
4726 Reads the current value of Corrected Machine Check Vector Register (CMCV).\r
4727 \r
4728 Reads and returns the current value of CMCV. This function is only available on Itanium processors.\r
4729\r
4730 @return The current value of CMCV.\r
4731\r
4732**/\r
4733UINT64\r
4734EFIAPI\r
4735AsmReadCmcv (\r
4736 VOID\r
4737 );\r
4738\r
4739\r
4740/**\r
4741 Reads the current value of Local Redirection Register #0 (LRR0).\r
4742 \r
4743 Reads and returns the current value of LRR0. This function is only available on Itanium processors. \r
4744\r
4745 @return The current value of LRR0.\r
4746\r
4747**/\r
4748UINT64\r
4749EFIAPI\r
4750AsmReadLrr0 (\r
4751 VOID\r
4752 );\r
4753\r
4754\r
4755/**\r
4756 Reads the current value of Local Redirection Register #1 (LRR1).\r
4757 \r
4758 Reads and returns the current value of LRR1. This function is only available on Itanium processors.\r
4759\r
4760 @return The current value of LRR1.\r
4761\r
4762**/\r
4763UINT64\r
4764EFIAPI\r
4765AsmReadLrr1 (\r
4766 VOID\r
4767 );\r
4768\r
4769\r
4770/**\r
4771 Writes the current value of 64-bit Page Local Interrupt ID Register (LID).\r
4772 \r
4773 Writes the current value of LID. The 64-bit value written to the LID is returned. \r
4774 No parameter checking is performed on Value. All bits of Value corresponding to\r
4775 reserved fields of LID must be 0 or a Reserved Register/Field fault may occur.\r
4776 The caller must either guarantee that Value is valid, or the caller must set up\r
4777 fault handlers to catch the faults.\r
4778 This function is only available on Itanium processors.\r
4779\r
4780 @param Value The 64-bit value to write to LID.\r
4781\r
4782 @return The 64-bit value written to the LID.\r
4783\r
4784**/\r
4785UINT64\r
4786EFIAPI\r
4787AsmWriteLid (\r
4788 IN UINT64 Value\r
4789 );\r
4790\r
4791\r
4792/**\r
4793 Writes the current value of 64-bit Task Priority Register (TPR).\r
4794 \r
4795 Writes the current value of TPR. The 64-bit value written to the TPR is returned. \r
4796 No parameter checking is performed on Value. All bits of Value corresponding to\r
4797 reserved fields of TPR must be 0 or a Reserved Register/Field fault may occur.\r
4798 The caller must either guarantee that Value is valid, or the caller must set up\r
4799 fault handlers to catch the faults.\r
4800 This function is only available on Itanium processors.\r
4801\r
4802 @param Value The 64-bit value to write to TPR.\r
4803\r
4804 @return The 64-bit value written to the TPR.\r
4805\r
4806**/\r
4807UINT64\r
4808EFIAPI\r
4809AsmWriteTpr (\r
4810 IN UINT64 Value\r
4811 );\r
4812\r
4813\r
4814/**\r
4815 Performs a write operation on End OF External Interrupt Register (EOI).\r
4816 \r
4817 Writes a value of 0 to the EOI Register. This function is only available on Itanium processors.\r
4818\r
4819**/\r
4820VOID\r
4821EFIAPI\r
4822AsmWriteEoi (\r
4823 VOID\r
4824 );\r
4825\r
4826\r
4827/**\r
4828 Writes the current value of 64-bit Performance Monitor Vector Register (PMV).\r
4829 \r
4830 Writes the current value of PMV. The 64-bit value written to the PMV is returned. \r
4831 No parameter checking is performed on Value. All bits of Value corresponding\r
4832 to reserved fields of PMV must be 0 or a Reserved Register/Field fault may occur.\r
4833 The caller must either guarantee that Value is valid, or the caller must set up\r
4834 fault handlers to catch the faults.\r
4835 This function is only available on Itanium processors.\r
4836\r
4837 @param Value The 64-bit value to write to PMV.\r
4838\r
4839 @return The 64-bit value written to the PMV.\r
4840\r
4841**/\r
4842UINT64\r
4843EFIAPI\r
4844AsmWritePmv (\r
4845 IN UINT64 Value\r
4846 );\r
4847\r
4848\r
4849/**\r
4850 Writes the current value of 64-bit Corrected Machine Check Vector Register (CMCV).\r
4851 \r
4852 Writes the current value of CMCV. The 64-bit value written to the CMCV is returned. \r
4853 No parameter checking is performed on Value. All bits of Value corresponding\r
4854 to reserved fields of CMCV must be 0 or a Reserved Register/Field fault may occur.\r
4855 The caller must either guarantee that Value is valid, or the caller must set up\r
4856 fault handlers to catch the faults.\r
4857 This function is only available on Itanium processors.\r
4858\r
4859 @param Value The 64-bit value to write to CMCV.\r
4860\r
4861 @return The 64-bit value written to the CMCV.\r
4862\r
4863**/\r
4864UINT64\r
4865EFIAPI\r
4866AsmWriteCmcv (\r
4867 IN UINT64 Value\r
4868 );\r
4869\r
4870\r
4871/**\r
4872 Writes the current value of 64-bit Local Redirection Register #0 (LRR0).\r
4873 \r
4874 Writes the current value of LRR0. The 64-bit value written to the LRR0 is returned. \r
4875 No parameter checking is performed on Value. All bits of Value corresponding\r
4876 to reserved fields of LRR0 must be 0 or a Reserved Register/Field fault may occur.\r
4877 The caller must either guarantee that Value is valid, or the caller must set up\r
4878 fault handlers to catch the faults.\r
4879 This function is only available on Itanium processors.\r
4880\r
4881 @param Value The 64-bit value to write to LRR0.\r
4882\r
4883 @return The 64-bit value written to the LRR0.\r
4884\r
4885**/\r
4886UINT64\r
4887EFIAPI\r
4888AsmWriteLrr0 (\r
4889 IN UINT64 Value\r
4890 );\r
4891\r
4892\r
4893/**\r
4894 Writes the current value of 64-bit Local Redirection Register #1 (LRR1).\r
4895 \r
4896 Writes the current value of LRR1. The 64-bit value written to the LRR1 is returned. \r
4897 No parameter checking is performed on Value. All bits of Value corresponding\r
4898 to reserved fields of LRR1 must be 0 or a Reserved Register/Field fault may occur.\r
4899 The caller must either guarantee that Value is valid, or the caller must\r
4900 set up fault handlers to catch the faults.\r
4901 This function is only available on Itanium processors.\r
4902\r
4903 @param Value The 64-bit value to write to LRR1.\r
4904\r
4905 @return The 64-bit value written to the LRR1.\r
4906\r
4907**/\r
4908UINT64\r
4909EFIAPI\r
4910AsmWriteLrr1 (\r
4911 IN UINT64 Value\r
4912 );\r
4913\r
4914\r
4915/**\r
4916 Reads the current value of Instruction Breakpoint Register (IBR).\r
4917 \r
4918 The Instruction Breakpoint Registers are used in pairs. The even numbered\r
4919 registers contain breakpoint addresses, and the odd numbered registers contain\r
4920 breakpoint mask conditions. At least four instruction registers pairs are implemented\r
4921 on all processor models. Implemented registers are contiguous starting with\r
4922 register 0. No parameter checking is performed on Index, and if the Index value\r
4923 is beyond the implemented IBR register range, a Reserved Register/Field fault may\r
4924 occur. The caller must either guarantee that Index is valid, or the caller must\r
4925 set up fault handlers to catch the faults.\r
4926 This function is only available on Itanium processors.\r
4927\r
4928 @param Index The 8-bit Instruction Breakpoint Register index to read.\r
4929\r
4930 @return The current value of Instruction Breakpoint Register specified by Index.\r
4931\r
4932**/\r
4933UINT64\r
4934EFIAPI\r
4935AsmReadIbr (\r
4936 IN UINT8 Index\r
4937 );\r
4938\r
4939\r
4940/**\r
4941 Reads the current value of Data Breakpoint Register (DBR).\r
4942\r
4943 The Data Breakpoint Registers are used in pairs. The even numbered registers\r
4944 contain breakpoint addresses, and odd numbered registers contain breakpoint\r
4945 mask conditions. At least four data registers pairs are implemented on all processor\r
4946 models. Implemented registers are contiguous starting with register 0.\r
4947 No parameter checking is performed on Index. If the Index value is beyond\r
4948 the implemented DBR register range, a Reserved Register/Field fault may occur.\r
4949 The caller must either guarantee that Index is valid, or the caller must set up\r
4950 fault handlers to catch the faults.\r
4951 This function is only available on Itanium processors.\r
4952\r
4953 @param Index The 8-bit Data Breakpoint Register index to read.\r
4954\r
4955 @return The current value of Data Breakpoint Register specified by Index.\r
4956\r
4957**/\r
4958UINT64\r
4959EFIAPI\r
4960AsmReadDbr (\r
4961 IN UINT8 Index\r
4962 );\r
4963\r
4964\r
4965/**\r
4966 Reads the current value of Performance Monitor Configuration Register (PMC).\r
4967\r
4968 All processor implementations provide at least four performance counters\r
4969 (PMC/PMD [4]...PMC/PMD [7] pairs), and four performance monitor counter overflow\r
4970 status registers (PMC [0]... PMC [3]). Processor implementations may provide\r
4971 additional implementation-dependent PMC and PMD to increase the number of\r
4972 'generic' performance counters (PMC/PMD pairs). The remainder of PMC and PMD\r
4973 register set is implementation dependent. No parameter checking is performed\r
4974 on Index. If the Index value is beyond the implemented PMC register range,\r
4975 zero value will be returned.\r
4976 This function is only available on Itanium processors.\r
4977\r
4978 @param Index The 8-bit Performance Monitor Configuration Register index to read.\r
4979\r
4980 @return The current value of Performance Monitor Configuration Register\r
4981 specified by Index.\r
4982\r
4983**/\r
4984UINT64\r
4985EFIAPI\r
4986AsmReadPmc (\r
4987 IN UINT8 Index\r
4988 );\r
4989\r
4990\r
4991/**\r
4992 Reads the current value of Performance Monitor Data Register (PMD).\r
4993\r
4994 All processor implementations provide at least 4 performance counters\r
4995 (PMC/PMD [4]...PMC/PMD [7] pairs), and 4 performance monitor counter\r
4996 overflow status registers (PMC [0]... PMC [3]). Processor implementations may\r
4997 provide additional implementation-dependent PMC and PMD to increase the number\r
4998 of 'generic' performance counters (PMC/PMD pairs). The remainder of PMC and PMD\r
4999 register set is implementation dependent. No parameter checking is performed\r
5000 on Index. If the Index value is beyond the implemented PMD register range,\r
5001 zero value will be returned.\r
5002 This function is only available on Itanium processors.\r
5003\r
5004 @param Index The 8-bit Performance Monitor Data Register index to read.\r
5005\r
5006 @return The current value of Performance Monitor Data Register specified by Index.\r
5007\r
5008**/\r
5009UINT64\r
5010EFIAPI\r
5011AsmReadPmd (\r
5012 IN UINT8 Index\r
5013 );\r
5014\r
5015\r
5016/**\r
5017 Writes the current value of 64-bit Instruction Breakpoint Register (IBR).\r
5018\r
5019 Writes current value of Instruction Breakpoint Register specified by Index.\r
5020 The Instruction Breakpoint Registers are used in pairs. The even numbered\r
5021 registers contain breakpoint addresses, and odd numbered registers contain\r
5022 breakpoint mask conditions. At least four instruction registers pairs are implemented\r
5023 on all processor models. Implemented registers are contiguous starting with\r
5024 register 0. No parameter checking is performed on Index. If the Index value\r
5025 is beyond the implemented IBR register range, a Reserved Register/Field fault may\r
5026 occur. The caller must either guarantee that Index is valid, or the caller must\r
5027 set up fault handlers to catch the faults.\r
5028 This function is only available on Itanium processors.\r
5029\r
5030 @param Index The 8-bit Instruction Breakpoint Register index to write.\r
5031 @param Value The 64-bit value to write to IBR.\r
5032\r
5033 @return The 64-bit value written to the IBR.\r
5034\r
5035**/\r
5036UINT64\r
5037EFIAPI\r
5038AsmWriteIbr (\r
5039 IN UINT8 Index,\r
5040 IN UINT64 Value\r
5041 );\r
5042\r
5043\r
5044/**\r
5045 Writes the current value of 64-bit Data Breakpoint Register (DBR).\r
5046\r
5047 Writes current value of Data Breakpoint Register specified by Index.\r
5048 The Data Breakpoint Registers are used in pairs. The even numbered registers\r
5049 contain breakpoint addresses, and odd numbered registers contain breakpoint\r
5050 mask conditions. At least four data registers pairs are implemented on all processor\r
5051 models. Implemented registers are contiguous starting with register 0. No parameter\r
5052 checking is performed on Index. If the Index value is beyond the implemented\r
5053 DBR register range, a Reserved Register/Field fault may occur. The caller must\r
5054 either guarantee that Index is valid, or the caller must set up fault handlers to\r
5055 catch the faults.\r
5056 This function is only available on Itanium processors.\r
5057\r
5058 @param Index The 8-bit Data Breakpoint Register index to write.\r
5059 @param Value The 64-bit value to write to DBR.\r
5060\r
5061 @return The 64-bit value written to the DBR.\r
5062\r
5063**/\r
5064UINT64\r
5065EFIAPI\r
5066AsmWriteDbr (\r
5067 IN UINT8 Index,\r
5068 IN UINT64 Value\r
5069 );\r
5070\r
5071\r
5072/**\r
5073 Writes the current value of 64-bit Performance Monitor Configuration Register (PMC).\r
5074\r
5075 Writes current value of Performance Monitor Configuration Register specified by Index.\r
5076 All processor implementations provide at least four performance counters\r
5077 (PMC/PMD [4]...PMC/PMD [7] pairs), and four performance monitor counter overflow status\r
5078 registers (PMC [0]... PMC [3]). Processor implementations may provide additional\r
5079 implementation-dependent PMC and PMD to increase the number of 'generic' performance\r
5080 counters (PMC/PMD pairs). The remainder of PMC and PMD register set is implementation\r
5081 dependent. No parameter checking is performed on Index. If the Index value is\r
5082 beyond the implemented PMC register range, the write is ignored.\r
5083 This function is only available on Itanium processors.\r
5084\r
5085 @param Index The 8-bit Performance Monitor Configuration Register index to write.\r
5086 @param Value The 64-bit value to write to PMC.\r
5087\r
5088 @return The 64-bit value written to the PMC.\r
5089\r
5090**/\r
5091UINT64\r
5092EFIAPI\r
5093AsmWritePmc (\r
5094 IN UINT8 Index,\r
5095 IN UINT64 Value\r
5096 );\r
5097\r
5098\r
5099/**\r
5100 Writes the current value of 64-bit Performance Monitor Data Register (PMD).\r
5101\r
5102 Writes current value of Performance Monitor Data Register specified by Index.\r
5103 All processor implementations provide at least four performance counters\r
5104 (PMC/PMD [4]...PMC/PMD [7] pairs), and four performance monitor counter overflow\r
5105 status registers (PMC [0]... PMC [3]). Processor implementations may provide\r
5106 additional implementation-dependent PMC and PMD to increase the number of 'generic'\r
5107 performance counters (PMC/PMD pairs). The remainder of PMC and PMD register set\r
5108 is implementation dependent. No parameter checking is performed on Index. If the\r
5109 Index value is beyond the implemented PMD register range, the write is ignored.\r
5110 This function is only available on Itanium processors.\r
5111\r
5112 @param Index The 8-bit Performance Monitor Data Register index to write.\r
5113 @param Value The 64-bit value to write to PMD.\r
5114\r
5115 @return The 64-bit value written to the PMD.\r
5116\r
5117**/\r
5118UINT64\r
5119EFIAPI\r
5120AsmWritePmd (\r
5121 IN UINT8 Index,\r
5122 IN UINT64 Value\r
5123 );\r
5124\r
5125\r
5126/**\r
5127 Reads the current value of 64-bit Global Pointer (GP).\r
5128\r
5129 Reads and returns the current value of GP.\r
5130 This function is only available on Itanium processors.\r
5131\r
5132 @return The current value of GP.\r
5133\r
5134**/\r
5135UINT64\r
5136EFIAPI\r
5137AsmReadGp (\r
5138 VOID\r
5139 );\r
5140\r
5141\r
5142/**\r
5143 Write the current value of 64-bit Global Pointer (GP).\r
5144\r
5145 Writes the current value of GP. The 64-bit value written to the GP is returned.\r
5146 No parameter checking is performed on Value.\r
5147 This function is only available on Itanium processors.\r
5148\r
5149 @param Value The 64-bit value to write to GP.\r
5150\r
5151 @return The 64-bit value written to the GP.\r
5152\r
5153**/\r
5154UINT64\r
5155EFIAPI\r
5156AsmWriteGp (\r
5157 IN UINT64 Value\r
5158 );\r
5159\r
5160\r
5161/**\r
5162 Reads the current value of 64-bit Stack Pointer (SP).\r
5163\r
5164 Reads and returns the current value of SP.\r
5165 This function is only available on Itanium processors.\r
5166\r
5167 @return The current value of SP.\r
5168\r
5169**/\r
5170UINT64\r
5171EFIAPI\r
5172AsmReadSp (\r
5173 VOID\r
5174 );\r
5175\r
5176\r
5177///\r
5178/// Valid Index value for AsmReadControlRegister().\r
5179///\r
5180#define IPF_CONTROL_REGISTER_DCR 0\r
5181#define IPF_CONTROL_REGISTER_ITM 1\r
5182#define IPF_CONTROL_REGISTER_IVA 2\r
5183#define IPF_CONTROL_REGISTER_PTA 8\r
5184#define IPF_CONTROL_REGISTER_IPSR 16\r
5185#define IPF_CONTROL_REGISTER_ISR 17\r
5186#define IPF_CONTROL_REGISTER_IIP 19\r
5187#define IPF_CONTROL_REGISTER_IFA 20\r
5188#define IPF_CONTROL_REGISTER_ITIR 21\r
5189#define IPF_CONTROL_REGISTER_IIPA 22\r
5190#define IPF_CONTROL_REGISTER_IFS 23\r
5191#define IPF_CONTROL_REGISTER_IIM 24\r
5192#define IPF_CONTROL_REGISTER_IHA 25\r
5193#define IPF_CONTROL_REGISTER_LID 64\r
5194#define IPF_CONTROL_REGISTER_IVR 65\r
5195#define IPF_CONTROL_REGISTER_TPR 66\r
5196#define IPF_CONTROL_REGISTER_EOI 67\r
5197#define IPF_CONTROL_REGISTER_IRR0 68\r
5198#define IPF_CONTROL_REGISTER_IRR1 69\r
5199#define IPF_CONTROL_REGISTER_IRR2 70\r
5200#define IPF_CONTROL_REGISTER_IRR3 71\r
5201#define IPF_CONTROL_REGISTER_ITV 72\r
5202#define IPF_CONTROL_REGISTER_PMV 73\r
5203#define IPF_CONTROL_REGISTER_CMCV 74\r
5204#define IPF_CONTROL_REGISTER_LRR0 80\r
5205#define IPF_CONTROL_REGISTER_LRR1 81\r
5206\r
5207/**\r
5208 Reads a 64-bit control register.\r
5209\r
5210 Reads and returns the control register specified by Index. The valid Index valued \r
5211 are defined above in "Related Definitions".\r
5212 If Index is invalid then 0xFFFFFFFFFFFFFFFF is returned. This function is only \r
5213 available on Itanium processors.\r
5214\r
5215 @param Index The index of the control register to read.\r
5216\r
5217 @return The control register specified by Index.\r
5218\r
5219**/\r
5220UINT64\r
5221EFIAPI\r
5222AsmReadControlRegister (\r
5223 IN UINT64 Index\r
5224 );\r
5225\r
5226\r
5227///\r
5228/// Valid Index value for AsmReadApplicationRegister().\r
5229///\r
5230#define IPF_APPLICATION_REGISTER_K0 0\r
5231#define IPF_APPLICATION_REGISTER_K1 1\r
5232#define IPF_APPLICATION_REGISTER_K2 2\r
5233#define IPF_APPLICATION_REGISTER_K3 3\r
5234#define IPF_APPLICATION_REGISTER_K4 4\r
5235#define IPF_APPLICATION_REGISTER_K5 5\r
5236#define IPF_APPLICATION_REGISTER_K6 6\r
5237#define IPF_APPLICATION_REGISTER_K7 7\r
5238#define IPF_APPLICATION_REGISTER_RSC 16\r
5239#define IPF_APPLICATION_REGISTER_BSP 17\r
5240#define IPF_APPLICATION_REGISTER_BSPSTORE 18\r
5241#define IPF_APPLICATION_REGISTER_RNAT 19\r
5242#define IPF_APPLICATION_REGISTER_FCR 21\r
5243#define IPF_APPLICATION_REGISTER_EFLAG 24\r
5244#define IPF_APPLICATION_REGISTER_CSD 25\r
5245#define IPF_APPLICATION_REGISTER_SSD 26\r
5246#define IPF_APPLICATION_REGISTER_CFLG 27\r
5247#define IPF_APPLICATION_REGISTER_FSR 28\r
5248#define IPF_APPLICATION_REGISTER_FIR 29\r
5249#define IPF_APPLICATION_REGISTER_FDR 30\r
5250#define IPF_APPLICATION_REGISTER_CCV 32\r
5251#define IPF_APPLICATION_REGISTER_UNAT 36\r
5252#define IPF_APPLICATION_REGISTER_FPSR 40\r
5253#define IPF_APPLICATION_REGISTER_ITC 44\r
5254#define IPF_APPLICATION_REGISTER_PFS 64\r
5255#define IPF_APPLICATION_REGISTER_LC 65\r
5256#define IPF_APPLICATION_REGISTER_EC 66\r
5257\r
5258/**\r
5259 Reads a 64-bit application register.\r
5260\r
5261 Reads and returns the application register specified by Index. The valid Index \r
5262 valued are defined above in "Related Definitions".\r
5263 If Index is invalid then 0xFFFFFFFFFFFFFFFF is returned. This function is only \r
5264 available on Itanium processors.\r
5265\r
5266 @param Index The index of the application register to read.\r
5267\r
5268 @return The application register specified by Index.\r
5269\r
5270**/\r
5271UINT64\r
5272EFIAPI\r
5273AsmReadApplicationRegister (\r
5274 IN UINT64 Index\r
5275 );\r
5276\r
5277\r
5278/**\r
5279 Reads the current value of a Machine Specific Register (MSR).\r
5280\r
5281 Reads and returns the current value of the Machine Specific Register specified by Index. No\r
5282 parameter checking is performed on Index, and if the Index value is beyond the implemented MSR\r
5283 register range, a Reserved Register/Field fault may occur. The caller must either guarantee that\r
5284 Index is valid, or the caller must set up fault handlers to catch the faults. This function is\r
5285 only available on Itanium processors.\r
5286\r
5287 @param Index The 8-bit Machine Specific Register index to read.\r
5288\r
5289 @return The current value of the Machine Specific Register specified by Index. \r
5290\r
5291**/\r
5292UINT64\r
5293EFIAPI\r
5294AsmReadMsr (\r
5295 IN UINT8 Index \r
5296 );\r
5297\r
5298\r
5299/**\r
5300 Writes the current value of a Machine Specific Register (MSR).\r
5301\r
5302 Writes Value to the Machine Specific Register specified by Index. Value is returned. No\r
5303 parameter checking is performed on Index, and if the Index value is beyond the implemented MSR\r
5304 register range, a Reserved Register/Field fault may occur. The caller must either guarantee that\r
5305 Index is valid, or the caller must set up fault handlers to catch the faults. This function is\r
5306 only available on Itanium processors.\r
5307\r
5308 @param Index The 8-bit Machine Specific Register index to write.\r
5309 @param Value The 64-bit value to write to the Machine Specific Register.\r
5310\r
5311 @return The 64-bit value to write to the Machine Specific Register. \r
5312\r
5313**/\r
5314UINT64\r
5315EFIAPI\r
5316AsmWriteMsr (\r
5317 IN UINT8 Index, \r
5318 IN UINT64 Value \r
5319 );\r
5320\r
5321\r
5322/**\r
5323 Determines if the CPU is currently executing in virtual, physical, or mixed mode.\r
5324\r
5325 Determines the current execution mode of the CPU.\r
5326 If the CPU is in virtual mode(PSR.RT=1, PSR.DT=1, PSR.IT=1), then 1 is returned.\r
5327 If the CPU is in physical mode(PSR.RT=0, PSR.DT=0, PSR.IT=0), then 0 is returned.\r
5328 If the CPU is not in physical mode or virtual mode, then it is in mixed mode,\r
5329 and -1 is returned.\r
5330 This function is only available on Itanium processors.\r
5331\r
5332 @retval 1 The CPU is in virtual mode.\r
5333 @retval 0 The CPU is in physical mode.\r
5334 @retval -1 The CPU is in mixed mode.\r
5335\r
5336**/\r
5337INT64\r
5338EFIAPI\r
5339AsmCpuVirtual (\r
5340 VOID\r
5341 );\r
5342\r
5343\r
5344/**\r
5345 Makes a PAL procedure call.\r
5346\r
5347 This is a wrapper function to make a PAL procedure call. Based on the Index\r
5348 value this API will make static or stacked PAL call. The following table\r
5349 describes the usage of PAL Procedure Index Assignment. Architected procedures\r
5350 may be designated as required or optional. If a PAL procedure is specified\r
5351 as optional, a unique return code of 0xFFFFFFFFFFFFFFFF is returned in the\r
5352 Status field of the PAL_CALL_RETURN structure.\r
5353 This indicates that the procedure is not present in this PAL implementation.\r
5354 It is the caller's responsibility to check for this return code after calling\r
5355 any optional PAL procedure.\r
5356 No parameter checking is performed on the 5 input parameters, but there are\r
5357 some common rules that the caller should follow when making a PAL call. Any\r
5358 address passed to PAL as buffers for return parameters must be 8-byte aligned.\r
5359 Unaligned addresses may cause undefined results. For those parameters defined\r
5360 as reserved or some fields defined as reserved must be zero filled or the invalid\r
5361 argument return value may be returned or undefined result may occur during the\r
5362 execution of the procedure. If the PalEntryPoint does not point to a valid\r
5363 PAL entry point then the system behavior is undefined. This function is only\r
5364 available on Itanium processors.\r
5365\r
5366 @param PalEntryPoint The PAL procedure calls entry point.\r
5367 @param Index The PAL procedure Index number.\r
5368 @param Arg2 The 2nd parameter for PAL procedure calls.\r
5369 @param Arg3 The 3rd parameter for PAL procedure calls.\r
5370 @param Arg4 The 4th parameter for PAL procedure calls.\r
5371\r
5372 @return structure returned from the PAL Call procedure, including the status and return value.\r
5373\r
5374**/\r
5375PAL_CALL_RETURN\r
5376EFIAPI\r
5377AsmPalCall (\r
5378 IN UINT64 PalEntryPoint,\r
5379 IN UINT64 Index,\r
5380 IN UINT64 Arg2,\r
5381 IN UINT64 Arg3,\r
5382 IN UINT64 Arg4\r
5383 );\r
5384#endif\r
5385\r
5386#if defined (MDE_CPU_IA32) || defined (MDE_CPU_X64)\r
5387///\r
5388/// IA32 and x64 Specific Functions.\r
5389/// Byte packed structure for 16-bit Real Mode EFLAGS.\r
5390///\r
5391typedef union {\r
5392 struct {\r
5393 UINT32 CF:1; ///< Carry Flag.\r
5394 UINT32 Reserved_0:1; ///< Reserved.\r
5395 UINT32 PF:1; ///< Parity Flag.\r
5396 UINT32 Reserved_1:1; ///< Reserved.\r
5397 UINT32 AF:1; ///< Auxiliary Carry Flag.\r
5398 UINT32 Reserved_2:1; ///< Reserved.\r
5399 UINT32 ZF:1; ///< Zero Flag.\r
5400 UINT32 SF:1; ///< Sign Flag.\r
5401 UINT32 TF:1; ///< Trap Flag.\r
5402 UINT32 IF:1; ///< Interrupt Enable Flag.\r
5403 UINT32 DF:1; ///< Direction Flag.\r
5404 UINT32 OF:1; ///< Overflow Flag.\r
5405 UINT32 IOPL:2; ///< I/O Privilege Level.\r
5406 UINT32 NT:1; ///< Nested Task.\r
5407 UINT32 Reserved_3:1; ///< Reserved.\r
5408 } Bits;\r
5409 UINT16 Uint16;\r
5410} IA32_FLAGS16;\r
5411\r
5412///\r
5413/// Byte packed structure for EFLAGS/RFLAGS.\r
5414/// 32-bits on IA-32.\r
5415/// 64-bits on x64. The upper 32-bits on x64 are reserved.\r
5416///\r
5417typedef union {\r
5418 struct {\r
5419 UINT32 CF:1; ///< Carry Flag.\r
5420 UINT32 Reserved_0:1; ///< Reserved.\r
5421 UINT32 PF:1; ///< Parity Flag.\r
5422 UINT32 Reserved_1:1; ///< Reserved.\r
5423 UINT32 AF:1; ///< Auxiliary Carry Flag.\r
5424 UINT32 Reserved_2:1; ///< Reserved.\r
5425 UINT32 ZF:1; ///< Zero Flag.\r
5426 UINT32 SF:1; ///< Sign Flag.\r
5427 UINT32 TF:1; ///< Trap Flag.\r
5428 UINT32 IF:1; ///< Interrupt Enable Flag.\r
5429 UINT32 DF:1; ///< Direction Flag.\r
5430 UINT32 OF:1; ///< Overflow Flag.\r
5431 UINT32 IOPL:2; ///< I/O Privilege Level.\r
5432 UINT32 NT:1; ///< Nested Task.\r
5433 UINT32 Reserved_3:1; ///< Reserved.\r
5434 UINT32 RF:1; ///< Resume Flag.\r
5435 UINT32 VM:1; ///< Virtual 8086 Mode.\r
5436 UINT32 AC:1; ///< Alignment Check.\r
5437 UINT32 VIF:1; ///< Virtual Interrupt Flag.\r
5438 UINT32 VIP:1; ///< Virtual Interrupt Pending.\r
5439 UINT32 ID:1; ///< ID Flag.\r
5440 UINT32 Reserved_4:10; ///< Reserved.\r
5441 } Bits;\r
5442 UINTN UintN;\r
5443} IA32_EFLAGS32;\r
5444\r
5445///\r
5446/// Byte packed structure for Control Register 0 (CR0).\r
5447/// 32-bits on IA-32.\r
5448/// 64-bits on x64. The upper 32-bits on x64 are reserved.\r
5449///\r
5450typedef union {\r
5451 struct {\r
5452 UINT32 PE:1; ///< Protection Enable.\r
5453 UINT32 MP:1; ///< Monitor Coprocessor.\r
5454 UINT32 EM:1; ///< Emulation.\r
5455 UINT32 TS:1; ///< Task Switched.\r
5456 UINT32 ET:1; ///< Extension Type.\r
5457 UINT32 NE:1; ///< Numeric Error.\r
5458 UINT32 Reserved_0:10; ///< Reserved.\r
5459 UINT32 WP:1; ///< Write Protect.\r
5460 UINT32 Reserved_1:1; ///< Reserved.\r
5461 UINT32 AM:1; ///< Alignment Mask.\r
5462 UINT32 Reserved_2:10; ///< Reserved.\r
5463 UINT32 NW:1; ///< Mot Write-through.\r
5464 UINT32 CD:1; ///< Cache Disable.\r
5465 UINT32 PG:1; ///< Paging.\r
5466 } Bits;\r
5467 UINTN UintN;\r
5468} IA32_CR0;\r
5469\r
5470///\r
5471/// Byte packed structure for Control Register 4 (CR4).\r
5472/// 32-bits on IA-32.\r
5473/// 64-bits on x64. The upper 32-bits on x64 are reserved.\r
5474///\r
5475typedef union {\r
5476 struct {\r
5477 UINT32 VME:1; ///< Virtual-8086 Mode Extensions.\r
5478 UINT32 PVI:1; ///< Protected-Mode Virtual Interrupts.\r
5479 UINT32 TSD:1; ///< Time Stamp Disable.\r
5480 UINT32 DE:1; ///< Debugging Extensions.\r
5481 UINT32 PSE:1; ///< Page Size Extensions.\r
5482 UINT32 PAE:1; ///< Physical Address Extension.\r
5483 UINT32 MCE:1; ///< Machine Check Enable.\r
5484 UINT32 PGE:1; ///< Page Global Enable.\r
5485 UINT32 PCE:1; ///< Performance Monitoring Counter\r
5486 ///< Enable.\r
5487 UINT32 OSFXSR:1; ///< Operating System Support for\r
5488 ///< FXSAVE and FXRSTOR instructions\r
5489 UINT32 OSXMMEXCPT:1; ///< Operating System Support for\r
5490 ///< Unmasked SIMD Floating Point\r
5491 ///< Exceptions.\r
5492 UINT32 Reserved_0:2; ///< Reserved.\r
5493 UINT32 VMXE:1; ///< VMX Enable\r
5494 UINT32 Reserved_1:18; ///< Reserved.\r
5495 } Bits;\r
5496 UINTN UintN;\r
5497} IA32_CR4;\r
5498\r
5499///\r
5500/// Byte packed structure for a segment descriptor in a GDT/LDT.\r
5501///\r
5502typedef union {\r
5503 struct {\r
5504 UINT32 LimitLow:16;\r
5505 UINT32 BaseLow:16;\r
5506 UINT32 BaseMid:8;\r
5507 UINT32 Type:4;\r
5508 UINT32 S:1;\r
5509 UINT32 DPL:2;\r
5510 UINT32 P:1;\r
5511 UINT32 LimitHigh:4;\r
5512 UINT32 AVL:1;\r
5513 UINT32 L:1;\r
5514 UINT32 DB:1;\r
5515 UINT32 G:1;\r
5516 UINT32 BaseHigh:8;\r
5517 } Bits;\r
5518 UINT64 Uint64;\r
5519} IA32_SEGMENT_DESCRIPTOR;\r
5520\r
5521///\r
5522/// Byte packed structure for an IDTR, GDTR, LDTR descriptor.\r
5523///\r
5524#pragma pack (1)\r
5525typedef struct {\r
5526 UINT16 Limit;\r
5527 UINTN Base;\r
5528} IA32_DESCRIPTOR;\r
5529#pragma pack ()\r
5530\r
5531#define IA32_IDT_GATE_TYPE_TASK 0x85\r
5532#define IA32_IDT_GATE_TYPE_INTERRUPT_16 0x86\r
5533#define IA32_IDT_GATE_TYPE_TRAP_16 0x87\r
5534#define IA32_IDT_GATE_TYPE_INTERRUPT_32 0x8E\r
5535#define IA32_IDT_GATE_TYPE_TRAP_32 0x8F\r
5536\r
5537\r
5538#if defined (MDE_CPU_IA32)\r
5539///\r
5540/// Byte packed structure for an IA-32 Interrupt Gate Descriptor.\r
5541///\r
5542typedef union {\r
5543 struct {\r
5544 UINT32 OffsetLow:16; ///< Offset bits 15..0.\r
5545 UINT32 Selector:16; ///< Selector.\r
5546 UINT32 Reserved_0:8; ///< Reserved.\r
5547 UINT32 GateType:8; ///< Gate Type. See #defines above.\r
5548 UINT32 OffsetHigh:16; ///< Offset bits 31..16.\r
5549 } Bits;\r
5550 UINT64 Uint64;\r
5551} IA32_IDT_GATE_DESCRIPTOR;\r
5552\r
5553#endif\r
5554\r
5555#if defined (MDE_CPU_X64)\r
5556///\r
5557/// Byte packed structure for an x64 Interrupt Gate Descriptor.\r
5558///\r
5559typedef union {\r
5560 struct {\r
5561 UINT32 OffsetLow:16; ///< Offset bits 15..0.\r
5562 UINT32 Selector:16; ///< Selector.\r
5563 UINT32 Reserved_0:8; ///< Reserved.\r
5564 UINT32 GateType:8; ///< Gate Type. See #defines above.\r
5565 UINT32 OffsetHigh:16; ///< Offset bits 31..16.\r
5566 UINT32 OffsetUpper:32; ///< Offset bits 63..32.\r
5567 UINT32 Reserved_1:32; ///< Reserved.\r
5568 } Bits;\r
5569 struct {\r
5570 UINT64 Uint64;\r
5571 UINT64 Uint64_1;\r
5572 } Uint128; \r
5573} IA32_IDT_GATE_DESCRIPTOR;\r
5574\r
5575#endif\r
5576\r
5577///\r
5578/// Byte packed structure for an FP/SSE/SSE2 context.\r
5579///\r
5580typedef struct {\r
5581 UINT8 Buffer[512];\r
5582} IA32_FX_BUFFER;\r
5583\r
5584///\r
5585/// Structures for the 16-bit real mode thunks.\r
5586///\r
5587typedef struct {\r
5588 UINT32 Reserved1;\r
5589 UINT32 Reserved2;\r
5590 UINT32 Reserved3;\r
5591 UINT32 Reserved4;\r
5592 UINT8 BL;\r
5593 UINT8 BH;\r
5594 UINT16 Reserved5;\r
5595 UINT8 DL;\r
5596 UINT8 DH;\r
5597 UINT16 Reserved6;\r
5598 UINT8 CL;\r
5599 UINT8 CH;\r
5600 UINT16 Reserved7;\r
5601 UINT8 AL;\r
5602 UINT8 AH;\r
5603 UINT16 Reserved8;\r
5604} IA32_BYTE_REGS;\r
5605\r
5606typedef struct {\r
5607 UINT16 DI;\r
5608 UINT16 Reserved1;\r
5609 UINT16 SI;\r
5610 UINT16 Reserved2;\r
5611 UINT16 BP;\r
5612 UINT16 Reserved3;\r
5613 UINT16 SP;\r
5614 UINT16 Reserved4;\r
5615 UINT16 BX;\r
5616 UINT16 Reserved5;\r
5617 UINT16 DX;\r
5618 UINT16 Reserved6;\r
5619 UINT16 CX;\r
5620 UINT16 Reserved7;\r
5621 UINT16 AX;\r
5622 UINT16 Reserved8;\r
5623} IA32_WORD_REGS;\r
5624\r
5625typedef struct {\r
5626 UINT32 EDI;\r
5627 UINT32 ESI;\r
5628 UINT32 EBP;\r
5629 UINT32 ESP;\r
5630 UINT32 EBX;\r
5631 UINT32 EDX;\r
5632 UINT32 ECX;\r
5633 UINT32 EAX;\r
5634 UINT16 DS;\r
5635 UINT16 ES;\r
5636 UINT16 FS;\r
5637 UINT16 GS;\r
5638 IA32_EFLAGS32 EFLAGS;\r
5639 UINT32 Eip;\r
5640 UINT16 CS;\r
5641 UINT16 SS;\r
5642} IA32_DWORD_REGS;\r
5643\r
5644typedef union {\r
5645 IA32_DWORD_REGS E;\r
5646 IA32_WORD_REGS X;\r
5647 IA32_BYTE_REGS H;\r
5648} IA32_REGISTER_SET;\r
5649\r
5650///\r
5651/// Byte packed structure for an 16-bit real mode thunks.\r
5652///\r
5653typedef struct {\r
5654 IA32_REGISTER_SET *RealModeState;\r
5655 VOID *RealModeBuffer;\r
5656 UINT32 RealModeBufferSize;\r
5657 UINT32 ThunkAttributes;\r
5658} THUNK_CONTEXT;\r
5659\r
5660#define THUNK_ATTRIBUTE_BIG_REAL_MODE 0x00000001\r
5661#define THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 0x00000002\r
5662#define THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL 0x00000004\r
5663\r
5664/**\r
5665 Retrieves CPUID information.\r
5666\r
5667 Executes the CPUID instruction with EAX set to the value specified by Index.\r
5668 This function always returns Index.\r
5669 If Eax is not NULL, then the value of EAX after CPUID is returned in Eax.\r
5670 If Ebx is not NULL, then the value of EBX after CPUID is returned in Ebx.\r
5671 If Ecx is not NULL, then the value of ECX after CPUID is returned in Ecx.\r
5672 If Edx is not NULL, then the value of EDX after CPUID is returned in Edx.\r
5673 This function is only available on IA-32 and x64.\r
5674\r
5675 @param Index The 32-bit value to load into EAX prior to invoking the CPUID\r
5676 instruction.\r
5677 @param Eax The pointer to the 32-bit EAX value returned by the CPUID\r
5678 instruction. This is an optional parameter that may be NULL.\r
5679 @param Ebx The pointer to the 32-bit EBX value returned by the CPUID\r
5680 instruction. This is an optional parameter that may be NULL.\r
5681 @param Ecx The pointer to the 32-bit ECX value returned by the CPUID\r
5682 instruction. This is an optional parameter that may be NULL.\r
5683 @param Edx The pointer to the 32-bit EDX value returned by the CPUID\r
5684 instruction. This is an optional parameter that may be NULL.\r
5685\r
5686 @return Index.\r
5687\r
5688**/\r
5689UINT32\r
5690EFIAPI\r
5691AsmCpuid (\r
5692 IN UINT32 Index,\r
5693 OUT UINT32 *Eax, OPTIONAL\r
5694 OUT UINT32 *Ebx, OPTIONAL\r
5695 OUT UINT32 *Ecx, OPTIONAL\r
5696 OUT UINT32 *Edx OPTIONAL\r
5697 );\r
5698\r
5699\r
5700/**\r
5701 Retrieves CPUID information using an extended leaf identifier.\r
5702\r
5703 Executes the CPUID instruction with EAX set to the value specified by Index\r
5704 and ECX set to the value specified by SubIndex. This function always returns\r
5705 Index. This function is only available on IA-32 and x64.\r
5706\r
5707 If Eax is not NULL, then the value of EAX after CPUID is returned in Eax.\r
5708 If Ebx is not NULL, then the value of EBX after CPUID is returned in Ebx.\r
5709 If Ecx is not NULL, then the value of ECX after CPUID is returned in Ecx.\r
5710 If Edx is not NULL, then the value of EDX after CPUID is returned in Edx.\r
5711\r
5712 @param Index The 32-bit value to load into EAX prior to invoking the\r
5713 CPUID instruction.\r
5714 @param SubIndex The 32-bit value to load into ECX prior to invoking the\r
5715 CPUID instruction.\r
5716 @param Eax The pointer to the 32-bit EAX value returned by the CPUID\r
5717 instruction. This is an optional parameter that may be\r
5718 NULL.\r
5719 @param Ebx The pointer to the 32-bit EBX value returned by the CPUID\r
5720 instruction. This is an optional parameter that may be\r
5721 NULL.\r
5722 @param Ecx The pointer to the 32-bit ECX value returned by the CPUID\r
5723 instruction. This is an optional parameter that may be\r
5724 NULL.\r
5725 @param Edx The pointer to the 32-bit EDX value returned by the CPUID\r
5726 instruction. This is an optional parameter that may be\r
5727 NULL.\r
5728\r
5729 @return Index.\r
5730\r
5731**/\r
5732UINT32\r
5733EFIAPI\r
5734AsmCpuidEx (\r
5735 IN UINT32 Index,\r
5736 IN UINT32 SubIndex,\r
5737 OUT UINT32 *Eax, OPTIONAL\r
5738 OUT UINT32 *Ebx, OPTIONAL\r
5739 OUT UINT32 *Ecx, OPTIONAL\r
5740 OUT UINT32 *Edx OPTIONAL\r
5741 );\r
5742\r
5743\r
5744/**\r
5745 Set CD bit and clear NW bit of CR0 followed by a WBINVD.\r
5746\r
5747 Disables the caches by setting the CD bit of CR0 to 1, clearing the NW bit of CR0 to 0,\r
5748 and executing a WBINVD instruction. This function is only available on IA-32 and x64.\r
5749\r
5750**/\r
5751VOID\r
5752EFIAPI\r
5753AsmDisableCache (\r
5754 VOID\r
5755 );\r
5756\r
5757\r
5758/**\r
5759 Perform a WBINVD and clear both the CD and NW bits of CR0.\r
5760\r
5761 Enables the caches by executing a WBINVD instruction and then clear both the CD and NW\r
5762 bits of CR0 to 0. This function is only available on IA-32 and x64.\r
5763\r
5764**/\r
5765VOID\r
5766EFIAPI\r
5767AsmEnableCache (\r
5768 VOID\r
5769 );\r
5770\r
5771\r
5772/**\r
5773 Returns the lower 32-bits of a Machine Specific Register(MSR).\r
5774\r
5775 Reads and returns the lower 32-bits of the MSR specified by Index.\r
5776 No parameter checking is performed on Index, and some Index values may cause\r
5777 CPU exceptions. The caller must either guarantee that Index is valid, or the\r
5778 caller must set up exception handlers to catch the exceptions. This function\r
5779 is only available on IA-32 and x64.\r
5780\r
5781 @param Index The 32-bit MSR index to read.\r
5782\r
5783 @return The lower 32 bits of the MSR identified by Index.\r
5784\r
5785**/\r
5786UINT32\r
5787EFIAPI\r
5788AsmReadMsr32 (\r
5789 IN UINT32 Index\r
5790 );\r
5791\r
5792\r
5793/**\r
5794 Writes a 32-bit value to a Machine Specific Register(MSR), and returns the value.\r
5795 The upper 32-bits of the MSR are set to zero.\r
5796\r
5797 Writes the 32-bit value specified by Value to the MSR specified by Index. The\r
5798 upper 32-bits of the MSR write are set to zero. The 32-bit value written to\r
5799 the MSR is returned. No parameter checking is performed on Index or Value,\r
5800 and some of these may cause CPU exceptions. The caller must either guarantee\r
5801 that Index and Value are valid, or the caller must establish proper exception\r
5802 handlers. This function is only available on IA-32 and x64.\r
5803\r
5804 @param Index The 32-bit MSR index to write.\r
5805 @param Value The 32-bit value to write to the MSR.\r
5806\r
5807 @return Value\r
5808\r
5809**/\r
5810UINT32\r
5811EFIAPI\r
5812AsmWriteMsr32 (\r
5813 IN UINT32 Index,\r
5814 IN UINT32 Value\r
5815 );\r
5816\r
5817\r
5818/**\r
5819 Reads a 64-bit MSR, performs a bitwise OR on the lower 32-bits, and\r
5820 writes the result back to the 64-bit MSR.\r
5821\r
5822 Reads the 64-bit MSR specified by Index, performs a bitwise OR\r
5823 between the lower 32-bits of the read result and the value specified by\r
5824 OrData, and writes the result to the 64-bit MSR specified by Index. The lower\r
5825 32-bits of the value written to the MSR is returned. No parameter checking is\r
5826 performed on Index or OrData, and some of these may cause CPU exceptions. The\r
5827 caller must either guarantee that Index and OrData are valid, or the caller\r
5828 must establish proper exception handlers. This function is only available on\r
5829 IA-32 and x64.\r
5830\r
5831 @param Index The 32-bit MSR index to write.\r
5832 @param OrData The value to OR with the read value from the MSR.\r
5833\r
5834 @return The lower 32-bit value written to the MSR.\r
5835\r
5836**/\r
5837UINT32\r
5838EFIAPI\r
5839AsmMsrOr32 (\r
5840 IN UINT32 Index,\r
5841 IN UINT32 OrData\r
5842 );\r
5843\r
5844\r
5845/**\r
5846 Reads a 64-bit MSR, performs a bitwise AND on the lower 32-bits, and writes\r
5847 the result back to the 64-bit MSR.\r
5848\r
5849 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
5850 lower 32-bits of the read result and the value specified by AndData, and\r
5851 writes the result to the 64-bit MSR specified by Index. The lower 32-bits of\r
5852 the value written to the MSR is returned. No parameter checking is performed\r
5853 on Index or AndData, and some of these may cause CPU exceptions. The caller\r
5854 must either guarantee that Index and AndData are valid, or the caller must\r
5855 establish proper exception handlers. This function is only available on IA-32\r
5856 and x64.\r
5857\r
5858 @param Index The 32-bit MSR index to write.\r
5859 @param AndData The value to AND with the read value from the MSR.\r
5860\r
5861 @return The lower 32-bit value written to the MSR.\r
5862\r
5863**/\r
5864UINT32\r
5865EFIAPI\r
5866AsmMsrAnd32 (\r
5867 IN UINT32 Index,\r
5868 IN UINT32 AndData\r
5869 );\r
5870\r
5871\r
5872/**\r
5873 Reads a 64-bit MSR, performs a bitwise AND followed by a bitwise OR\r
5874 on the lower 32-bits, and writes the result back to the 64-bit MSR.\r
5875\r
5876 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
5877 lower 32-bits of the read result and the value specified by AndData\r
5878 preserving the upper 32-bits, performs a bitwise OR between the\r
5879 result of the AND operation and the value specified by OrData, and writes the\r
5880 result to the 64-bit MSR specified by Address. The lower 32-bits of the value\r
5881 written to the MSR is returned. No parameter checking is performed on Index,\r
5882 AndData, or OrData, and some of these may cause CPU exceptions. The caller\r
5883 must either guarantee that Index, AndData, and OrData are valid, or the\r
5884 caller must establish proper exception handlers. This function is only\r
5885 available on IA-32 and x64.\r
5886\r
5887 @param Index The 32-bit MSR index to write.\r
5888 @param AndData The value to AND with the read value from the MSR.\r
5889 @param OrData The value to OR with the result of the AND operation.\r
5890\r
5891 @return The lower 32-bit value written to the MSR.\r
5892\r
5893**/\r
5894UINT32\r
5895EFIAPI\r
5896AsmMsrAndThenOr32 (\r
5897 IN UINT32 Index,\r
5898 IN UINT32 AndData,\r
5899 IN UINT32 OrData\r
5900 );\r
5901\r
5902\r
5903/**\r
5904 Reads a bit field of an MSR.\r
5905\r
5906 Reads the bit field in the lower 32-bits of a 64-bit MSR. The bit field is\r
5907 specified by the StartBit and the EndBit. The value of the bit field is\r
5908 returned. The caller must either guarantee that Index is valid, or the caller\r
5909 must set up exception handlers to catch the exceptions. This function is only\r
5910 available on IA-32 and x64.\r
5911\r
5912 If StartBit is greater than 31, then ASSERT().\r
5913 If EndBit is greater than 31, then ASSERT().\r
5914 If EndBit is less than StartBit, then ASSERT().\r
5915\r
5916 @param Index The 32-bit MSR index to read.\r
5917 @param StartBit The ordinal of the least significant bit in the bit field.\r
5918 Range 0..31.\r
5919 @param EndBit The ordinal of the most significant bit in the bit field.\r
5920 Range 0..31.\r
5921\r
5922 @return The bit field read from the MSR.\r
5923\r
5924**/\r
5925UINT32\r
5926EFIAPI\r
5927AsmMsrBitFieldRead32 (\r
5928 IN UINT32 Index,\r
5929 IN UINTN StartBit,\r
5930 IN UINTN EndBit\r
5931 );\r
5932\r
5933\r
5934/**\r
5935 Writes a bit field to an MSR.\r
5936\r
5937 Writes Value to a bit field in the lower 32-bits of a 64-bit MSR. The bit\r
5938 field is specified by the StartBit and the EndBit. All other bits in the\r
5939 destination MSR are preserved. The lower 32-bits of the MSR written is\r
5940 returned. The caller must either guarantee that Index and the data written \r
5941 is valid, or the caller must set up exception handlers to catch the exceptions. \r
5942 This function is only available on IA-32 and x64.\r
5943\r
5944 If StartBit is greater than 31, then ASSERT().\r
5945 If EndBit is greater than 31, then ASSERT().\r
5946 If EndBit is less than StartBit, then ASSERT().\r
5947 If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
5948\r
5949 @param Index The 32-bit MSR index to write.\r
5950 @param StartBit The ordinal of the least significant bit in the bit field.\r
5951 Range 0..31.\r
5952 @param EndBit The ordinal of the most significant bit in the bit field.\r
5953 Range 0..31.\r
5954 @param Value New value of the bit field.\r
5955\r
5956 @return The lower 32-bit of the value written to the MSR.\r
5957\r
5958**/\r
5959UINT32\r
5960EFIAPI\r
5961AsmMsrBitFieldWrite32 (\r
5962 IN UINT32 Index,\r
5963 IN UINTN StartBit,\r
5964 IN UINTN EndBit,\r
5965 IN UINT32 Value\r
5966 );\r
5967\r
5968\r
5969/**\r
5970 Reads a bit field in a 64-bit MSR, performs a bitwise OR, and writes the\r
5971 result back to the bit field in the 64-bit MSR.\r
5972\r
5973 Reads the 64-bit MSR specified by Index, performs a bitwise OR\r
5974 between the read result and the value specified by OrData, and writes the\r
5975 result to the 64-bit MSR specified by Index. The lower 32-bits of the value\r
5976 written to the MSR are returned. Extra left bits in OrData are stripped. The\r
5977 caller must either guarantee that Index and the data written is valid, or\r
5978 the caller must set up exception handlers to catch the exceptions. This\r
5979 function is only available on IA-32 and x64.\r
5980\r
5981 If StartBit is greater than 31, then ASSERT().\r
5982 If EndBit is greater than 31, then ASSERT().\r
5983 If EndBit is less than StartBit, then ASSERT().\r
5984 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
5985\r
5986 @param Index The 32-bit MSR index to write.\r
5987 @param StartBit The ordinal of the least significant bit in the bit field.\r
5988 Range 0..31.\r
5989 @param EndBit The ordinal of the most significant bit in the bit field.\r
5990 Range 0..31.\r
5991 @param OrData The value to OR with the read value from the MSR.\r
5992\r
5993 @return The lower 32-bit of the value written to the MSR.\r
5994\r
5995**/\r
5996UINT32\r
5997EFIAPI\r
5998AsmMsrBitFieldOr32 (\r
5999 IN UINT32 Index,\r
6000 IN UINTN StartBit,\r
6001 IN UINTN EndBit,\r
6002 IN UINT32 OrData\r
6003 );\r
6004\r
6005\r
6006/**\r
6007 Reads a bit field in a 64-bit MSR, performs a bitwise AND, and writes the\r
6008 result back to the bit field in the 64-bit MSR.\r
6009\r
6010 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
6011 read result and the value specified by AndData, and writes the result to the\r
6012 64-bit MSR specified by Index. The lower 32-bits of the value written to the\r
6013 MSR are returned. Extra left bits in AndData are stripped. The caller must\r
6014 either guarantee that Index and the data written is valid, or the caller must\r
6015 set up exception handlers to catch the exceptions. This function is only\r
6016 available on IA-32 and x64.\r
6017\r
6018 If StartBit is greater than 31, then ASSERT().\r
6019 If EndBit is greater than 31, then ASSERT().\r
6020 If EndBit is less than StartBit, then ASSERT().\r
6021 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
6022\r
6023 @param Index The 32-bit MSR index to write.\r
6024 @param StartBit The ordinal of the least significant bit in the bit field.\r
6025 Range 0..31.\r
6026 @param EndBit The ordinal of the most significant bit in the bit field.\r
6027 Range 0..31.\r
6028 @param AndData The value to AND with the read value from the MSR.\r
6029\r
6030 @return The lower 32-bit of the value written to the MSR.\r
6031\r
6032**/\r
6033UINT32\r
6034EFIAPI\r
6035AsmMsrBitFieldAnd32 (\r
6036 IN UINT32 Index,\r
6037 IN UINTN StartBit,\r
6038 IN UINTN EndBit,\r
6039 IN UINT32 AndData\r
6040 );\r
6041\r
6042\r
6043/**\r
6044 Reads a bit field in a 64-bit MSR, performs a bitwise AND followed by a\r
6045 bitwise OR, and writes the result back to the bit field in the\r
6046 64-bit MSR.\r
6047\r
6048 Reads the 64-bit MSR specified by Index, performs a bitwise AND followed by a\r
6049 bitwise OR between the read result and the value specified by\r
6050 AndData, and writes the result to the 64-bit MSR specified by Index. The\r
6051 lower 32-bits of the value written to the MSR are returned. Extra left bits\r
6052 in both AndData and OrData are stripped. The caller must either guarantee\r
6053 that Index and the data written is valid, or the caller must set up exception\r
6054 handlers to catch the exceptions. This function is only available on IA-32\r
6055 and x64.\r
6056\r
6057 If StartBit is greater than 31, then ASSERT().\r
6058 If EndBit is greater than 31, then ASSERT().\r
6059 If EndBit is less than StartBit, then ASSERT().\r
6060 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
6061 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
6062\r
6063 @param Index The 32-bit MSR index to write.\r
6064 @param StartBit The ordinal of the least significant bit in the bit field.\r
6065 Range 0..31.\r
6066 @param EndBit The ordinal of the most significant bit in the bit field.\r
6067 Range 0..31.\r
6068 @param AndData The value to AND with the read value from the MSR.\r
6069 @param OrData The value to OR with the result of the AND operation.\r
6070\r
6071 @return The lower 32-bit of the value written to the MSR.\r
6072\r
6073**/\r
6074UINT32\r
6075EFIAPI\r
6076AsmMsrBitFieldAndThenOr32 (\r
6077 IN UINT32 Index,\r
6078 IN UINTN StartBit,\r
6079 IN UINTN EndBit,\r
6080 IN UINT32 AndData,\r
6081 IN UINT32 OrData\r
6082 );\r
6083\r
6084\r
6085/**\r
6086 Returns a 64-bit Machine Specific Register(MSR).\r
6087\r
6088 Reads and returns the 64-bit MSR specified by Index. No parameter checking is\r
6089 performed on Index, and some Index values may cause CPU exceptions. The\r
6090 caller must either guarantee that Index is valid, or the caller must set up\r
6091 exception handlers to catch the exceptions. This function is only available\r
6092 on IA-32 and x64.\r
6093\r
6094 @param Index The 32-bit MSR index to read.\r
6095\r
6096 @return The value of the MSR identified by Index.\r
6097\r
6098**/\r
6099UINT64\r
6100EFIAPI\r
6101AsmReadMsr64 (\r
6102 IN UINT32 Index\r
6103 );\r
6104\r
6105\r
6106/**\r
6107 Writes a 64-bit value to a Machine Specific Register(MSR), and returns the\r
6108 value.\r
6109\r
6110 Writes the 64-bit value specified by Value to the MSR specified by Index. The\r
6111 64-bit value written to the MSR is returned. No parameter checking is\r
6112 performed on Index or Value, and some of these may cause CPU exceptions. The\r
6113 caller must either guarantee that Index and Value are valid, or the caller\r
6114 must establish proper exception handlers. This function is only available on\r
6115 IA-32 and x64.\r
6116\r
6117 @param Index The 32-bit MSR index to write.\r
6118 @param Value The 64-bit value to write to the MSR.\r
6119\r
6120 @return Value\r
6121\r
6122**/\r
6123UINT64\r
6124EFIAPI\r
6125AsmWriteMsr64 (\r
6126 IN UINT32 Index,\r
6127 IN UINT64 Value\r
6128 );\r
6129\r
6130\r
6131/**\r
6132 Reads a 64-bit MSR, performs a bitwise OR, and writes the result\r
6133 back to the 64-bit MSR.\r
6134\r
6135 Reads the 64-bit MSR specified by Index, performs a bitwise OR\r
6136 between the read result and the value specified by OrData, and writes the\r
6137 result to the 64-bit MSR specified by Index. The value written to the MSR is\r
6138 returned. No parameter checking is performed on Index or OrData, and some of\r
6139 these may cause CPU exceptions. The caller must either guarantee that Index\r
6140 and OrData are valid, or the caller must establish proper exception handlers.\r
6141 This function is only available on IA-32 and x64.\r
6142\r
6143 @param Index The 32-bit MSR index to write.\r
6144 @param OrData The value to OR with the read value from the MSR.\r
6145\r
6146 @return The value written back to the MSR.\r
6147\r
6148**/\r
6149UINT64\r
6150EFIAPI\r
6151AsmMsrOr64 (\r
6152 IN UINT32 Index,\r
6153 IN UINT64 OrData\r
6154 );\r
6155\r
6156\r
6157/**\r
6158 Reads a 64-bit MSR, performs a bitwise AND, and writes the result back to the\r
6159 64-bit MSR.\r
6160\r
6161 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
6162 read result and the value specified by OrData, and writes the result to the\r
6163 64-bit MSR specified by Index. The value written to the MSR is returned. No\r
6164 parameter checking is performed on Index or OrData, and some of these may\r
6165 cause CPU exceptions. The caller must either guarantee that Index and OrData\r
6166 are valid, or the caller must establish proper exception handlers. This\r
6167 function is only available on IA-32 and x64.\r
6168\r
6169 @param Index The 32-bit MSR index to write.\r
6170 @param AndData The value to AND with the read value from the MSR.\r
6171\r
6172 @return The value written back to the MSR.\r
6173\r
6174**/\r
6175UINT64\r
6176EFIAPI\r
6177AsmMsrAnd64 (\r
6178 IN UINT32 Index,\r
6179 IN UINT64 AndData\r
6180 );\r
6181\r
6182\r
6183/**\r
6184 Reads a 64-bit MSR, performs a bitwise AND followed by a bitwise \r
6185 OR, and writes the result back to the 64-bit MSR.\r
6186\r
6187 Reads the 64-bit MSR specified by Index, performs a bitwise AND between read\r
6188 result and the value specified by AndData, performs a bitwise OR\r
6189 between the result of the AND operation and the value specified by OrData,\r
6190 and writes the result to the 64-bit MSR specified by Index. The value written\r
6191 to the MSR is returned. No parameter checking is performed on Index, AndData,\r
6192 or OrData, and some of these may cause CPU exceptions. The caller must either\r
6193 guarantee that Index, AndData, and OrData are valid, or the caller must\r
6194 establish proper exception handlers. This function is only available on IA-32\r
6195 and x64.\r
6196\r
6197 @param Index The 32-bit MSR index to write.\r
6198 @param AndData The value to AND with the read value from the MSR.\r
6199 @param OrData The value to OR with the result of the AND operation.\r
6200\r
6201 @return The value written back to the MSR.\r
6202\r
6203**/\r
6204UINT64\r
6205EFIAPI\r
6206AsmMsrAndThenOr64 (\r
6207 IN UINT32 Index,\r
6208 IN UINT64 AndData,\r
6209 IN UINT64 OrData\r
6210 );\r
6211\r
6212\r
6213/**\r
6214 Reads a bit field of an MSR.\r
6215\r
6216 Reads the bit field in the 64-bit MSR. The bit field is specified by the\r
6217 StartBit and the EndBit. The value of the bit field is returned. The caller\r
6218 must either guarantee that Index is valid, or the caller must set up\r
6219 exception handlers to catch the exceptions. This function is only available\r
6220 on IA-32 and x64.\r
6221\r
6222 If StartBit is greater than 63, then ASSERT().\r
6223 If EndBit is greater than 63, then ASSERT().\r
6224 If EndBit is less than StartBit, then ASSERT().\r
6225\r
6226 @param Index The 32-bit MSR index to read.\r
6227 @param StartBit The ordinal of the least significant bit in the bit field.\r
6228 Range 0..63.\r
6229 @param EndBit The ordinal of the most significant bit in the bit field.\r
6230 Range 0..63.\r
6231\r
6232 @return The value read from the MSR.\r
6233\r
6234**/\r
6235UINT64\r
6236EFIAPI\r
6237AsmMsrBitFieldRead64 (\r
6238 IN UINT32 Index,\r
6239 IN UINTN StartBit,\r
6240 IN UINTN EndBit\r
6241 );\r
6242\r
6243\r
6244/**\r
6245 Writes a bit field to an MSR.\r
6246\r
6247 Writes Value to a bit field in a 64-bit MSR. The bit field is specified by\r
6248 the StartBit and the EndBit. All other bits in the destination MSR are\r
6249 preserved. The MSR written is returned. The caller must either guarantee \r
6250 that Index and the data written is valid, or the caller must set up exception \r
6251 handlers to catch the exceptions. This function is only available on IA-32 and x64.\r
6252\r
6253 If StartBit is greater than 63, then ASSERT().\r
6254 If EndBit is greater than 63, then ASSERT().\r
6255 If EndBit is less than StartBit, then ASSERT().\r
6256 If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
6257\r
6258 @param Index The 32-bit MSR index to write.\r
6259 @param StartBit The ordinal of the least significant bit in the bit field.\r
6260 Range 0..63.\r
6261 @param EndBit The ordinal of the most significant bit in the bit field.\r
6262 Range 0..63.\r
6263 @param Value New value of the bit field.\r
6264\r
6265 @return The value written back to the MSR.\r
6266\r
6267**/\r
6268UINT64\r
6269EFIAPI\r
6270AsmMsrBitFieldWrite64 (\r
6271 IN UINT32 Index,\r
6272 IN UINTN StartBit,\r
6273 IN UINTN EndBit,\r
6274 IN UINT64 Value\r
6275 );\r
6276\r
6277\r
6278/**\r
6279 Reads a bit field in a 64-bit MSR, performs a bitwise OR, and\r
6280 writes the result back to the bit field in the 64-bit MSR.\r
6281\r
6282 Reads the 64-bit MSR specified by Index, performs a bitwise OR\r
6283 between the read result and the value specified by OrData, and writes the\r
6284 result to the 64-bit MSR specified by Index. The value written to the MSR is\r
6285 returned. Extra left bits in OrData are stripped. The caller must either\r
6286 guarantee that Index and the data written is valid, or the caller must set up\r
6287 exception handlers to catch the exceptions. This function is only available\r
6288 on IA-32 and x64.\r
6289\r
6290 If StartBit is greater than 63, then ASSERT().\r
6291 If EndBit is greater than 63, then ASSERT().\r
6292 If EndBit is less than StartBit, then ASSERT().\r
6293 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
6294\r
6295 @param Index The 32-bit MSR index to write.\r
6296 @param StartBit The ordinal of the least significant bit in the bit field.\r
6297 Range 0..63.\r
6298 @param EndBit The ordinal of the most significant bit in the bit field.\r
6299 Range 0..63.\r
6300 @param OrData The value to OR with the read value from the bit field.\r
6301\r
6302 @return The value written back to the MSR.\r
6303\r
6304**/\r
6305UINT64\r
6306EFIAPI\r
6307AsmMsrBitFieldOr64 (\r
6308 IN UINT32 Index,\r
6309 IN UINTN StartBit,\r
6310 IN UINTN EndBit,\r
6311 IN UINT64 OrData\r
6312 );\r
6313\r
6314\r
6315/**\r
6316 Reads a bit field in a 64-bit MSR, performs a bitwise AND, and writes the\r
6317 result back to the bit field in the 64-bit MSR.\r
6318\r
6319 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
6320 read result and the value specified by AndData, and writes the result to the\r
6321 64-bit MSR specified by Index. The value written to the MSR is returned.\r
6322 Extra left bits in AndData are stripped. The caller must either guarantee\r
6323 that Index and the data written is valid, or the caller must set up exception\r
6324 handlers to catch the exceptions. This function is only available on IA-32\r
6325 and x64.\r
6326\r
6327 If StartBit is greater than 63, then ASSERT().\r
6328 If EndBit is greater than 63, then ASSERT().\r
6329 If EndBit is less than StartBit, then ASSERT().\r
6330 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
6331\r
6332 @param Index The 32-bit MSR index to write.\r
6333 @param StartBit The ordinal of the least significant bit in the bit field.\r
6334 Range 0..63.\r
6335 @param EndBit The ordinal of the most significant bit in the bit field.\r
6336 Range 0..63.\r
6337 @param AndData The value to AND with the read value from the bit field.\r
6338\r
6339 @return The value written back to the MSR.\r
6340\r
6341**/\r
6342UINT64\r
6343EFIAPI\r
6344AsmMsrBitFieldAnd64 (\r
6345 IN UINT32 Index,\r
6346 IN UINTN StartBit,\r
6347 IN UINTN EndBit,\r
6348 IN UINT64 AndData\r
6349 );\r
6350\r
6351\r
6352/**\r
6353 Reads a bit field in a 64-bit MSR, performs a bitwise AND followed by a\r
6354 bitwise OR, and writes the result back to the bit field in the\r
6355 64-bit MSR.\r
6356\r
6357 Reads the 64-bit MSR specified by Index, performs a bitwise AND followed by\r
6358 a bitwise OR between the read result and the value specified by\r
6359 AndData, and writes the result to the 64-bit MSR specified by Index. The\r
6360 value written to the MSR is returned. Extra left bits in both AndData and\r
6361 OrData are stripped. The caller must either guarantee that Index and the data\r
6362 written is valid, or the caller must set up exception handlers to catch the\r
6363 exceptions. This function is only available on IA-32 and x64.\r
6364\r
6365 If StartBit is greater than 63, then ASSERT().\r
6366 If EndBit is greater than 63, then ASSERT().\r
6367 If EndBit is less than StartBit, then ASSERT().\r
6368 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
6369 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
6370\r
6371 @param Index The 32-bit MSR index to write.\r
6372 @param StartBit The ordinal of the least significant bit in the bit field.\r
6373 Range 0..63.\r
6374 @param EndBit The ordinal of the most significant bit in the bit field.\r
6375 Range 0..63.\r
6376 @param AndData The value to AND with the read value from the bit field.\r
6377 @param OrData The value to OR with the result of the AND operation.\r
6378\r
6379 @return The value written back to the MSR.\r
6380\r
6381**/\r
6382UINT64\r
6383EFIAPI\r
6384AsmMsrBitFieldAndThenOr64 (\r
6385 IN UINT32 Index,\r
6386 IN UINTN StartBit,\r
6387 IN UINTN EndBit,\r
6388 IN UINT64 AndData,\r
6389 IN UINT64 OrData\r
6390 );\r
6391\r
6392\r
6393/**\r
6394 Reads the current value of the EFLAGS register.\r
6395\r
6396 Reads and returns the current value of the EFLAGS register. This function is\r
6397 only available on IA-32 and x64. This returns a 32-bit value on IA-32 and a\r
6398 64-bit value on x64.\r
6399\r
6400 @return EFLAGS on IA-32 or RFLAGS on x64.\r
6401\r
6402**/\r
6403UINTN\r
6404EFIAPI\r
6405AsmReadEflags (\r
6406 VOID\r
6407 );\r
6408\r
6409\r
6410/**\r
6411 Reads the current value of the Control Register 0 (CR0).\r
6412\r
6413 Reads and returns the current value of CR0. This function is only available\r
6414 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
6415 x64.\r
6416\r
6417 @return The value of the Control Register 0 (CR0).\r
6418\r
6419**/\r
6420UINTN\r
6421EFIAPI\r
6422AsmReadCr0 (\r
6423 VOID\r
6424 );\r
6425\r
6426\r
6427/**\r
6428 Reads the current value of the Control Register 2 (CR2).\r
6429\r
6430 Reads and returns the current value of CR2. This function is only available\r
6431 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
6432 x64.\r
6433\r
6434 @return The value of the Control Register 2 (CR2).\r
6435\r
6436**/\r
6437UINTN\r
6438EFIAPI\r
6439AsmReadCr2 (\r
6440 VOID\r
6441 );\r
6442\r
6443\r
6444/**\r
6445 Reads the current value of the Control Register 3 (CR3).\r
6446\r
6447 Reads and returns the current value of CR3. This function is only available\r
6448 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
6449 x64.\r
6450\r
6451 @return The value of the Control Register 3 (CR3).\r
6452\r
6453**/\r
6454UINTN\r
6455EFIAPI\r
6456AsmReadCr3 (\r
6457 VOID\r
6458 );\r
6459\r
6460\r
6461/**\r
6462 Reads the current value of the Control Register 4 (CR4).\r
6463\r
6464 Reads and returns the current value of CR4. This function is only available\r
6465 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
6466 x64.\r
6467\r
6468 @return The value of the Control Register 4 (CR4).\r
6469\r
6470**/\r
6471UINTN\r
6472EFIAPI\r
6473AsmReadCr4 (\r
6474 VOID\r
6475 );\r
6476\r
6477\r
6478/**\r
6479 Writes a value to Control Register 0 (CR0).\r
6480\r
6481 Writes and returns a new value to CR0. This function is only available on\r
6482 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
6483\r
6484 @param Cr0 The value to write to CR0.\r
6485\r
6486 @return The value written to CR0.\r
6487\r
6488**/\r
6489UINTN\r
6490EFIAPI\r
6491AsmWriteCr0 (\r
6492 UINTN Cr0\r
6493 );\r
6494\r
6495\r
6496/**\r
6497 Writes a value to Control Register 2 (CR2).\r
6498\r
6499 Writes and returns a new value to CR2. This function is only available on\r
6500 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
6501\r
6502 @param Cr2 The value to write to CR2.\r
6503\r
6504 @return The value written to CR2.\r
6505\r
6506**/\r
6507UINTN\r
6508EFIAPI\r
6509AsmWriteCr2 (\r
6510 UINTN Cr2\r
6511 );\r
6512\r
6513\r
6514/**\r
6515 Writes a value to Control Register 3 (CR3).\r
6516\r
6517 Writes and returns a new value to CR3. This function is only available on\r
6518 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
6519\r
6520 @param Cr3 The value to write to CR3.\r
6521\r
6522 @return The value written to CR3.\r
6523\r
6524**/\r
6525UINTN\r
6526EFIAPI\r
6527AsmWriteCr3 (\r
6528 UINTN Cr3\r
6529 );\r
6530\r
6531\r
6532/**\r
6533 Writes a value to Control Register 4 (CR4).\r
6534\r
6535 Writes and returns a new value to CR4. This function is only available on\r
6536 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
6537\r
6538 @param Cr4 The value to write to CR4.\r
6539\r
6540 @return The value written to CR4.\r
6541\r
6542**/\r
6543UINTN\r
6544EFIAPI\r
6545AsmWriteCr4 (\r
6546 UINTN Cr4\r
6547 );\r
6548\r
6549\r
6550/**\r
6551 Reads the current value of Debug Register 0 (DR0).\r
6552\r
6553 Reads and returns the current value of DR0. This function is only available\r
6554 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
6555 x64.\r
6556\r
6557 @return The value of Debug Register 0 (DR0).\r
6558\r
6559**/\r
6560UINTN\r
6561EFIAPI\r
6562AsmReadDr0 (\r
6563 VOID\r
6564 );\r
6565\r
6566\r
6567/**\r
6568 Reads the current value of Debug Register 1 (DR1).\r
6569\r
6570 Reads and returns the current value of DR1. This function is only available\r
6571 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
6572 x64.\r
6573\r
6574 @return The value of Debug Register 1 (DR1).\r
6575\r
6576**/\r
6577UINTN\r
6578EFIAPI\r
6579AsmReadDr1 (\r
6580 VOID\r
6581 );\r
6582\r
6583\r
6584/**\r
6585 Reads the current value of Debug Register 2 (DR2).\r
6586\r
6587 Reads and returns the current value of DR2. This function is only available\r
6588 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
6589 x64.\r
6590\r
6591 @return The value of Debug Register 2 (DR2).\r
6592\r
6593**/\r
6594UINTN\r
6595EFIAPI\r
6596AsmReadDr2 (\r
6597 VOID\r
6598 );\r
6599\r
6600\r
6601/**\r
6602 Reads the current value of Debug Register 3 (DR3).\r
6603\r
6604 Reads and returns the current value of DR3. This function is only available\r
6605 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
6606 x64.\r
6607\r
6608 @return The value of Debug Register 3 (DR3).\r
6609\r
6610**/\r
6611UINTN\r
6612EFIAPI\r
6613AsmReadDr3 (\r
6614 VOID\r
6615 );\r
6616\r
6617\r
6618/**\r
6619 Reads the current value of Debug Register 4 (DR4).\r
6620\r
6621 Reads and returns the current value of DR4. This function is only available\r
6622 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
6623 x64.\r
6624\r
6625 @return The value of Debug Register 4 (DR4).\r
6626\r
6627**/\r
6628UINTN\r
6629EFIAPI\r
6630AsmReadDr4 (\r
6631 VOID\r
6632 );\r
6633\r
6634\r
6635/**\r
6636 Reads the current value of Debug Register 5 (DR5).\r
6637\r
6638 Reads and returns the current value of DR5. This function is only available\r
6639 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
6640 x64.\r
6641\r
6642 @return The value of Debug Register 5 (DR5).\r
6643\r
6644**/\r
6645UINTN\r
6646EFIAPI\r
6647AsmReadDr5 (\r
6648 VOID\r
6649 );\r
6650\r
6651\r
6652/**\r
6653 Reads the current value of Debug Register 6 (DR6).\r
6654\r
6655 Reads and returns the current value of DR6. This function is only available\r
6656 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
6657 x64.\r
6658\r
6659 @return The value of Debug Register 6 (DR6).\r
6660\r
6661**/\r
6662UINTN\r
6663EFIAPI\r
6664AsmReadDr6 (\r
6665 VOID\r
6666 );\r
6667\r
6668\r
6669/**\r
6670 Reads the current value of Debug Register 7 (DR7).\r
6671\r
6672 Reads and returns the current value of DR7. This function is only available\r
6673 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
6674 x64.\r
6675\r
6676 @return The value of Debug Register 7 (DR7).\r
6677\r
6678**/\r
6679UINTN\r
6680EFIAPI\r
6681AsmReadDr7 (\r
6682 VOID\r
6683 );\r
6684\r
6685\r
6686/**\r
6687 Writes a value to Debug Register 0 (DR0).\r
6688\r
6689 Writes and returns a new value to DR0. This function is only available on\r
6690 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
6691\r
6692 @param Dr0 The value to write to Dr0.\r
6693\r
6694 @return The value written to Debug Register 0 (DR0).\r
6695\r
6696**/\r
6697UINTN\r
6698EFIAPI\r
6699AsmWriteDr0 (\r
6700 UINTN Dr0\r
6701 );\r
6702\r
6703\r
6704/**\r
6705 Writes a value to Debug Register 1 (DR1).\r
6706\r
6707 Writes and returns a new value to DR1. This function is only available on\r
6708 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
6709\r
6710 @param Dr1 The value to write to Dr1.\r
6711\r
6712 @return The value written to Debug Register 1 (DR1).\r
6713\r
6714**/\r
6715UINTN\r
6716EFIAPI\r
6717AsmWriteDr1 (\r
6718 UINTN Dr1\r
6719 );\r
6720\r
6721\r
6722/**\r
6723 Writes a value to Debug Register 2 (DR2).\r
6724\r
6725 Writes and returns a new value to DR2. This function is only available on\r
6726 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
6727\r
6728 @param Dr2 The value to write to Dr2.\r
6729\r
6730 @return The value written to Debug Register 2 (DR2).\r
6731\r
6732**/\r
6733UINTN\r
6734EFIAPI\r
6735AsmWriteDr2 (\r
6736 UINTN Dr2\r
6737 );\r
6738\r
6739\r
6740/**\r
6741 Writes a value to Debug Register 3 (DR3).\r
6742\r
6743 Writes and returns a new value to DR3. This function is only available on\r
6744 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
6745\r
6746 @param Dr3 The value to write to Dr3.\r
6747\r
6748 @return The value written to Debug Register 3 (DR3).\r
6749\r
6750**/\r
6751UINTN\r
6752EFIAPI\r
6753AsmWriteDr3 (\r
6754 UINTN Dr3\r
6755 );\r
6756\r
6757\r
6758/**\r
6759 Writes a value to Debug Register 4 (DR4).\r
6760\r
6761 Writes and returns a new value to DR4. This function is only available on\r
6762 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
6763\r
6764 @param Dr4 The value to write to Dr4.\r
6765\r
6766 @return The value written to Debug Register 4 (DR4).\r
6767\r
6768**/\r
6769UINTN\r
6770EFIAPI\r
6771AsmWriteDr4 (\r
6772 UINTN Dr4\r
6773 );\r
6774\r
6775\r
6776/**\r
6777 Writes a value to Debug Register 5 (DR5).\r
6778\r
6779 Writes and returns a new value to DR5. This function is only available on\r
6780 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
6781\r
6782 @param Dr5 The value to write to Dr5.\r
6783\r
6784 @return The value written to Debug Register 5 (DR5).\r
6785\r
6786**/\r
6787UINTN\r
6788EFIAPI\r
6789AsmWriteDr5 (\r
6790 UINTN Dr5\r
6791 );\r
6792\r
6793\r
6794/**\r
6795 Writes a value to Debug Register 6 (DR6).\r
6796\r
6797 Writes and returns a new value to DR6. This function is only available on\r
6798 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
6799\r
6800 @param Dr6 The value to write to Dr6.\r
6801\r
6802 @return The value written to Debug Register 6 (DR6).\r
6803\r
6804**/\r
6805UINTN\r
6806EFIAPI\r
6807AsmWriteDr6 (\r
6808 UINTN Dr6\r
6809 );\r
6810\r
6811\r
6812/**\r
6813 Writes a value to Debug Register 7 (DR7).\r
6814\r
6815 Writes and returns a new value to DR7. This function is only available on\r
6816 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
6817\r
6818 @param Dr7 The value to write to Dr7.\r
6819\r
6820 @return The value written to Debug Register 7 (DR7).\r
6821\r
6822**/\r
6823UINTN\r
6824EFIAPI\r
6825AsmWriteDr7 (\r
6826 UINTN Dr7\r
6827 );\r
6828\r
6829\r
6830/**\r
6831 Reads the current value of Code Segment Register (CS).\r
6832\r
6833 Reads and returns the current value of CS. This function is only available on\r
6834 IA-32 and x64.\r
6835\r
6836 @return The current value of CS.\r
6837\r
6838**/\r
6839UINT16\r
6840EFIAPI\r
6841AsmReadCs (\r
6842 VOID\r
6843 );\r
6844\r
6845\r
6846/**\r
6847 Reads the current value of Data Segment Register (DS).\r
6848\r
6849 Reads and returns the current value of DS. This function is only available on\r
6850 IA-32 and x64.\r
6851\r
6852 @return The current value of DS.\r
6853\r
6854**/\r
6855UINT16\r
6856EFIAPI\r
6857AsmReadDs (\r
6858 VOID\r
6859 );\r
6860\r
6861\r
6862/**\r
6863 Reads the current value of Extra Segment Register (ES).\r
6864\r
6865 Reads and returns the current value of ES. This function is only available on\r
6866 IA-32 and x64.\r
6867\r
6868 @return The current value of ES.\r
6869\r
6870**/\r
6871UINT16\r
6872EFIAPI\r
6873AsmReadEs (\r
6874 VOID\r
6875 );\r
6876\r
6877\r
6878/**\r
6879 Reads the current value of FS Data Segment Register (FS).\r
6880\r
6881 Reads and returns the current value of FS. This function is only available on\r
6882 IA-32 and x64.\r
6883\r
6884 @return The current value of FS.\r
6885\r
6886**/\r
6887UINT16\r
6888EFIAPI\r
6889AsmReadFs (\r
6890 VOID\r
6891 );\r
6892\r
6893\r
6894/**\r
6895 Reads the current value of GS Data Segment Register (GS).\r
6896\r
6897 Reads and returns the current value of GS. This function is only available on\r
6898 IA-32 and x64.\r
6899\r
6900 @return The current value of GS.\r
6901\r
6902**/\r
6903UINT16\r
6904EFIAPI\r
6905AsmReadGs (\r
6906 VOID\r
6907 );\r
6908\r
6909\r
6910/**\r
6911 Reads the current value of Stack Segment Register (SS).\r
6912\r
6913 Reads and returns the current value of SS. This function is only available on\r
6914 IA-32 and x64.\r
6915\r
6916 @return The current value of SS.\r
6917\r
6918**/\r
6919UINT16\r
6920EFIAPI\r
6921AsmReadSs (\r
6922 VOID\r
6923 );\r
6924\r
6925\r
6926/**\r
6927 Reads the current value of Task Register (TR).\r
6928\r
6929 Reads and returns the current value of TR. This function is only available on\r
6930 IA-32 and x64.\r
6931\r
6932 @return The current value of TR.\r
6933\r
6934**/\r
6935UINT16\r
6936EFIAPI\r
6937AsmReadTr (\r
6938 VOID\r
6939 );\r
6940\r
6941\r
6942/**\r
6943 Reads the current Global Descriptor Table Register(GDTR) descriptor.\r
6944\r
6945 Reads and returns the current GDTR descriptor and returns it in Gdtr. This\r
6946 function is only available on IA-32 and x64.\r
6947\r
6948 If Gdtr is NULL, then ASSERT().\r
6949\r
6950 @param Gdtr The pointer to a GDTR descriptor.\r
6951\r
6952**/\r
6953VOID\r
6954EFIAPI\r
6955AsmReadGdtr (\r
6956 OUT IA32_DESCRIPTOR *Gdtr\r
6957 );\r
6958\r
6959\r
6960/**\r
6961 Writes the current Global Descriptor Table Register (GDTR) descriptor.\r
6962\r
6963 Writes and the current GDTR descriptor specified by Gdtr. This function is\r
6964 only available on IA-32 and x64.\r
6965\r
6966 If Gdtr is NULL, then ASSERT().\r
6967\r
6968 @param Gdtr The pointer to a GDTR descriptor.\r
6969\r
6970**/\r
6971VOID\r
6972EFIAPI\r
6973AsmWriteGdtr (\r
6974 IN CONST IA32_DESCRIPTOR *Gdtr\r
6975 );\r
6976\r
6977\r
6978/**\r
6979 Reads the current Interrupt Descriptor Table Register(IDTR) descriptor.\r
6980\r
6981 Reads and returns the current IDTR descriptor and returns it in Idtr. This\r
6982 function is only available on IA-32 and x64.\r
6983\r
6984 If Idtr is NULL, then ASSERT().\r
6985\r
6986 @param Idtr The pointer to a IDTR descriptor.\r
6987\r
6988**/\r
6989VOID\r
6990EFIAPI\r
6991AsmReadIdtr (\r
6992 OUT IA32_DESCRIPTOR *Idtr\r
6993 );\r
6994\r
6995\r
6996/**\r
6997 Writes the current Interrupt Descriptor Table Register(IDTR) descriptor.\r
6998\r
6999 Writes the current IDTR descriptor and returns it in Idtr. This function is\r
7000 only available on IA-32 and x64.\r
7001\r
7002 If Idtr is NULL, then ASSERT().\r
7003\r
7004 @param Idtr The pointer to a IDTR descriptor.\r
7005\r
7006**/\r
7007VOID\r
7008EFIAPI\r
7009AsmWriteIdtr (\r
7010 IN CONST IA32_DESCRIPTOR *Idtr\r
7011 );\r
7012\r
7013\r
7014/**\r
7015 Reads the current Local Descriptor Table Register(LDTR) selector.\r
7016\r
7017 Reads and returns the current 16-bit LDTR descriptor value. This function is\r
7018 only available on IA-32 and x64.\r
7019\r
7020 @return The current selector of LDT.\r
7021\r
7022**/\r
7023UINT16\r
7024EFIAPI\r
7025AsmReadLdtr (\r
7026 VOID\r
7027 );\r
7028\r
7029\r
7030/**\r
7031 Writes the current Local Descriptor Table Register (LDTR) selector.\r
7032\r
7033 Writes and the current LDTR descriptor specified by Ldtr. This function is\r
7034 only available on IA-32 and x64.\r
7035\r
7036 @param Ldtr 16-bit LDTR selector value.\r
7037\r
7038**/\r
7039VOID\r
7040EFIAPI\r
7041AsmWriteLdtr (\r
7042 IN UINT16 Ldtr\r
7043 );\r
7044\r
7045\r
7046/**\r
7047 Save the current floating point/SSE/SSE2 context to a buffer.\r
7048\r
7049 Saves the current floating point/SSE/SSE2 state to the buffer specified by\r
7050 Buffer. Buffer must be aligned on a 16-byte boundary. This function is only\r
7051 available on IA-32 and x64.\r
7052\r
7053 If Buffer is NULL, then ASSERT().\r
7054 If Buffer is not aligned on a 16-byte boundary, then ASSERT().\r
7055\r
7056 @param Buffer The pointer to a buffer to save the floating point/SSE/SSE2 context.\r
7057\r
7058**/\r
7059VOID\r
7060EFIAPI\r
7061AsmFxSave (\r
7062 OUT IA32_FX_BUFFER *Buffer\r
7063 );\r
7064\r
7065\r
7066/**\r
7067 Restores the current floating point/SSE/SSE2 context from a buffer.\r
7068\r
7069 Restores the current floating point/SSE/SSE2 state from the buffer specified\r
7070 by Buffer. Buffer must be aligned on a 16-byte boundary. This function is\r
7071 only available on IA-32 and x64.\r
7072\r
7073 If Buffer is NULL, then ASSERT().\r
7074 If Buffer is not aligned on a 16-byte boundary, then ASSERT().\r
7075 If Buffer was not saved with AsmFxSave(), then ASSERT().\r
7076\r
7077 @param Buffer The pointer to a buffer to save the floating point/SSE/SSE2 context.\r
7078\r
7079**/\r
7080VOID\r
7081EFIAPI\r
7082AsmFxRestore (\r
7083 IN CONST IA32_FX_BUFFER *Buffer\r
7084 );\r
7085\r
7086\r
7087/**\r
7088 Reads the current value of 64-bit MMX Register #0 (MM0).\r
7089\r
7090 Reads and returns the current value of MM0. This function is only available\r
7091 on IA-32 and x64.\r
7092\r
7093 @return The current value of MM0.\r
7094\r
7095**/\r
7096UINT64\r
7097EFIAPI\r
7098AsmReadMm0 (\r
7099 VOID\r
7100 );\r
7101\r
7102\r
7103/**\r
7104 Reads the current value of 64-bit MMX Register #1 (MM1).\r
7105\r
7106 Reads and returns the current value of MM1. This function is only available\r
7107 on IA-32 and x64.\r
7108\r
7109 @return The current value of MM1.\r
7110\r
7111**/\r
7112UINT64\r
7113EFIAPI\r
7114AsmReadMm1 (\r
7115 VOID\r
7116 );\r
7117\r
7118\r
7119/**\r
7120 Reads the current value of 64-bit MMX Register #2 (MM2).\r
7121\r
7122 Reads and returns the current value of MM2. This function is only available\r
7123 on IA-32 and x64.\r
7124\r
7125 @return The current value of MM2.\r
7126\r
7127**/\r
7128UINT64\r
7129EFIAPI\r
7130AsmReadMm2 (\r
7131 VOID\r
7132 );\r
7133\r
7134\r
7135/**\r
7136 Reads the current value of 64-bit MMX Register #3 (MM3).\r
7137\r
7138 Reads and returns the current value of MM3. This function is only available\r
7139 on IA-32 and x64.\r
7140\r
7141 @return The current value of MM3.\r
7142\r
7143**/\r
7144UINT64\r
7145EFIAPI\r
7146AsmReadMm3 (\r
7147 VOID\r
7148 );\r
7149\r
7150\r
7151/**\r
7152 Reads the current value of 64-bit MMX Register #4 (MM4).\r
7153\r
7154 Reads and returns the current value of MM4. This function is only available\r
7155 on IA-32 and x64.\r
7156\r
7157 @return The current value of MM4.\r
7158\r
7159**/\r
7160UINT64\r
7161EFIAPI\r
7162AsmReadMm4 (\r
7163 VOID\r
7164 );\r
7165\r
7166\r
7167/**\r
7168 Reads the current value of 64-bit MMX Register #5 (MM5).\r
7169\r
7170 Reads and returns the current value of MM5. This function is only available\r
7171 on IA-32 and x64.\r
7172\r
7173 @return The current value of MM5.\r
7174\r
7175**/\r
7176UINT64\r
7177EFIAPI\r
7178AsmReadMm5 (\r
7179 VOID\r
7180 );\r
7181\r
7182\r
7183/**\r
7184 Reads the current value of 64-bit MMX Register #6 (MM6).\r
7185\r
7186 Reads and returns the current value of MM6. This function is only available\r
7187 on IA-32 and x64.\r
7188\r
7189 @return The current value of MM6.\r
7190\r
7191**/\r
7192UINT64\r
7193EFIAPI\r
7194AsmReadMm6 (\r
7195 VOID\r
7196 );\r
7197\r
7198\r
7199/**\r
7200 Reads the current value of 64-bit MMX Register #7 (MM7).\r
7201\r
7202 Reads and returns the current value of MM7. This function is only available\r
7203 on IA-32 and x64.\r
7204\r
7205 @return The current value of MM7.\r
7206\r
7207**/\r
7208UINT64\r
7209EFIAPI\r
7210AsmReadMm7 (\r
7211 VOID\r
7212 );\r
7213\r
7214\r
7215/**\r
7216 Writes the current value of 64-bit MMX Register #0 (MM0).\r
7217\r
7218 Writes the current value of MM0. This function is only available on IA32 and\r
7219 x64.\r
7220\r
7221 @param Value The 64-bit value to write to MM0.\r
7222\r
7223**/\r
7224VOID\r
7225EFIAPI\r
7226AsmWriteMm0 (\r
7227 IN UINT64 Value\r
7228 );\r
7229\r
7230\r
7231/**\r
7232 Writes the current value of 64-bit MMX Register #1 (MM1).\r
7233\r
7234 Writes the current value of MM1. This function is only available on IA32 and\r
7235 x64.\r
7236\r
7237 @param Value The 64-bit value to write to MM1.\r
7238\r
7239**/\r
7240VOID\r
7241EFIAPI\r
7242AsmWriteMm1 (\r
7243 IN UINT64 Value\r
7244 );\r
7245\r
7246\r
7247/**\r
7248 Writes the current value of 64-bit MMX Register #2 (MM2).\r
7249\r
7250 Writes the current value of MM2. This function is only available on IA32 and\r
7251 x64.\r
7252\r
7253 @param Value The 64-bit value to write to MM2.\r
7254\r
7255**/\r
7256VOID\r
7257EFIAPI\r
7258AsmWriteMm2 (\r
7259 IN UINT64 Value\r
7260 );\r
7261\r
7262\r
7263/**\r
7264 Writes the current value of 64-bit MMX Register #3 (MM3).\r
7265\r
7266 Writes the current value of MM3. This function is only available on IA32 and\r
7267 x64.\r
7268\r
7269 @param Value The 64-bit value to write to MM3.\r
7270\r
7271**/\r
7272VOID\r
7273EFIAPI\r
7274AsmWriteMm3 (\r
7275 IN UINT64 Value\r
7276 );\r
7277\r
7278\r
7279/**\r
7280 Writes the current value of 64-bit MMX Register #4 (MM4).\r
7281\r
7282 Writes the current value of MM4. This function is only available on IA32 and\r
7283 x64.\r
7284\r
7285 @param Value The 64-bit value to write to MM4.\r
7286\r
7287**/\r
7288VOID\r
7289EFIAPI\r
7290AsmWriteMm4 (\r
7291 IN UINT64 Value\r
7292 );\r
7293\r
7294\r
7295/**\r
7296 Writes the current value of 64-bit MMX Register #5 (MM5).\r
7297\r
7298 Writes the current value of MM5. This function is only available on IA32 and\r
7299 x64.\r
7300\r
7301 @param Value The 64-bit value to write to MM5.\r
7302\r
7303**/\r
7304VOID\r
7305EFIAPI\r
7306AsmWriteMm5 (\r
7307 IN UINT64 Value\r
7308 );\r
7309\r
7310\r
7311/**\r
7312 Writes the current value of 64-bit MMX Register #6 (MM6).\r
7313\r
7314 Writes the current value of MM6. This function is only available on IA32 and\r
7315 x64.\r
7316\r
7317 @param Value The 64-bit value to write to MM6.\r
7318\r
7319**/\r
7320VOID\r
7321EFIAPI\r
7322AsmWriteMm6 (\r
7323 IN UINT64 Value\r
7324 );\r
7325\r
7326\r
7327/**\r
7328 Writes the current value of 64-bit MMX Register #7 (MM7).\r
7329\r
7330 Writes the current value of MM7. This function is only available on IA32 and\r
7331 x64.\r
7332\r
7333 @param Value The 64-bit value to write to MM7.\r
7334\r
7335**/\r
7336VOID\r
7337EFIAPI\r
7338AsmWriteMm7 (\r
7339 IN UINT64 Value\r
7340 );\r
7341\r
7342\r
7343/**\r
7344 Reads the current value of Time Stamp Counter (TSC).\r
7345\r
7346 Reads and returns the current value of TSC. This function is only available\r
7347 on IA-32 and x64.\r
7348\r
7349 @return The current value of TSC\r
7350\r
7351**/\r
7352UINT64\r
7353EFIAPI\r
7354AsmReadTsc (\r
7355 VOID\r
7356 );\r
7357\r
7358\r
7359/**\r
7360 Reads the current value of a Performance Counter (PMC).\r
7361\r
7362 Reads and returns the current value of performance counter specified by\r
7363 Index. This function is only available on IA-32 and x64.\r
7364\r
7365 @param Index The 32-bit Performance Counter index to read.\r
7366\r
7367 @return The value of the PMC specified by Index.\r
7368\r
7369**/\r
7370UINT64\r
7371EFIAPI\r
7372AsmReadPmc (\r
7373 IN UINT32 Index\r
7374 );\r
7375\r
7376\r
7377/**\r
7378 Sets up a monitor buffer that is used by AsmMwait().\r
7379\r
7380 Executes a MONITOR instruction with the register state specified by Eax, Ecx\r
7381 and Edx. Returns Eax. This function is only available on IA-32 and x64.\r
7382\r
7383 @param Eax The value to load into EAX or RAX before executing the MONITOR\r
7384 instruction.\r
7385 @param Ecx The value to load into ECX or RCX before executing the MONITOR\r
7386 instruction.\r
7387 @param Edx The value to load into EDX or RDX before executing the MONITOR\r
7388 instruction.\r
7389\r
7390 @return Eax\r
7391\r
7392**/\r
7393UINTN\r
7394EFIAPI\r
7395AsmMonitor (\r
7396 IN UINTN Eax,\r
7397 IN UINTN Ecx,\r
7398 IN UINTN Edx\r
7399 );\r
7400\r
7401\r
7402/**\r
7403 Executes an MWAIT instruction.\r
7404\r
7405 Executes an MWAIT instruction with the register state specified by Eax and\r
7406 Ecx. Returns Eax. This function is only available on IA-32 and x64.\r
7407\r
7408 @param Eax The value to load into EAX or RAX before executing the MONITOR\r
7409 instruction.\r
7410 @param Ecx The value to load into ECX or RCX before executing the MONITOR\r
7411 instruction.\r
7412\r
7413 @return Eax\r
7414\r
7415**/\r
7416UINTN\r
7417EFIAPI\r
7418AsmMwait (\r
7419 IN UINTN Eax,\r
7420 IN UINTN Ecx\r
7421 );\r
7422\r
7423\r
7424/**\r
7425 Executes a WBINVD instruction.\r
7426\r
7427 Executes a WBINVD instruction. This function is only available on IA-32 and\r
7428 x64.\r
7429\r
7430**/\r
7431VOID\r
7432EFIAPI\r
7433AsmWbinvd (\r
7434 VOID\r
7435 );\r
7436\r
7437\r
7438/**\r
7439 Executes a INVD instruction.\r
7440\r
7441 Executes a INVD instruction. This function is only available on IA-32 and\r
7442 x64.\r
7443\r
7444**/\r
7445VOID\r
7446EFIAPI\r
7447AsmInvd (\r
7448 VOID\r
7449 );\r
7450\r
7451\r
7452/**\r
7453 Flushes a cache line from all the instruction and data caches within the\r
7454 coherency domain of the CPU.\r
7455\r
7456 Flushed the cache line specified by LinearAddress, and returns LinearAddress.\r
7457 This function is only available on IA-32 and x64.\r
7458\r
7459 @param LinearAddress The address of the cache line to flush. If the CPU is\r
7460 in a physical addressing mode, then LinearAddress is a\r
7461 physical address. If the CPU is in a virtual\r
7462 addressing mode, then LinearAddress is a virtual\r
7463 address.\r
7464\r
7465 @return LinearAddress.\r
7466**/\r
7467VOID *\r
7468EFIAPI\r
7469AsmFlushCacheLine (\r
7470 IN VOID *LinearAddress\r
7471 );\r
7472\r
7473\r
7474/**\r
7475 Enables the 32-bit paging mode on the CPU.\r
7476\r
7477 Enables the 32-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables\r
7478 must be properly initialized prior to calling this service. This function\r
7479 assumes the current execution mode is 32-bit protected mode. This function is\r
7480 only available on IA-32. After the 32-bit paging mode is enabled, control is\r
7481 transferred to the function specified by EntryPoint using the new stack\r
7482 specified by NewStack and passing in the parameters specified by Context1 and\r
7483 Context2. Context1 and Context2 are optional and may be NULL. The function\r
7484 EntryPoint must never return.\r
7485\r
7486 If the current execution mode is not 32-bit protected mode, then ASSERT().\r
7487 If EntryPoint is NULL, then ASSERT().\r
7488 If NewStack is NULL, then ASSERT().\r
7489\r
7490 There are a number of constraints that must be followed before calling this\r
7491 function:\r
7492 1) Interrupts must be disabled.\r
7493 2) The caller must be in 32-bit protected mode with flat descriptors. This\r
7494 means all descriptors must have a base of 0 and a limit of 4GB.\r
7495 3) CR0 and CR4 must be compatible with 32-bit protected mode with flat\r
7496 descriptors.\r
7497 4) CR3 must point to valid page tables that will be used once the transition\r
7498 is complete, and those page tables must guarantee that the pages for this\r
7499 function and the stack are identity mapped.\r
7500\r
7501 @param EntryPoint A pointer to function to call with the new stack after\r
7502 paging is enabled.\r
7503 @param Context1 A pointer to the context to pass into the EntryPoint\r
7504 function as the first parameter after paging is enabled.\r
7505 @param Context2 A pointer to the context to pass into the EntryPoint\r
7506 function as the second parameter after paging is enabled.\r
7507 @param NewStack A pointer to the new stack to use for the EntryPoint\r
7508 function after paging is enabled.\r
7509\r
7510**/\r
7511VOID\r
7512EFIAPI\r
7513AsmEnablePaging32 (\r
7514 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
7515 IN VOID *Context1, OPTIONAL\r
7516 IN VOID *Context2, OPTIONAL\r
7517 IN VOID *NewStack\r
7518 );\r
7519\r
7520\r
7521/**\r
7522 Disables the 32-bit paging mode on the CPU.\r
7523\r
7524 Disables the 32-bit paging mode on the CPU and returns to 32-bit protected\r
7525 mode. This function assumes the current execution mode is 32-paged protected\r
7526 mode. This function is only available on IA-32. After the 32-bit paging mode\r
7527 is disabled, control is transferred to the function specified by EntryPoint\r
7528 using the new stack specified by NewStack and passing in the parameters\r
7529 specified by Context1 and Context2. Context1 and Context2 are optional and\r
7530 may be NULL. The function EntryPoint must never return.\r
7531\r
7532 If the current execution mode is not 32-bit paged mode, then ASSERT().\r
7533 If EntryPoint is NULL, then ASSERT().\r
7534 If NewStack is NULL, then ASSERT().\r
7535\r
7536 There are a number of constraints that must be followed before calling this\r
7537 function:\r
7538 1) Interrupts must be disabled.\r
7539 2) The caller must be in 32-bit paged mode.\r
7540 3) CR0, CR3, and CR4 must be compatible with 32-bit paged mode.\r
7541 4) CR3 must point to valid page tables that guarantee that the pages for\r
7542 this function and the stack are identity mapped.\r
7543\r
7544 @param EntryPoint A pointer to function to call with the new stack after\r
7545 paging is disabled.\r
7546 @param Context1 A pointer to the context to pass into the EntryPoint\r
7547 function as the first parameter after paging is disabled.\r
7548 @param Context2 A pointer to the context to pass into the EntryPoint\r
7549 function as the second parameter after paging is\r
7550 disabled.\r
7551 @param NewStack A pointer to the new stack to use for the EntryPoint\r
7552 function after paging is disabled.\r
7553\r
7554**/\r
7555VOID\r
7556EFIAPI\r
7557AsmDisablePaging32 (\r
7558 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
7559 IN VOID *Context1, OPTIONAL\r
7560 IN VOID *Context2, OPTIONAL\r
7561 IN VOID *NewStack\r
7562 );\r
7563\r
7564\r
7565/**\r
7566 Enables the 64-bit paging mode on the CPU.\r
7567\r
7568 Enables the 64-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables\r
7569 must be properly initialized prior to calling this service. This function\r
7570 assumes the current execution mode is 32-bit protected mode with flat\r
7571 descriptors. This function is only available on IA-32. After the 64-bit\r
7572 paging mode is enabled, control is transferred to the function specified by\r
7573 EntryPoint using the new stack specified by NewStack and passing in the\r
7574 parameters specified by Context1 and Context2. Context1 and Context2 are\r
7575 optional and may be 0. The function EntryPoint must never return.\r
7576\r
7577 If the current execution mode is not 32-bit protected mode with flat\r
7578 descriptors, then ASSERT().\r
7579 If EntryPoint is 0, then ASSERT().\r
7580 If NewStack is 0, then ASSERT().\r
7581\r
7582 @param Cs The 16-bit selector to load in the CS before EntryPoint\r
7583 is called. The descriptor in the GDT that this selector\r
7584 references must be setup for long mode.\r
7585 @param EntryPoint The 64-bit virtual address of the function to call with\r
7586 the new stack after paging is enabled.\r
7587 @param Context1 The 64-bit virtual address of the context to pass into\r
7588 the EntryPoint function as the first parameter after\r
7589 paging is enabled.\r
7590 @param Context2 The 64-bit virtual address of the context to pass into\r
7591 the EntryPoint function as the second parameter after\r
7592 paging is enabled.\r
7593 @param NewStack The 64-bit virtual address of the new stack to use for\r
7594 the EntryPoint function after paging is enabled.\r
7595\r
7596**/\r
7597VOID\r
7598EFIAPI\r
7599AsmEnablePaging64 (\r
7600 IN UINT16 Cs,\r
7601 IN UINT64 EntryPoint,\r
7602 IN UINT64 Context1, OPTIONAL\r
7603 IN UINT64 Context2, OPTIONAL\r
7604 IN UINT64 NewStack\r
7605 );\r
7606\r
7607\r
7608/**\r
7609 Disables the 64-bit paging mode on the CPU.\r
7610\r
7611 Disables the 64-bit paging mode on the CPU and returns to 32-bit protected\r
7612 mode. This function assumes the current execution mode is 64-paging mode.\r
7613 This function is only available on x64. After the 64-bit paging mode is\r
7614 disabled, control is transferred to the function specified by EntryPoint\r
7615 using the new stack specified by NewStack and passing in the parameters\r
7616 specified by Context1 and Context2. Context1 and Context2 are optional and\r
7617 may be 0. The function EntryPoint must never return.\r
7618\r
7619 If the current execution mode is not 64-bit paged mode, then ASSERT().\r
7620 If EntryPoint is 0, then ASSERT().\r
7621 If NewStack is 0, then ASSERT().\r
7622\r
7623 @param Cs The 16-bit selector to load in the CS before EntryPoint\r
7624 is called. The descriptor in the GDT that this selector\r
7625 references must be setup for 32-bit protected mode.\r
7626 @param EntryPoint The 64-bit virtual address of the function to call with\r
7627 the new stack after paging is disabled.\r
7628 @param Context1 The 64-bit virtual address of the context to pass into\r
7629 the EntryPoint function as the first parameter after\r
7630 paging is disabled.\r
7631 @param Context2 The 64-bit virtual address of the context to pass into\r
7632 the EntryPoint function as the second parameter after\r
7633 paging is disabled.\r
7634 @param NewStack The 64-bit virtual address of the new stack to use for\r
7635 the EntryPoint function after paging is disabled.\r
7636\r
7637**/\r
7638VOID\r
7639EFIAPI\r
7640AsmDisablePaging64 (\r
7641 IN UINT16 Cs,\r
7642 IN UINT32 EntryPoint,\r
7643 IN UINT32 Context1, OPTIONAL\r
7644 IN UINT32 Context2, OPTIONAL\r
7645 IN UINT32 NewStack\r
7646 );\r
7647\r
7648\r
7649//\r
7650// 16-bit thunking services\r
7651//\r
7652\r
7653/**\r
7654 Retrieves the properties for 16-bit thunk functions.\r
7655\r
7656 Computes the size of the buffer and stack below 1MB required to use the\r
7657 AsmPrepareThunk16(), AsmThunk16() and AsmPrepareAndThunk16() functions. This\r
7658 buffer size is returned in RealModeBufferSize, and the stack size is returned\r
7659 in ExtraStackSize. If parameters are passed to the 16-bit real mode code,\r
7660 then the actual minimum stack size is ExtraStackSize plus the maximum number\r
7661 of bytes that need to be passed to the 16-bit real mode code.\r
7662 \r
7663 If RealModeBufferSize is NULL, then ASSERT().\r
7664 If ExtraStackSize is NULL, then ASSERT().\r
7665\r
7666 @param RealModeBufferSize A pointer to the size of the buffer below 1MB\r
7667 required to use the 16-bit thunk functions.\r
7668 @param ExtraStackSize A pointer to the extra size of stack below 1MB\r
7669 that the 16-bit thunk functions require for\r
7670 temporary storage in the transition to and from\r
7671 16-bit real mode.\r
7672\r
7673**/\r
7674VOID\r
7675EFIAPI\r
7676AsmGetThunk16Properties (\r
7677 OUT UINT32 *RealModeBufferSize,\r
7678 OUT UINT32 *ExtraStackSize\r
7679 );\r
7680\r
7681\r
7682/**\r
7683 Prepares all structures a code required to use AsmThunk16().\r
7684\r
7685 Prepares all structures and code required to use AsmThunk16().\r
7686 \r
7687 This interface is limited to be used in either physical mode or virtual modes with paging enabled where the\r
7688 virtual to physical mappings for ThunkContext.RealModeBuffer is mapped 1:1.\r
7689\r
7690 If ThunkContext is NULL, then ASSERT().\r
7691\r
7692 @param ThunkContext A pointer to the context structure that describes the\r
7693 16-bit real mode code to call.\r
7694\r
7695**/\r
7696VOID\r
7697EFIAPI\r
7698AsmPrepareThunk16 (\r
7699 IN OUT THUNK_CONTEXT *ThunkContext\r
7700 );\r
7701\r
7702\r
7703/**\r
7704 Transfers control to a 16-bit real mode entry point and returns the results.\r
7705\r
7706 Transfers control to a 16-bit real mode entry point and returns the results.\r
7707 AsmPrepareThunk16() must be called with ThunkContext before this function is used.\r
7708 This function must be called with interrupts disabled.\r
7709\r
7710 The register state from the RealModeState field of ThunkContext is restored just prior \r
7711 to calling the 16-bit real mode entry point. This includes the EFLAGS field of RealModeState, \r
7712 which is used to set the interrupt state when a 16-bit real mode entry point is called.\r
7713 Control is transferred to the 16-bit real mode entry point specified by the CS and Eip fields of RealModeState.\r
7714 The stack is initialized to the SS and ESP fields of RealModeState. Any parameters passed to \r
7715 the 16-bit real mode code must be populated by the caller at SS:ESP prior to calling this function. \r
7716 The 16-bit real mode entry point is invoked with a 16-bit CALL FAR instruction,\r
7717 so when accessing stack contents, the 16-bit real mode code must account for the 16-bit segment \r
7718 and 16-bit offset of the return address that were pushed onto the stack. The 16-bit real mode entry \r
7719 point must exit with a RETF instruction. The register state is captured into RealModeState immediately \r
7720 after the RETF instruction is executed.\r
7721 \r
7722 If EFLAGS specifies interrupts enabled, or any of the 16-bit real mode code enables interrupts, \r
7723 or any of the 16-bit real mode code makes a SW interrupt, then the caller is responsible for making sure \r
7724 the IDT at address 0 is initialized to handle any HW or SW interrupts that may occur while in 16-bit real mode. \r
7725 \r
7726 If EFLAGS specifies interrupts enabled, or any of the 16-bit real mode code enables interrupts, \r
7727 then the caller is responsible for making sure the 8259 PIC is in a state compatible with 16-bit real mode. \r
7728 This includes the base vectors, the interrupt masks, and the edge/level trigger mode.\r
7729 \r
7730 If THUNK_ATTRIBUTE_BIG_REAL_MODE is set in the ThunkAttributes field of ThunkContext, then the user code \r
7731 is invoked in big real mode. Otherwise, the user code is invoked in 16-bit real mode with 64KB segment limits.\r
7732 \r
7733 If neither THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 nor THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL are set in \r
7734 ThunkAttributes, then it is assumed that the user code did not enable the A20 mask, and no attempt is made to \r
7735 disable the A20 mask.\r
7736 \r
7737 If THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 is set and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL is clear in \r
7738 ThunkAttributes, then attempt to use the INT 15 service to disable the A20 mask. If this INT 15 call fails, \r
7739 then attempt to disable the A20 mask by directly accessing the 8042 keyboard controller I/O ports.\r
7740 \r
7741 If THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 is clear and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL is set in \r
7742 ThunkAttributes, then attempt to disable the A20 mask by directly accessing the 8042 keyboard controller I/O ports.\r
7743 \r
7744 If ThunkContext is NULL, then ASSERT().\r
7745 If AsmPrepareThunk16() was not previously called with ThunkContext, then ASSERT().\r
7746 If both THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL are set in \r
7747 ThunkAttributes, then ASSERT().\r
7748\r
7749 This interface is limited to be used in either physical mode or virtual modes with paging enabled where the\r
7750 virtual to physical mappings for ThunkContext.RealModeBuffer are mapped 1:1.\r
7751\r
7752 @param ThunkContext A pointer to the context structure that describes the\r
7753 16-bit real mode code to call.\r
7754\r
7755**/\r
7756VOID\r
7757EFIAPI\r
7758AsmThunk16 (\r
7759 IN OUT THUNK_CONTEXT *ThunkContext\r
7760 );\r
7761\r
7762\r
7763/**\r
7764 Prepares all structures and code for a 16-bit real mode thunk, transfers\r
7765 control to a 16-bit real mode entry point, and returns the results.\r
7766\r
7767 Prepares all structures and code for a 16-bit real mode thunk, transfers\r
7768 control to a 16-bit real mode entry point, and returns the results. If the\r
7769 caller only need to perform a single 16-bit real mode thunk, then this\r
7770 service should be used. If the caller intends to make more than one 16-bit\r
7771 real mode thunk, then it is more efficient if AsmPrepareThunk16() is called\r
7772 once and AsmThunk16() can be called for each 16-bit real mode thunk.\r
7773\r
7774 This interface is limited to be used in either physical mode or virtual modes with paging enabled where the\r
7775 virtual to physical mappings for ThunkContext.RealModeBuffer is mapped 1:1.\r
7776\r
7777 See AsmPrepareThunk16() and AsmThunk16() for the detailed description and ASSERT() conditions.\r
7778\r
7779 @param ThunkContext A pointer to the context structure that describes the\r
7780 16-bit real mode code to call.\r
7781\r
7782**/\r
7783VOID\r
7784EFIAPI\r
7785AsmPrepareAndThunk16 (\r
7786 IN OUT THUNK_CONTEXT *ThunkContext\r
7787 );\r
7788\r
7789/**\r
7790 Generates a 16-bit random number through RDRAND instruction.\r
7791\r
7792 if Rand is NULL, then ASSERT().\r
7793\r
7794 @param[out] Rand Buffer pointer to store the random result.\r
7795\r
7796 @retval TRUE RDRAND call was successful.\r
7797 @retval FALSE Failed attempts to call RDRAND.\r
7798\r
7799 **/\r
7800BOOLEAN\r
7801EFIAPI\r
7802AsmRdRand16 (\r
7803 OUT UINT16 *Rand\r
7804 );\r
7805\r
7806/**\r
7807 Generates a 32-bit random number through RDRAND instruction.\r
7808\r
7809 if Rand is NULL, then ASSERT().\r
7810\r
7811 @param[out] Rand Buffer pointer to store the random result.\r
7812\r
7813 @retval TRUE RDRAND call was successful.\r
7814 @retval FALSE Failed attempts to call RDRAND.\r
7815\r
7816**/\r
7817BOOLEAN\r
7818EFIAPI\r
7819AsmRdRand32 (\r
7820 OUT UINT32 *Rand\r
7821 );\r
7822\r
7823/**\r
7824 Generates a 64-bit random number through RDRAND instruction.\r
7825\r
7826 if Rand is NULL, then ASSERT().\r
7827\r
7828 @param[out] Rand Buffer pointer to store the random result.\r
7829\r
7830 @retval TRUE RDRAND call was successful.\r
7831 @retval FALSE Failed attempts to call RDRAND.\r
7832\r
7833**/\r
7834BOOLEAN\r
7835EFIAPI\r
7836AsmRdRand64 (\r
7837 OUT UINT64 *Rand\r
7838 );\r
7839\r
7840#endif\r
7841#endif\r
7842\r
7843\r