]> git.proxmox.com Git - mirror_edk2.git/blame_incremental - MdePkg/Include/Library/BaseLib.h
1. In IPv4 and IPv6 driver, before calling IPsec, a new NET_FRAGMENT structure is...
[mirror_edk2.git] / MdePkg / Include / Library / BaseLib.h
... / ...
CommitLineData
1/** @file\r
2 Provides string functions, linked list functions, math functions, synchronization\r
3 functions, and CPU architecture-specific functions.\r
4\r
5Copyright (c) 2006 - 2010, Intel Corporation. All rights reserved.<BR>\r
6Portions copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR>\r
7This program and the accompanying materials\r
8are licensed and made available under the terms and conditions of the BSD License\r
9which accompanies this distribution. The full text of the license may be found at\r
10http://opensource.org/licenses/bsd-license.php.\r
11\r
12THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
13WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
14\r
15**/\r
16\r
17#ifndef __BASE_LIB__\r
18#define __BASE_LIB__\r
19\r
20//\r
21// Definitions for architecture-specific types\r
22//\r
23#if defined (MDE_CPU_IA32)\r
24///\r
25/// The IA-32 architecture context buffer used by SetJump() and LongJump().\r
26///\r
27typedef struct {\r
28 UINT32 Ebx;\r
29 UINT32 Esi;\r
30 UINT32 Edi;\r
31 UINT32 Ebp;\r
32 UINT32 Esp;\r
33 UINT32 Eip;\r
34} BASE_LIBRARY_JUMP_BUFFER;\r
35\r
36#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 4\r
37\r
38#endif // defined (MDE_CPU_IA32)\r
39\r
40#if defined (MDE_CPU_IPF)\r
41\r
42///\r
43/// The Itanium architecture context buffer used by SetJump() and LongJump().\r
44///\r
45typedef struct {\r
46 UINT64 F2[2];\r
47 UINT64 F3[2];\r
48 UINT64 F4[2];\r
49 UINT64 F5[2];\r
50 UINT64 F16[2];\r
51 UINT64 F17[2];\r
52 UINT64 F18[2];\r
53 UINT64 F19[2];\r
54 UINT64 F20[2];\r
55 UINT64 F21[2];\r
56 UINT64 F22[2];\r
57 UINT64 F23[2];\r
58 UINT64 F24[2];\r
59 UINT64 F25[2];\r
60 UINT64 F26[2];\r
61 UINT64 F27[2];\r
62 UINT64 F28[2];\r
63 UINT64 F29[2];\r
64 UINT64 F30[2];\r
65 UINT64 F31[2];\r
66 UINT64 R4;\r
67 UINT64 R5;\r
68 UINT64 R6;\r
69 UINT64 R7;\r
70 UINT64 SP;\r
71 UINT64 BR0;\r
72 UINT64 BR1;\r
73 UINT64 BR2;\r
74 UINT64 BR3;\r
75 UINT64 BR4;\r
76 UINT64 BR5;\r
77 UINT64 InitialUNAT;\r
78 UINT64 AfterSpillUNAT;\r
79 UINT64 PFS;\r
80 UINT64 BSP;\r
81 UINT64 Predicates;\r
82 UINT64 LoopCount;\r
83 UINT64 FPSR;\r
84} BASE_LIBRARY_JUMP_BUFFER;\r
85\r
86#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 0x10\r
87\r
88#endif // defined (MDE_CPU_IPF)\r
89\r
90#if defined (MDE_CPU_X64)\r
91///\r
92/// The x64 architecture context buffer used by SetJump() and LongJump().\r
93///\r
94typedef struct {\r
95 UINT64 Rbx;\r
96 UINT64 Rsp;\r
97 UINT64 Rbp;\r
98 UINT64 Rdi;\r
99 UINT64 Rsi;\r
100 UINT64 R12;\r
101 UINT64 R13;\r
102 UINT64 R14;\r
103 UINT64 R15;\r
104 UINT64 Rip;\r
105 UINT64 MxCsr;\r
106 UINT8 XmmBuffer[160]; ///< XMM6-XMM15.\r
107} BASE_LIBRARY_JUMP_BUFFER;\r
108\r
109#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8\r
110\r
111#endif // defined (MDE_CPU_X64)\r
112\r
113#if defined (MDE_CPU_EBC)\r
114///\r
115/// The EBC context buffer used by SetJump() and LongJump().\r
116///\r
117typedef struct {\r
118 UINT64 R0;\r
119 UINT64 R1;\r
120 UINT64 R2;\r
121 UINT64 R3;\r
122 UINT64 IP;\r
123} BASE_LIBRARY_JUMP_BUFFER;\r
124\r
125#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8\r
126\r
127#endif // defined (MDE_CPU_EBC)\r
128\r
129#if defined (MDE_CPU_ARM)\r
130\r
131typedef struct {\r
132 UINT32 R3; ///< A copy of R13.\r
133 UINT32 R4;\r
134 UINT32 R5;\r
135 UINT32 R6;\r
136 UINT32 R7;\r
137 UINT32 R8;\r
138 UINT32 R9;\r
139 UINT32 R10;\r
140 UINT32 R11;\r
141 UINT32 R12;\r
142 UINT32 R14;\r
143} BASE_LIBRARY_JUMP_BUFFER;\r
144\r
145#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 4\r
146\r
147#endif // defined (MDE_CPU_ARM)\r
148\r
149//\r
150// String Services\r
151//\r
152\r
153/**\r
154 Copies one Null-terminated Unicode string to another Null-terminated Unicode\r
155 string and returns the new Unicode string.\r
156\r
157 This function copies the contents of the Unicode string Source to the Unicode\r
158 string Destination, and returns Destination. If Source and Destination\r
159 overlap, then the results are undefined.\r
160\r
161 If Destination is NULL, then ASSERT().\r
162 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
163 If Source is NULL, then ASSERT().\r
164 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
165 If Source and Destination overlap, then ASSERT().\r
166 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
167 PcdMaximumUnicodeStringLength Unicode characters not including the\r
168 Null-terminator, then ASSERT().\r
169\r
170 @param Destination The pointer to a Null-terminated Unicode string.\r
171 @param Source The pointer to a Null-terminated Unicode string.\r
172\r
173 @return Destination.\r
174\r
175**/\r
176CHAR16 *\r
177EFIAPI\r
178StrCpy (\r
179 OUT CHAR16 *Destination,\r
180 IN CONST CHAR16 *Source\r
181 );\r
182\r
183\r
184/**\r
185 Copies up to a specified length from one Null-terminated Unicode string to \r
186 another Null-terminated Unicode string and returns the new Unicode string.\r
187\r
188 This function copies the contents of the Unicode string Source to the Unicode\r
189 string Destination, and returns Destination. At most, Length Unicode\r
190 characters are copied from Source to Destination. If Length is 0, then\r
191 Destination is returned unmodified. If Length is greater that the number of\r
192 Unicode characters in Source, then Destination is padded with Null Unicode\r
193 characters. If Source and Destination overlap, then the results are\r
194 undefined.\r
195\r
196 If Length > 0 and Destination is NULL, then ASSERT().\r
197 If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().\r
198 If Length > 0 and Source is NULL, then ASSERT().\r
199 If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT().\r
200 If Source and Destination overlap, then ASSERT().\r
201 If PcdMaximumUnicodeStringLength is not zero, and Length is greater than \r
202 PcdMaximumUnicodeStringLength, then ASSERT().\r
203 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
204 PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator,\r
205 then ASSERT().\r
206\r
207 @param Destination The pointer to a Null-terminated Unicode string.\r
208 @param Source The pointer to a Null-terminated Unicode string.\r
209 @param Length The maximum number of Unicode characters to copy.\r
210\r
211 @return Destination.\r
212\r
213**/\r
214CHAR16 *\r
215EFIAPI\r
216StrnCpy (\r
217 OUT CHAR16 *Destination,\r
218 IN CONST CHAR16 *Source,\r
219 IN UINTN Length\r
220 );\r
221\r
222\r
223/**\r
224 Returns the length of a Null-terminated Unicode string.\r
225\r
226 This function returns the number of Unicode characters in the Null-terminated\r
227 Unicode string specified by String.\r
228\r
229 If String is NULL, then ASSERT().\r
230 If String is not aligned on a 16-bit boundary, then ASSERT().\r
231 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
232 PcdMaximumUnicodeStringLength Unicode characters not including the\r
233 Null-terminator, then ASSERT().\r
234\r
235 @param String Pointer to a Null-terminated Unicode string.\r
236\r
237 @return The length of String.\r
238\r
239**/\r
240UINTN\r
241EFIAPI\r
242StrLen (\r
243 IN CONST CHAR16 *String\r
244 );\r
245\r
246\r
247/**\r
248 Returns the size of a Null-terminated Unicode string in bytes, including the\r
249 Null terminator.\r
250\r
251 This function returns the size, in bytes, of the Null-terminated Unicode string \r
252 specified by String.\r
253\r
254 If String is NULL, then ASSERT().\r
255 If String is not aligned on a 16-bit boundary, then ASSERT().\r
256 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
257 PcdMaximumUnicodeStringLength Unicode characters not including the\r
258 Null-terminator, then ASSERT().\r
259\r
260 @param String The pointer to a Null-terminated Unicode string.\r
261\r
262 @return The size of String.\r
263\r
264**/\r
265UINTN\r
266EFIAPI\r
267StrSize (\r
268 IN CONST CHAR16 *String\r
269 );\r
270\r
271\r
272/**\r
273 Compares two Null-terminated Unicode strings, and returns the difference\r
274 between the first mismatched Unicode characters.\r
275\r
276 This function compares the Null-terminated Unicode string FirstString to the\r
277 Null-terminated Unicode string SecondString. If FirstString is identical to\r
278 SecondString, then 0 is returned. Otherwise, the value returned is the first\r
279 mismatched Unicode character in SecondString subtracted from the first\r
280 mismatched Unicode character in FirstString.\r
281\r
282 If FirstString is NULL, then ASSERT().\r
283 If FirstString is not aligned on a 16-bit boundary, then ASSERT().\r
284 If SecondString is NULL, then ASSERT().\r
285 If SecondString is not aligned on a 16-bit boundary, then ASSERT().\r
286 If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more\r
287 than PcdMaximumUnicodeStringLength Unicode characters not including the\r
288 Null-terminator, then ASSERT().\r
289 If PcdMaximumUnicodeStringLength is not zero, and SecondString contains more\r
290 than PcdMaximumUnicodeStringLength Unicode characters, not including the\r
291 Null-terminator, then ASSERT().\r
292\r
293 @param FirstString The pointer to a Null-terminated Unicode string.\r
294 @param SecondString The pointer to a Null-terminated Unicode string.\r
295\r
296 @retval 0 FirstString is identical to SecondString.\r
297 @return others FirstString is not identical to SecondString.\r
298\r
299**/\r
300INTN\r
301EFIAPI\r
302StrCmp (\r
303 IN CONST CHAR16 *FirstString,\r
304 IN CONST CHAR16 *SecondString\r
305 );\r
306\r
307\r
308/**\r
309 Compares up to a specified length the contents of two Null-terminated Unicode strings,\r
310 and returns the difference between the first mismatched Unicode characters.\r
311 \r
312 This function compares the Null-terminated Unicode string FirstString to the\r
313 Null-terminated Unicode string SecondString. At most, Length Unicode\r
314 characters will be compared. If Length is 0, then 0 is returned. If\r
315 FirstString is identical to SecondString, then 0 is returned. Otherwise, the\r
316 value returned is the first mismatched Unicode character in SecondString\r
317 subtracted from the first mismatched Unicode character in FirstString.\r
318\r
319 If Length > 0 and FirstString is NULL, then ASSERT().\r
320 If Length > 0 and FirstString is not aligned on a 16-bit boundary, then ASSERT().\r
321 If Length > 0 and SecondString is NULL, then ASSERT().\r
322 If Length > 0 and SecondString is not aligned on a 16-bit boundary, then ASSERT().\r
323 If PcdMaximumUnicodeStringLength is not zero, and Length is greater than\r
324 PcdMaximumUnicodeStringLength, then ASSERT().\r
325 If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more than\r
326 PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator,\r
327 then ASSERT().\r
328 If PcdMaximumUnicodeStringLength is not zero, and SecondString contains more than\r
329 PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator,\r
330 then ASSERT().\r
331\r
332 @param FirstString The pointer to a Null-terminated Unicode string.\r
333 @param SecondString The pointer to a Null-terminated Unicode string.\r
334 @param Length The maximum number of Unicode characters to compare.\r
335\r
336 @retval 0 FirstString is identical to SecondString.\r
337 @return others FirstString is not identical to SecondString.\r
338\r
339**/\r
340INTN\r
341EFIAPI\r
342StrnCmp (\r
343 IN CONST CHAR16 *FirstString,\r
344 IN CONST CHAR16 *SecondString,\r
345 IN UINTN Length\r
346 );\r
347\r
348\r
349/**\r
350 Concatenates one Null-terminated Unicode string to another Null-terminated\r
351 Unicode string, and returns the concatenated Unicode string.\r
352\r
353 This function concatenates two Null-terminated Unicode strings. The contents\r
354 of Null-terminated Unicode string Source are concatenated to the end of\r
355 Null-terminated Unicode string Destination. The Null-terminated concatenated\r
356 Unicode String is returned. If Source and Destination overlap, then the\r
357 results are undefined.\r
358\r
359 If Destination is NULL, then ASSERT().\r
360 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
361 If Source is NULL, then ASSERT().\r
362 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
363 If Source and Destination overlap, then ASSERT().\r
364 If PcdMaximumUnicodeStringLength is not zero, and Destination contains more\r
365 than PcdMaximumUnicodeStringLength Unicode characters, not including the\r
366 Null-terminator, then ASSERT().\r
367 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
368 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
369 Null-terminator, then ASSERT().\r
370 If PcdMaximumUnicodeStringLength is not zero, and concatenating Destination\r
371 and Source results in a Unicode string with more than\r
372 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
373 Null-terminator, then ASSERT().\r
374\r
375 @param Destination The pointer to a Null-terminated Unicode string.\r
376 @param Source The pointer to a Null-terminated Unicode string.\r
377\r
378 @return Destination.\r
379\r
380**/\r
381CHAR16 *\r
382EFIAPI\r
383StrCat (\r
384 IN OUT CHAR16 *Destination,\r
385 IN CONST CHAR16 *Source\r
386 );\r
387\r
388\r
389/**\r
390 Concatenates up to a specified length one Null-terminated Unicode to the end \r
391 of another Null-terminated Unicode string, and returns the concatenated \r
392 Unicode string.\r
393\r
394 This function concatenates two Null-terminated Unicode strings. The contents\r
395 of Null-terminated Unicode string Source are concatenated to the end of\r
396 Null-terminated Unicode string Destination, and Destination is returned. At\r
397 most, Length Unicode characters are concatenated from Source to the end of\r
398 Destination, and Destination is always Null-terminated. If Length is 0, then\r
399 Destination is returned unmodified. If Source and Destination overlap, then\r
400 the results are undefined.\r
401\r
402 If Destination is NULL, then ASSERT().\r
403 If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().\r
404 If Length > 0 and Source is NULL, then ASSERT().\r
405 If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT().\r
406 If Source and Destination overlap, then ASSERT().\r
407 If PcdMaximumUnicodeStringLength is not zero, and Length is greater than \r
408 PcdMaximumUnicodeStringLength, then ASSERT().\r
409 If PcdMaximumUnicodeStringLength is not zero, and Destination contains more\r
410 than PcdMaximumUnicodeStringLength Unicode characters, not including the\r
411 Null-terminator, then ASSERT().\r
412 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
413 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
414 Null-terminator, then ASSERT().\r
415 If PcdMaximumUnicodeStringLength is not zero, and concatenating Destination\r
416 and Source results in a Unicode string with more than PcdMaximumUnicodeStringLength\r
417 Unicode characters, not including the Null-terminator, then ASSERT().\r
418\r
419 @param Destination The pointer to a Null-terminated Unicode string.\r
420 @param Source The pointer to a Null-terminated Unicode string.\r
421 @param Length The maximum number of Unicode characters to concatenate from\r
422 Source.\r
423\r
424 @return Destination.\r
425\r
426**/\r
427CHAR16 *\r
428EFIAPI\r
429StrnCat (\r
430 IN OUT CHAR16 *Destination,\r
431 IN CONST CHAR16 *Source,\r
432 IN UINTN Length\r
433 );\r
434\r
435/**\r
436 Returns the first occurrence of a Null-terminated Unicode sub-string\r
437 in a Null-terminated Unicode string.\r
438\r
439 This function scans the contents of the Null-terminated Unicode string\r
440 specified by String and returns the first occurrence of SearchString.\r
441 If SearchString is not found in String, then NULL is returned. If\r
442 the length of SearchString is zero, then String is returned.\r
443\r
444 If String is NULL, then ASSERT().\r
445 If String is not aligned on a 16-bit boundary, then ASSERT().\r
446 If SearchString is NULL, then ASSERT().\r
447 If SearchString is not aligned on a 16-bit boundary, then ASSERT().\r
448\r
449 If PcdMaximumUnicodeStringLength is not zero, and SearchString\r
450 or String contains more than PcdMaximumUnicodeStringLength Unicode\r
451 characters, not including the Null-terminator, then ASSERT().\r
452\r
453 @param String The pointer to a Null-terminated Unicode string.\r
454 @param SearchString The pointer to a Null-terminated Unicode string to search for.\r
455\r
456 @retval NULL If the SearchString does not appear in String.\r
457 @return others If there is a match.\r
458\r
459**/\r
460CHAR16 *\r
461EFIAPI\r
462StrStr (\r
463 IN CONST CHAR16 *String,\r
464 IN CONST CHAR16 *SearchString\r
465 );\r
466\r
467/**\r
468 Convert a Null-terminated Unicode decimal string to a value of\r
469 type UINTN.\r
470\r
471 This function returns a value of type UINTN by interpreting the contents\r
472 of the Unicode string specified by String as a decimal number. The format\r
473 of the input Unicode string String is:\r
474\r
475 [spaces] [decimal digits].\r
476\r
477 The valid decimal digit character is in the range [0-9]. The\r
478 function will ignore the pad space, which includes spaces or\r
479 tab characters, before [decimal digits]. The running zero in the\r
480 beginning of [decimal digits] will be ignored. Then, the function\r
481 stops at the first character that is a not a valid decimal character\r
482 or a Null-terminator, whichever one comes first.\r
483\r
484 If String is NULL, then ASSERT().\r
485 If String is not aligned in a 16-bit boundary, then ASSERT().\r
486 If String has only pad spaces, then 0 is returned.\r
487 If String has no pad spaces or valid decimal digits,\r
488 then 0 is returned.\r
489 If the number represented by String overflows according\r
490 to the range defined by UINTN, then ASSERT().\r
491\r
492 If PcdMaximumUnicodeStringLength is not zero, and String contains\r
493 more than PcdMaximumUnicodeStringLength Unicode characters not including\r
494 the Null-terminator, then ASSERT().\r
495\r
496 @param String The pointer to a Null-terminated Unicode string.\r
497\r
498 @retval Value translated from String.\r
499\r
500**/\r
501UINTN\r
502EFIAPI\r
503StrDecimalToUintn (\r
504 IN CONST CHAR16 *String\r
505 );\r
506\r
507/**\r
508 Convert a Null-terminated Unicode decimal string to a value of\r
509 type UINT64.\r
510\r
511 This function returns a value of type UINT64 by interpreting the contents\r
512 of the Unicode string specified by String as a decimal number. The format\r
513 of the input Unicode string String is:\r
514\r
515 [spaces] [decimal digits].\r
516\r
517 The valid decimal digit character is in the range [0-9]. The\r
518 function will ignore the pad space, which includes spaces or\r
519 tab characters, before [decimal digits]. The running zero in the\r
520 beginning of [decimal digits] will be ignored. Then, the function\r
521 stops at the first character that is a not a valid decimal character\r
522 or a Null-terminator, whichever one comes first.\r
523\r
524 If String is NULL, then ASSERT().\r
525 If String is not aligned in a 16-bit boundary, then ASSERT().\r
526 If String has only pad spaces, then 0 is returned.\r
527 If String has no pad spaces or valid decimal digits,\r
528 then 0 is returned.\r
529 If the number represented by String overflows according\r
530 to the range defined by UINT64, then ASSERT().\r
531\r
532 If PcdMaximumUnicodeStringLength is not zero, and String contains\r
533 more than PcdMaximumUnicodeStringLength Unicode characters not including\r
534 the Null-terminator, then ASSERT().\r
535\r
536 @param String The pointer to a Null-terminated Unicode string.\r
537\r
538 @retval Value translated from String.\r
539\r
540**/\r
541UINT64\r
542EFIAPI\r
543StrDecimalToUint64 (\r
544 IN CONST CHAR16 *String\r
545 );\r
546 \r
547\r
548/**\r
549 Convert a Null-terminated Unicode hexadecimal string to a value of type UINTN.\r
550\r
551 This function returns a value of type UINTN by interpreting the contents\r
552 of the Unicode string specified by String as a hexadecimal number.\r
553 The format of the input Unicode string String is:\r
554\r
555 [spaces][zeros][x][hexadecimal digits].\r
556\r
557 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
558 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.\r
559 If "x" appears in the input string, it must be prefixed with at least one 0.\r
560 The function will ignore the pad space, which includes spaces or tab characters,\r
561 before [zeros], [x] or [hexadecimal digit]. The running zero before [x] or\r
562 [hexadecimal digit] will be ignored. Then, the decoding starts after [x] or the\r
563 first valid hexadecimal digit. Then, the function stops at the first character \r
564 that is a not a valid hexadecimal character or NULL, whichever one comes first.\r
565\r
566 If String is NULL, then ASSERT().\r
567 If String is not aligned in a 16-bit boundary, then ASSERT().\r
568 If String has only pad spaces, then zero is returned.\r
569 If String has no leading pad spaces, leading zeros or valid hexadecimal digits,\r
570 then zero is returned.\r
571 If the number represented by String overflows according to the range defined by\r
572 UINTN, then ASSERT().\r
573\r
574 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
575 PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator,\r
576 then ASSERT().\r
577\r
578 @param String The pointer to a Null-terminated Unicode string.\r
579\r
580 @retval Value translated from String.\r
581\r
582**/\r
583UINTN\r
584EFIAPI\r
585StrHexToUintn (\r
586 IN CONST CHAR16 *String\r
587 );\r
588\r
589\r
590/**\r
591 Convert a Null-terminated Unicode hexadecimal string to a value of type UINT64.\r
592\r
593 This function returns a value of type UINT64 by interpreting the contents\r
594 of the Unicode string specified by String as a hexadecimal number.\r
595 The format of the input Unicode string String is\r
596\r
597 [spaces][zeros][x][hexadecimal digits].\r
598\r
599 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
600 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.\r
601 If "x" appears in the input string, it must be prefixed with at least one 0.\r
602 The function will ignore the pad space, which includes spaces or tab characters,\r
603 before [zeros], [x] or [hexadecimal digit]. The running zero before [x] or\r
604 [hexadecimal digit] will be ignored. Then, the decoding starts after [x] or the\r
605 first valid hexadecimal digit. Then, the function stops at the first character that is\r
606 a not a valid hexadecimal character or NULL, whichever one comes first.\r
607\r
608 If String is NULL, then ASSERT().\r
609 If String is not aligned in a 16-bit boundary, then ASSERT().\r
610 If String has only pad spaces, then zero is returned.\r
611 If String has no leading pad spaces, leading zeros or valid hexadecimal digits,\r
612 then zero is returned.\r
613 If the number represented by String overflows according to the range defined by\r
614 UINT64, then ASSERT().\r
615\r
616 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
617 PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator,\r
618 then ASSERT().\r
619\r
620 @param String The pointer to a Null-terminated Unicode string.\r
621\r
622 @retval Value translated from String.\r
623\r
624**/\r
625UINT64\r
626EFIAPI\r
627StrHexToUint64 (\r
628 IN CONST CHAR16 *String\r
629 );\r
630\r
631/**\r
632 Convert a Null-terminated Unicode string to a Null-terminated\r
633 ASCII string and returns the ASCII string.\r
634\r
635 This function converts the content of the Unicode string Source\r
636 to the ASCII string Destination by copying the lower 8 bits of\r
637 each Unicode character. It returns Destination.\r
638\r
639 If any Unicode characters in Source contain non-zero value in\r
640 the upper 8 bits, then ASSERT().\r
641\r
642 If Destination is NULL, then ASSERT().\r
643 If Source is NULL, then ASSERT().\r
644 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
645 If Source and Destination overlap, then ASSERT().\r
646\r
647 If PcdMaximumUnicodeStringLength is not zero, and Source contains\r
648 more than PcdMaximumUnicodeStringLength Unicode characters not including\r
649 the Null-terminator, then ASSERT().\r
650\r
651 If PcdMaximumAsciiStringLength is not zero, and Source contains more\r
652 than PcdMaximumAsciiStringLength Unicode characters not including the\r
653 Null-terminator, then ASSERT().\r
654\r
655 @param Source The pointer to a Null-terminated Unicode string.\r
656 @param Destination The pointer to a Null-terminated ASCII string.\r
657\r
658 @return Destination.\r
659\r
660**/\r
661CHAR8 *\r
662EFIAPI\r
663UnicodeStrToAsciiStr (\r
664 IN CONST CHAR16 *Source,\r
665 OUT CHAR8 *Destination\r
666 );\r
667\r
668\r
669/**\r
670 Copies one Null-terminated ASCII string to another Null-terminated ASCII\r
671 string and returns the new ASCII string.\r
672\r
673 This function copies the contents of the ASCII string Source to the ASCII\r
674 string Destination, and returns Destination. If Source and Destination\r
675 overlap, then the results are undefined.\r
676\r
677 If Destination is NULL, then ASSERT().\r
678 If Source is NULL, then ASSERT().\r
679 If Source and Destination overlap, then ASSERT().\r
680 If PcdMaximumAsciiStringLength is not zero and Source contains more than\r
681 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
682 then ASSERT().\r
683\r
684 @param Destination The pointer to a Null-terminated ASCII string.\r
685 @param Source The pointer to a Null-terminated ASCII string.\r
686\r
687 @return Destination\r
688\r
689**/\r
690CHAR8 *\r
691EFIAPI\r
692AsciiStrCpy (\r
693 OUT CHAR8 *Destination,\r
694 IN CONST CHAR8 *Source\r
695 );\r
696\r
697\r
698/**\r
699 Copies up to a specified length one Null-terminated ASCII string to another \r
700 Null-terminated ASCII string and returns the new ASCII string.\r
701\r
702 This function copies the contents of the ASCII string Source to the ASCII\r
703 string Destination, and returns Destination. At most, Length ASCII characters\r
704 are copied from Source to Destination. If Length is 0, then Destination is\r
705 returned unmodified. If Length is greater that the number of ASCII characters\r
706 in Source, then Destination is padded with Null ASCII characters. If Source\r
707 and Destination overlap, then the results are undefined.\r
708\r
709 If Destination is NULL, then ASSERT().\r
710 If Source is NULL, then ASSERT().\r
711 If Source and Destination overlap, then ASSERT().\r
712 If PcdMaximumAsciiStringLength is not zero, and Length is greater than \r
713 PcdMaximumAsciiStringLength, then ASSERT().\r
714 If PcdMaximumAsciiStringLength is not zero, and Source contains more than\r
715 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
716 then ASSERT().\r
717\r
718 @param Destination The pointer to a Null-terminated ASCII string.\r
719 @param Source The pointer to a Null-terminated ASCII string.\r
720 @param Length The maximum number of ASCII characters to copy.\r
721\r
722 @return Destination\r
723\r
724**/\r
725CHAR8 *\r
726EFIAPI\r
727AsciiStrnCpy (\r
728 OUT CHAR8 *Destination,\r
729 IN CONST CHAR8 *Source,\r
730 IN UINTN Length\r
731 );\r
732\r
733\r
734/**\r
735 Returns the length of a Null-terminated ASCII string.\r
736\r
737 This function returns the number of ASCII characters in the Null-terminated\r
738 ASCII string specified by String.\r
739\r
740 If Length > 0 and Destination is NULL, then ASSERT().\r
741 If Length > 0 and Source is NULL, then ASSERT().\r
742 If PcdMaximumAsciiStringLength is not zero and String contains more than\r
743 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
744 then ASSERT().\r
745\r
746 @param String The pointer to a Null-terminated ASCII string.\r
747\r
748 @return The length of String.\r
749\r
750**/\r
751UINTN\r
752EFIAPI\r
753AsciiStrLen (\r
754 IN CONST CHAR8 *String\r
755 );\r
756\r
757\r
758/**\r
759 Returns the size of a Null-terminated ASCII string in bytes, including the\r
760 Null terminator.\r
761\r
762 This function returns the size, in bytes, of the Null-terminated ASCII string\r
763 specified by String.\r
764\r
765 If String is NULL, then ASSERT().\r
766 If PcdMaximumAsciiStringLength is not zero and String contains more than\r
767 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
768 then ASSERT().\r
769\r
770 @param String The pointer to a Null-terminated ASCII string.\r
771\r
772 @return The size of String.\r
773\r
774**/\r
775UINTN\r
776EFIAPI\r
777AsciiStrSize (\r
778 IN CONST CHAR8 *String\r
779 );\r
780\r
781\r
782/**\r
783 Compares two Null-terminated ASCII strings, and returns the difference\r
784 between the first mismatched ASCII characters.\r
785\r
786 This function compares the Null-terminated ASCII string FirstString to the\r
787 Null-terminated ASCII string SecondString. If FirstString is identical to\r
788 SecondString, then 0 is returned. Otherwise, the value returned is the first\r
789 mismatched ASCII character in SecondString subtracted from the first\r
790 mismatched ASCII character in FirstString.\r
791\r
792 If FirstString is NULL, then ASSERT().\r
793 If SecondString is NULL, then ASSERT().\r
794 If PcdMaximumAsciiStringLength is not zero and FirstString contains more than\r
795 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
796 then ASSERT().\r
797 If PcdMaximumAsciiStringLength is not zero and SecondString contains more\r
798 than PcdMaximumAsciiStringLength ASCII characters not including the\r
799 Null-terminator, then ASSERT().\r
800\r
801 @param FirstString The pointer to a Null-terminated ASCII string.\r
802 @param SecondString The pointer to a Null-terminated ASCII string.\r
803\r
804 @retval ==0 FirstString is identical to SecondString.\r
805 @retval !=0 FirstString is not identical to SecondString.\r
806\r
807**/\r
808INTN\r
809EFIAPI\r
810AsciiStrCmp (\r
811 IN CONST CHAR8 *FirstString,\r
812 IN CONST CHAR8 *SecondString\r
813 );\r
814\r
815\r
816/**\r
817 Performs a case insensitive comparison of two Null-terminated ASCII strings,\r
818 and returns the difference between the first mismatched ASCII characters.\r
819\r
820 This function performs a case insensitive comparison of the Null-terminated\r
821 ASCII string FirstString to the Null-terminated ASCII string SecondString. If\r
822 FirstString is identical to SecondString, then 0 is returned. Otherwise, the\r
823 value returned is the first mismatched lower case ASCII character in\r
824 SecondString subtracted from the first mismatched lower case ASCII character\r
825 in FirstString.\r
826\r
827 If FirstString is NULL, then ASSERT().\r
828 If SecondString is NULL, then ASSERT().\r
829 If PcdMaximumAsciiStringLength is not zero and FirstString contains more than\r
830 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
831 then ASSERT().\r
832 If PcdMaximumAsciiStringLength is not zero and SecondString contains more\r
833 than PcdMaximumAsciiStringLength ASCII characters not including the\r
834 Null-terminator, then ASSERT().\r
835\r
836 @param FirstString The pointer to a Null-terminated ASCII string.\r
837 @param SecondString The pointer to a Null-terminated ASCII string.\r
838\r
839 @retval ==0 FirstString is identical to SecondString using case insensitive\r
840 comparisons.\r
841 @retval !=0 FirstString is not identical to SecondString using case\r
842 insensitive comparisons.\r
843\r
844**/\r
845INTN\r
846EFIAPI\r
847AsciiStriCmp (\r
848 IN CONST CHAR8 *FirstString,\r
849 IN CONST CHAR8 *SecondString\r
850 );\r
851\r
852\r
853/**\r
854 Compares two Null-terminated ASCII strings with maximum lengths, and returns\r
855 the difference between the first mismatched ASCII characters.\r
856\r
857 This function compares the Null-terminated ASCII string FirstString to the\r
858 Null-terminated ASCII string SecondString. At most, Length ASCII characters\r
859 will be compared. If Length is 0, then 0 is returned. If FirstString is\r
860 identical to SecondString, then 0 is returned. Otherwise, the value returned\r
861 is the first mismatched ASCII character in SecondString subtracted from the\r
862 first mismatched ASCII character in FirstString.\r
863\r
864 If Length > 0 and FirstString is NULL, then ASSERT().\r
865 If Length > 0 and SecondString is NULL, then ASSERT().\r
866 If PcdMaximumAsciiStringLength is not zero, and Length is greater than \r
867 PcdMaximumAsciiStringLength, then ASSERT().\r
868 If PcdMaximumAsciiStringLength is not zero, and FirstString contains more than\r
869 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
870 then ASSERT().\r
871 If PcdMaximumAsciiStringLength is not zero, and SecondString contains more than\r
872 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
873 then ASSERT().\r
874\r
875 @param FirstString The pointer to a Null-terminated ASCII string.\r
876 @param SecondString The pointer to a Null-terminated ASCII string.\r
877 @param Length The maximum number of ASCII characters for compare.\r
878 \r
879 @retval ==0 FirstString is identical to SecondString.\r
880 @retval !=0 FirstString is not identical to SecondString.\r
881\r
882**/\r
883INTN\r
884EFIAPI\r
885AsciiStrnCmp (\r
886 IN CONST CHAR8 *FirstString,\r
887 IN CONST CHAR8 *SecondString,\r
888 IN UINTN Length\r
889 );\r
890\r
891\r
892/**\r
893 Concatenates one Null-terminated ASCII string to another Null-terminated\r
894 ASCII string, and returns the concatenated ASCII string.\r
895\r
896 This function concatenates two Null-terminated ASCII strings. The contents of\r
897 Null-terminated ASCII string Source are concatenated to the end of Null-\r
898 terminated ASCII string Destination. The Null-terminated concatenated ASCII\r
899 String is returned.\r
900\r
901 If Destination is NULL, then ASSERT().\r
902 If Source is NULL, then ASSERT().\r
903 If PcdMaximumAsciiStringLength is not zero and Destination contains more than\r
904 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
905 then ASSERT().\r
906 If PcdMaximumAsciiStringLength is not zero and Source contains more than\r
907 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
908 then ASSERT().\r
909 If PcdMaximumAsciiStringLength is not zero and concatenating Destination and\r
910 Source results in a ASCII string with more than PcdMaximumAsciiStringLength\r
911 ASCII characters, then ASSERT().\r
912\r
913 @param Destination The pointer to a Null-terminated ASCII string.\r
914 @param Source The pointer to a Null-terminated ASCII string.\r
915\r
916 @return Destination\r
917\r
918**/\r
919CHAR8 *\r
920EFIAPI\r
921AsciiStrCat (\r
922 IN OUT CHAR8 *Destination,\r
923 IN CONST CHAR8 *Source\r
924 );\r
925\r
926\r
927/**\r
928 Concatenates up to a specified length one Null-terminated ASCII string to \r
929 the end of another Null-terminated ASCII string, and returns the \r
930 concatenated ASCII string.\r
931\r
932 This function concatenates two Null-terminated ASCII strings. The contents\r
933 of Null-terminated ASCII string Source are concatenated to the end of Null-\r
934 terminated ASCII string Destination, and Destination is returned. At most,\r
935 Length ASCII characters are concatenated from Source to the end of\r
936 Destination, and Destination is always Null-terminated. If Length is 0, then\r
937 Destination is returned unmodified. If Source and Destination overlap, then\r
938 the results are undefined.\r
939\r
940 If Length > 0 and Destination is NULL, then ASSERT().\r
941 If Length > 0 and Source is NULL, then ASSERT().\r
942 If Source and Destination overlap, then ASSERT().\r
943 If PcdMaximumAsciiStringLength is not zero, and Length is greater than\r
944 PcdMaximumAsciiStringLength, then ASSERT().\r
945 If PcdMaximumAsciiStringLength is not zero, and Destination contains more than\r
946 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
947 then ASSERT().\r
948 If PcdMaximumAsciiStringLength is not zero, and Source contains more than\r
949 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
950 then ASSERT().\r
951 If PcdMaximumAsciiStringLength is not zero, and concatenating Destination and\r
952 Source results in a ASCII string with more than PcdMaximumAsciiStringLength\r
953 ASCII characters, not including the Null-terminator, then ASSERT().\r
954\r
955 @param Destination The pointer to a Null-terminated ASCII string.\r
956 @param Source The pointer to a Null-terminated ASCII string.\r
957 @param Length The maximum number of ASCII characters to concatenate from\r
958 Source.\r
959\r
960 @return Destination\r
961\r
962**/\r
963CHAR8 *\r
964EFIAPI\r
965AsciiStrnCat (\r
966 IN OUT CHAR8 *Destination,\r
967 IN CONST CHAR8 *Source,\r
968 IN UINTN Length\r
969 );\r
970\r
971\r
972/**\r
973 Returns the first occurrence of a Null-terminated ASCII sub-string\r
974 in a Null-terminated ASCII string.\r
975\r
976 This function scans the contents of the ASCII string specified by String\r
977 and returns the first occurrence of SearchString. If SearchString is not\r
978 found in String, then NULL is returned. If the length of SearchString is zero,\r
979 then String is returned.\r
980\r
981 If String is NULL, then ASSERT().\r
982 If SearchString is NULL, then ASSERT().\r
983\r
984 If PcdMaximumAsciiStringLength is not zero, and SearchString or\r
985 String contains more than PcdMaximumAsciiStringLength Unicode characters\r
986 not including the Null-terminator, then ASSERT().\r
987\r
988 @param String The pointer to a Null-terminated ASCII string.\r
989 @param SearchString The pointer to a Null-terminated ASCII string to search for.\r
990\r
991 @retval NULL If the SearchString does not appear in String.\r
992 @retval others If there is a match return the first occurrence of SearchingString.\r
993 If the length of SearchString is zero,return String.\r
994\r
995**/\r
996CHAR8 *\r
997EFIAPI\r
998AsciiStrStr (\r
999 IN CONST CHAR8 *String,\r
1000 IN CONST CHAR8 *SearchString\r
1001 );\r
1002\r
1003\r
1004/**\r
1005 Convert a Null-terminated ASCII decimal string to a value of type\r
1006 UINTN.\r
1007\r
1008 This function returns a value of type UINTN by interpreting the contents\r
1009 of the ASCII string String as a decimal number. The format of the input\r
1010 ASCII string String is:\r
1011\r
1012 [spaces] [decimal digits].\r
1013\r
1014 The valid decimal digit character is in the range [0-9]. The function will\r
1015 ignore the pad space, which includes spaces or tab characters, before the digits.\r
1016 The running zero in the beginning of [decimal digits] will be ignored. Then, the\r
1017 function stops at the first character that is a not a valid decimal character or\r
1018 Null-terminator, whichever on comes first.\r
1019\r
1020 If String has only pad spaces, then 0 is returned.\r
1021 If String has no pad spaces or valid decimal digits, then 0 is returned.\r
1022 If the number represented by String overflows according to the range defined by\r
1023 UINTN, then ASSERT().\r
1024 If String is NULL, then ASSERT().\r
1025 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
1026 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
1027 then ASSERT().\r
1028\r
1029 @param String The pointer to a Null-terminated ASCII string.\r
1030\r
1031 @retval The value translated from String.\r
1032\r
1033**/\r
1034UINTN\r
1035EFIAPI\r
1036AsciiStrDecimalToUintn (\r
1037 IN CONST CHAR8 *String\r
1038 );\r
1039\r
1040\r
1041/**\r
1042 Convert a Null-terminated ASCII decimal string to a value of type\r
1043 UINT64.\r
1044\r
1045 This function returns a value of type UINT64 by interpreting the contents\r
1046 of the ASCII string String as a decimal number. The format of the input\r
1047 ASCII string String is:\r
1048\r
1049 [spaces] [decimal digits].\r
1050\r
1051 The valid decimal digit character is in the range [0-9]. The function will\r
1052 ignore the pad space, which includes spaces or tab characters, before the digits.\r
1053 The running zero in the beginning of [decimal digits] will be ignored. Then, the\r
1054 function stops at the first character that is a not a valid decimal character or\r
1055 Null-terminator, whichever on comes first.\r
1056\r
1057 If String has only pad spaces, then 0 is returned.\r
1058 If String has no pad spaces or valid decimal digits, then 0 is returned.\r
1059 If the number represented by String overflows according to the range defined by\r
1060 UINT64, then ASSERT().\r
1061 If String is NULL, then ASSERT().\r
1062 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
1063 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
1064 then ASSERT().\r
1065\r
1066 @param String The pointer to a Null-terminated ASCII string.\r
1067\r
1068 @retval Value translated from String.\r
1069\r
1070**/\r
1071UINT64\r
1072EFIAPI\r
1073AsciiStrDecimalToUint64 (\r
1074 IN CONST CHAR8 *String\r
1075 );\r
1076\r
1077\r
1078/**\r
1079 Convert a Null-terminated ASCII hexadecimal string to a value of type UINTN.\r
1080\r
1081 This function returns a value of type UINTN by interpreting the contents of\r
1082 the ASCII string String as a hexadecimal number. The format of the input ASCII\r
1083 string String is:\r
1084\r
1085 [spaces][zeros][x][hexadecimal digits].\r
1086\r
1087 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
1088 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x"\r
1089 appears in the input string, it must be prefixed with at least one 0. The function\r
1090 will ignore the pad space, which includes spaces or tab characters, before [zeros],\r
1091 [x] or [hexadecimal digits]. The running zero before [x] or [hexadecimal digits]\r
1092 will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal\r
1093 digit. Then, the function stops at the first character that is a not a valid\r
1094 hexadecimal character or Null-terminator, whichever on comes first.\r
1095\r
1096 If String has only pad spaces, then 0 is returned.\r
1097 If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then\r
1098 0 is returned.\r
1099\r
1100 If the number represented by String overflows according to the range defined by UINTN,\r
1101 then ASSERT().\r
1102 If String is NULL, then ASSERT().\r
1103 If PcdMaximumAsciiStringLength is not zero,\r
1104 and String contains more than PcdMaximumAsciiStringLength ASCII characters not including\r
1105 the Null-terminator, then ASSERT().\r
1106\r
1107 @param String The pointer to a Null-terminated ASCII string.\r
1108\r
1109 @retval Value translated from String.\r
1110\r
1111**/\r
1112UINTN\r
1113EFIAPI\r
1114AsciiStrHexToUintn (\r
1115 IN CONST CHAR8 *String\r
1116 );\r
1117\r
1118\r
1119/**\r
1120 Convert a Null-terminated ASCII hexadecimal string to a value of type UINT64.\r
1121\r
1122 This function returns a value of type UINT64 by interpreting the contents of\r
1123 the ASCII string String as a hexadecimal number. The format of the input ASCII\r
1124 string String is:\r
1125\r
1126 [spaces][zeros][x][hexadecimal digits].\r
1127\r
1128 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
1129 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x"\r
1130 appears in the input string, it must be prefixed with at least one 0. The function\r
1131 will ignore the pad space, which includes spaces or tab characters, before [zeros],\r
1132 [x] or [hexadecimal digits]. The running zero before [x] or [hexadecimal digits]\r
1133 will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal\r
1134 digit. Then, the function stops at the first character that is a not a valid\r
1135 hexadecimal character or Null-terminator, whichever on comes first.\r
1136\r
1137 If String has only pad spaces, then 0 is returned.\r
1138 If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then\r
1139 0 is returned.\r
1140\r
1141 If the number represented by String overflows according to the range defined by UINT64,\r
1142 then ASSERT().\r
1143 If String is NULL, then ASSERT().\r
1144 If PcdMaximumAsciiStringLength is not zero,\r
1145 and String contains more than PcdMaximumAsciiStringLength ASCII characters not including\r
1146 the Null-terminator, then ASSERT().\r
1147\r
1148 @param String The pointer to a Null-terminated ASCII string.\r
1149\r
1150 @retval Value translated from String.\r
1151\r
1152**/\r
1153UINT64\r
1154EFIAPI\r
1155AsciiStrHexToUint64 (\r
1156 IN CONST CHAR8 *String\r
1157 );\r
1158\r
1159\r
1160/**\r
1161 Convert one Null-terminated ASCII string to a Null-terminated\r
1162 Unicode string and returns the Unicode string.\r
1163\r
1164 This function converts the contents of the ASCII string Source to the Unicode\r
1165 string Destination, and returns Destination. The function terminates the\r
1166 Unicode string Destination by appending a Null-terminator character at the end.\r
1167 The caller is responsible to make sure Destination points to a buffer with size\r
1168 equal or greater than ((AsciiStrLen (Source) + 1) * sizeof (CHAR16)) in bytes.\r
1169\r
1170 If Destination is NULL, then ASSERT().\r
1171 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
1172 If Source is NULL, then ASSERT().\r
1173 If Source and Destination overlap, then ASSERT().\r
1174 If PcdMaximumAsciiStringLength is not zero, and Source contains more than\r
1175 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
1176 then ASSERT().\r
1177 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
1178 PcdMaximumUnicodeStringLength ASCII characters not including the\r
1179 Null-terminator, then ASSERT().\r
1180\r
1181 @param Source The pointer to a Null-terminated ASCII string.\r
1182 @param Destination The pointer to a Null-terminated Unicode string.\r
1183\r
1184 @return Destination.\r
1185\r
1186**/\r
1187CHAR16 *\r
1188EFIAPI\r
1189AsciiStrToUnicodeStr (\r
1190 IN CONST CHAR8 *Source,\r
1191 OUT CHAR16 *Destination\r
1192 );\r
1193\r
1194\r
1195/**\r
1196 Converts an 8-bit value to an 8-bit BCD value.\r
1197\r
1198 Converts the 8-bit value specified by Value to BCD. The BCD value is\r
1199 returned.\r
1200\r
1201 If Value >= 100, then ASSERT().\r
1202\r
1203 @param Value The 8-bit value to convert to BCD. Range 0..99.\r
1204\r
1205 @return The BCD value.\r
1206\r
1207**/\r
1208UINT8\r
1209EFIAPI\r
1210DecimalToBcd8 (\r
1211 IN UINT8 Value\r
1212 );\r
1213\r
1214\r
1215/**\r
1216 Converts an 8-bit BCD value to an 8-bit value.\r
1217\r
1218 Converts the 8-bit BCD value specified by Value to an 8-bit value. The 8-bit\r
1219 value is returned.\r
1220\r
1221 If Value >= 0xA0, then ASSERT().\r
1222 If (Value & 0x0F) >= 0x0A, then ASSERT().\r
1223\r
1224 @param Value The 8-bit BCD value to convert to an 8-bit value.\r
1225\r
1226 @return The 8-bit value is returned.\r
1227\r
1228**/\r
1229UINT8\r
1230EFIAPI\r
1231BcdToDecimal8 (\r
1232 IN UINT8 Value\r
1233 );\r
1234\r
1235\r
1236//\r
1237// Linked List Functions and Macros\r
1238//\r
1239\r
1240/**\r
1241 Initializes the head node of a doubly linked list that is declared as a\r
1242 global variable in a module.\r
1243\r
1244 Initializes the forward and backward links of a new linked list. After\r
1245 initializing a linked list with this macro, the other linked list functions\r
1246 may be used to add and remove nodes from the linked list. This macro results\r
1247 in smaller executables by initializing the linked list in the data section,\r
1248 instead if calling the InitializeListHead() function to perform the\r
1249 equivalent operation.\r
1250\r
1251 @param ListHead The head note of a list to initialize.\r
1252\r
1253**/\r
1254#define INITIALIZE_LIST_HEAD_VARIABLE(ListHead) {&(ListHead), &(ListHead)}\r
1255\r
1256\r
1257/**\r
1258 Initializes the head node of a doubly linked list, and returns the pointer to\r
1259 the head node of the doubly linked list.\r
1260\r
1261 Initializes the forward and backward links of a new linked list. After\r
1262 initializing a linked list with this function, the other linked list\r
1263 functions may be used to add and remove nodes from the linked list. It is up\r
1264 to the caller of this function to allocate the memory for ListHead.\r
1265\r
1266 If ListHead is NULL, then ASSERT().\r
1267\r
1268 @param ListHead A pointer to the head node of a new doubly linked list.\r
1269\r
1270 @return ListHead\r
1271\r
1272**/\r
1273LIST_ENTRY *\r
1274EFIAPI\r
1275InitializeListHead (\r
1276 IN OUT LIST_ENTRY *ListHead\r
1277 );\r
1278\r
1279\r
1280/**\r
1281 Adds a node to the beginning of a doubly linked list, and returns the pointer\r
1282 to the head node of the doubly linked list.\r
1283\r
1284 Adds the node Entry at the beginning of the doubly linked list denoted by\r
1285 ListHead, and returns ListHead.\r
1286\r
1287 If ListHead is NULL, then ASSERT().\r
1288 If Entry is NULL, then ASSERT().\r
1289 If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or\r
1290 InitializeListHead(), then ASSERT().\r
1291 If PcdMaximumLinkedListLenth is not zero, and prior to insertion the number\r
1292 of nodes in ListHead, including the ListHead node, is greater than or\r
1293 equal to PcdMaximumLinkedListLength, then ASSERT().\r
1294\r
1295 @param ListHead A pointer to the head node of a doubly linked list.\r
1296 @param Entry A pointer to a node that is to be inserted at the beginning\r
1297 of a doubly linked list.\r
1298\r
1299 @return ListHead\r
1300\r
1301**/\r
1302LIST_ENTRY *\r
1303EFIAPI\r
1304InsertHeadList (\r
1305 IN OUT LIST_ENTRY *ListHead,\r
1306 IN OUT LIST_ENTRY *Entry\r
1307 );\r
1308\r
1309\r
1310/**\r
1311 Adds a node to the end of a doubly linked list, and returns the pointer to\r
1312 the head node of the doubly linked list.\r
1313\r
1314 Adds the node Entry to the end of the doubly linked list denoted by ListHead,\r
1315 and returns ListHead.\r
1316\r
1317 If ListHead is NULL, then ASSERT().\r
1318 If Entry is NULL, then ASSERT().\r
1319 If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
1320 InitializeListHead(), then ASSERT().\r
1321 If PcdMaximumLinkedListLenth is not zero, and prior to insertion the number\r
1322 of nodes in ListHead, including the ListHead node, is greater than or\r
1323 equal to PcdMaximumLinkedListLength, then ASSERT().\r
1324\r
1325 @param ListHead A pointer to the head node of a doubly linked list.\r
1326 @param Entry A pointer to a node that is to be added at the end of the\r
1327 doubly linked list.\r
1328\r
1329 @return ListHead\r
1330\r
1331**/\r
1332LIST_ENTRY *\r
1333EFIAPI\r
1334InsertTailList (\r
1335 IN OUT LIST_ENTRY *ListHead,\r
1336 IN OUT LIST_ENTRY *Entry\r
1337 );\r
1338\r
1339\r
1340/**\r
1341 Retrieves the first node of a doubly linked list.\r
1342\r
1343 Returns the first node of a doubly linked list. List must have been \r
1344 initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().\r
1345 If List is empty, then List is returned.\r
1346\r
1347 If List is NULL, then ASSERT().\r
1348 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
1349 InitializeListHead(), then ASSERT().\r
1350 If PcdMaximumLinkedListLenth is not zero, and the number of nodes\r
1351 in List, including the List node, is greater than or equal to\r
1352 PcdMaximumLinkedListLength, then ASSERT().\r
1353\r
1354 @param List A pointer to the head node of a doubly linked list.\r
1355\r
1356 @return The first node of a doubly linked list.\r
1357 @retval NULL The list is empty.\r
1358\r
1359**/\r
1360LIST_ENTRY *\r
1361EFIAPI\r
1362GetFirstNode (\r
1363 IN CONST LIST_ENTRY *List\r
1364 );\r
1365\r
1366\r
1367/**\r
1368 Retrieves the next node of a doubly linked list.\r
1369\r
1370 Returns the node of a doubly linked list that follows Node. \r
1371 List must have been initialized with INTIALIZE_LIST_HEAD_VARIABLE()\r
1372 or InitializeListHead(). If List is empty, then List is returned.\r
1373\r
1374 If List is NULL, then ASSERT().\r
1375 If Node is NULL, then ASSERT().\r
1376 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
1377 InitializeListHead(), then ASSERT().\r
1378 If PcdMaximumLinkedListLenth is not zero, and List contains more than\r
1379 PcdMaximumLinkedListLenth nodes, then ASSERT().\r
1380 If PcdVerifyNodeInList is TRUE and Node is not a node in List, then ASSERT().\r
1381\r
1382 @param List A pointer to the head node of a doubly linked list.\r
1383 @param Node A pointer to a node in the doubly linked list.\r
1384\r
1385 @return The pointer to the next node if one exists. Otherwise List is returned.\r
1386\r
1387**/\r
1388LIST_ENTRY *\r
1389EFIAPI\r
1390GetNextNode (\r
1391 IN CONST LIST_ENTRY *List,\r
1392 IN CONST LIST_ENTRY *Node\r
1393 );\r
1394\r
1395 \r
1396/**\r
1397 Retrieves the previous node of a doubly linked list.\r
1398 \r
1399 Returns the node of a doubly linked list that precedes Node. \r
1400 List must have been initialized with INTIALIZE_LIST_HEAD_VARIABLE()\r
1401 or InitializeListHead(). If List is empty, then List is returned.\r
1402 \r
1403 If List is NULL, then ASSERT().\r
1404 If Node is NULL, then ASSERT().\r
1405 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
1406 InitializeListHead(), then ASSERT().\r
1407 If PcdMaximumLinkedListLenth is not zero, and List contains more than\r
1408 PcdMaximumLinkedListLenth nodes, then ASSERT().\r
1409 If PcdVerifyNodeInList is TRUE and Node is not a node in List, then ASSERT().\r
1410 \r
1411 @param List A pointer to the head node of a doubly linked list.\r
1412 @param Node A pointer to a node in the doubly linked list.\r
1413 \r
1414 @return The pointer to the previous node if one exists. Otherwise List is returned.\r
1415 \r
1416**/\r
1417LIST_ENTRY *\r
1418EFIAPI\r
1419GetPreviousNode (\r
1420 IN CONST LIST_ENTRY *List,\r
1421 IN CONST LIST_ENTRY *Node\r
1422 );\r
1423\r
1424 \r
1425/**\r
1426 Checks to see if a doubly linked list is empty or not.\r
1427\r
1428 Checks to see if the doubly linked list is empty. If the linked list contains\r
1429 zero nodes, this function returns TRUE. Otherwise, it returns FALSE.\r
1430\r
1431 If ListHead is NULL, then ASSERT().\r
1432 If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
1433 InitializeListHead(), then ASSERT().\r
1434 If PcdMaximumLinkedListLenth is not zero, and the number of nodes\r
1435 in List, including the List node, is greater than or equal to\r
1436 PcdMaximumLinkedListLength, then ASSERT().\r
1437\r
1438 @param ListHead A pointer to the head node of a doubly linked list.\r
1439\r
1440 @retval TRUE The linked list is empty.\r
1441 @retval FALSE The linked list is not empty.\r
1442\r
1443**/\r
1444BOOLEAN\r
1445EFIAPI\r
1446IsListEmpty (\r
1447 IN CONST LIST_ENTRY *ListHead\r
1448 );\r
1449\r
1450\r
1451/**\r
1452 Determines if a node in a doubly linked list is the head node of a the same\r
1453 doubly linked list. This function is typically used to terminate a loop that\r
1454 traverses all the nodes in a doubly linked list starting with the head node.\r
1455\r
1456 Returns TRUE if Node is equal to List. Returns FALSE if Node is one of the\r
1457 nodes in the doubly linked list specified by List. List must have been\r
1458 initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().\r
1459\r
1460 If List is NULL, then ASSERT().\r
1461 If Node is NULL, then ASSERT().\r
1462 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(), \r
1463 then ASSERT().\r
1464 If PcdMaximumLinkedListLenth is not zero, and the number of nodes\r
1465 in List, including the List node, is greater than or equal to\r
1466 PcdMaximumLinkedListLength, then ASSERT().\r
1467 If PcdVerifyNodeInList is TRUE and Node is not a node in List the and Node is not equal \r
1468 to List, then ASSERT().\r
1469\r
1470 @param List A pointer to the head node of a doubly linked list.\r
1471 @param Node A pointer to a node in the doubly linked list.\r
1472\r
1473 @retval TRUE Node is one of the nodes in the doubly linked list.\r
1474 @retval FALSE Node is not one of the nodes in the doubly linked list.\r
1475\r
1476**/\r
1477BOOLEAN\r
1478EFIAPI\r
1479IsNull (\r
1480 IN CONST LIST_ENTRY *List,\r
1481 IN CONST LIST_ENTRY *Node\r
1482 );\r
1483\r
1484\r
1485/**\r
1486 Determines if a node the last node in a doubly linked list.\r
1487\r
1488 Returns TRUE if Node is the last node in the doubly linked list specified by\r
1489 List. Otherwise, FALSE is returned. List must have been initialized with\r
1490 INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().\r
1491\r
1492 If List is NULL, then ASSERT().\r
1493 If Node is NULL, then ASSERT().\r
1494 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or\r
1495 InitializeListHead(), then ASSERT().\r
1496 If PcdMaximumLinkedListLenth is not zero, and the number of nodes\r
1497 in List, including the List node, is greater than or equal to\r
1498 PcdMaximumLinkedListLength, then ASSERT().\r
1499 If PcdVerifyNodeInList is TRUE and Node is not a node in List, then ASSERT().\r
1500\r
1501 @param List A pointer to the head node of a doubly linked list.\r
1502 @param Node A pointer to a node in the doubly linked list.\r
1503\r
1504 @retval TRUE Node is the last node in the linked list.\r
1505 @retval FALSE Node is not the last node in the linked list.\r
1506\r
1507**/\r
1508BOOLEAN\r
1509EFIAPI\r
1510IsNodeAtEnd (\r
1511 IN CONST LIST_ENTRY *List,\r
1512 IN CONST LIST_ENTRY *Node\r
1513 );\r
1514\r
1515\r
1516/**\r
1517 Swaps the location of two nodes in a doubly linked list, and returns the\r
1518 first node after the swap.\r
1519\r
1520 If FirstEntry is identical to SecondEntry, then SecondEntry is returned.\r
1521 Otherwise, the location of the FirstEntry node is swapped with the location\r
1522 of the SecondEntry node in a doubly linked list. SecondEntry must be in the\r
1523 same double linked list as FirstEntry and that double linked list must have\r
1524 been initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(). \r
1525 SecondEntry is returned after the nodes are swapped.\r
1526\r
1527 If FirstEntry is NULL, then ASSERT().\r
1528 If SecondEntry is NULL, then ASSERT().\r
1529 If PcdVerifyNodeInList is TRUE and SecondEntry and FirstEntry are not in the \r
1530 same linked list, then ASSERT().\r
1531 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the\r
1532 linked list containing the FirstEntry and SecondEntry nodes, including\r
1533 the FirstEntry and SecondEntry nodes, is greater than or equal to\r
1534 PcdMaximumLinkedListLength, then ASSERT().\r
1535\r
1536 @param FirstEntry A pointer to a node in a linked list.\r
1537 @param SecondEntry A pointer to another node in the same linked list.\r
1538 \r
1539 @return SecondEntry.\r
1540\r
1541**/\r
1542LIST_ENTRY *\r
1543EFIAPI\r
1544SwapListEntries (\r
1545 IN OUT LIST_ENTRY *FirstEntry,\r
1546 IN OUT LIST_ENTRY *SecondEntry\r
1547 );\r
1548\r
1549\r
1550/**\r
1551 Removes a node from a doubly linked list, and returns the node that follows\r
1552 the removed node.\r
1553\r
1554 Removes the node Entry from a doubly linked list. It is up to the caller of\r
1555 this function to release the memory used by this node if that is required. On\r
1556 exit, the node following Entry in the doubly linked list is returned. If\r
1557 Entry is the only node in the linked list, then the head node of the linked\r
1558 list is returned.\r
1559\r
1560 If Entry is NULL, then ASSERT().\r
1561 If Entry is the head node of an empty list, then ASSERT().\r
1562 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the\r
1563 linked list containing Entry, including the Entry node, is greater than\r
1564 or equal to PcdMaximumLinkedListLength, then ASSERT().\r
1565\r
1566 @param Entry A pointer to a node in a linked list.\r
1567\r
1568 @return Entry.\r
1569\r
1570**/\r
1571LIST_ENTRY *\r
1572EFIAPI\r
1573RemoveEntryList (\r
1574 IN CONST LIST_ENTRY *Entry\r
1575 );\r
1576\r
1577//\r
1578// Math Services\r
1579//\r
1580\r
1581/**\r
1582 Shifts a 64-bit integer left between 0 and 63 bits. The low bits are filled\r
1583 with zeros. The shifted value is returned.\r
1584\r
1585 This function shifts the 64-bit value Operand to the left by Count bits. The\r
1586 low Count bits are set to zero. The shifted value is returned.\r
1587\r
1588 If Count is greater than 63, then ASSERT().\r
1589\r
1590 @param Operand The 64-bit operand to shift left.\r
1591 @param Count The number of bits to shift left.\r
1592\r
1593 @return Operand << Count.\r
1594\r
1595**/\r
1596UINT64\r
1597EFIAPI\r
1598LShiftU64 (\r
1599 IN UINT64 Operand,\r
1600 IN UINTN Count\r
1601 );\r
1602\r
1603\r
1604/**\r
1605 Shifts a 64-bit integer right between 0 and 63 bits. This high bits are\r
1606 filled with zeros. The shifted value is returned.\r
1607\r
1608 This function shifts the 64-bit value Operand to the right by Count bits. The\r
1609 high Count bits are set to zero. The shifted value is returned.\r
1610\r
1611 If Count is greater than 63, then ASSERT().\r
1612\r
1613 @param Operand The 64-bit operand to shift right.\r
1614 @param Count The number of bits to shift right.\r
1615\r
1616 @return Operand >> Count\r
1617\r
1618**/\r
1619UINT64\r
1620EFIAPI\r
1621RShiftU64 (\r
1622 IN UINT64 Operand,\r
1623 IN UINTN Count\r
1624 );\r
1625\r
1626\r
1627/**\r
1628 Shifts a 64-bit integer right between 0 and 63 bits. The high bits are filled\r
1629 with original integer's bit 63. The shifted value is returned.\r
1630\r
1631 This function shifts the 64-bit value Operand to the right by Count bits. The\r
1632 high Count bits are set to bit 63 of Operand. The shifted value is returned.\r
1633\r
1634 If Count is greater than 63, then ASSERT().\r
1635\r
1636 @param Operand The 64-bit operand to shift right.\r
1637 @param Count The number of bits to shift right.\r
1638\r
1639 @return Operand >> Count\r
1640\r
1641**/\r
1642UINT64\r
1643EFIAPI\r
1644ARShiftU64 (\r
1645 IN UINT64 Operand,\r
1646 IN UINTN Count\r
1647 );\r
1648\r
1649\r
1650/**\r
1651 Rotates a 32-bit integer left between 0 and 31 bits, filling the low bits\r
1652 with the high bits that were rotated.\r
1653\r
1654 This function rotates the 32-bit value Operand to the left by Count bits. The\r
1655 low Count bits are fill with the high Count bits of Operand. The rotated\r
1656 value is returned.\r
1657\r
1658 If Count is greater than 31, then ASSERT().\r
1659\r
1660 @param Operand The 32-bit operand to rotate left.\r
1661 @param Count The number of bits to rotate left.\r
1662\r
1663 @return Operand << Count\r
1664\r
1665**/\r
1666UINT32\r
1667EFIAPI\r
1668LRotU32 (\r
1669 IN UINT32 Operand,\r
1670 IN UINTN Count\r
1671 );\r
1672\r
1673\r
1674/**\r
1675 Rotates a 32-bit integer right between 0 and 31 bits, filling the high bits\r
1676 with the low bits that were rotated.\r
1677\r
1678 This function rotates the 32-bit value Operand to the right by Count bits.\r
1679 The high Count bits are fill with the low Count bits of Operand. The rotated\r
1680 value is returned.\r
1681\r
1682 If Count is greater than 31, then ASSERT().\r
1683\r
1684 @param Operand The 32-bit operand to rotate right.\r
1685 @param Count The number of bits to rotate right.\r
1686\r
1687 @return Operand >> Count\r
1688\r
1689**/\r
1690UINT32\r
1691EFIAPI\r
1692RRotU32 (\r
1693 IN UINT32 Operand,\r
1694 IN UINTN Count\r
1695 );\r
1696\r
1697\r
1698/**\r
1699 Rotates a 64-bit integer left between 0 and 63 bits, filling the low bits\r
1700 with the high bits that were rotated.\r
1701\r
1702 This function rotates the 64-bit value Operand to the left by Count bits. The\r
1703 low Count bits are fill with the high Count bits of Operand. The rotated\r
1704 value is returned.\r
1705\r
1706 If Count is greater than 63, then ASSERT().\r
1707\r
1708 @param Operand The 64-bit operand to rotate left.\r
1709 @param Count The number of bits to rotate left.\r
1710\r
1711 @return Operand << Count\r
1712\r
1713**/\r
1714UINT64\r
1715EFIAPI\r
1716LRotU64 (\r
1717 IN UINT64 Operand,\r
1718 IN UINTN Count\r
1719 );\r
1720\r
1721\r
1722/**\r
1723 Rotates a 64-bit integer right between 0 and 63 bits, filling the high bits\r
1724 with the high low bits that were rotated.\r
1725\r
1726 This function rotates the 64-bit value Operand to the right by Count bits.\r
1727 The high Count bits are fill with the low Count bits of Operand. The rotated\r
1728 value is returned.\r
1729\r
1730 If Count is greater than 63, then ASSERT().\r
1731\r
1732 @param Operand The 64-bit operand to rotate right.\r
1733 @param Count The number of bits to rotate right.\r
1734\r
1735 @return Operand >> Count\r
1736\r
1737**/\r
1738UINT64\r
1739EFIAPI\r
1740RRotU64 (\r
1741 IN UINT64 Operand,\r
1742 IN UINTN Count\r
1743 );\r
1744\r
1745\r
1746/**\r
1747 Returns the bit position of the lowest bit set in a 32-bit value.\r
1748\r
1749 This function computes the bit position of the lowest bit set in the 32-bit\r
1750 value specified by Operand. If Operand is zero, then -1 is returned.\r
1751 Otherwise, a value between 0 and 31 is returned.\r
1752\r
1753 @param Operand The 32-bit operand to evaluate.\r
1754\r
1755 @retval 0..31 The lowest bit set in Operand was found.\r
1756 @retval -1 Operand is zero.\r
1757\r
1758**/\r
1759INTN\r
1760EFIAPI\r
1761LowBitSet32 (\r
1762 IN UINT32 Operand\r
1763 );\r
1764\r
1765\r
1766/**\r
1767 Returns the bit position of the lowest bit set in a 64-bit value.\r
1768\r
1769 This function computes the bit position of the lowest bit set in the 64-bit\r
1770 value specified by Operand. If Operand is zero, then -1 is returned.\r
1771 Otherwise, a value between 0 and 63 is returned.\r
1772\r
1773 @param Operand The 64-bit operand to evaluate.\r
1774\r
1775 @retval 0..63 The lowest bit set in Operand was found.\r
1776 @retval -1 Operand is zero.\r
1777\r
1778\r
1779**/\r
1780INTN\r
1781EFIAPI\r
1782LowBitSet64 (\r
1783 IN UINT64 Operand\r
1784 );\r
1785\r
1786\r
1787/**\r
1788 Returns the bit position of the highest bit set in a 32-bit value. Equivalent\r
1789 to log2(x).\r
1790\r
1791 This function computes the bit position of the highest bit set in the 32-bit\r
1792 value specified by Operand. If Operand is zero, then -1 is returned.\r
1793 Otherwise, a value between 0 and 31 is returned.\r
1794\r
1795 @param Operand The 32-bit operand to evaluate.\r
1796\r
1797 @retval 0..31 Position of the highest bit set in Operand if found.\r
1798 @retval -1 Operand is zero.\r
1799\r
1800**/\r
1801INTN\r
1802EFIAPI\r
1803HighBitSet32 (\r
1804 IN UINT32 Operand\r
1805 );\r
1806\r
1807\r
1808/**\r
1809 Returns the bit position of the highest bit set in a 64-bit value. Equivalent\r
1810 to log2(x).\r
1811\r
1812 This function computes the bit position of the highest bit set in the 64-bit\r
1813 value specified by Operand. If Operand is zero, then -1 is returned.\r
1814 Otherwise, a value between 0 and 63 is returned.\r
1815\r
1816 @param Operand The 64-bit operand to evaluate.\r
1817\r
1818 @retval 0..63 Position of the highest bit set in Operand if found.\r
1819 @retval -1 Operand is zero.\r
1820\r
1821**/\r
1822INTN\r
1823EFIAPI\r
1824HighBitSet64 (\r
1825 IN UINT64 Operand\r
1826 );\r
1827\r
1828\r
1829/**\r
1830 Returns the value of the highest bit set in a 32-bit value. Equivalent to\r
1831 1 << log2(x).\r
1832\r
1833 This function computes the value of the highest bit set in the 32-bit value\r
1834 specified by Operand. If Operand is zero, then zero is returned.\r
1835\r
1836 @param Operand The 32-bit operand to evaluate.\r
1837\r
1838 @return 1 << HighBitSet32(Operand)\r
1839 @retval 0 Operand is zero.\r
1840\r
1841**/\r
1842UINT32\r
1843EFIAPI\r
1844GetPowerOfTwo32 (\r
1845 IN UINT32 Operand\r
1846 );\r
1847\r
1848\r
1849/**\r
1850 Returns the value of the highest bit set in a 64-bit value. Equivalent to\r
1851 1 << log2(x).\r
1852\r
1853 This function computes the value of the highest bit set in the 64-bit value\r
1854 specified by Operand. If Operand is zero, then zero is returned.\r
1855\r
1856 @param Operand The 64-bit operand to evaluate.\r
1857\r
1858 @return 1 << HighBitSet64(Operand)\r
1859 @retval 0 Operand is zero.\r
1860\r
1861**/\r
1862UINT64\r
1863EFIAPI\r
1864GetPowerOfTwo64 (\r
1865 IN UINT64 Operand\r
1866 );\r
1867\r
1868\r
1869/**\r
1870 Switches the endianness of a 16-bit integer.\r
1871\r
1872 This function swaps the bytes in a 16-bit unsigned value to switch the value\r
1873 from little endian to big endian or vice versa. The byte swapped value is\r
1874 returned.\r
1875\r
1876 @param Value A 16-bit unsigned value.\r
1877\r
1878 @return The byte swapped Value.\r
1879\r
1880**/\r
1881UINT16\r
1882EFIAPI\r
1883SwapBytes16 (\r
1884 IN UINT16 Value\r
1885 );\r
1886\r
1887\r
1888/**\r
1889 Switches the endianness of a 32-bit integer.\r
1890\r
1891 This function swaps the bytes in a 32-bit unsigned value to switch the value\r
1892 from little endian to big endian or vice versa. The byte swapped value is\r
1893 returned.\r
1894\r
1895 @param Value A 32-bit unsigned value.\r
1896\r
1897 @return The byte swapped Value.\r
1898\r
1899**/\r
1900UINT32\r
1901EFIAPI\r
1902SwapBytes32 (\r
1903 IN UINT32 Value\r
1904 );\r
1905\r
1906\r
1907/**\r
1908 Switches the endianness of a 64-bit integer.\r
1909\r
1910 This function swaps the bytes in a 64-bit unsigned value to switch the value\r
1911 from little endian to big endian or vice versa. The byte swapped value is\r
1912 returned.\r
1913\r
1914 @param Value A 64-bit unsigned value.\r
1915\r
1916 @return The byte swapped Value.\r
1917\r
1918**/\r
1919UINT64\r
1920EFIAPI\r
1921SwapBytes64 (\r
1922 IN UINT64 Value\r
1923 );\r
1924\r
1925\r
1926/**\r
1927 Multiples a 64-bit unsigned integer by a 32-bit unsigned integer and\r
1928 generates a 64-bit unsigned result.\r
1929\r
1930 This function multiples the 64-bit unsigned value Multiplicand by the 32-bit\r
1931 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-\r
1932 bit unsigned result is returned.\r
1933\r
1934 @param Multiplicand A 64-bit unsigned value.\r
1935 @param Multiplier A 32-bit unsigned value.\r
1936\r
1937 @return Multiplicand * Multiplier\r
1938\r
1939**/\r
1940UINT64\r
1941EFIAPI\r
1942MultU64x32 (\r
1943 IN UINT64 Multiplicand,\r
1944 IN UINT32 Multiplier\r
1945 );\r
1946\r
1947\r
1948/**\r
1949 Multiples a 64-bit unsigned integer by a 64-bit unsigned integer and\r
1950 generates a 64-bit unsigned result.\r
1951\r
1952 This function multiples the 64-bit unsigned value Multiplicand by the 64-bit\r
1953 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-\r
1954 bit unsigned result is returned.\r
1955\r
1956 @param Multiplicand A 64-bit unsigned value.\r
1957 @param Multiplier A 64-bit unsigned value.\r
1958\r
1959 @return Multiplicand * Multiplier.\r
1960\r
1961**/\r
1962UINT64\r
1963EFIAPI\r
1964MultU64x64 (\r
1965 IN UINT64 Multiplicand,\r
1966 IN UINT64 Multiplier\r
1967 );\r
1968\r
1969\r
1970/**\r
1971 Multiples a 64-bit signed integer by a 64-bit signed integer and generates a\r
1972 64-bit signed result.\r
1973\r
1974 This function multiples the 64-bit signed value Multiplicand by the 64-bit\r
1975 signed value Multiplier and generates a 64-bit signed result. This 64-bit\r
1976 signed result is returned.\r
1977\r
1978 @param Multiplicand A 64-bit signed value.\r
1979 @param Multiplier A 64-bit signed value.\r
1980\r
1981 @return Multiplicand * Multiplier\r
1982\r
1983**/\r
1984INT64\r
1985EFIAPI\r
1986MultS64x64 (\r
1987 IN INT64 Multiplicand,\r
1988 IN INT64 Multiplier\r
1989 );\r
1990\r
1991\r
1992/**\r
1993 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates\r
1994 a 64-bit unsigned result.\r
1995\r
1996 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
1997 unsigned value Divisor and generates a 64-bit unsigned quotient. This\r
1998 function returns the 64-bit unsigned quotient.\r
1999\r
2000 If Divisor is 0, then ASSERT().\r
2001\r
2002 @param Dividend A 64-bit unsigned value.\r
2003 @param Divisor A 32-bit unsigned value.\r
2004\r
2005 @return Dividend / Divisor.\r
2006\r
2007**/\r
2008UINT64\r
2009EFIAPI\r
2010DivU64x32 (\r
2011 IN UINT64 Dividend,\r
2012 IN UINT32 Divisor\r
2013 );\r
2014\r
2015\r
2016/**\r
2017 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates\r
2018 a 32-bit unsigned remainder.\r
2019\r
2020 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
2021 unsigned value Divisor and generates a 32-bit remainder. This function\r
2022 returns the 32-bit unsigned remainder.\r
2023\r
2024 If Divisor is 0, then ASSERT().\r
2025\r
2026 @param Dividend A 64-bit unsigned value.\r
2027 @param Divisor A 32-bit unsigned value.\r
2028\r
2029 @return Dividend % Divisor.\r
2030\r
2031**/\r
2032UINT32\r
2033EFIAPI\r
2034ModU64x32 (\r
2035 IN UINT64 Dividend,\r
2036 IN UINT32 Divisor\r
2037 );\r
2038\r
2039\r
2040/**\r
2041 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates\r
2042 a 64-bit unsigned result and an optional 32-bit unsigned remainder.\r
2043\r
2044 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
2045 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder\r
2046 is not NULL, then the 32-bit unsigned remainder is returned in Remainder.\r
2047 This function returns the 64-bit unsigned quotient.\r
2048\r
2049 If Divisor is 0, then ASSERT().\r
2050\r
2051 @param Dividend A 64-bit unsigned value.\r
2052 @param Divisor A 32-bit unsigned value.\r
2053 @param Remainder A pointer to a 32-bit unsigned value. This parameter is\r
2054 optional and may be NULL.\r
2055\r
2056 @return Dividend / Divisor.\r
2057\r
2058**/\r
2059UINT64\r
2060EFIAPI\r
2061DivU64x32Remainder (\r
2062 IN UINT64 Dividend,\r
2063 IN UINT32 Divisor,\r
2064 OUT UINT32 *Remainder OPTIONAL\r
2065 );\r
2066\r
2067\r
2068/**\r
2069 Divides a 64-bit unsigned integer by a 64-bit unsigned integer and generates\r
2070 a 64-bit unsigned result and an optional 64-bit unsigned remainder.\r
2071\r
2072 This function divides the 64-bit unsigned value Dividend by the 64-bit\r
2073 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder\r
2074 is not NULL, then the 64-bit unsigned remainder is returned in Remainder.\r
2075 This function returns the 64-bit unsigned quotient.\r
2076\r
2077 If Divisor is 0, then ASSERT().\r
2078\r
2079 @param Dividend A 64-bit unsigned value.\r
2080 @param Divisor A 64-bit unsigned value.\r
2081 @param Remainder A pointer to a 64-bit unsigned value. This parameter is\r
2082 optional and may be NULL.\r
2083\r
2084 @return Dividend / Divisor.\r
2085\r
2086**/\r
2087UINT64\r
2088EFIAPI\r
2089DivU64x64Remainder (\r
2090 IN UINT64 Dividend,\r
2091 IN UINT64 Divisor,\r
2092 OUT UINT64 *Remainder OPTIONAL\r
2093 );\r
2094\r
2095\r
2096/**\r
2097 Divides a 64-bit signed integer by a 64-bit signed integer and generates a\r
2098 64-bit signed result and a optional 64-bit signed remainder.\r
2099\r
2100 This function divides the 64-bit signed value Dividend by the 64-bit signed\r
2101 value Divisor and generates a 64-bit signed quotient. If Remainder is not\r
2102 NULL, then the 64-bit signed remainder is returned in Remainder. This\r
2103 function returns the 64-bit signed quotient.\r
2104\r
2105 It is the caller's responsibility to not call this function with a Divisor of 0.\r
2106 If Divisor is 0, then the quotient and remainder should be assumed to be \r
2107 the largest negative integer.\r
2108\r
2109 If Divisor is 0, then ASSERT().\r
2110\r
2111 @param Dividend A 64-bit signed value.\r
2112 @param Divisor A 64-bit signed value.\r
2113 @param Remainder A pointer to a 64-bit signed value. This parameter is\r
2114 optional and may be NULL.\r
2115\r
2116 @return Dividend / Divisor.\r
2117\r
2118**/\r
2119INT64\r
2120EFIAPI\r
2121DivS64x64Remainder (\r
2122 IN INT64 Dividend,\r
2123 IN INT64 Divisor,\r
2124 OUT INT64 *Remainder OPTIONAL\r
2125 );\r
2126\r
2127\r
2128/**\r
2129 Reads a 16-bit value from memory that may be unaligned.\r
2130\r
2131 This function returns the 16-bit value pointed to by Buffer. The function\r
2132 guarantees that the read operation does not produce an alignment fault.\r
2133\r
2134 If the Buffer is NULL, then ASSERT().\r
2135\r
2136 @param Buffer The pointer to a 16-bit value that may be unaligned.\r
2137\r
2138 @return The 16-bit value read from Buffer.\r
2139\r
2140**/\r
2141UINT16\r
2142EFIAPI\r
2143ReadUnaligned16 (\r
2144 IN CONST UINT16 *Buffer\r
2145 );\r
2146\r
2147\r
2148/**\r
2149 Writes a 16-bit value to memory that may be unaligned.\r
2150\r
2151 This function writes the 16-bit value specified by Value to Buffer. Value is\r
2152 returned. The function guarantees that the write operation does not produce\r
2153 an alignment fault.\r
2154\r
2155 If the Buffer is NULL, then ASSERT().\r
2156\r
2157 @param Buffer The pointer to a 16-bit value that may be unaligned.\r
2158 @param Value 16-bit value to write to Buffer.\r
2159\r
2160 @return The 16-bit value to write to Buffer.\r
2161\r
2162**/\r
2163UINT16\r
2164EFIAPI\r
2165WriteUnaligned16 (\r
2166 OUT UINT16 *Buffer,\r
2167 IN UINT16 Value\r
2168 );\r
2169\r
2170\r
2171/**\r
2172 Reads a 24-bit value from memory that may be unaligned.\r
2173\r
2174 This function returns the 24-bit value pointed to by Buffer. The function\r
2175 guarantees that the read operation does not produce an alignment fault.\r
2176\r
2177 If the Buffer is NULL, then ASSERT().\r
2178\r
2179 @param Buffer The pointer to a 24-bit value that may be unaligned.\r
2180\r
2181 @return The 24-bit value read from Buffer.\r
2182\r
2183**/\r
2184UINT32\r
2185EFIAPI\r
2186ReadUnaligned24 (\r
2187 IN CONST UINT32 *Buffer\r
2188 );\r
2189\r
2190\r
2191/**\r
2192 Writes a 24-bit value to memory that may be unaligned.\r
2193\r
2194 This function writes the 24-bit value specified by Value to Buffer. Value is\r
2195 returned. The function guarantees that the write operation does not produce\r
2196 an alignment fault.\r
2197\r
2198 If the Buffer is NULL, then ASSERT().\r
2199\r
2200 @param Buffer The pointer to a 24-bit value that may be unaligned.\r
2201 @param Value 24-bit value to write to Buffer.\r
2202\r
2203 @return The 24-bit value to write to Buffer.\r
2204\r
2205**/\r
2206UINT32\r
2207EFIAPI\r
2208WriteUnaligned24 (\r
2209 OUT UINT32 *Buffer,\r
2210 IN UINT32 Value\r
2211 );\r
2212\r
2213\r
2214/**\r
2215 Reads a 32-bit value from memory that may be unaligned.\r
2216\r
2217 This function returns the 32-bit value pointed to by Buffer. The function\r
2218 guarantees that the read operation does not produce an alignment fault.\r
2219\r
2220 If the Buffer is NULL, then ASSERT().\r
2221\r
2222 @param Buffer The pointer to a 32-bit value that may be unaligned.\r
2223\r
2224 @return The 32-bit value read from Buffer.\r
2225\r
2226**/\r
2227UINT32\r
2228EFIAPI\r
2229ReadUnaligned32 (\r
2230 IN CONST UINT32 *Buffer\r
2231 );\r
2232\r
2233\r
2234/**\r
2235 Writes a 32-bit value to memory that may be unaligned.\r
2236\r
2237 This function writes the 32-bit value specified by Value to Buffer. Value is\r
2238 returned. The function guarantees that the write operation does not produce\r
2239 an alignment fault.\r
2240\r
2241 If the Buffer is NULL, then ASSERT().\r
2242\r
2243 @param Buffer The pointer to a 32-bit value that may be unaligned.\r
2244 @param Value 32-bit value to write to Buffer.\r
2245\r
2246 @return The 32-bit value to write to Buffer.\r
2247\r
2248**/\r
2249UINT32\r
2250EFIAPI\r
2251WriteUnaligned32 (\r
2252 OUT UINT32 *Buffer,\r
2253 IN UINT32 Value\r
2254 );\r
2255\r
2256\r
2257/**\r
2258 Reads a 64-bit value from memory that may be unaligned.\r
2259\r
2260 This function returns the 64-bit value pointed to by Buffer. The function\r
2261 guarantees that the read operation does not produce an alignment fault.\r
2262\r
2263 If the Buffer is NULL, then ASSERT().\r
2264\r
2265 @param Buffer The pointer to a 64-bit value that may be unaligned.\r
2266\r
2267 @return The 64-bit value read from Buffer.\r
2268\r
2269**/\r
2270UINT64\r
2271EFIAPI\r
2272ReadUnaligned64 (\r
2273 IN CONST UINT64 *Buffer\r
2274 );\r
2275\r
2276\r
2277/**\r
2278 Writes a 64-bit value to memory that may be unaligned.\r
2279\r
2280 This function writes the 64-bit value specified by Value to Buffer. Value is\r
2281 returned. The function guarantees that the write operation does not produce\r
2282 an alignment fault.\r
2283\r
2284 If the Buffer is NULL, then ASSERT().\r
2285\r
2286 @param Buffer The pointer to a 64-bit value that may be unaligned.\r
2287 @param Value 64-bit value to write to Buffer.\r
2288\r
2289 @return The 64-bit value to write to Buffer.\r
2290\r
2291**/\r
2292UINT64\r
2293EFIAPI\r
2294WriteUnaligned64 (\r
2295 OUT UINT64 *Buffer,\r
2296 IN UINT64 Value\r
2297 );\r
2298\r
2299\r
2300//\r
2301// Bit Field Functions\r
2302//\r
2303\r
2304/**\r
2305 Returns a bit field from an 8-bit value.\r
2306\r
2307 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
2308\r
2309 If 8-bit operations are not supported, then ASSERT().\r
2310 If StartBit is greater than 7, then ASSERT().\r
2311 If EndBit is greater than 7, then ASSERT().\r
2312 If EndBit is less than StartBit, then ASSERT().\r
2313\r
2314 @param Operand Operand on which to perform the bitfield operation.\r
2315 @param StartBit The ordinal of the least significant bit in the bit field.\r
2316 Range 0..7.\r
2317 @param EndBit The ordinal of the most significant bit in the bit field.\r
2318 Range 0..7.\r
2319\r
2320 @return The bit field read.\r
2321\r
2322**/\r
2323UINT8\r
2324EFIAPI\r
2325BitFieldRead8 (\r
2326 IN UINT8 Operand,\r
2327 IN UINTN StartBit,\r
2328 IN UINTN EndBit\r
2329 );\r
2330\r
2331\r
2332/**\r
2333 Writes a bit field to an 8-bit value, and returns the result.\r
2334\r
2335 Writes Value to the bit field specified by the StartBit and the EndBit in\r
2336 Operand. All other bits in Operand are preserved. The new 8-bit value is\r
2337 returned.\r
2338\r
2339 If 8-bit operations are not supported, then ASSERT().\r
2340 If StartBit is greater than 7, then ASSERT().\r
2341 If EndBit is greater than 7, then ASSERT().\r
2342 If EndBit is less than StartBit, then ASSERT().\r
2343\r
2344 @param Operand Operand on which to perform the bitfield operation.\r
2345 @param StartBit The ordinal of the least significant bit in the bit field.\r
2346 Range 0..7.\r
2347 @param EndBit The ordinal of the most significant bit in the bit field.\r
2348 Range 0..7.\r
2349 @param Value New value of the bit field.\r
2350\r
2351 @return The new 8-bit value.\r
2352\r
2353**/\r
2354UINT8\r
2355EFIAPI\r
2356BitFieldWrite8 (\r
2357 IN UINT8 Operand,\r
2358 IN UINTN StartBit,\r
2359 IN UINTN EndBit,\r
2360 IN UINT8 Value\r
2361 );\r
2362\r
2363\r
2364/**\r
2365 Reads a bit field from an 8-bit value, performs a bitwise OR, and returns the\r
2366 result.\r
2367\r
2368 Performs a bitwise OR between the bit field specified by StartBit\r
2369 and EndBit in Operand and the value specified by OrData. All other bits in\r
2370 Operand are preserved. The new 8-bit value is returned.\r
2371\r
2372 If 8-bit operations are not supported, then ASSERT().\r
2373 If StartBit is greater than 7, then ASSERT().\r
2374 If EndBit is greater than 7, then ASSERT().\r
2375 If EndBit is less than StartBit, then ASSERT().\r
2376\r
2377 @param Operand Operand on which to perform the bitfield operation.\r
2378 @param StartBit The ordinal of the least significant bit in the bit field.\r
2379 Range 0..7.\r
2380 @param EndBit The ordinal of the most significant bit in the bit field.\r
2381 Range 0..7.\r
2382 @param OrData The value to OR with the read value from the value\r
2383\r
2384 @return The new 8-bit value.\r
2385\r
2386**/\r
2387UINT8\r
2388EFIAPI\r
2389BitFieldOr8 (\r
2390 IN UINT8 Operand,\r
2391 IN UINTN StartBit,\r
2392 IN UINTN EndBit,\r
2393 IN UINT8 OrData\r
2394 );\r
2395\r
2396\r
2397/**\r
2398 Reads a bit field from an 8-bit value, performs a bitwise AND, and returns\r
2399 the result.\r
2400\r
2401 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
2402 in Operand and the value specified by AndData. All other bits in Operand are\r
2403 preserved. The new 8-bit value is returned.\r
2404\r
2405 If 8-bit operations are not supported, then ASSERT().\r
2406 If StartBit is greater than 7, then ASSERT().\r
2407 If EndBit is greater than 7, then ASSERT().\r
2408 If EndBit is less than StartBit, then ASSERT().\r
2409\r
2410 @param Operand Operand on which to perform the bitfield operation.\r
2411 @param StartBit The ordinal of the least significant bit in the bit field.\r
2412 Range 0..7.\r
2413 @param EndBit The ordinal of the most significant bit in the bit field.\r
2414 Range 0..7.\r
2415 @param AndData The value to AND with the read value from the value.\r
2416\r
2417 @return The new 8-bit value.\r
2418\r
2419**/\r
2420UINT8\r
2421EFIAPI\r
2422BitFieldAnd8 (\r
2423 IN UINT8 Operand,\r
2424 IN UINTN StartBit,\r
2425 IN UINTN EndBit,\r
2426 IN UINT8 AndData\r
2427 );\r
2428\r
2429\r
2430/**\r
2431 Reads a bit field from an 8-bit value, performs a bitwise AND followed by a\r
2432 bitwise OR, and returns the result.\r
2433\r
2434 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
2435 in Operand and the value specified by AndData, followed by a bitwise \r
2436 OR with value specified by OrData. All other bits in Operand are\r
2437 preserved. The new 8-bit value is returned.\r
2438\r
2439 If 8-bit operations are not supported, then ASSERT().\r
2440 If StartBit is greater than 7, then ASSERT().\r
2441 If EndBit is greater than 7, then ASSERT().\r
2442 If EndBit is less than StartBit, then ASSERT().\r
2443\r
2444 @param Operand Operand on which to perform the bitfield operation.\r
2445 @param StartBit The ordinal of the least significant bit in the bit field.\r
2446 Range 0..7.\r
2447 @param EndBit The ordinal of the most significant bit in the bit field.\r
2448 Range 0..7.\r
2449 @param AndData The value to AND with the read value from the value.\r
2450 @param OrData The value to OR with the result of the AND operation.\r
2451\r
2452 @return The new 8-bit value.\r
2453\r
2454**/\r
2455UINT8\r
2456EFIAPI\r
2457BitFieldAndThenOr8 (\r
2458 IN UINT8 Operand,\r
2459 IN UINTN StartBit,\r
2460 IN UINTN EndBit,\r
2461 IN UINT8 AndData,\r
2462 IN UINT8 OrData\r
2463 );\r
2464\r
2465\r
2466/**\r
2467 Returns a bit field from a 16-bit value.\r
2468\r
2469 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
2470\r
2471 If 16-bit operations are not supported, then ASSERT().\r
2472 If StartBit is greater than 15, then ASSERT().\r
2473 If EndBit is greater than 15, then ASSERT().\r
2474 If EndBit is less than StartBit, then ASSERT().\r
2475\r
2476 @param Operand Operand on which to perform the bitfield operation.\r
2477 @param StartBit The ordinal of the least significant bit in the bit field.\r
2478 Range 0..15.\r
2479 @param EndBit The ordinal of the most significant bit in the bit field.\r
2480 Range 0..15.\r
2481\r
2482 @return The bit field read.\r
2483\r
2484**/\r
2485UINT16\r
2486EFIAPI\r
2487BitFieldRead16 (\r
2488 IN UINT16 Operand,\r
2489 IN UINTN StartBit,\r
2490 IN UINTN EndBit\r
2491 );\r
2492\r
2493\r
2494/**\r
2495 Writes a bit field to a 16-bit value, and returns the result.\r
2496\r
2497 Writes Value to the bit field specified by the StartBit and the EndBit in\r
2498 Operand. All other bits in Operand are preserved. The new 16-bit value is\r
2499 returned.\r
2500\r
2501 If 16-bit operations are not supported, then ASSERT().\r
2502 If StartBit is greater than 15, then ASSERT().\r
2503 If EndBit is greater than 15, then ASSERT().\r
2504 If EndBit is less than StartBit, then ASSERT().\r
2505\r
2506 @param Operand Operand on which to perform the bitfield operation.\r
2507 @param StartBit The ordinal of the least significant bit in the bit field.\r
2508 Range 0..15.\r
2509 @param EndBit The ordinal of the most significant bit in the bit field.\r
2510 Range 0..15.\r
2511 @param Value New value of the bit field.\r
2512\r
2513 @return The new 16-bit value.\r
2514\r
2515**/\r
2516UINT16\r
2517EFIAPI\r
2518BitFieldWrite16 (\r
2519 IN UINT16 Operand,\r
2520 IN UINTN StartBit,\r
2521 IN UINTN EndBit,\r
2522 IN UINT16 Value\r
2523 );\r
2524\r
2525\r
2526/**\r
2527 Reads a bit field from a 16-bit value, performs a bitwise OR, and returns the\r
2528 result.\r
2529\r
2530 Performs a bitwise OR between the bit field specified by StartBit\r
2531 and EndBit in Operand and the value specified by OrData. All other bits in\r
2532 Operand are preserved. The new 16-bit value is returned.\r
2533\r
2534 If 16-bit operations are not supported, then ASSERT().\r
2535 If StartBit is greater than 15, then ASSERT().\r
2536 If EndBit is greater than 15, then ASSERT().\r
2537 If EndBit is less than StartBit, then ASSERT().\r
2538\r
2539 @param Operand Operand on which to perform the bitfield operation.\r
2540 @param StartBit The ordinal of the least significant bit in the bit field.\r
2541 Range 0..15.\r
2542 @param EndBit The ordinal of the most significant bit in the bit field.\r
2543 Range 0..15.\r
2544 @param OrData The value to OR with the read value from the value\r
2545\r
2546 @return The new 16-bit value.\r
2547\r
2548**/\r
2549UINT16\r
2550EFIAPI\r
2551BitFieldOr16 (\r
2552 IN UINT16 Operand,\r
2553 IN UINTN StartBit,\r
2554 IN UINTN EndBit,\r
2555 IN UINT16 OrData\r
2556 );\r
2557\r
2558\r
2559/**\r
2560 Reads a bit field from a 16-bit value, performs a bitwise AND, and returns\r
2561 the result.\r
2562\r
2563 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
2564 in Operand and the value specified by AndData. All other bits in Operand are\r
2565 preserved. The new 16-bit value is returned.\r
2566\r
2567 If 16-bit operations are not supported, then ASSERT().\r
2568 If StartBit is greater than 15, then ASSERT().\r
2569 If EndBit is greater than 15, then ASSERT().\r
2570 If EndBit is less than StartBit, then ASSERT().\r
2571\r
2572 @param Operand Operand on which to perform the bitfield operation.\r
2573 @param StartBit The ordinal of the least significant bit in the bit field.\r
2574 Range 0..15.\r
2575 @param EndBit The ordinal of the most significant bit in the bit field.\r
2576 Range 0..15.\r
2577 @param AndData The value to AND with the read value from the value\r
2578\r
2579 @return The new 16-bit value.\r
2580\r
2581**/\r
2582UINT16\r
2583EFIAPI\r
2584BitFieldAnd16 (\r
2585 IN UINT16 Operand,\r
2586 IN UINTN StartBit,\r
2587 IN UINTN EndBit,\r
2588 IN UINT16 AndData\r
2589 );\r
2590\r
2591\r
2592/**\r
2593 Reads a bit field from a 16-bit value, performs a bitwise AND followed by a\r
2594 bitwise OR, and returns the result.\r
2595\r
2596 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
2597 in Operand and the value specified by AndData, followed by a bitwise \r
2598 OR with value specified by OrData. All other bits in Operand are\r
2599 preserved. The new 16-bit value is returned.\r
2600\r
2601 If 16-bit operations are not supported, then ASSERT().\r
2602 If StartBit is greater than 15, then ASSERT().\r
2603 If EndBit is greater than 15, then ASSERT().\r
2604 If EndBit is less than StartBit, then ASSERT().\r
2605\r
2606 @param Operand Operand on which to perform the bitfield operation.\r
2607 @param StartBit The ordinal of the least significant bit in the bit field.\r
2608 Range 0..15.\r
2609 @param EndBit The ordinal of the most significant bit in the bit field.\r
2610 Range 0..15.\r
2611 @param AndData The value to AND with the read value from the value.\r
2612 @param OrData The value to OR with the result of the AND operation.\r
2613\r
2614 @return The new 16-bit value.\r
2615\r
2616**/\r
2617UINT16\r
2618EFIAPI\r
2619BitFieldAndThenOr16 (\r
2620 IN UINT16 Operand,\r
2621 IN UINTN StartBit,\r
2622 IN UINTN EndBit,\r
2623 IN UINT16 AndData,\r
2624 IN UINT16 OrData\r
2625 );\r
2626\r
2627\r
2628/**\r
2629 Returns a bit field from a 32-bit value.\r
2630\r
2631 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
2632\r
2633 If 32-bit operations are not supported, then ASSERT().\r
2634 If StartBit is greater than 31, then ASSERT().\r
2635 If EndBit is greater than 31, then ASSERT().\r
2636 If EndBit is less than StartBit, then ASSERT().\r
2637\r
2638 @param Operand Operand on which to perform the bitfield operation.\r
2639 @param StartBit The ordinal of the least significant bit in the bit field.\r
2640 Range 0..31.\r
2641 @param EndBit The ordinal of the most significant bit in the bit field.\r
2642 Range 0..31.\r
2643\r
2644 @return The bit field read.\r
2645\r
2646**/\r
2647UINT32\r
2648EFIAPI\r
2649BitFieldRead32 (\r
2650 IN UINT32 Operand,\r
2651 IN UINTN StartBit,\r
2652 IN UINTN EndBit\r
2653 );\r
2654\r
2655\r
2656/**\r
2657 Writes a bit field to a 32-bit value, and returns the result.\r
2658\r
2659 Writes Value to the bit field specified by the StartBit and the EndBit in\r
2660 Operand. All other bits in Operand are preserved. The new 32-bit value is\r
2661 returned.\r
2662\r
2663 If 32-bit operations are not supported, then ASSERT().\r
2664 If StartBit is greater than 31, then ASSERT().\r
2665 If EndBit is greater than 31, then ASSERT().\r
2666 If EndBit is less than StartBit, then ASSERT().\r
2667\r
2668 @param Operand Operand on which to perform the bitfield operation.\r
2669 @param StartBit The ordinal of the least significant bit in the bit field.\r
2670 Range 0..31.\r
2671 @param EndBit The ordinal of the most significant bit in the bit field.\r
2672 Range 0..31.\r
2673 @param Value New value of the bit field.\r
2674\r
2675 @return The new 32-bit value.\r
2676\r
2677**/\r
2678UINT32\r
2679EFIAPI\r
2680BitFieldWrite32 (\r
2681 IN UINT32 Operand,\r
2682 IN UINTN StartBit,\r
2683 IN UINTN EndBit,\r
2684 IN UINT32 Value\r
2685 );\r
2686\r
2687\r
2688/**\r
2689 Reads a bit field from a 32-bit value, performs a bitwise OR, and returns the\r
2690 result.\r
2691\r
2692 Performs a bitwise OR between the bit field specified by StartBit\r
2693 and EndBit in Operand and the value specified by OrData. All other bits in\r
2694 Operand are preserved. The new 32-bit value is returned.\r
2695\r
2696 If 32-bit operations are not supported, then ASSERT().\r
2697 If StartBit is greater than 31, then ASSERT().\r
2698 If EndBit is greater than 31, then ASSERT().\r
2699 If EndBit is less than StartBit, then ASSERT().\r
2700\r
2701 @param Operand Operand on which to perform the bitfield operation.\r
2702 @param StartBit The ordinal of the least significant bit in the bit field.\r
2703 Range 0..31.\r
2704 @param EndBit The ordinal of the most significant bit in the bit field.\r
2705 Range 0..31.\r
2706 @param OrData The value to OR with the read value from the value.\r
2707\r
2708 @return The new 32-bit value.\r
2709\r
2710**/\r
2711UINT32\r
2712EFIAPI\r
2713BitFieldOr32 (\r
2714 IN UINT32 Operand,\r
2715 IN UINTN StartBit,\r
2716 IN UINTN EndBit,\r
2717 IN UINT32 OrData\r
2718 );\r
2719\r
2720\r
2721/**\r
2722 Reads a bit field from a 32-bit value, performs a bitwise AND, and returns\r
2723 the result.\r
2724\r
2725 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
2726 in Operand and the value specified by AndData. All other bits in Operand are\r
2727 preserved. The new 32-bit value is returned.\r
2728\r
2729 If 32-bit operations are not supported, then ASSERT().\r
2730 If StartBit is greater than 31, then ASSERT().\r
2731 If EndBit is greater than 31, then ASSERT().\r
2732 If EndBit is less than StartBit, then ASSERT().\r
2733\r
2734 @param Operand Operand on which to perform the bitfield operation.\r
2735 @param StartBit The ordinal of the least significant bit in the bit field.\r
2736 Range 0..31.\r
2737 @param EndBit The ordinal of the most significant bit in the bit field.\r
2738 Range 0..31.\r
2739 @param AndData The value to AND with the read value from the value\r
2740\r
2741 @return The new 32-bit value.\r
2742\r
2743**/\r
2744UINT32\r
2745EFIAPI\r
2746BitFieldAnd32 (\r
2747 IN UINT32 Operand,\r
2748 IN UINTN StartBit,\r
2749 IN UINTN EndBit,\r
2750 IN UINT32 AndData\r
2751 );\r
2752\r
2753\r
2754/**\r
2755 Reads a bit field from a 32-bit value, performs a bitwise AND followed by a\r
2756 bitwise OR, and returns the result.\r
2757\r
2758 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
2759 in Operand and the value specified by AndData, followed by a bitwise \r
2760 OR with value specified by OrData. All other bits in Operand are\r
2761 preserved. The new 32-bit value is returned.\r
2762\r
2763 If 32-bit operations are not supported, then ASSERT().\r
2764 If StartBit is greater than 31, then ASSERT().\r
2765 If EndBit is greater than 31, then ASSERT().\r
2766 If EndBit is less than StartBit, then ASSERT().\r
2767\r
2768 @param Operand Operand on which to perform the bitfield operation.\r
2769 @param StartBit The ordinal of the least significant bit in the bit field.\r
2770 Range 0..31.\r
2771 @param EndBit The ordinal of the most significant bit in the bit field.\r
2772 Range 0..31.\r
2773 @param AndData The value to AND with the read value from the value.\r
2774 @param OrData The value to OR with the result of the AND operation.\r
2775\r
2776 @return The new 32-bit value.\r
2777\r
2778**/\r
2779UINT32\r
2780EFIAPI\r
2781BitFieldAndThenOr32 (\r
2782 IN UINT32 Operand,\r
2783 IN UINTN StartBit,\r
2784 IN UINTN EndBit,\r
2785 IN UINT32 AndData,\r
2786 IN UINT32 OrData\r
2787 );\r
2788\r
2789\r
2790/**\r
2791 Returns a bit field from a 64-bit value.\r
2792\r
2793 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
2794\r
2795 If 64-bit operations are not supported, then ASSERT().\r
2796 If StartBit is greater than 63, then ASSERT().\r
2797 If EndBit is greater than 63, then ASSERT().\r
2798 If EndBit is less than StartBit, then ASSERT().\r
2799\r
2800 @param Operand Operand on which to perform the bitfield operation.\r
2801 @param StartBit The ordinal of the least significant bit in the bit field.\r
2802 Range 0..63.\r
2803 @param EndBit The ordinal of the most significant bit in the bit field.\r
2804 Range 0..63.\r
2805\r
2806 @return The bit field read.\r
2807\r
2808**/\r
2809UINT64\r
2810EFIAPI\r
2811BitFieldRead64 (\r
2812 IN UINT64 Operand,\r
2813 IN UINTN StartBit,\r
2814 IN UINTN EndBit\r
2815 );\r
2816\r
2817\r
2818/**\r
2819 Writes a bit field to a 64-bit value, and returns the result.\r
2820\r
2821 Writes Value to the bit field specified by the StartBit and the EndBit in\r
2822 Operand. All other bits in Operand are preserved. The new 64-bit value is\r
2823 returned.\r
2824\r
2825 If 64-bit operations are not supported, then ASSERT().\r
2826 If StartBit is greater than 63, then ASSERT().\r
2827 If EndBit is greater than 63, then ASSERT().\r
2828 If EndBit is less than StartBit, then ASSERT().\r
2829\r
2830 @param Operand Operand on which to perform the bitfield operation.\r
2831 @param StartBit The ordinal of the least significant bit in the bit field.\r
2832 Range 0..63.\r
2833 @param EndBit The ordinal of the most significant bit in the bit field.\r
2834 Range 0..63.\r
2835 @param Value New value of the bit field.\r
2836\r
2837 @return The new 64-bit value.\r
2838\r
2839**/\r
2840UINT64\r
2841EFIAPI\r
2842BitFieldWrite64 (\r
2843 IN UINT64 Operand,\r
2844 IN UINTN StartBit,\r
2845 IN UINTN EndBit,\r
2846 IN UINT64 Value\r
2847 );\r
2848\r
2849\r
2850/**\r
2851 Reads a bit field from a 64-bit value, performs a bitwise OR, and returns the\r
2852 result.\r
2853\r
2854 Performs a bitwise OR between the bit field specified by StartBit\r
2855 and EndBit in Operand and the value specified by OrData. All other bits in\r
2856 Operand are preserved. The new 64-bit value is returned.\r
2857\r
2858 If 64-bit operations are not supported, then ASSERT().\r
2859 If StartBit is greater than 63, then ASSERT().\r
2860 If EndBit is greater than 63, then ASSERT().\r
2861 If EndBit is less than StartBit, then ASSERT().\r
2862\r
2863 @param Operand Operand on which to perform the bitfield operation.\r
2864 @param StartBit The ordinal of the least significant bit in the bit field.\r
2865 Range 0..63.\r
2866 @param EndBit The ordinal of the most significant bit in the bit field.\r
2867 Range 0..63.\r
2868 @param OrData The value to OR with the read value from the value\r
2869\r
2870 @return The new 64-bit value.\r
2871\r
2872**/\r
2873UINT64\r
2874EFIAPI\r
2875BitFieldOr64 (\r
2876 IN UINT64 Operand,\r
2877 IN UINTN StartBit,\r
2878 IN UINTN EndBit,\r
2879 IN UINT64 OrData\r
2880 );\r
2881\r
2882\r
2883/**\r
2884 Reads a bit field from a 64-bit value, performs a bitwise AND, and returns\r
2885 the result.\r
2886\r
2887 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
2888 in Operand and the value specified by AndData. All other bits in Operand are\r
2889 preserved. The new 64-bit value is returned.\r
2890\r
2891 If 64-bit operations are not supported, then ASSERT().\r
2892 If StartBit is greater than 63, then ASSERT().\r
2893 If EndBit is greater than 63, then ASSERT().\r
2894 If EndBit is less than StartBit, then ASSERT().\r
2895\r
2896 @param Operand Operand on which to perform the bitfield operation.\r
2897 @param StartBit The ordinal of the least significant bit in the bit field.\r
2898 Range 0..63.\r
2899 @param EndBit The ordinal of the most significant bit in the bit field.\r
2900 Range 0..63.\r
2901 @param AndData The value to AND with the read value from the value\r
2902\r
2903 @return The new 64-bit value.\r
2904\r
2905**/\r
2906UINT64\r
2907EFIAPI\r
2908BitFieldAnd64 (\r
2909 IN UINT64 Operand,\r
2910 IN UINTN StartBit,\r
2911 IN UINTN EndBit,\r
2912 IN UINT64 AndData\r
2913 );\r
2914\r
2915\r
2916/**\r
2917 Reads a bit field from a 64-bit value, performs a bitwise AND followed by a\r
2918 bitwise OR, and returns the result.\r
2919\r
2920 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
2921 in Operand and the value specified by AndData, followed by a bitwise \r
2922 OR with value specified by OrData. All other bits in Operand are\r
2923 preserved. The new 64-bit value is returned.\r
2924\r
2925 If 64-bit operations are not supported, then ASSERT().\r
2926 If StartBit is greater than 63, then ASSERT().\r
2927 If EndBit is greater than 63, then ASSERT().\r
2928 If EndBit is less than StartBit, then ASSERT().\r
2929\r
2930 @param Operand Operand on which to perform the bitfield operation.\r
2931 @param StartBit The ordinal of the least significant bit in the bit field.\r
2932 Range 0..63.\r
2933 @param EndBit The ordinal of the most significant bit in the bit field.\r
2934 Range 0..63.\r
2935 @param AndData The value to AND with the read value from the value.\r
2936 @param OrData The value to OR with the result of the AND operation.\r
2937\r
2938 @return The new 64-bit value.\r
2939\r
2940**/\r
2941UINT64\r
2942EFIAPI\r
2943BitFieldAndThenOr64 (\r
2944 IN UINT64 Operand,\r
2945 IN UINTN StartBit,\r
2946 IN UINTN EndBit,\r
2947 IN UINT64 AndData,\r
2948 IN UINT64 OrData\r
2949 );\r
2950\r
2951//\r
2952// Base Library Checksum Functions\r
2953//\r
2954\r
2955/**\r
2956 Returns the sum of all elements in a buffer in unit of UINT8.\r
2957 During calculation, the carry bits are dropped.\r
2958\r
2959 This function calculates the sum of all elements in a buffer\r
2960 in unit of UINT8. The carry bits in result of addition are dropped.\r
2961 The result is returned as UINT8. If Length is Zero, then Zero is\r
2962 returned.\r
2963\r
2964 If Buffer is NULL, then ASSERT().\r
2965 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
2966\r
2967 @param Buffer The pointer to the buffer to carry out the sum operation.\r
2968 @param Length The size, in bytes, of Buffer.\r
2969\r
2970 @return Sum The sum of Buffer with carry bits dropped during additions.\r
2971\r
2972**/\r
2973UINT8\r
2974EFIAPI\r
2975CalculateSum8 (\r
2976 IN CONST UINT8 *Buffer,\r
2977 IN UINTN Length\r
2978 );\r
2979\r
2980\r
2981/**\r
2982 Returns the two's complement checksum of all elements in a buffer\r
2983 of 8-bit values.\r
2984\r
2985 This function first calculates the sum of the 8-bit values in the\r
2986 buffer specified by Buffer and Length. The carry bits in the result\r
2987 of addition are dropped. Then, the two's complement of the sum is\r
2988 returned. If Length is 0, then 0 is returned.\r
2989\r
2990 If Buffer is NULL, then ASSERT().\r
2991 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
2992\r
2993 @param Buffer The pointer to the buffer to carry out the checksum operation.\r
2994 @param Length The size, in bytes, of Buffer.\r
2995\r
2996 @return Checksum The two's complement checksum of Buffer.\r
2997\r
2998**/\r
2999UINT8\r
3000EFIAPI\r
3001CalculateCheckSum8 (\r
3002 IN CONST UINT8 *Buffer,\r
3003 IN UINTN Length\r
3004 );\r
3005\r
3006\r
3007/**\r
3008 Returns the sum of all elements in a buffer of 16-bit values. During\r
3009 calculation, the carry bits are dropped.\r
3010\r
3011 This function calculates the sum of the 16-bit values in the buffer\r
3012 specified by Buffer and Length. The carry bits in result of addition are dropped.\r
3013 The 16-bit result is returned. If Length is 0, then 0 is returned.\r
3014\r
3015 If Buffer is NULL, then ASSERT().\r
3016 If Buffer is not aligned on a 16-bit boundary, then ASSERT().\r
3017 If Length is not aligned on a 16-bit boundary, then ASSERT().\r
3018 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
3019\r
3020 @param Buffer The pointer to the buffer to carry out the sum operation.\r
3021 @param Length The size, in bytes, of Buffer.\r
3022\r
3023 @return Sum The sum of Buffer with carry bits dropped during additions.\r
3024\r
3025**/\r
3026UINT16\r
3027EFIAPI\r
3028CalculateSum16 (\r
3029 IN CONST UINT16 *Buffer,\r
3030 IN UINTN Length\r
3031 );\r
3032\r
3033\r
3034/**\r
3035 Returns the two's complement checksum of all elements in a buffer of\r
3036 16-bit values.\r
3037\r
3038 This function first calculates the sum of the 16-bit values in the buffer\r
3039 specified by Buffer and Length. The carry bits in the result of addition\r
3040 are dropped. Then, the two's complement of the sum is returned. If Length\r
3041 is 0, then 0 is returned.\r
3042\r
3043 If Buffer is NULL, then ASSERT().\r
3044 If Buffer is not aligned on a 16-bit boundary, then ASSERT().\r
3045 If Length is not aligned on a 16-bit boundary, then ASSERT().\r
3046 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
3047\r
3048 @param Buffer The pointer to the buffer to carry out the checksum operation.\r
3049 @param Length The size, in bytes, of Buffer.\r
3050\r
3051 @return Checksum The two's complement checksum of Buffer.\r
3052\r
3053**/\r
3054UINT16\r
3055EFIAPI\r
3056CalculateCheckSum16 (\r
3057 IN CONST UINT16 *Buffer,\r
3058 IN UINTN Length\r
3059 );\r
3060\r
3061\r
3062/**\r
3063 Returns the sum of all elements in a buffer of 32-bit values. During\r
3064 calculation, the carry bits are dropped.\r
3065\r
3066 This function calculates the sum of the 32-bit values in the buffer\r
3067 specified by Buffer and Length. The carry bits in result of addition are dropped.\r
3068 The 32-bit result is returned. If Length is 0, then 0 is returned.\r
3069\r
3070 If Buffer is NULL, then ASSERT().\r
3071 If Buffer is not aligned on a 32-bit boundary, then ASSERT().\r
3072 If Length is not aligned on a 32-bit boundary, then ASSERT().\r
3073 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
3074\r
3075 @param Buffer The pointer to the buffer to carry out the sum operation.\r
3076 @param Length The size, in bytes, of Buffer.\r
3077\r
3078 @return Sum The sum of Buffer with carry bits dropped during additions.\r
3079\r
3080**/\r
3081UINT32\r
3082EFIAPI\r
3083CalculateSum32 (\r
3084 IN CONST UINT32 *Buffer,\r
3085 IN UINTN Length\r
3086 );\r
3087\r
3088\r
3089/**\r
3090 Returns the two's complement checksum of all elements in a buffer of\r
3091 32-bit values.\r
3092\r
3093 This function first calculates the sum of the 32-bit values in the buffer\r
3094 specified by Buffer and Length. The carry bits in the result of addition\r
3095 are dropped. Then, the two's complement of the sum is returned. If Length\r
3096 is 0, then 0 is returned.\r
3097\r
3098 If Buffer is NULL, then ASSERT().\r
3099 If Buffer is not aligned on a 32-bit boundary, then ASSERT().\r
3100 If Length is not aligned on a 32-bit boundary, then ASSERT().\r
3101 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
3102\r
3103 @param Buffer The pointer to the buffer to carry out the checksum operation.\r
3104 @param Length The size, in bytes, of Buffer.\r
3105\r
3106 @return Checksum The two's complement checksum of Buffer.\r
3107\r
3108**/\r
3109UINT32\r
3110EFIAPI\r
3111CalculateCheckSum32 (\r
3112 IN CONST UINT32 *Buffer,\r
3113 IN UINTN Length\r
3114 );\r
3115\r
3116\r
3117/**\r
3118 Returns the sum of all elements in a buffer of 64-bit values. During\r
3119 calculation, the carry bits are dropped.\r
3120\r
3121 This function calculates the sum of the 64-bit values in the buffer\r
3122 specified by Buffer and Length. The carry bits in result of addition are dropped.\r
3123 The 64-bit result is returned. If Length is 0, then 0 is returned.\r
3124\r
3125 If Buffer is NULL, then ASSERT().\r
3126 If Buffer is not aligned on a 64-bit boundary, then ASSERT().\r
3127 If Length is not aligned on a 64-bit boundary, then ASSERT().\r
3128 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
3129\r
3130 @param Buffer The pointer to the buffer to carry out the sum operation.\r
3131 @param Length The size, in bytes, of Buffer.\r
3132\r
3133 @return Sum The sum of Buffer with carry bits dropped during additions.\r
3134\r
3135**/\r
3136UINT64\r
3137EFIAPI\r
3138CalculateSum64 (\r
3139 IN CONST UINT64 *Buffer,\r
3140 IN UINTN Length\r
3141 );\r
3142\r
3143\r
3144/**\r
3145 Returns the two's complement checksum of all elements in a buffer of\r
3146 64-bit values.\r
3147\r
3148 This function first calculates the sum of the 64-bit values in the buffer\r
3149 specified by Buffer and Length. The carry bits in the result of addition\r
3150 are dropped. Then, the two's complement of the sum is returned. If Length\r
3151 is 0, then 0 is returned.\r
3152\r
3153 If Buffer is NULL, then ASSERT().\r
3154 If Buffer is not aligned on a 64-bit boundary, then ASSERT().\r
3155 If Length is not aligned on a 64-bit boundary, then ASSERT().\r
3156 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
3157\r
3158 @param Buffer The pointer to the buffer to carry out the checksum operation.\r
3159 @param Length The size, in bytes, of Buffer.\r
3160\r
3161 @return Checksum The two's complement checksum of Buffer.\r
3162\r
3163**/\r
3164UINT64\r
3165EFIAPI\r
3166CalculateCheckSum64 (\r
3167 IN CONST UINT64 *Buffer,\r
3168 IN UINTN Length\r
3169 );\r
3170\r
3171\r
3172//\r
3173// Base Library CPU Functions\r
3174//\r
3175\r
3176/**\r
3177 Function entry point used when a stack switch is requested with SwitchStack()\r
3178\r
3179 @param Context1 Context1 parameter passed into SwitchStack().\r
3180 @param Context2 Context2 parameter passed into SwitchStack().\r
3181\r
3182**/\r
3183typedef\r
3184VOID\r
3185(EFIAPI *SWITCH_STACK_ENTRY_POINT)(\r
3186 IN VOID *Context1, OPTIONAL\r
3187 IN VOID *Context2 OPTIONAL\r
3188 );\r
3189\r
3190\r
3191/**\r
3192 Used to serialize load and store operations.\r
3193\r
3194 All loads and stores that proceed calls to this function are guaranteed to be\r
3195 globally visible when this function returns.\r
3196\r
3197**/\r
3198VOID\r
3199EFIAPI\r
3200MemoryFence (\r
3201 VOID\r
3202 );\r
3203\r
3204\r
3205/**\r
3206 Saves the current CPU context that can be restored with a call to LongJump()\r
3207 and returns 0.\r
3208\r
3209 Saves the current CPU context in the buffer specified by JumpBuffer and\r
3210 returns 0. The initial call to SetJump() must always return 0. Subsequent\r
3211 calls to LongJump() cause a non-zero value to be returned by SetJump().\r
3212\r
3213 If JumpBuffer is NULL, then ASSERT().\r
3214 For Itanium processors, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().\r
3215 \r
3216 NOTE: The structure BASE_LIBRARY_JUMP_BUFFER is CPU architecture specific.\r
3217 The same structure must never be used for more than one CPU architecture context.\r
3218 For example, a BASE_LIBRARY_JUMP_BUFFER allocated by an IA-32 module must never be used from an x64 module. \r
3219 SetJump()/LongJump() is not currently supported for the EBC processor type. \r
3220\r
3221 @param JumpBuffer A pointer to CPU context buffer.\r
3222\r
3223 @retval 0 Indicates a return from SetJump().\r
3224\r
3225**/\r
3226UINTN\r
3227EFIAPI\r
3228SetJump (\r
3229 OUT BASE_LIBRARY_JUMP_BUFFER *JumpBuffer\r
3230 );\r
3231\r
3232\r
3233/**\r
3234 Restores the CPU context that was saved with SetJump().\r
3235\r
3236 Restores the CPU context from the buffer specified by JumpBuffer. This\r
3237 function never returns to the caller. Instead is resumes execution based on\r
3238 the state of JumpBuffer.\r
3239\r
3240 If JumpBuffer is NULL, then ASSERT().\r
3241 For Itanium processors, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().\r
3242 If Value is 0, then ASSERT().\r
3243\r
3244 @param JumpBuffer A pointer to CPU context buffer.\r
3245 @param Value The value to return when the SetJump() context is\r
3246 restored and must be non-zero.\r
3247\r
3248**/\r
3249VOID\r
3250EFIAPI\r
3251LongJump (\r
3252 IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer,\r
3253 IN UINTN Value\r
3254 );\r
3255\r
3256\r
3257/**\r
3258 Enables CPU interrupts.\r
3259\r
3260**/\r
3261VOID\r
3262EFIAPI\r
3263EnableInterrupts (\r
3264 VOID\r
3265 );\r
3266\r
3267\r
3268/**\r
3269 Disables CPU interrupts.\r
3270\r
3271**/\r
3272VOID\r
3273EFIAPI\r
3274DisableInterrupts (\r
3275 VOID\r
3276 );\r
3277\r
3278\r
3279/**\r
3280 Disables CPU interrupts and returns the interrupt state prior to the disable\r
3281 operation.\r
3282\r
3283 @retval TRUE CPU interrupts were enabled on entry to this call.\r
3284 @retval FALSE CPU interrupts were disabled on entry to this call.\r
3285\r
3286**/\r
3287BOOLEAN\r
3288EFIAPI\r
3289SaveAndDisableInterrupts (\r
3290 VOID\r
3291 );\r
3292\r
3293\r
3294/**\r
3295 Enables CPU interrupts for the smallest window required to capture any\r
3296 pending interrupts.\r
3297\r
3298**/\r
3299VOID\r
3300EFIAPI\r
3301EnableDisableInterrupts (\r
3302 VOID\r
3303 );\r
3304\r
3305\r
3306/**\r
3307 Retrieves the current CPU interrupt state.\r
3308\r
3309 Returns TRUE if interrupts are currently enabled. Otherwise\r
3310 returns FALSE.\r
3311\r
3312 @retval TRUE CPU interrupts are enabled.\r
3313 @retval FALSE CPU interrupts are disabled.\r
3314\r
3315**/\r
3316BOOLEAN\r
3317EFIAPI\r
3318GetInterruptState (\r
3319 VOID\r
3320 );\r
3321\r
3322\r
3323/**\r
3324 Set the current CPU interrupt state.\r
3325\r
3326 Sets the current CPU interrupt state to the state specified by\r
3327 InterruptState. If InterruptState is TRUE, then interrupts are enabled. If\r
3328 InterruptState is FALSE, then interrupts are disabled. InterruptState is\r
3329 returned.\r
3330\r
3331 @param InterruptState TRUE if interrupts should enabled. FALSE if\r
3332 interrupts should be disabled.\r
3333\r
3334 @return InterruptState\r
3335\r
3336**/\r
3337BOOLEAN\r
3338EFIAPI\r
3339SetInterruptState (\r
3340 IN BOOLEAN InterruptState\r
3341 );\r
3342\r
3343\r
3344/**\r
3345 Requests CPU to pause for a short period of time.\r
3346\r
3347 Requests CPU to pause for a short period of time. Typically used in MP\r
3348 systems to prevent memory starvation while waiting for a spin lock.\r
3349\r
3350**/\r
3351VOID\r
3352EFIAPI\r
3353CpuPause (\r
3354 VOID\r
3355 );\r
3356\r
3357\r
3358/**\r
3359 Transfers control to a function starting with a new stack.\r
3360\r
3361 Transfers control to the function specified by EntryPoint using the\r
3362 new stack specified by NewStack and passing in the parameters specified\r
3363 by Context1 and Context2. Context1 and Context2 are optional and may\r
3364 be NULL. The function EntryPoint must never return. This function\r
3365 supports a variable number of arguments following the NewStack parameter.\r
3366 These additional arguments are ignored on IA-32, x64, and EBC architectures.\r
3367 Itanium processors expect one additional parameter of type VOID * that specifies\r
3368 the new backing store pointer.\r
3369\r
3370 If EntryPoint is NULL, then ASSERT().\r
3371 If NewStack is NULL, then ASSERT().\r
3372\r
3373 @param EntryPoint A pointer to function to call with the new stack.\r
3374 @param Context1 A pointer to the context to pass into the EntryPoint\r
3375 function.\r
3376 @param Context2 A pointer to the context to pass into the EntryPoint\r
3377 function.\r
3378 @param NewStack A pointer to the new stack to use for the EntryPoint\r
3379 function.\r
3380 @param ... This variable argument list is ignored for IA-32, x64, and \r
3381 EBC architectures. For Itanium processors, this variable \r
3382 argument list is expected to contain a single parameter of \r
3383 type VOID * that specifies the new backing store pointer.\r
3384\r
3385\r
3386**/\r
3387VOID\r
3388EFIAPI\r
3389SwitchStack (\r
3390 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
3391 IN VOID *Context1, OPTIONAL\r
3392 IN VOID *Context2, OPTIONAL\r
3393 IN VOID *NewStack,\r
3394 ...\r
3395 );\r
3396\r
3397\r
3398/**\r
3399 Generates a breakpoint on the CPU.\r
3400\r
3401 Generates a breakpoint on the CPU. The breakpoint must be implemented such\r
3402 that code can resume normal execution after the breakpoint.\r
3403\r
3404**/\r
3405VOID\r
3406EFIAPI\r
3407CpuBreakpoint (\r
3408 VOID\r
3409 );\r
3410\r
3411\r
3412/**\r
3413 Executes an infinite loop.\r
3414\r
3415 Forces the CPU to execute an infinite loop. A debugger may be used to skip\r
3416 past the loop and the code that follows the loop must execute properly. This\r
3417 implies that the infinite loop must not cause the code that follow it to be\r
3418 optimized away.\r
3419\r
3420**/\r
3421VOID\r
3422EFIAPI\r
3423CpuDeadLoop (\r
3424 VOID\r
3425 );\r
3426 \r
3427#if defined (MDE_CPU_IPF)\r
3428\r
3429/**\r
3430 Flush a range of cache lines in the cache coherency domain of the calling\r
3431 CPU.\r
3432\r
3433 Flushes the cache lines specified by Address and Length. If Address is not aligned \r
3434 on a cache line boundary, then entire cache line containing Address is flushed. \r
3435 If Address + Length is not aligned on a cache line boundary, then the entire cache \r
3436 line containing Address + Length - 1 is flushed. This function may choose to flush \r
3437 the entire cache if that is more efficient than flushing the specified range. If \r
3438 Length is 0, the no cache lines are flushed. Address is returned. \r
3439 This function is only available on Itanium processors.\r
3440\r
3441 If Length is greater than (MAX_ADDRESS - Address + 1), then ASSERT().\r
3442\r
3443 @param Address The base address of the instruction lines to invalidate. If\r
3444 the CPU is in a physical addressing mode, then Address is a\r
3445 physical address. If the CPU is in a virtual addressing mode,\r
3446 then Address is a virtual address.\r
3447\r
3448 @param Length The number of bytes to invalidate from the instruction cache.\r
3449\r
3450 @return Address.\r
3451\r
3452**/\r
3453VOID *\r
3454EFIAPI\r
3455AsmFlushCacheRange (\r
3456 IN VOID *Address,\r
3457 IN UINTN Length\r
3458 );\r
3459\r
3460\r
3461/**\r
3462 Executes an FC instruction.\r
3463 Executes an FC instruction on the cache line specified by Address.\r
3464 The cache line size affected is at least 32-bytes (aligned on a 32-byte boundary).\r
3465 An implementation may flush a larger region. This function is only available on Itanium processors.\r
3466\r
3467 @param Address The Address of cache line to be flushed.\r
3468\r
3469 @return The address of FC instruction executed.\r
3470\r
3471**/\r
3472UINT64\r
3473EFIAPI\r
3474AsmFc (\r
3475 IN UINT64 Address\r
3476 );\r
3477\r
3478\r
3479/**\r
3480 Executes an FC.I instruction.\r
3481 Executes an FC.I instruction on the cache line specified by Address.\r
3482 The cache line size affected is at least 32-bytes (aligned on a 32-byte boundary).\r
3483 An implementation may flush a larger region. This function is only available on Itanium processors.\r
3484\r
3485 @param Address The Address of cache line to be flushed.\r
3486\r
3487 @return The address of the FC.I instruction executed.\r
3488\r
3489**/\r
3490UINT64\r
3491EFIAPI\r
3492AsmFci (\r
3493 IN UINT64 Address\r
3494 );\r
3495\r
3496\r
3497/**\r
3498 Reads the current value of a Processor Identifier Register (CPUID).\r
3499 \r
3500 Reads and returns the current value of Processor Identifier Register specified by Index. \r
3501 The Index of largest implemented CPUID (One less than the number of implemented CPUID\r
3502 registers) is determined by CPUID [3] bits {7:0}.\r
3503 No parameter checking is performed on Index. If the Index value is beyond the\r
3504 implemented CPUID register range, a Reserved Register/Field fault may occur. The caller\r
3505 must either guarantee that Index is valid, or the caller must set up fault handlers to\r
3506 catch the faults. This function is only available on Itanium processors.\r
3507\r
3508 @param Index The 8-bit Processor Identifier Register index to read.\r
3509\r
3510 @return The current value of Processor Identifier Register specified by Index.\r
3511\r
3512**/\r
3513UINT64\r
3514EFIAPI\r
3515AsmReadCpuid (\r
3516 IN UINT8 Index\r
3517 );\r
3518\r
3519\r
3520/**\r
3521 Reads the current value of 64-bit Processor Status Register (PSR).\r
3522 This function is only available on Itanium processors.\r
3523\r
3524 @return The current value of PSR.\r
3525\r
3526**/\r
3527UINT64\r
3528EFIAPI\r
3529AsmReadPsr (\r
3530 VOID\r
3531 );\r
3532\r
3533\r
3534/**\r
3535 Writes the current value of 64-bit Processor Status Register (PSR).\r
3536\r
3537 No parameter checking is performed on Value. All bits of Value corresponding to\r
3538 reserved fields of PSR must be 0 or a Reserved Register/Field fault may occur.\r
3539 The caller must either guarantee that Value is valid, or the caller must set up\r
3540 fault handlers to catch the faults. This function is only available on Itanium processors.\r
3541\r
3542 @param Value The 64-bit value to write to PSR.\r
3543\r
3544 @return The 64-bit value written to the PSR.\r
3545\r
3546**/\r
3547UINT64\r
3548EFIAPI\r
3549AsmWritePsr (\r
3550 IN UINT64 Value\r
3551 );\r
3552\r
3553\r
3554/**\r
3555 Reads the current value of 64-bit Kernel Register #0 (KR0).\r
3556 \r
3557 Reads and returns the current value of KR0. \r
3558 This function is only available on Itanium processors.\r
3559\r
3560 @return The current value of KR0.\r
3561\r
3562**/\r
3563UINT64\r
3564EFIAPI\r
3565AsmReadKr0 (\r
3566 VOID\r
3567 );\r
3568\r
3569\r
3570/**\r
3571 Reads the current value of 64-bit Kernel Register #1 (KR1).\r
3572\r
3573 Reads and returns the current value of KR1. \r
3574 This function is only available on Itanium processors.\r
3575\r
3576 @return The current value of KR1.\r
3577\r
3578**/\r
3579UINT64\r
3580EFIAPI\r
3581AsmReadKr1 (\r
3582 VOID\r
3583 );\r
3584\r
3585\r
3586/**\r
3587 Reads the current value of 64-bit Kernel Register #2 (KR2).\r
3588\r
3589 Reads and returns the current value of KR2. \r
3590 This function is only available on Itanium processors.\r
3591\r
3592 @return The current value of KR2.\r
3593\r
3594**/\r
3595UINT64\r
3596EFIAPI\r
3597AsmReadKr2 (\r
3598 VOID\r
3599 );\r
3600\r
3601\r
3602/**\r
3603 Reads the current value of 64-bit Kernel Register #3 (KR3).\r
3604\r
3605 Reads and returns the current value of KR3. \r
3606 This function is only available on Itanium processors.\r
3607\r
3608 @return The current value of KR3.\r
3609\r
3610**/\r
3611UINT64\r
3612EFIAPI\r
3613AsmReadKr3 (\r
3614 VOID\r
3615 );\r
3616\r
3617\r
3618/**\r
3619 Reads the current value of 64-bit Kernel Register #4 (KR4).\r
3620\r
3621 Reads and returns the current value of KR4. \r
3622 This function is only available on Itanium processors.\r
3623 \r
3624 @return The current value of KR4.\r
3625\r
3626**/\r
3627UINT64\r
3628EFIAPI\r
3629AsmReadKr4 (\r
3630 VOID\r
3631 );\r
3632\r
3633\r
3634/**\r
3635 Reads the current value of 64-bit Kernel Register #5 (KR5).\r
3636\r
3637 Reads and returns the current value of KR5. \r
3638 This function is only available on Itanium processors.\r
3639\r
3640 @return The current value of KR5.\r
3641\r
3642**/\r
3643UINT64\r
3644EFIAPI\r
3645AsmReadKr5 (\r
3646 VOID\r
3647 );\r
3648\r
3649\r
3650/**\r
3651 Reads the current value of 64-bit Kernel Register #6 (KR6).\r
3652\r
3653 Reads and returns the current value of KR6. \r
3654 This function is only available on Itanium processors.\r
3655\r
3656 @return The current value of KR6.\r
3657\r
3658**/\r
3659UINT64\r
3660EFIAPI\r
3661AsmReadKr6 (\r
3662 VOID\r
3663 );\r
3664\r
3665\r
3666/**\r
3667 Reads the current value of 64-bit Kernel Register #7 (KR7).\r
3668\r
3669 Reads and returns the current value of KR7. \r
3670 This function is only available on Itanium processors.\r
3671\r
3672 @return The current value of KR7.\r
3673\r
3674**/\r
3675UINT64\r
3676EFIAPI\r
3677AsmReadKr7 (\r
3678 VOID\r
3679 );\r
3680\r
3681\r
3682/**\r
3683 Write the current value of 64-bit Kernel Register #0 (KR0).\r
3684 \r
3685 Writes the current value of KR0. The 64-bit value written to \r
3686 the KR0 is returned. This function is only available on Itanium processors.\r
3687\r
3688 @param Value The 64-bit value to write to KR0.\r
3689\r
3690 @return The 64-bit value written to the KR0.\r
3691\r
3692**/\r
3693UINT64\r
3694EFIAPI\r
3695AsmWriteKr0 (\r
3696 IN UINT64 Value\r
3697 );\r
3698\r
3699\r
3700/**\r
3701 Write the current value of 64-bit Kernel Register #1 (KR1).\r
3702\r
3703 Writes the current value of KR1. The 64-bit value written to \r
3704 the KR1 is returned. This function is only available on Itanium processors.\r
3705\r
3706 @param Value The 64-bit value to write to KR1.\r
3707\r
3708 @return The 64-bit value written to the KR1.\r
3709\r
3710**/\r
3711UINT64\r
3712EFIAPI\r
3713AsmWriteKr1 (\r
3714 IN UINT64 Value\r
3715 );\r
3716\r
3717\r
3718/**\r
3719 Write the current value of 64-bit Kernel Register #2 (KR2).\r
3720\r
3721 Writes the current value of KR2. The 64-bit value written to \r
3722 the KR2 is returned. This function is only available on Itanium processors.\r
3723\r
3724 @param Value The 64-bit value to write to KR2.\r
3725\r
3726 @return The 64-bit value written to the KR2.\r
3727\r
3728**/\r
3729UINT64\r
3730EFIAPI\r
3731AsmWriteKr2 (\r
3732 IN UINT64 Value\r
3733 );\r
3734\r
3735\r
3736/**\r
3737 Write the current value of 64-bit Kernel Register #3 (KR3).\r
3738\r
3739 Writes the current value of KR3. The 64-bit value written to \r
3740 the KR3 is returned. This function is only available on Itanium processors.\r
3741\r
3742 @param Value The 64-bit value to write to KR3.\r
3743\r
3744 @return The 64-bit value written to the KR3.\r
3745\r
3746**/\r
3747UINT64\r
3748EFIAPI\r
3749AsmWriteKr3 (\r
3750 IN UINT64 Value\r
3751 );\r
3752\r
3753\r
3754/**\r
3755 Write the current value of 64-bit Kernel Register #4 (KR4).\r
3756\r
3757 Writes the current value of KR4. The 64-bit value written to \r
3758 the KR4 is returned. This function is only available on Itanium processors.\r
3759\r
3760 @param Value The 64-bit value to write to KR4.\r
3761\r
3762 @return The 64-bit value written to the KR4.\r
3763\r
3764**/\r
3765UINT64\r
3766EFIAPI\r
3767AsmWriteKr4 (\r
3768 IN UINT64 Value\r
3769 );\r
3770\r
3771\r
3772/**\r
3773 Write the current value of 64-bit Kernel Register #5 (KR5).\r
3774\r
3775 Writes the current value of KR5. The 64-bit value written to \r
3776 the KR5 is returned. This function is only available on Itanium processors.\r
3777\r
3778 @param Value The 64-bit value to write to KR5.\r
3779\r
3780 @return The 64-bit value written to the KR5.\r
3781\r
3782**/\r
3783UINT64\r
3784EFIAPI\r
3785AsmWriteKr5 (\r
3786 IN UINT64 Value\r
3787 );\r
3788\r
3789\r
3790/**\r
3791 Write the current value of 64-bit Kernel Register #6 (KR6).\r
3792\r
3793 Writes the current value of KR6. The 64-bit value written to \r
3794 the KR6 is returned. This function is only available on Itanium processors.\r
3795\r
3796 @param Value The 64-bit value to write to KR6.\r
3797\r
3798 @return The 64-bit value written to the KR6.\r
3799\r
3800**/\r
3801UINT64\r
3802EFIAPI\r
3803AsmWriteKr6 (\r
3804 IN UINT64 Value\r
3805 );\r
3806\r
3807\r
3808/**\r
3809 Write the current value of 64-bit Kernel Register #7 (KR7).\r
3810\r
3811 Writes the current value of KR7. The 64-bit value written to \r
3812 the KR7 is returned. This function is only available on Itanium processors.\r
3813\r
3814 @param Value The 64-bit value to write to KR7.\r
3815\r
3816 @return The 64-bit value written to the KR7.\r
3817\r
3818**/\r
3819UINT64\r
3820EFIAPI\r
3821AsmWriteKr7 (\r
3822 IN UINT64 Value\r
3823 );\r
3824\r
3825\r
3826/**\r
3827 Reads the current value of Interval Timer Counter Register (ITC).\r
3828 \r
3829 Reads and returns the current value of ITC.\r
3830 This function is only available on Itanium processors.\r
3831\r
3832 @return The current value of ITC.\r
3833\r
3834**/\r
3835UINT64\r
3836EFIAPI\r
3837AsmReadItc (\r
3838 VOID\r
3839 );\r
3840\r
3841\r
3842/**\r
3843 Reads the current value of Interval Timer Vector Register (ITV).\r
3844 \r
3845 Reads and returns the current value of ITV. \r
3846 This function is only available on Itanium processors.\r
3847\r
3848 @return The current value of ITV.\r
3849\r
3850**/\r
3851UINT64\r
3852EFIAPI\r
3853AsmReadItv (\r
3854 VOID\r
3855 );\r
3856\r
3857\r
3858/**\r
3859 Reads the current value of Interval Timer Match Register (ITM).\r
3860 \r
3861 Reads and returns the current value of ITM.\r
3862 This function is only available on Itanium processors.\r
3863\r
3864 @return The current value of ITM.\r
3865**/\r
3866UINT64\r
3867EFIAPI\r
3868AsmReadItm (\r
3869 VOID\r
3870 );\r
3871\r
3872\r
3873/**\r
3874 Writes the current value of 64-bit Interval Timer Counter Register (ITC).\r
3875 \r
3876 Writes the current value of ITC. The 64-bit value written to the ITC is returned. \r
3877 This function is only available on Itanium processors.\r
3878\r
3879 @param Value The 64-bit value to write to ITC.\r
3880\r
3881 @return The 64-bit value written to the ITC.\r
3882\r
3883**/\r
3884UINT64\r
3885EFIAPI\r
3886AsmWriteItc (\r
3887 IN UINT64 Value\r
3888 );\r
3889\r
3890\r
3891/**\r
3892 Writes the current value of 64-bit Interval Timer Match Register (ITM).\r
3893 \r
3894 Writes the current value of ITM. The 64-bit value written to the ITM is returned. \r
3895 This function is only available on Itanium processors.\r
3896\r
3897 @param Value The 64-bit value to write to ITM.\r
3898\r
3899 @return The 64-bit value written to the ITM.\r
3900\r
3901**/\r
3902UINT64\r
3903EFIAPI\r
3904AsmWriteItm (\r
3905 IN UINT64 Value\r
3906 );\r
3907\r
3908\r
3909/**\r
3910 Writes the current value of 64-bit Interval Timer Vector Register (ITV).\r
3911 \r
3912 Writes the current value of ITV. The 64-bit value written to the ITV is returned. \r
3913 No parameter checking is performed on Value. All bits of Value corresponding to\r
3914 reserved fields of ITV must be 0 or a Reserved Register/Field fault may occur.\r
3915 The caller must either guarantee that Value is valid, or the caller must set up\r
3916 fault handlers to catch the faults.\r
3917 This function is only available on Itanium processors.\r
3918\r
3919 @param Value The 64-bit value to write to ITV.\r
3920\r
3921 @return The 64-bit value written to the ITV.\r
3922\r
3923**/\r
3924UINT64\r
3925EFIAPI\r
3926AsmWriteItv (\r
3927 IN UINT64 Value\r
3928 );\r
3929\r
3930\r
3931/**\r
3932 Reads the current value of Default Control Register (DCR).\r
3933 \r
3934 Reads and returns the current value of DCR. This function is only available on Itanium processors.\r
3935\r
3936 @return The current value of DCR.\r
3937\r
3938**/\r
3939UINT64\r
3940EFIAPI\r
3941AsmReadDcr (\r
3942 VOID\r
3943 );\r
3944\r
3945\r
3946/**\r
3947 Reads the current value of Interruption Vector Address Register (IVA).\r
3948 \r
3949 Reads and returns the current value of IVA. This function is only available on Itanium processors.\r
3950\r
3951 @return The current value of IVA.\r
3952**/\r
3953UINT64\r
3954EFIAPI\r
3955AsmReadIva (\r
3956 VOID\r
3957 );\r
3958\r
3959\r
3960/**\r
3961 Reads the current value of Page Table Address Register (PTA).\r
3962 \r
3963 Reads and returns the current value of PTA. This function is only available on Itanium processors.\r
3964\r
3965 @return The current value of PTA.\r
3966\r
3967**/\r
3968UINT64\r
3969EFIAPI\r
3970AsmReadPta (\r
3971 VOID\r
3972 );\r
3973\r
3974\r
3975/**\r
3976 Writes the current value of 64-bit Default Control Register (DCR).\r
3977 \r
3978 Writes the current value of DCR. The 64-bit value written to the DCR is returned. \r
3979 No parameter checking is performed on Value. All bits of Value corresponding to\r
3980 reserved fields of DCR must be 0 or a Reserved Register/Field fault may occur.\r
3981 The caller must either guarantee that Value is valid, or the caller must set up\r
3982 fault handlers to catch the faults.\r
3983 This function is only available on Itanium processors.\r
3984\r
3985 @param Value The 64-bit value to write to DCR.\r
3986\r
3987 @return The 64-bit value written to the DCR.\r
3988\r
3989**/\r
3990UINT64\r
3991EFIAPI\r
3992AsmWriteDcr (\r
3993 IN UINT64 Value\r
3994 );\r
3995\r
3996\r
3997/**\r
3998 Writes the current value of 64-bit Interruption Vector Address Register (IVA).\r
3999 \r
4000 Writes the current value of IVA. The 64-bit value written to the IVA is returned. \r
4001 The size of vector table is 32 K bytes and is 32 K bytes aligned\r
4002 the low 15 bits of Value is ignored when written.\r
4003 This function is only available on Itanium processors.\r
4004\r
4005 @param Value The 64-bit value to write to IVA.\r
4006\r
4007 @return The 64-bit value written to the IVA.\r
4008\r
4009**/\r
4010UINT64\r
4011EFIAPI\r
4012AsmWriteIva (\r
4013 IN UINT64 Value\r
4014 );\r
4015\r
4016\r
4017/**\r
4018 Writes the current value of 64-bit Page Table Address Register (PTA).\r
4019 \r
4020 Writes the current value of PTA. The 64-bit value written to the PTA is returned. \r
4021 No parameter checking is performed on Value. All bits of Value corresponding to\r
4022 reserved fields of DCR must be 0 or a Reserved Register/Field fault may occur.\r
4023 The caller must either guarantee that Value is valid, or the caller must set up\r
4024 fault handlers to catch the faults.\r
4025 This function is only available on Itanium processors.\r
4026\r
4027 @param Value The 64-bit value to write to PTA.\r
4028\r
4029 @return The 64-bit value written to the PTA.\r
4030**/\r
4031UINT64\r
4032EFIAPI\r
4033AsmWritePta (\r
4034 IN UINT64 Value\r
4035 );\r
4036\r
4037\r
4038/**\r
4039 Reads the current value of Local Interrupt ID Register (LID).\r
4040 \r
4041 Reads and returns the current value of LID. This function is only available on Itanium processors.\r
4042\r
4043 @return The current value of LID.\r
4044\r
4045**/\r
4046UINT64\r
4047EFIAPI\r
4048AsmReadLid (\r
4049 VOID\r
4050 );\r
4051\r
4052\r
4053/**\r
4054 Reads the current value of External Interrupt Vector Register (IVR).\r
4055 \r
4056 Reads and returns the current value of IVR. This function is only available on Itanium processors. \r
4057\r
4058 @return The current value of IVR.\r
4059\r
4060**/\r
4061UINT64\r
4062EFIAPI\r
4063AsmReadIvr (\r
4064 VOID\r
4065 );\r
4066\r
4067\r
4068/**\r
4069 Reads the current value of Task Priority Register (TPR).\r
4070 \r
4071 Reads and returns the current value of TPR. This function is only available on Itanium processors. \r
4072\r
4073 @return The current value of TPR.\r
4074\r
4075**/\r
4076UINT64\r
4077EFIAPI\r
4078AsmReadTpr (\r
4079 VOID\r
4080 );\r
4081\r
4082\r
4083/**\r
4084 Reads the current value of External Interrupt Request Register #0 (IRR0).\r
4085 \r
4086 Reads and returns the current value of IRR0. This function is only available on Itanium processors. \r
4087\r
4088 @return The current value of IRR0.\r
4089\r
4090**/\r
4091UINT64\r
4092EFIAPI\r
4093AsmReadIrr0 (\r
4094 VOID\r
4095 );\r
4096\r
4097\r
4098/**\r
4099 Reads the current value of External Interrupt Request Register #1 (IRR1).\r
4100 \r
4101 Reads and returns the current value of IRR1. This function is only available on Itanium processors. \r
4102\r
4103 @return The current value of IRR1.\r
4104\r
4105**/\r
4106UINT64\r
4107EFIAPI\r
4108AsmReadIrr1 (\r
4109 VOID\r
4110 );\r
4111\r
4112\r
4113/**\r
4114 Reads the current value of External Interrupt Request Register #2 (IRR2).\r
4115 \r
4116 Reads and returns the current value of IRR2. This function is only available on Itanium processors.\r
4117\r
4118 @return The current value of IRR2.\r
4119\r
4120**/\r
4121UINT64\r
4122EFIAPI\r
4123AsmReadIrr2 (\r
4124 VOID\r
4125 );\r
4126\r
4127\r
4128/**\r
4129 Reads the current value of External Interrupt Request Register #3 (IRR3).\r
4130 \r
4131 Reads and returns the current value of IRR3. This function is only available on Itanium processors. \r
4132\r
4133 @return The current value of IRR3.\r
4134\r
4135**/\r
4136UINT64\r
4137EFIAPI\r
4138AsmReadIrr3 (\r
4139 VOID\r
4140 );\r
4141\r
4142\r
4143/**\r
4144 Reads the current value of Performance Monitor Vector Register (PMV).\r
4145 \r
4146 Reads and returns the current value of PMV. This function is only available on Itanium processors. \r
4147\r
4148 @return The current value of PMV.\r
4149\r
4150**/\r
4151UINT64\r
4152EFIAPI\r
4153AsmReadPmv (\r
4154 VOID\r
4155 );\r
4156\r
4157\r
4158/**\r
4159 Reads the current value of Corrected Machine Check Vector Register (CMCV).\r
4160 \r
4161 Reads and returns the current value of CMCV. This function is only available on Itanium processors.\r
4162\r
4163 @return The current value of CMCV.\r
4164\r
4165**/\r
4166UINT64\r
4167EFIAPI\r
4168AsmReadCmcv (\r
4169 VOID\r
4170 );\r
4171\r
4172\r
4173/**\r
4174 Reads the current value of Local Redirection Register #0 (LRR0).\r
4175 \r
4176 Reads and returns the current value of LRR0. This function is only available on Itanium processors. \r
4177\r
4178 @return The current value of LRR0.\r
4179\r
4180**/\r
4181UINT64\r
4182EFIAPI\r
4183AsmReadLrr0 (\r
4184 VOID\r
4185 );\r
4186\r
4187\r
4188/**\r
4189 Reads the current value of Local Redirection Register #1 (LRR1).\r
4190 \r
4191 Reads and returns the current value of LRR1. This function is only available on Itanium processors.\r
4192\r
4193 @return The current value of LRR1.\r
4194\r
4195**/\r
4196UINT64\r
4197EFIAPI\r
4198AsmReadLrr1 (\r
4199 VOID\r
4200 );\r
4201\r
4202\r
4203/**\r
4204 Writes the current value of 64-bit Page Local Interrupt ID Register (LID).\r
4205 \r
4206 Writes the current value of LID. The 64-bit value written to the LID is returned. \r
4207 No parameter checking is performed on Value. All bits of Value corresponding to\r
4208 reserved fields of LID must be 0 or a Reserved Register/Field fault may occur.\r
4209 The caller must either guarantee that Value is valid, or the caller must set up\r
4210 fault handlers to catch the faults.\r
4211 This function is only available on Itanium processors.\r
4212\r
4213 @param Value The 64-bit value to write to LID.\r
4214\r
4215 @return The 64-bit value written to the LID.\r
4216\r
4217**/\r
4218UINT64\r
4219EFIAPI\r
4220AsmWriteLid (\r
4221 IN UINT64 Value\r
4222 );\r
4223\r
4224\r
4225/**\r
4226 Writes the current value of 64-bit Task Priority Register (TPR).\r
4227 \r
4228 Writes the current value of TPR. The 64-bit value written to the TPR is returned. \r
4229 No parameter checking is performed on Value. All bits of Value corresponding to\r
4230 reserved fields of TPR must be 0 or a Reserved Register/Field fault may occur.\r
4231 The caller must either guarantee that Value is valid, or the caller must set up\r
4232 fault handlers to catch the faults.\r
4233 This function is only available on Itanium processors.\r
4234\r
4235 @param Value The 64-bit value to write to TPR.\r
4236\r
4237 @return The 64-bit value written to the TPR.\r
4238\r
4239**/\r
4240UINT64\r
4241EFIAPI\r
4242AsmWriteTpr (\r
4243 IN UINT64 Value\r
4244 );\r
4245\r
4246\r
4247/**\r
4248 Performs a write operation on End OF External Interrupt Register (EOI).\r
4249 \r
4250 Writes a value of 0 to the EOI Register. This function is only available on Itanium processors.\r
4251\r
4252**/\r
4253VOID\r
4254EFIAPI\r
4255AsmWriteEoi (\r
4256 VOID\r
4257 );\r
4258\r
4259\r
4260/**\r
4261 Writes the current value of 64-bit Performance Monitor Vector Register (PMV).\r
4262 \r
4263 Writes the current value of PMV. The 64-bit value written to the PMV is returned. \r
4264 No parameter checking is performed on Value. All bits of Value corresponding\r
4265 to reserved fields of PMV must be 0 or a Reserved Register/Field fault may occur.\r
4266 The caller must either guarantee that Value is valid, or the caller must set up\r
4267 fault handlers to catch the faults.\r
4268 This function is only available on Itanium processors.\r
4269\r
4270 @param Value The 64-bit value to write to PMV.\r
4271\r
4272 @return The 64-bit value written to the PMV.\r
4273\r
4274**/\r
4275UINT64\r
4276EFIAPI\r
4277AsmWritePmv (\r
4278 IN UINT64 Value\r
4279 );\r
4280\r
4281\r
4282/**\r
4283 Writes the current value of 64-bit Corrected Machine Check Vector Register (CMCV).\r
4284 \r
4285 Writes the current value of CMCV. The 64-bit value written to the CMCV is returned. \r
4286 No parameter checking is performed on Value. All bits of Value corresponding\r
4287 to reserved fields of CMCV must be 0 or a Reserved Register/Field fault may occur.\r
4288 The caller must either guarantee that Value is valid, or the caller must set up\r
4289 fault handlers to catch the faults.\r
4290 This function is only available on Itanium processors.\r
4291\r
4292 @param Value The 64-bit value to write to CMCV.\r
4293\r
4294 @return The 64-bit value written to the CMCV.\r
4295\r
4296**/\r
4297UINT64\r
4298EFIAPI\r
4299AsmWriteCmcv (\r
4300 IN UINT64 Value\r
4301 );\r
4302\r
4303\r
4304/**\r
4305 Writes the current value of 64-bit Local Redirection Register #0 (LRR0).\r
4306 \r
4307 Writes the current value of LRR0. The 64-bit value written to the LRR0 is returned. \r
4308 No parameter checking is performed on Value. All bits of Value corresponding\r
4309 to reserved fields of LRR0 must be 0 or a Reserved Register/Field fault may occur.\r
4310 The caller must either guarantee that Value is valid, or the caller must set up\r
4311 fault handlers to catch the faults.\r
4312 This function is only available on Itanium processors.\r
4313\r
4314 @param Value The 64-bit value to write to LRR0.\r
4315\r
4316 @return The 64-bit value written to the LRR0.\r
4317\r
4318**/\r
4319UINT64\r
4320EFIAPI\r
4321AsmWriteLrr0 (\r
4322 IN UINT64 Value\r
4323 );\r
4324\r
4325\r
4326/**\r
4327 Writes the current value of 64-bit Local Redirection Register #1 (LRR1).\r
4328 \r
4329 Writes the current value of LRR1. The 64-bit value written to the LRR1 is returned. \r
4330 No parameter checking is performed on Value. All bits of Value corresponding\r
4331 to reserved fields of LRR1 must be 0 or a Reserved Register/Field fault may occur.\r
4332 The caller must either guarantee that Value is valid, or the caller must\r
4333 set up fault handlers to catch the faults.\r
4334 This function is only available on Itanium processors.\r
4335\r
4336 @param Value The 64-bit value to write to LRR1.\r
4337\r
4338 @return The 64-bit value written to the LRR1.\r
4339\r
4340**/\r
4341UINT64\r
4342EFIAPI\r
4343AsmWriteLrr1 (\r
4344 IN UINT64 Value\r
4345 );\r
4346\r
4347\r
4348/**\r
4349 Reads the current value of Instruction Breakpoint Register (IBR).\r
4350 \r
4351 The Instruction Breakpoint Registers are used in pairs. The even numbered\r
4352 registers contain breakpoint addresses, and the odd numbered registers contain\r
4353 breakpoint mask conditions. At least four instruction registers pairs are implemented\r
4354 on all processor models. Implemented registers are contiguous starting with\r
4355 register 0. No parameter checking is performed on Index, and if the Index value\r
4356 is beyond the implemented IBR register range, a Reserved Register/Field fault may\r
4357 occur. The caller must either guarantee that Index is valid, or the caller must\r
4358 set up fault handlers to catch the faults.\r
4359 This function is only available on Itanium processors.\r
4360\r
4361 @param Index The 8-bit Instruction Breakpoint Register index to read.\r
4362\r
4363 @return The current value of Instruction Breakpoint Register specified by Index.\r
4364\r
4365**/\r
4366UINT64\r
4367EFIAPI\r
4368AsmReadIbr (\r
4369 IN UINT8 Index\r
4370 );\r
4371\r
4372\r
4373/**\r
4374 Reads the current value of Data Breakpoint Register (DBR).\r
4375\r
4376 The Data Breakpoint Registers are used in pairs. The even numbered registers\r
4377 contain breakpoint addresses, and odd numbered registers contain breakpoint\r
4378 mask conditions. At least four data registers pairs are implemented on all processor\r
4379 models. Implemented registers are contiguous starting with register 0.\r
4380 No parameter checking is performed on Index. If the Index value is beyond\r
4381 the implemented DBR register range, a Reserved Register/Field fault may occur.\r
4382 The caller must either guarantee that Index is valid, or the caller must set up\r
4383 fault handlers to catch the faults.\r
4384 This function is only available on Itanium processors.\r
4385\r
4386 @param Index The 8-bit Data Breakpoint Register index to read.\r
4387\r
4388 @return The current value of Data Breakpoint Register specified by Index.\r
4389\r
4390**/\r
4391UINT64\r
4392EFIAPI\r
4393AsmReadDbr (\r
4394 IN UINT8 Index\r
4395 );\r
4396\r
4397\r
4398/**\r
4399 Reads the current value of Performance Monitor Configuration Register (PMC).\r
4400\r
4401 All processor implementations provide at least four performance counters\r
4402 (PMC/PMD [4]...PMC/PMD [7] pairs), and four performance monitor counter overflow\r
4403 status registers (PMC [0]... PMC [3]). Processor implementations may provide\r
4404 additional implementation-dependent PMC and PMD to increase the number of\r
4405 'generic' performance counters (PMC/PMD pairs). The remainder of PMC and PMD\r
4406 register set is implementation dependent. No parameter checking is performed\r
4407 on Index. If the Index value is beyond the implemented PMC register range,\r
4408 zero value will be returned.\r
4409 This function is only available on Itanium processors.\r
4410\r
4411 @param Index The 8-bit Performance Monitor Configuration Register index to read.\r
4412\r
4413 @return The current value of Performance Monitor Configuration Register\r
4414 specified by Index.\r
4415\r
4416**/\r
4417UINT64\r
4418EFIAPI\r
4419AsmReadPmc (\r
4420 IN UINT8 Index\r
4421 );\r
4422\r
4423\r
4424/**\r
4425 Reads the current value of Performance Monitor Data Register (PMD).\r
4426\r
4427 All processor implementations provide at least 4 performance counters\r
4428 (PMC/PMD [4]...PMC/PMD [7] pairs), and 4 performance monitor counter\r
4429 overflow status registers (PMC [0]... PMC [3]). Processor implementations may\r
4430 provide additional implementation-dependent PMC and PMD to increase the number\r
4431 of 'generic' performance counters (PMC/PMD pairs). The remainder of PMC and PMD\r
4432 register set is implementation dependent. No parameter checking is performed\r
4433 on Index. If the Index value is beyond the implemented PMD register range,\r
4434 zero value will be returned.\r
4435 This function is only available on Itanium processors.\r
4436\r
4437 @param Index The 8-bit Performance Monitor Data Register index to read.\r
4438\r
4439 @return The current value of Performance Monitor Data Register specified by Index.\r
4440\r
4441**/\r
4442UINT64\r
4443EFIAPI\r
4444AsmReadPmd (\r
4445 IN UINT8 Index\r
4446 );\r
4447\r
4448\r
4449/**\r
4450 Writes the current value of 64-bit Instruction Breakpoint Register (IBR).\r
4451\r
4452 Writes current value of Instruction Breakpoint Register specified by Index.\r
4453 The Instruction Breakpoint Registers are used in pairs. The even numbered\r
4454 registers contain breakpoint addresses, and odd numbered registers contain\r
4455 breakpoint mask conditions. At least four instruction registers pairs are implemented\r
4456 on all processor models. Implemented registers are contiguous starting with\r
4457 register 0. No parameter checking is performed on Index. If the Index value\r
4458 is beyond the implemented IBR register range, a Reserved Register/Field fault may\r
4459 occur. The caller must either guarantee that Index is valid, or the caller must\r
4460 set up fault handlers to catch the faults.\r
4461 This function is only available on Itanium processors.\r
4462\r
4463 @param Index The 8-bit Instruction Breakpoint Register index to write.\r
4464 @param Value The 64-bit value to write to IBR.\r
4465\r
4466 @return The 64-bit value written to the IBR.\r
4467\r
4468**/\r
4469UINT64\r
4470EFIAPI\r
4471AsmWriteIbr (\r
4472 IN UINT8 Index,\r
4473 IN UINT64 Value\r
4474 );\r
4475\r
4476\r
4477/**\r
4478 Writes the current value of 64-bit Data Breakpoint Register (DBR).\r
4479\r
4480 Writes current value of Data Breakpoint Register specified by Index.\r
4481 The Data Breakpoint Registers are used in pairs. The even numbered registers\r
4482 contain breakpoint addresses, and odd numbered registers contain breakpoint\r
4483 mask conditions. At least four data registers pairs are implemented on all processor\r
4484 models. Implemented registers are contiguous starting with register 0. No parameter\r
4485 checking is performed on Index. If the Index value is beyond the implemented\r
4486 DBR register range, a Reserved Register/Field fault may occur. The caller must\r
4487 either guarantee that Index is valid, or the caller must set up fault handlers to\r
4488 catch the faults.\r
4489 This function is only available on Itanium processors.\r
4490\r
4491 @param Index The 8-bit Data Breakpoint Register index to write.\r
4492 @param Value The 64-bit value to write to DBR.\r
4493\r
4494 @return The 64-bit value written to the DBR.\r
4495\r
4496**/\r
4497UINT64\r
4498EFIAPI\r
4499AsmWriteDbr (\r
4500 IN UINT8 Index,\r
4501 IN UINT64 Value\r
4502 );\r
4503\r
4504\r
4505/**\r
4506 Writes the current value of 64-bit Performance Monitor Configuration Register (PMC).\r
4507\r
4508 Writes current value of Performance Monitor Configuration Register specified by Index.\r
4509 All processor implementations provide at least four performance counters\r
4510 (PMC/PMD [4]...PMC/PMD [7] pairs), and four performance monitor counter overflow status\r
4511 registers (PMC [0]... PMC [3]). Processor implementations may provide additional\r
4512 implementation-dependent PMC and PMD to increase the number of 'generic' performance\r
4513 counters (PMC/PMD pairs). The remainder of PMC and PMD register set is implementation\r
4514 dependent. No parameter checking is performed on Index. If the Index value is\r
4515 beyond the implemented PMC register range, the write is ignored.\r
4516 This function is only available on Itanium processors.\r
4517\r
4518 @param Index The 8-bit Performance Monitor Configuration Register index to write.\r
4519 @param Value The 64-bit value to write to PMC.\r
4520\r
4521 @return The 64-bit value written to the PMC.\r
4522\r
4523**/\r
4524UINT64\r
4525EFIAPI\r
4526AsmWritePmc (\r
4527 IN UINT8 Index,\r
4528 IN UINT64 Value\r
4529 );\r
4530\r
4531\r
4532/**\r
4533 Writes the current value of 64-bit Performance Monitor Data Register (PMD).\r
4534\r
4535 Writes current value of Performance Monitor Data Register specified by Index.\r
4536 All processor implementations provide at least four performance counters\r
4537 (PMC/PMD [4]...PMC/PMD [7] pairs), and four performance monitor counter overflow\r
4538 status registers (PMC [0]... PMC [3]). Processor implementations may provide\r
4539 additional implementation-dependent PMC and PMD to increase the number of 'generic'\r
4540 performance counters (PMC/PMD pairs). The remainder of PMC and PMD register set\r
4541 is implementation dependent. No parameter checking is performed on Index. If the\r
4542 Index value is beyond the implemented PMD register range, the write is ignored.\r
4543 This function is only available on Itanium processors.\r
4544\r
4545 @param Index The 8-bit Performance Monitor Data Register index to write.\r
4546 @param Value The 64-bit value to write to PMD.\r
4547\r
4548 @return The 64-bit value written to the PMD.\r
4549\r
4550**/\r
4551UINT64\r
4552EFIAPI\r
4553AsmWritePmd (\r
4554 IN UINT8 Index,\r
4555 IN UINT64 Value\r
4556 );\r
4557\r
4558\r
4559/**\r
4560 Reads the current value of 64-bit Global Pointer (GP).\r
4561\r
4562 Reads and returns the current value of GP.\r
4563 This function is only available on Itanium processors.\r
4564\r
4565 @return The current value of GP.\r
4566\r
4567**/\r
4568UINT64\r
4569EFIAPI\r
4570AsmReadGp (\r
4571 VOID\r
4572 );\r
4573\r
4574\r
4575/**\r
4576 Write the current value of 64-bit Global Pointer (GP).\r
4577\r
4578 Writes the current value of GP. The 64-bit value written to the GP is returned.\r
4579 No parameter checking is performed on Value.\r
4580 This function is only available on Itanium processors.\r
4581\r
4582 @param Value The 64-bit value to write to GP.\r
4583\r
4584 @return The 64-bit value written to the GP.\r
4585\r
4586**/\r
4587UINT64\r
4588EFIAPI\r
4589AsmWriteGp (\r
4590 IN UINT64 Value\r
4591 );\r
4592\r
4593\r
4594/**\r
4595 Reads the current value of 64-bit Stack Pointer (SP).\r
4596\r
4597 Reads and returns the current value of SP.\r
4598 This function is only available on Itanium processors.\r
4599\r
4600 @return The current value of SP.\r
4601\r
4602**/\r
4603UINT64\r
4604EFIAPI\r
4605AsmReadSp (\r
4606 VOID\r
4607 );\r
4608\r
4609\r
4610///\r
4611/// Valid Index value for AsmReadControlRegister().\r
4612///\r
4613#define IPF_CONTROL_REGISTER_DCR 0\r
4614#define IPF_CONTROL_REGISTER_ITM 1\r
4615#define IPF_CONTROL_REGISTER_IVA 2\r
4616#define IPF_CONTROL_REGISTER_PTA 8\r
4617#define IPF_CONTROL_REGISTER_IPSR 16\r
4618#define IPF_CONTROL_REGISTER_ISR 17\r
4619#define IPF_CONTROL_REGISTER_IIP 19\r
4620#define IPF_CONTROL_REGISTER_IFA 20\r
4621#define IPF_CONTROL_REGISTER_ITIR 21\r
4622#define IPF_CONTROL_REGISTER_IIPA 22\r
4623#define IPF_CONTROL_REGISTER_IFS 23\r
4624#define IPF_CONTROL_REGISTER_IIM 24\r
4625#define IPF_CONTROL_REGISTER_IHA 25\r
4626#define IPF_CONTROL_REGISTER_LID 64\r
4627#define IPF_CONTROL_REGISTER_IVR 65\r
4628#define IPF_CONTROL_REGISTER_TPR 66\r
4629#define IPF_CONTROL_REGISTER_EOI 67\r
4630#define IPF_CONTROL_REGISTER_IRR0 68\r
4631#define IPF_CONTROL_REGISTER_IRR1 69\r
4632#define IPF_CONTROL_REGISTER_IRR2 70\r
4633#define IPF_CONTROL_REGISTER_IRR3 71\r
4634#define IPF_CONTROL_REGISTER_ITV 72\r
4635#define IPF_CONTROL_REGISTER_PMV 73\r
4636#define IPF_CONTROL_REGISTER_CMCV 74\r
4637#define IPF_CONTROL_REGISTER_LRR0 80\r
4638#define IPF_CONTROL_REGISTER_LRR1 81\r
4639\r
4640/**\r
4641 Reads a 64-bit control register.\r
4642\r
4643 Reads and returns the control register specified by Index. The valid Index valued \r
4644 are defined above in "Related Definitions".\r
4645 If Index is invalid then 0xFFFFFFFFFFFFFFFF is returned. This function is only \r
4646 available on Itanium processors.\r
4647\r
4648 @param Index The index of the control register to read.\r
4649\r
4650 @return The control register specified by Index.\r
4651\r
4652**/\r
4653UINT64\r
4654EFIAPI\r
4655AsmReadControlRegister (\r
4656 IN UINT64 Index\r
4657 );\r
4658\r
4659\r
4660///\r
4661/// Valid Index value for AsmReadApplicationRegister().\r
4662///\r
4663#define IPF_APPLICATION_REGISTER_K0 0\r
4664#define IPF_APPLICATION_REGISTER_K1 1\r
4665#define IPF_APPLICATION_REGISTER_K2 2\r
4666#define IPF_APPLICATION_REGISTER_K3 3\r
4667#define IPF_APPLICATION_REGISTER_K4 4\r
4668#define IPF_APPLICATION_REGISTER_K5 5\r
4669#define IPF_APPLICATION_REGISTER_K6 6\r
4670#define IPF_APPLICATION_REGISTER_K7 7\r
4671#define IPF_APPLICATION_REGISTER_RSC 16\r
4672#define IPF_APPLICATION_REGISTER_BSP 17\r
4673#define IPF_APPLICATION_REGISTER_BSPSTORE 18\r
4674#define IPF_APPLICATION_REGISTER_RNAT 19\r
4675#define IPF_APPLICATION_REGISTER_FCR 21\r
4676#define IPF_APPLICATION_REGISTER_EFLAG 24\r
4677#define IPF_APPLICATION_REGISTER_CSD 25\r
4678#define IPF_APPLICATION_REGISTER_SSD 26\r
4679#define IPF_APPLICATION_REGISTER_CFLG 27\r
4680#define IPF_APPLICATION_REGISTER_FSR 28\r
4681#define IPF_APPLICATION_REGISTER_FIR 29\r
4682#define IPF_APPLICATION_REGISTER_FDR 30\r
4683#define IPF_APPLICATION_REGISTER_CCV 32\r
4684#define IPF_APPLICATION_REGISTER_UNAT 36\r
4685#define IPF_APPLICATION_REGISTER_FPSR 40\r
4686#define IPF_APPLICATION_REGISTER_ITC 44\r
4687#define IPF_APPLICATION_REGISTER_PFS 64\r
4688#define IPF_APPLICATION_REGISTER_LC 65\r
4689#define IPF_APPLICATION_REGISTER_EC 66\r
4690\r
4691/**\r
4692 Reads a 64-bit application register.\r
4693\r
4694 Reads and returns the application register specified by Index. The valid Index \r
4695 valued are defined above in "Related Definitions".\r
4696 If Index is invalid then 0xFFFFFFFFFFFFFFFF is returned. This function is only \r
4697 available on Itanium processors.\r
4698\r
4699 @param Index The index of the application register to read.\r
4700\r
4701 @return The application register specified by Index.\r
4702\r
4703**/\r
4704UINT64\r
4705EFIAPI\r
4706AsmReadApplicationRegister (\r
4707 IN UINT64 Index\r
4708 );\r
4709\r
4710\r
4711/**\r
4712 Reads the current value of a Machine Specific Register (MSR).\r
4713\r
4714 Reads and returns the current value of the Machine Specific Register specified by Index. No\r
4715 parameter checking is performed on Index, and if the Index value is beyond the implemented MSR\r
4716 register range, a Reserved Register/Field fault may occur. The caller must either guarantee that\r
4717 Index is valid, or the caller must set up fault handlers to catch the faults. This function is\r
4718 only available on Itanium processors.\r
4719\r
4720 @param Index The 8-bit Machine Specific Register index to read.\r
4721\r
4722 @return The current value of the Machine Specific Register specified by Index. \r
4723\r
4724**/\r
4725UINT64\r
4726EFIAPI\r
4727AsmReadMsr (\r
4728 IN UINT8 Index \r
4729 );\r
4730\r
4731\r
4732/**\r
4733 Writes the current value of a Machine Specific Register (MSR).\r
4734\r
4735 Writes Value to the Machine Specific Register specified by Index. Value is returned. No\r
4736 parameter checking is performed on Index, and if the Index value is beyond the implemented MSR\r
4737 register range, a Reserved Register/Field fault may occur. The caller must either guarantee that\r
4738 Index is valid, or the caller must set up fault handlers to catch the faults. This function is\r
4739 only available on Itanium processors.\r
4740\r
4741 @param Index The 8-bit Machine Specific Register index to write.\r
4742 @param Value The 64-bit value to write to the Machine Specific Register.\r
4743\r
4744 @return The 64-bit value to write to the Machine Specific Register. \r
4745\r
4746**/\r
4747UINT64\r
4748EFIAPI\r
4749AsmWriteMsr (\r
4750 IN UINT8 Index, \r
4751 IN UINT64 Value \r
4752 );\r
4753\r
4754\r
4755/**\r
4756 Determines if the CPU is currently executing in virtual, physical, or mixed mode.\r
4757\r
4758 Determines the current execution mode of the CPU.\r
4759 If the CPU is in virtual mode(PSR.RT=1, PSR.DT=1, PSR.IT=1), then 1 is returned.\r
4760 If the CPU is in physical mode(PSR.RT=0, PSR.DT=0, PSR.IT=0), then 0 is returned.\r
4761 If the CPU is not in physical mode or virtual mode, then it is in mixed mode,\r
4762 and -1 is returned.\r
4763 This function is only available on Itanium processors.\r
4764\r
4765 @retval 1 The CPU is in virtual mode.\r
4766 @retval 0 The CPU is in physical mode.\r
4767 @retval -1 The CPU is in mixed mode.\r
4768\r
4769**/\r
4770INT64\r
4771EFIAPI\r
4772AsmCpuVirtual (\r
4773 VOID\r
4774 );\r
4775\r
4776\r
4777/**\r
4778 Makes a PAL procedure call.\r
4779\r
4780 This is a wrapper function to make a PAL procedure call. Based on the Index\r
4781 value this API will make static or stacked PAL call. The following table\r
4782 describes the usage of PAL Procedure Index Assignment. Architected procedures\r
4783 may be designated as required or optional. If a PAL procedure is specified\r
4784 as optional, a unique return code of 0xFFFFFFFFFFFFFFFF is returned in the\r
4785 Status field of the PAL_CALL_RETURN structure.\r
4786 This indicates that the procedure is not present in this PAL implementation.\r
4787 It is the caller's responsibility to check for this return code after calling\r
4788 any optional PAL procedure.\r
4789 No parameter checking is performed on the 5 input parameters, but there are\r
4790 some common rules that the caller should follow when making a PAL call. Any\r
4791 address passed to PAL as buffers for return parameters must be 8-byte aligned.\r
4792 Unaligned addresses may cause undefined results. For those parameters defined\r
4793 as reserved or some fields defined as reserved must be zero filled or the invalid\r
4794 argument return value may be returned or undefined result may occur during the\r
4795 execution of the procedure. If the PalEntryPoint does not point to a valid\r
4796 PAL entry point then the system behavior is undefined. This function is only\r
4797 available on Itanium processors.\r
4798\r
4799 @param PalEntryPoint The PAL procedure calls entry point.\r
4800 @param Index The PAL procedure Index number.\r
4801 @param Arg2 The 2nd parameter for PAL procedure calls.\r
4802 @param Arg3 The 3rd parameter for PAL procedure calls.\r
4803 @param Arg4 The 4th parameter for PAL procedure calls.\r
4804\r
4805 @return structure returned from the PAL Call procedure, including the status and return value.\r
4806\r
4807**/\r
4808PAL_CALL_RETURN\r
4809EFIAPI\r
4810AsmPalCall (\r
4811 IN UINT64 PalEntryPoint,\r
4812 IN UINT64 Index,\r
4813 IN UINT64 Arg2,\r
4814 IN UINT64 Arg3,\r
4815 IN UINT64 Arg4\r
4816 );\r
4817#endif\r
4818\r
4819#if defined (MDE_CPU_IA32) || defined (MDE_CPU_X64)\r
4820///\r
4821/// IA32 and x64 Specific Functions.\r
4822/// Byte packed structure for 16-bit Real Mode EFLAGS.\r
4823///\r
4824typedef union {\r
4825 struct {\r
4826 UINT32 CF:1; ///< Carry Flag.\r
4827 UINT32 Reserved_0:1; ///< Reserved.\r
4828 UINT32 PF:1; ///< Parity Flag.\r
4829 UINT32 Reserved_1:1; ///< Reserved.\r
4830 UINT32 AF:1; ///< Auxiliary Carry Flag.\r
4831 UINT32 Reserved_2:1; ///< Reserved.\r
4832 UINT32 ZF:1; ///< Zero Flag.\r
4833 UINT32 SF:1; ///< Sign Flag.\r
4834 UINT32 TF:1; ///< Trap Flag.\r
4835 UINT32 IF:1; ///< Interrupt Enable Flag.\r
4836 UINT32 DF:1; ///< Direction Flag.\r
4837 UINT32 OF:1; ///< Overflow Flag.\r
4838 UINT32 IOPL:2; ///< I/O Privilege Level.\r
4839 UINT32 NT:1; ///< Nested Task.\r
4840 UINT32 Reserved_3:1; ///< Reserved.\r
4841 } Bits;\r
4842 UINT16 Uint16;\r
4843} IA32_FLAGS16;\r
4844\r
4845///\r
4846/// Byte packed structure for EFLAGS/RFLAGS.\r
4847/// 32-bits on IA-32.\r
4848/// 64-bits on x64. The upper 32-bits on x64 are reserved.\r
4849///\r
4850typedef union {\r
4851 struct {\r
4852 UINT32 CF:1; ///< Carry Flag.\r
4853 UINT32 Reserved_0:1; ///< Reserved.\r
4854 UINT32 PF:1; ///< Parity Flag.\r
4855 UINT32 Reserved_1:1; ///< Reserved.\r
4856 UINT32 AF:1; ///< Auxiliary Carry Flag.\r
4857 UINT32 Reserved_2:1; ///< Reserved.\r
4858 UINT32 ZF:1; ///< Zero Flag.\r
4859 UINT32 SF:1; ///< Sign Flag.\r
4860 UINT32 TF:1; ///< Trap Flag.\r
4861 UINT32 IF:1; ///< Interrupt Enable Flag.\r
4862 UINT32 DF:1; ///< Direction Flag.\r
4863 UINT32 OF:1; ///< Overflow Flag.\r
4864 UINT32 IOPL:2; ///< I/O Privilege Level.\r
4865 UINT32 NT:1; ///< Nested Task.\r
4866 UINT32 Reserved_3:1; ///< Reserved.\r
4867 UINT32 RF:1; ///< Resume Flag.\r
4868 UINT32 VM:1; ///< Virtual 8086 Mode.\r
4869 UINT32 AC:1; ///< Alignment Check.\r
4870 UINT32 VIF:1; ///< Virtual Interrupt Flag.\r
4871 UINT32 VIP:1; ///< Virtual Interrupt Pending.\r
4872 UINT32 ID:1; ///< ID Flag.\r
4873 UINT32 Reserved_4:10; ///< Reserved.\r
4874 } Bits;\r
4875 UINTN UintN;\r
4876} IA32_EFLAGS32;\r
4877\r
4878///\r
4879/// Byte packed structure for Control Register 0 (CR0).\r
4880/// 32-bits on IA-32.\r
4881/// 64-bits on x64. The upper 32-bits on x64 are reserved.\r
4882///\r
4883typedef union {\r
4884 struct {\r
4885 UINT32 PE:1; ///< Protection Enable.\r
4886 UINT32 MP:1; ///< Monitor Coprocessor.\r
4887 UINT32 EM:1; ///< Emulation.\r
4888 UINT32 TS:1; ///< Task Switched.\r
4889 UINT32 ET:1; ///< Extension Type.\r
4890 UINT32 NE:1; ///< Numeric Error.\r
4891 UINT32 Reserved_0:10; ///< Reserved.\r
4892 UINT32 WP:1; ///< Write Protect.\r
4893 UINT32 Reserved_1:1; ///< Reserved.\r
4894 UINT32 AM:1; ///< Alignment Mask.\r
4895 UINT32 Reserved_2:10; ///< Reserved.\r
4896 UINT32 NW:1; ///< Mot Write-through.\r
4897 UINT32 CD:1; ///< Cache Disable.\r
4898 UINT32 PG:1; ///< Paging.\r
4899 } Bits;\r
4900 UINTN UintN;\r
4901} IA32_CR0;\r
4902\r
4903///\r
4904/// Byte packed structure for Control Register 4 (CR4).\r
4905/// 32-bits on IA-32.\r
4906/// 64-bits on x64. The upper 32-bits on x64 are reserved.\r
4907///\r
4908typedef union {\r
4909 struct {\r
4910 UINT32 VME:1; ///< Virtual-8086 Mode Extensions.\r
4911 UINT32 PVI:1; ///< Protected-Mode Virtual Interrupts.\r
4912 UINT32 TSD:1; ///< Time Stamp Disable.\r
4913 UINT32 DE:1; ///< Debugging Extensions.\r
4914 UINT32 PSE:1; ///< Page Size Extensions.\r
4915 UINT32 PAE:1; ///< Physical Address Extension.\r
4916 UINT32 MCE:1; ///< Machine Check Enable.\r
4917 UINT32 PGE:1; ///< Page Global Enable.\r
4918 UINT32 PCE:1; ///< Performance Monitoring Counter\r
4919 ///< Enable.\r
4920 UINT32 OSFXSR:1; ///< Operating System Support for\r
4921 ///< FXSAVE and FXRSTOR instructions\r
4922 UINT32 OSXMMEXCPT:1; ///< Operating System Support for\r
4923 ///< Unmasked SIMD Floating Point\r
4924 ///< Exceptions.\r
4925 UINT32 Reserved_0:2; ///< Reserved.\r
4926 UINT32 VMXE:1; ///< VMX Enable\r
4927 UINT32 Reserved_1:18; ///< Reserved.\r
4928 } Bits;\r
4929 UINTN UintN;\r
4930} IA32_CR4;\r
4931\r
4932///\r
4933/// Byte packed structure for an IDTR, GDTR, LDTR descriptor.\r
4934///\r
4935#pragma pack (1)\r
4936typedef struct {\r
4937 UINT16 Limit;\r
4938 UINTN Base;\r
4939} IA32_DESCRIPTOR;\r
4940#pragma pack ()\r
4941\r
4942#define IA32_IDT_GATE_TYPE_TASK 0x85\r
4943#define IA32_IDT_GATE_TYPE_INTERRUPT_16 0x86\r
4944#define IA32_IDT_GATE_TYPE_TRAP_16 0x87\r
4945#define IA32_IDT_GATE_TYPE_INTERRUPT_32 0x8E\r
4946#define IA32_IDT_GATE_TYPE_TRAP_32 0x8F\r
4947\r
4948\r
4949#if defined (MDE_CPU_IA32)\r
4950///\r
4951/// Byte packed structure for an IA-32 Interrupt Gate Descriptor.\r
4952///\r
4953typedef union {\r
4954 struct {\r
4955 UINT32 OffsetLow:16; ///< Offset bits 15..0.\r
4956 UINT32 Selector:16; ///< Selector.\r
4957 UINT32 Reserved_0:8; ///< Reserved.\r
4958 UINT32 GateType:8; ///< Gate Type. See #defines above.\r
4959 UINT32 OffsetHigh:16; ///< Offset bits 31..16.\r
4960 } Bits;\r
4961 UINT64 Uint64;\r
4962} IA32_IDT_GATE_DESCRIPTOR;\r
4963\r
4964#endif\r
4965\r
4966#if defined (MDE_CPU_X64)\r
4967///\r
4968/// Byte packed structure for an x64 Interrupt Gate Descriptor.\r
4969///\r
4970typedef union {\r
4971 struct {\r
4972 UINT32 OffsetLow:16; ///< Offset bits 15..0.\r
4973 UINT32 Selector:16; ///< Selector.\r
4974 UINT32 Reserved_0:8; ///< Reserved.\r
4975 UINT32 GateType:8; ///< Gate Type. See #defines above.\r
4976 UINT32 OffsetHigh:16; ///< Offset bits 31..16.\r
4977 UINT32 OffsetUpper:32; ///< Offset bits 63..32.\r
4978 UINT32 Reserved_1:32; ///< Reserved.\r
4979 } Bits;\r
4980 struct {\r
4981 UINT64 Uint64;\r
4982 UINT64 Uint64_1;\r
4983 } Uint128; \r
4984} IA32_IDT_GATE_DESCRIPTOR;\r
4985\r
4986#endif\r
4987\r
4988///\r
4989/// Byte packed structure for an FP/SSE/SSE2 context.\r
4990///\r
4991typedef struct {\r
4992 UINT8 Buffer[512];\r
4993} IA32_FX_BUFFER;\r
4994\r
4995///\r
4996/// Structures for the 16-bit real mode thunks.\r
4997///\r
4998typedef struct {\r
4999 UINT32 Reserved1;\r
5000 UINT32 Reserved2;\r
5001 UINT32 Reserved3;\r
5002 UINT32 Reserved4;\r
5003 UINT8 BL;\r
5004 UINT8 BH;\r
5005 UINT16 Reserved5;\r
5006 UINT8 DL;\r
5007 UINT8 DH;\r
5008 UINT16 Reserved6;\r
5009 UINT8 CL;\r
5010 UINT8 CH;\r
5011 UINT16 Reserved7;\r
5012 UINT8 AL;\r
5013 UINT8 AH;\r
5014 UINT16 Reserved8;\r
5015} IA32_BYTE_REGS;\r
5016\r
5017typedef struct {\r
5018 UINT16 DI;\r
5019 UINT16 Reserved1;\r
5020 UINT16 SI;\r
5021 UINT16 Reserved2;\r
5022 UINT16 BP;\r
5023 UINT16 Reserved3;\r
5024 UINT16 SP;\r
5025 UINT16 Reserved4;\r
5026 UINT16 BX;\r
5027 UINT16 Reserved5;\r
5028 UINT16 DX;\r
5029 UINT16 Reserved6;\r
5030 UINT16 CX;\r
5031 UINT16 Reserved7;\r
5032 UINT16 AX;\r
5033 UINT16 Reserved8;\r
5034} IA32_WORD_REGS;\r
5035\r
5036typedef struct {\r
5037 UINT32 EDI;\r
5038 UINT32 ESI;\r
5039 UINT32 EBP;\r
5040 UINT32 ESP;\r
5041 UINT32 EBX;\r
5042 UINT32 EDX;\r
5043 UINT32 ECX;\r
5044 UINT32 EAX;\r
5045 UINT16 DS;\r
5046 UINT16 ES;\r
5047 UINT16 FS;\r
5048 UINT16 GS;\r
5049 IA32_EFLAGS32 EFLAGS;\r
5050 UINT32 Eip;\r
5051 UINT16 CS;\r
5052 UINT16 SS;\r
5053} IA32_DWORD_REGS;\r
5054\r
5055typedef union {\r
5056 IA32_DWORD_REGS E;\r
5057 IA32_WORD_REGS X;\r
5058 IA32_BYTE_REGS H;\r
5059} IA32_REGISTER_SET;\r
5060\r
5061///\r
5062/// Byte packed structure for an 16-bit real mode thunks.\r
5063///\r
5064typedef struct {\r
5065 IA32_REGISTER_SET *RealModeState;\r
5066 VOID *RealModeBuffer;\r
5067 UINT32 RealModeBufferSize;\r
5068 UINT32 ThunkAttributes;\r
5069} THUNK_CONTEXT;\r
5070\r
5071#define THUNK_ATTRIBUTE_BIG_REAL_MODE 0x00000001\r
5072#define THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 0x00000002\r
5073#define THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL 0x00000004\r
5074\r
5075/**\r
5076 Retrieves CPUID information.\r
5077\r
5078 Executes the CPUID instruction with EAX set to the value specified by Index.\r
5079 This function always returns Index.\r
5080 If Eax is not NULL, then the value of EAX after CPUID is returned in Eax.\r
5081 If Ebx is not NULL, then the value of EBX after CPUID is returned in Ebx.\r
5082 If Ecx is not NULL, then the value of ECX after CPUID is returned in Ecx.\r
5083 If Edx is not NULL, then the value of EDX after CPUID is returned in Edx.\r
5084 This function is only available on IA-32 and x64.\r
5085\r
5086 @param Index The 32-bit value to load into EAX prior to invoking the CPUID\r
5087 instruction.\r
5088 @param Eax The pointer to the 32-bit EAX value returned by the CPUID\r
5089 instruction. This is an optional parameter that may be NULL.\r
5090 @param Ebx The pointer to the 32-bit EBX value returned by the CPUID\r
5091 instruction. This is an optional parameter that may be NULL.\r
5092 @param Ecx The pointer to the 32-bit ECX value returned by the CPUID\r
5093 instruction. This is an optional parameter that may be NULL.\r
5094 @param Edx The pointer to the 32-bit EDX value returned by the CPUID\r
5095 instruction. This is an optional parameter that may be NULL.\r
5096\r
5097 @return Index.\r
5098\r
5099**/\r
5100UINT32\r
5101EFIAPI\r
5102AsmCpuid (\r
5103 IN UINT32 Index,\r
5104 OUT UINT32 *Eax, OPTIONAL\r
5105 OUT UINT32 *Ebx, OPTIONAL\r
5106 OUT UINT32 *Ecx, OPTIONAL\r
5107 OUT UINT32 *Edx OPTIONAL\r
5108 );\r
5109\r
5110\r
5111/**\r
5112 Retrieves CPUID information using an extended leaf identifier.\r
5113\r
5114 Executes the CPUID instruction with EAX set to the value specified by Index\r
5115 and ECX set to the value specified by SubIndex. This function always returns\r
5116 Index. This function is only available on IA-32 and x64.\r
5117\r
5118 If Eax is not NULL, then the value of EAX after CPUID is returned in Eax.\r
5119 If Ebx is not NULL, then the value of EBX after CPUID is returned in Ebx.\r
5120 If Ecx is not NULL, then the value of ECX after CPUID is returned in Ecx.\r
5121 If Edx is not NULL, then the value of EDX after CPUID is returned in Edx.\r
5122\r
5123 @param Index The 32-bit value to load into EAX prior to invoking the\r
5124 CPUID instruction.\r
5125 @param SubIndex The 32-bit value to load into ECX prior to invoking the\r
5126 CPUID instruction.\r
5127 @param Eax The pointer to the 32-bit EAX value returned by the CPUID\r
5128 instruction. This is an optional parameter that may be\r
5129 NULL.\r
5130 @param Ebx The pointer to the 32-bit EBX value returned by the CPUID\r
5131 instruction. This is an optional parameter that may be\r
5132 NULL.\r
5133 @param Ecx The pointer to the 32-bit ECX value returned by the CPUID\r
5134 instruction. This is an optional parameter that may be\r
5135 NULL.\r
5136 @param Edx The pointer to the 32-bit EDX value returned by the CPUID\r
5137 instruction. This is an optional parameter that may be\r
5138 NULL.\r
5139\r
5140 @return Index.\r
5141\r
5142**/\r
5143UINT32\r
5144EFIAPI\r
5145AsmCpuidEx (\r
5146 IN UINT32 Index,\r
5147 IN UINT32 SubIndex,\r
5148 OUT UINT32 *Eax, OPTIONAL\r
5149 OUT UINT32 *Ebx, OPTIONAL\r
5150 OUT UINT32 *Ecx, OPTIONAL\r
5151 OUT UINT32 *Edx OPTIONAL\r
5152 );\r
5153\r
5154\r
5155/**\r
5156 Set CD bit and clear NW bit of CR0 followed by a WBINVD.\r
5157\r
5158 Disables the caches by setting the CD bit of CR0 to 1, clearing the NW bit of CR0 to 0,\r
5159 and executing a WBINVD instruction. This function is only available on IA-32 and x64.\r
5160\r
5161**/\r
5162VOID\r
5163EFIAPI\r
5164AsmDisableCache (\r
5165 VOID\r
5166 );\r
5167\r
5168\r
5169/**\r
5170 Perform a WBINVD and clear both the CD and NW bits of CR0.\r
5171\r
5172 Enables the caches by executing a WBINVD instruction and then clear both the CD and NW\r
5173 bits of CR0 to 0. This function is only available on IA-32 and x64.\r
5174\r
5175**/\r
5176VOID\r
5177EFIAPI\r
5178AsmEnableCache (\r
5179 VOID\r
5180 );\r
5181\r
5182\r
5183/**\r
5184 Returns the lower 32-bits of a Machine Specific Register(MSR).\r
5185\r
5186 Reads and returns the lower 32-bits of the MSR specified by Index.\r
5187 No parameter checking is performed on Index, and some Index values may cause\r
5188 CPU exceptions. The caller must either guarantee that Index is valid, or the\r
5189 caller must set up exception handlers to catch the exceptions. This function\r
5190 is only available on IA-32 and x64.\r
5191\r
5192 @param Index The 32-bit MSR index to read.\r
5193\r
5194 @return The lower 32 bits of the MSR identified by Index.\r
5195\r
5196**/\r
5197UINT32\r
5198EFIAPI\r
5199AsmReadMsr32 (\r
5200 IN UINT32 Index\r
5201 );\r
5202\r
5203\r
5204/**\r
5205 Writes a 32-bit value to a Machine Specific Register(MSR), and returns the value.\r
5206 The upper 32-bits of the MSR are set to zero.\r
5207\r
5208 Writes the 32-bit value specified by Value to the MSR specified by Index. The\r
5209 upper 32-bits of the MSR write are set to zero. The 32-bit value written to\r
5210 the MSR is returned. No parameter checking is performed on Index or Value,\r
5211 and some of these may cause CPU exceptions. The caller must either guarantee\r
5212 that Index and Value are valid, or the caller must establish proper exception\r
5213 handlers. This function is only available on IA-32 and x64.\r
5214\r
5215 @param Index The 32-bit MSR index to write.\r
5216 @param Value The 32-bit value to write to the MSR.\r
5217\r
5218 @return Value\r
5219\r
5220**/\r
5221UINT32\r
5222EFIAPI\r
5223AsmWriteMsr32 (\r
5224 IN UINT32 Index,\r
5225 IN UINT32 Value\r
5226 );\r
5227\r
5228\r
5229/**\r
5230 Reads a 64-bit MSR, performs a bitwise OR on the lower 32-bits, and\r
5231 writes the result back to the 64-bit MSR.\r
5232\r
5233 Reads the 64-bit MSR specified by Index, performs a bitwise OR\r
5234 between the lower 32-bits of the read result and the value specified by\r
5235 OrData, and writes the result to the 64-bit MSR specified by Index. The lower\r
5236 32-bits of the value written to the MSR is returned. No parameter checking is\r
5237 performed on Index or OrData, and some of these may cause CPU exceptions. The\r
5238 caller must either guarantee that Index and OrData are valid, or the caller\r
5239 must establish proper exception handlers. This function is only available on\r
5240 IA-32 and x64.\r
5241\r
5242 @param Index The 32-bit MSR index to write.\r
5243 @param OrData The value to OR with the read value from the MSR.\r
5244\r
5245 @return The lower 32-bit value written to the MSR.\r
5246\r
5247**/\r
5248UINT32\r
5249EFIAPI\r
5250AsmMsrOr32 (\r
5251 IN UINT32 Index,\r
5252 IN UINT32 OrData\r
5253 );\r
5254\r
5255\r
5256/**\r
5257 Reads a 64-bit MSR, performs a bitwise AND on the lower 32-bits, and writes\r
5258 the result back to the 64-bit MSR.\r
5259\r
5260 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
5261 lower 32-bits of the read result and the value specified by AndData, and\r
5262 writes the result to the 64-bit MSR specified by Index. The lower 32-bits of\r
5263 the value written to the MSR is returned. No parameter checking is performed\r
5264 on Index or AndData, and some of these may cause CPU exceptions. The caller\r
5265 must either guarantee that Index and AndData are valid, or the caller must\r
5266 establish proper exception handlers. This function is only available on IA-32\r
5267 and x64.\r
5268\r
5269 @param Index The 32-bit MSR index to write.\r
5270 @param AndData The value to AND with the read value from the MSR.\r
5271\r
5272 @return The lower 32-bit value written to the MSR.\r
5273\r
5274**/\r
5275UINT32\r
5276EFIAPI\r
5277AsmMsrAnd32 (\r
5278 IN UINT32 Index,\r
5279 IN UINT32 AndData\r
5280 );\r
5281\r
5282\r
5283/**\r
5284 Reads a 64-bit MSR, performs a bitwise AND followed by a bitwise OR\r
5285 on the lower 32-bits, and writes the result back to the 64-bit MSR.\r
5286\r
5287 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
5288 lower 32-bits of the read result and the value specified by AndData\r
5289 preserving the upper 32-bits, performs a bitwise OR between the\r
5290 result of the AND operation and the value specified by OrData, and writes the\r
5291 result to the 64-bit MSR specified by Address. The lower 32-bits of the value\r
5292 written to the MSR is returned. No parameter checking is performed on Index,\r
5293 AndData, or OrData, and some of these may cause CPU exceptions. The caller\r
5294 must either guarantee that Index, AndData, and OrData are valid, or the\r
5295 caller must establish proper exception handlers. This function is only\r
5296 available on IA-32 and x64.\r
5297\r
5298 @param Index The 32-bit MSR index to write.\r
5299 @param AndData The value to AND with the read value from the MSR.\r
5300 @param OrData The value to OR with the result of the AND operation.\r
5301\r
5302 @return The lower 32-bit value written to the MSR.\r
5303\r
5304**/\r
5305UINT32\r
5306EFIAPI\r
5307AsmMsrAndThenOr32 (\r
5308 IN UINT32 Index,\r
5309 IN UINT32 AndData,\r
5310 IN UINT32 OrData\r
5311 );\r
5312\r
5313\r
5314/**\r
5315 Reads a bit field of an MSR.\r
5316\r
5317 Reads the bit field in the lower 32-bits of a 64-bit MSR. The bit field is\r
5318 specified by the StartBit and the EndBit. The value of the bit field is\r
5319 returned. The caller must either guarantee that Index is valid, or the caller\r
5320 must set up exception handlers to catch the exceptions. This function is only\r
5321 available on IA-32 and x64.\r
5322\r
5323 If StartBit is greater than 31, then ASSERT().\r
5324 If EndBit is greater than 31, then ASSERT().\r
5325 If EndBit is less than StartBit, then ASSERT().\r
5326\r
5327 @param Index The 32-bit MSR index to read.\r
5328 @param StartBit The ordinal of the least significant bit in the bit field.\r
5329 Range 0..31.\r
5330 @param EndBit The ordinal of the most significant bit in the bit field.\r
5331 Range 0..31.\r
5332\r
5333 @return The bit field read from the MSR.\r
5334\r
5335**/\r
5336UINT32\r
5337EFIAPI\r
5338AsmMsrBitFieldRead32 (\r
5339 IN UINT32 Index,\r
5340 IN UINTN StartBit,\r
5341 IN UINTN EndBit\r
5342 );\r
5343\r
5344\r
5345/**\r
5346 Writes a bit field to an MSR.\r
5347\r
5348 Writes Value to a bit field in the lower 32-bits of a 64-bit MSR. The bit\r
5349 field is specified by the StartBit and the EndBit. All other bits in the\r
5350 destination MSR are preserved. The lower 32-bits of the MSR written is\r
5351 returned. The caller must either guarantee that Index and the data written \r
5352 is valid, or the caller must set up exception handlers to catch the exceptions. \r
5353 This function is only available on IA-32 and x64.\r
5354\r
5355 If StartBit is greater than 31, then ASSERT().\r
5356 If EndBit is greater than 31, then ASSERT().\r
5357 If EndBit is less than StartBit, then ASSERT().\r
5358\r
5359 @param Index The 32-bit MSR index to write.\r
5360 @param StartBit The ordinal of the least significant bit in the bit field.\r
5361 Range 0..31.\r
5362 @param EndBit The ordinal of the most significant bit in the bit field.\r
5363 Range 0..31.\r
5364 @param Value New value of the bit field.\r
5365\r
5366 @return The lower 32-bit of the value written to the MSR.\r
5367\r
5368**/\r
5369UINT32\r
5370EFIAPI\r
5371AsmMsrBitFieldWrite32 (\r
5372 IN UINT32 Index,\r
5373 IN UINTN StartBit,\r
5374 IN UINTN EndBit,\r
5375 IN UINT32 Value\r
5376 );\r
5377\r
5378\r
5379/**\r
5380 Reads a bit field in a 64-bit MSR, performs a bitwise OR, and writes the\r
5381 result back to the bit field in the 64-bit MSR.\r
5382\r
5383 Reads the 64-bit MSR specified by Index, performs a bitwise OR\r
5384 between the read result and the value specified by OrData, and writes the\r
5385 result to the 64-bit MSR specified by Index. The lower 32-bits of the value\r
5386 written to the MSR are returned. Extra left bits in OrData are stripped. The\r
5387 caller must either guarantee that Index and the data written is valid, or\r
5388 the caller must set up exception handlers to catch the exceptions. This\r
5389 function is only available on IA-32 and x64.\r
5390\r
5391 If StartBit is greater than 31, then ASSERT().\r
5392 If EndBit is greater than 31, then ASSERT().\r
5393 If EndBit is less than StartBit, then ASSERT().\r
5394\r
5395 @param Index The 32-bit MSR index to write.\r
5396 @param StartBit The ordinal of the least significant bit in the bit field.\r
5397 Range 0..31.\r
5398 @param EndBit The ordinal of the most significant bit in the bit field.\r
5399 Range 0..31.\r
5400 @param OrData The value to OR with the read value from the MSR.\r
5401\r
5402 @return The lower 32-bit of the value written to the MSR.\r
5403\r
5404**/\r
5405UINT32\r
5406EFIAPI\r
5407AsmMsrBitFieldOr32 (\r
5408 IN UINT32 Index,\r
5409 IN UINTN StartBit,\r
5410 IN UINTN EndBit,\r
5411 IN UINT32 OrData\r
5412 );\r
5413\r
5414\r
5415/**\r
5416 Reads a bit field in a 64-bit MSR, performs a bitwise AND, and writes the\r
5417 result back to the bit field in the 64-bit MSR.\r
5418\r
5419 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
5420 read result and the value specified by AndData, and writes the result to the\r
5421 64-bit MSR specified by Index. The lower 32-bits of the value written to the\r
5422 MSR are returned. Extra left bits in AndData are stripped. The caller must\r
5423 either guarantee that Index and the data written is valid, or the caller must\r
5424 set up exception handlers to catch the exceptions. This function is only\r
5425 available on IA-32 and x64.\r
5426\r
5427 If StartBit is greater than 31, then ASSERT().\r
5428 If EndBit is greater than 31, then ASSERT().\r
5429 If EndBit is less than StartBit, then ASSERT().\r
5430\r
5431 @param Index The 32-bit MSR index to write.\r
5432 @param StartBit The ordinal of the least significant bit in the bit field.\r
5433 Range 0..31.\r
5434 @param EndBit The ordinal of the most significant bit in the bit field.\r
5435 Range 0..31.\r
5436 @param AndData The value to AND with the read value from the MSR.\r
5437\r
5438 @return The lower 32-bit of the value written to the MSR.\r
5439\r
5440**/\r
5441UINT32\r
5442EFIAPI\r
5443AsmMsrBitFieldAnd32 (\r
5444 IN UINT32 Index,\r
5445 IN UINTN StartBit,\r
5446 IN UINTN EndBit,\r
5447 IN UINT32 AndData\r
5448 );\r
5449\r
5450\r
5451/**\r
5452 Reads a bit field in a 64-bit MSR, performs a bitwise AND followed by a\r
5453 bitwise OR, and writes the result back to the bit field in the\r
5454 64-bit MSR.\r
5455\r
5456 Reads the 64-bit MSR specified by Index, performs a bitwise AND followed by a\r
5457 bitwise OR between the read result and the value specified by\r
5458 AndData, and writes the result to the 64-bit MSR specified by Index. The\r
5459 lower 32-bits of the value written to the MSR are returned. Extra left bits\r
5460 in both AndData and OrData are stripped. The caller must either guarantee\r
5461 that Index and the data written is valid, or the caller must set up exception\r
5462 handlers to catch the exceptions. This function is only available on IA-32\r
5463 and x64.\r
5464\r
5465 If StartBit is greater than 31, then ASSERT().\r
5466 If EndBit is greater than 31, then ASSERT().\r
5467 If EndBit is less than StartBit, then ASSERT().\r
5468\r
5469 @param Index The 32-bit MSR index to write.\r
5470 @param StartBit The ordinal of the least significant bit in the bit field.\r
5471 Range 0..31.\r
5472 @param EndBit The ordinal of the most significant bit in the bit field.\r
5473 Range 0..31.\r
5474 @param AndData The value to AND with the read value from the MSR.\r
5475 @param OrData The value to OR with the result of the AND operation.\r
5476\r
5477 @return The lower 32-bit of the value written to the MSR.\r
5478\r
5479**/\r
5480UINT32\r
5481EFIAPI\r
5482AsmMsrBitFieldAndThenOr32 (\r
5483 IN UINT32 Index,\r
5484 IN UINTN StartBit,\r
5485 IN UINTN EndBit,\r
5486 IN UINT32 AndData,\r
5487 IN UINT32 OrData\r
5488 );\r
5489\r
5490\r
5491/**\r
5492 Returns a 64-bit Machine Specific Register(MSR).\r
5493\r
5494 Reads and returns the 64-bit MSR specified by Index. No parameter checking is\r
5495 performed on Index, and some Index values may cause CPU exceptions. The\r
5496 caller must either guarantee that Index is valid, or the caller must set up\r
5497 exception handlers to catch the exceptions. This function is only available\r
5498 on IA-32 and x64.\r
5499\r
5500 @param Index The 32-bit MSR index to read.\r
5501\r
5502 @return The value of the MSR identified by Index.\r
5503\r
5504**/\r
5505UINT64\r
5506EFIAPI\r
5507AsmReadMsr64 (\r
5508 IN UINT32 Index\r
5509 );\r
5510\r
5511\r
5512/**\r
5513 Writes a 64-bit value to a Machine Specific Register(MSR), and returns the\r
5514 value.\r
5515\r
5516 Writes the 64-bit value specified by Value to the MSR specified by Index. The\r
5517 64-bit value written to the MSR is returned. No parameter checking is\r
5518 performed on Index or Value, and some of these may cause CPU exceptions. The\r
5519 caller must either guarantee that Index and Value are valid, or the caller\r
5520 must establish proper exception handlers. This function is only available on\r
5521 IA-32 and x64.\r
5522\r
5523 @param Index The 32-bit MSR index to write.\r
5524 @param Value The 64-bit value to write to the MSR.\r
5525\r
5526 @return Value\r
5527\r
5528**/\r
5529UINT64\r
5530EFIAPI\r
5531AsmWriteMsr64 (\r
5532 IN UINT32 Index,\r
5533 IN UINT64 Value\r
5534 );\r
5535\r
5536\r
5537/**\r
5538 Reads a 64-bit MSR, performs a bitwise OR, and writes the result\r
5539 back to the 64-bit MSR.\r
5540\r
5541 Reads the 64-bit MSR specified by Index, performs a bitwise OR\r
5542 between the read result and the value specified by OrData, and writes the\r
5543 result to the 64-bit MSR specified by Index. The value written to the MSR is\r
5544 returned. No parameter checking is performed on Index or OrData, and some of\r
5545 these may cause CPU exceptions. The caller must either guarantee that Index\r
5546 and OrData are valid, or the caller must establish proper exception handlers.\r
5547 This function is only available on IA-32 and x64.\r
5548\r
5549 @param Index The 32-bit MSR index to write.\r
5550 @param OrData The value to OR with the read value from the MSR.\r
5551\r
5552 @return The value written back to the MSR.\r
5553\r
5554**/\r
5555UINT64\r
5556EFIAPI\r
5557AsmMsrOr64 (\r
5558 IN UINT32 Index,\r
5559 IN UINT64 OrData\r
5560 );\r
5561\r
5562\r
5563/**\r
5564 Reads a 64-bit MSR, performs a bitwise AND, and writes the result back to the\r
5565 64-bit MSR.\r
5566\r
5567 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
5568 read result and the value specified by OrData, and writes the result to the\r
5569 64-bit MSR specified by Index. The value written to the MSR is returned. No\r
5570 parameter checking is performed on Index or OrData, and some of these may\r
5571 cause CPU exceptions. The caller must either guarantee that Index and OrData\r
5572 are valid, or the caller must establish proper exception handlers. This\r
5573 function is only available on IA-32 and x64.\r
5574\r
5575 @param Index The 32-bit MSR index to write.\r
5576 @param AndData The value to AND with the read value from the MSR.\r
5577\r
5578 @return The value written back to the MSR.\r
5579\r
5580**/\r
5581UINT64\r
5582EFIAPI\r
5583AsmMsrAnd64 (\r
5584 IN UINT32 Index,\r
5585 IN UINT64 AndData\r
5586 );\r
5587\r
5588\r
5589/**\r
5590 Reads a 64-bit MSR, performs a bitwise AND followed by a bitwise \r
5591 OR, and writes the result back to the 64-bit MSR.\r
5592\r
5593 Reads the 64-bit MSR specified by Index, performs a bitwise AND between read\r
5594 result and the value specified by AndData, performs a bitwise OR\r
5595 between the result of the AND operation and the value specified by OrData,\r
5596 and writes the result to the 64-bit MSR specified by Index. The value written\r
5597 to the MSR is returned. No parameter checking is performed on Index, AndData,\r
5598 or OrData, and some of these may cause CPU exceptions. The caller must either\r
5599 guarantee that Index, AndData, and OrData are valid, or the caller must\r
5600 establish proper exception handlers. This function is only available on IA-32\r
5601 and x64.\r
5602\r
5603 @param Index The 32-bit MSR index to write.\r
5604 @param AndData The value to AND with the read value from the MSR.\r
5605 @param OrData The value to OR with the result of the AND operation.\r
5606\r
5607 @return The value written back to the MSR.\r
5608\r
5609**/\r
5610UINT64\r
5611EFIAPI\r
5612AsmMsrAndThenOr64 (\r
5613 IN UINT32 Index,\r
5614 IN UINT64 AndData,\r
5615 IN UINT64 OrData\r
5616 );\r
5617\r
5618\r
5619/**\r
5620 Reads a bit field of an MSR.\r
5621\r
5622 Reads the bit field in the 64-bit MSR. The bit field is specified by the\r
5623 StartBit and the EndBit. The value of the bit field is returned. The caller\r
5624 must either guarantee that Index is valid, or the caller must set up\r
5625 exception handlers to catch the exceptions. This function is only available\r
5626 on IA-32 and x64.\r
5627\r
5628 If StartBit is greater than 63, then ASSERT().\r
5629 If EndBit is greater than 63, then ASSERT().\r
5630 If EndBit is less than StartBit, then ASSERT().\r
5631\r
5632 @param Index The 32-bit MSR index to read.\r
5633 @param StartBit The ordinal of the least significant bit in the bit field.\r
5634 Range 0..63.\r
5635 @param EndBit The ordinal of the most significant bit in the bit field.\r
5636 Range 0..63.\r
5637\r
5638 @return The value read from the MSR.\r
5639\r
5640**/\r
5641UINT64\r
5642EFIAPI\r
5643AsmMsrBitFieldRead64 (\r
5644 IN UINT32 Index,\r
5645 IN UINTN StartBit,\r
5646 IN UINTN EndBit\r
5647 );\r
5648\r
5649\r
5650/**\r
5651 Writes a bit field to an MSR.\r
5652\r
5653 Writes Value to a bit field in a 64-bit MSR. The bit field is specified by\r
5654 the StartBit and the EndBit. All other bits in the destination MSR are\r
5655 preserved. The MSR written is returned. The caller must either guarantee \r
5656 that Index and the data written is valid, or the caller must set up exception \r
5657 handlers to catch the exceptions. This function is only available on IA-32 and x64.\r
5658\r
5659 If StartBit is greater than 63, then ASSERT().\r
5660 If EndBit is greater than 63, then ASSERT().\r
5661 If EndBit is less than StartBit, then ASSERT().\r
5662\r
5663 @param Index The 32-bit MSR index to write.\r
5664 @param StartBit The ordinal of the least significant bit in the bit field.\r
5665 Range 0..63.\r
5666 @param EndBit The ordinal of the most significant bit in the bit field.\r
5667 Range 0..63.\r
5668 @param Value New value of the bit field.\r
5669\r
5670 @return The value written back to the MSR.\r
5671\r
5672**/\r
5673UINT64\r
5674EFIAPI\r
5675AsmMsrBitFieldWrite64 (\r
5676 IN UINT32 Index,\r
5677 IN UINTN StartBit,\r
5678 IN UINTN EndBit,\r
5679 IN UINT64 Value\r
5680 );\r
5681\r
5682\r
5683/**\r
5684 Reads a bit field in a 64-bit MSR, performs a bitwise OR, and\r
5685 writes the result back to the bit field in the 64-bit MSR.\r
5686\r
5687 Reads the 64-bit MSR specified by Index, performs a bitwise OR\r
5688 between the read result and the value specified by OrData, and writes the\r
5689 result to the 64-bit MSR specified by Index. The value written to the MSR is\r
5690 returned. Extra left bits in OrData are stripped. The caller must either\r
5691 guarantee that Index and the data written is valid, or the caller must set up\r
5692 exception handlers to catch the exceptions. This function is only available\r
5693 on IA-32 and x64.\r
5694\r
5695 If StartBit is greater than 63, then ASSERT().\r
5696 If EndBit is greater than 63, then ASSERT().\r
5697 If EndBit is less than StartBit, then ASSERT().\r
5698\r
5699 @param Index The 32-bit MSR index to write.\r
5700 @param StartBit The ordinal of the least significant bit in the bit field.\r
5701 Range 0..63.\r
5702 @param EndBit The ordinal of the most significant bit in the bit field.\r
5703 Range 0..63.\r
5704 @param OrData The value to OR with the read value from the bit field.\r
5705\r
5706 @return The value written back to the MSR.\r
5707\r
5708**/\r
5709UINT64\r
5710EFIAPI\r
5711AsmMsrBitFieldOr64 (\r
5712 IN UINT32 Index,\r
5713 IN UINTN StartBit,\r
5714 IN UINTN EndBit,\r
5715 IN UINT64 OrData\r
5716 );\r
5717\r
5718\r
5719/**\r
5720 Reads a bit field in a 64-bit MSR, performs a bitwise AND, and writes the\r
5721 result back to the bit field in the 64-bit MSR.\r
5722\r
5723 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
5724 read result and the value specified by AndData, and writes the result to the\r
5725 64-bit MSR specified by Index. The value written to the MSR is returned.\r
5726 Extra left bits in AndData are stripped. The caller must either guarantee\r
5727 that Index and the data written is valid, or the caller must set up exception\r
5728 handlers to catch the exceptions. This function is only available on IA-32\r
5729 and x64.\r
5730\r
5731 If StartBit is greater than 63, then ASSERT().\r
5732 If EndBit is greater than 63, then ASSERT().\r
5733 If EndBit is less than StartBit, then ASSERT().\r
5734\r
5735 @param Index The 32-bit MSR index to write.\r
5736 @param StartBit The ordinal of the least significant bit in the bit field.\r
5737 Range 0..63.\r
5738 @param EndBit The ordinal of the most significant bit in the bit field.\r
5739 Range 0..63.\r
5740 @param AndData The value to AND with the read value from the bit field.\r
5741\r
5742 @return The value written back to the MSR.\r
5743\r
5744**/\r
5745UINT64\r
5746EFIAPI\r
5747AsmMsrBitFieldAnd64 (\r
5748 IN UINT32 Index,\r
5749 IN UINTN StartBit,\r
5750 IN UINTN EndBit,\r
5751 IN UINT64 AndData\r
5752 );\r
5753\r
5754\r
5755/**\r
5756 Reads a bit field in a 64-bit MSR, performs a bitwise AND followed by a\r
5757 bitwise OR, and writes the result back to the bit field in the\r
5758 64-bit MSR.\r
5759\r
5760 Reads the 64-bit MSR specified by Index, performs a bitwise AND followed by\r
5761 a bitwise OR between the read result and the value specified by\r
5762 AndData, and writes the result to the 64-bit MSR specified by Index. The\r
5763 value written to the MSR is returned. Extra left bits in both AndData and\r
5764 OrData are stripped. The caller must either guarantee that Index and the data\r
5765 written is valid, or the caller must set up exception handlers to catch the\r
5766 exceptions. This function is only available on IA-32 and x64.\r
5767\r
5768 If StartBit is greater than 63, then ASSERT().\r
5769 If EndBit is greater than 63, then ASSERT().\r
5770 If EndBit is less than StartBit, then ASSERT().\r
5771\r
5772 @param Index The 32-bit MSR index to write.\r
5773 @param StartBit The ordinal of the least significant bit in the bit field.\r
5774 Range 0..63.\r
5775 @param EndBit The ordinal of the most significant bit in the bit field.\r
5776 Range 0..63.\r
5777 @param AndData The value to AND with the read value from the bit field.\r
5778 @param OrData The value to OR with the result of the AND operation.\r
5779\r
5780 @return The value written back to the MSR.\r
5781\r
5782**/\r
5783UINT64\r
5784EFIAPI\r
5785AsmMsrBitFieldAndThenOr64 (\r
5786 IN UINT32 Index,\r
5787 IN UINTN StartBit,\r
5788 IN UINTN EndBit,\r
5789 IN UINT64 AndData,\r
5790 IN UINT64 OrData\r
5791 );\r
5792\r
5793\r
5794/**\r
5795 Reads the current value of the EFLAGS register.\r
5796\r
5797 Reads and returns the current value of the EFLAGS register. This function is\r
5798 only available on IA-32 and x64. This returns a 32-bit value on IA-32 and a\r
5799 64-bit value on x64.\r
5800\r
5801 @return EFLAGS on IA-32 or RFLAGS on x64.\r
5802\r
5803**/\r
5804UINTN\r
5805EFIAPI\r
5806AsmReadEflags (\r
5807 VOID\r
5808 );\r
5809\r
5810\r
5811/**\r
5812 Reads the current value of the Control Register 0 (CR0).\r
5813\r
5814 Reads and returns the current value of CR0. This function is only available\r
5815 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
5816 x64.\r
5817\r
5818 @return The value of the Control Register 0 (CR0).\r
5819\r
5820**/\r
5821UINTN\r
5822EFIAPI\r
5823AsmReadCr0 (\r
5824 VOID\r
5825 );\r
5826\r
5827\r
5828/**\r
5829 Reads the current value of the Control Register 2 (CR2).\r
5830\r
5831 Reads and returns the current value of CR2. This function is only available\r
5832 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
5833 x64.\r
5834\r
5835 @return The value of the Control Register 2 (CR2).\r
5836\r
5837**/\r
5838UINTN\r
5839EFIAPI\r
5840AsmReadCr2 (\r
5841 VOID\r
5842 );\r
5843\r
5844\r
5845/**\r
5846 Reads the current value of the Control Register 3 (CR3).\r
5847\r
5848 Reads and returns the current value of CR3. This function is only available\r
5849 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
5850 x64.\r
5851\r
5852 @return The value of the Control Register 3 (CR3).\r
5853\r
5854**/\r
5855UINTN\r
5856EFIAPI\r
5857AsmReadCr3 (\r
5858 VOID\r
5859 );\r
5860\r
5861\r
5862/**\r
5863 Reads the current value of the Control Register 4 (CR4).\r
5864\r
5865 Reads and returns the current value of CR4. This function is only available\r
5866 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
5867 x64.\r
5868\r
5869 @return The value of the Control Register 4 (CR4).\r
5870\r
5871**/\r
5872UINTN\r
5873EFIAPI\r
5874AsmReadCr4 (\r
5875 VOID\r
5876 );\r
5877\r
5878\r
5879/**\r
5880 Writes a value to Control Register 0 (CR0).\r
5881\r
5882 Writes and returns a new value to CR0. This function is only available on\r
5883 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
5884\r
5885 @param Cr0 The value to write to CR0.\r
5886\r
5887 @return The value written to CR0.\r
5888\r
5889**/\r
5890UINTN\r
5891EFIAPI\r
5892AsmWriteCr0 (\r
5893 UINTN Cr0\r
5894 );\r
5895\r
5896\r
5897/**\r
5898 Writes a value to Control Register 2 (CR2).\r
5899\r
5900 Writes and returns a new value to CR2. This function is only available on\r
5901 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
5902\r
5903 @param Cr2 The value to write to CR2.\r
5904\r
5905 @return The value written to CR2.\r
5906\r
5907**/\r
5908UINTN\r
5909EFIAPI\r
5910AsmWriteCr2 (\r
5911 UINTN Cr2\r
5912 );\r
5913\r
5914\r
5915/**\r
5916 Writes a value to Control Register 3 (CR3).\r
5917\r
5918 Writes and returns a new value to CR3. This function is only available on\r
5919 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
5920\r
5921 @param Cr3 The value to write to CR3.\r
5922\r
5923 @return The value written to CR3.\r
5924\r
5925**/\r
5926UINTN\r
5927EFIAPI\r
5928AsmWriteCr3 (\r
5929 UINTN Cr3\r
5930 );\r
5931\r
5932\r
5933/**\r
5934 Writes a value to Control Register 4 (CR4).\r
5935\r
5936 Writes and returns a new value to CR4. This function is only available on\r
5937 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
5938\r
5939 @param Cr4 The value to write to CR4.\r
5940\r
5941 @return The value written to CR4.\r
5942\r
5943**/\r
5944UINTN\r
5945EFIAPI\r
5946AsmWriteCr4 (\r
5947 UINTN Cr4\r
5948 );\r
5949\r
5950\r
5951/**\r
5952 Reads the current value of Debug Register 0 (DR0).\r
5953\r
5954 Reads and returns the current value of DR0. This function is only available\r
5955 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
5956 x64.\r
5957\r
5958 @return The value of Debug Register 0 (DR0).\r
5959\r
5960**/\r
5961UINTN\r
5962EFIAPI\r
5963AsmReadDr0 (\r
5964 VOID\r
5965 );\r
5966\r
5967\r
5968/**\r
5969 Reads the current value of Debug Register 1 (DR1).\r
5970\r
5971 Reads and returns the current value of DR1. This function is only available\r
5972 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
5973 x64.\r
5974\r
5975 @return The value of Debug Register 1 (DR1).\r
5976\r
5977**/\r
5978UINTN\r
5979EFIAPI\r
5980AsmReadDr1 (\r
5981 VOID\r
5982 );\r
5983\r
5984\r
5985/**\r
5986 Reads the current value of Debug Register 2 (DR2).\r
5987\r
5988 Reads and returns the current value of DR2. This function is only available\r
5989 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
5990 x64.\r
5991\r
5992 @return The value of Debug Register 2 (DR2).\r
5993\r
5994**/\r
5995UINTN\r
5996EFIAPI\r
5997AsmReadDr2 (\r
5998 VOID\r
5999 );\r
6000\r
6001\r
6002/**\r
6003 Reads the current value of Debug Register 3 (DR3).\r
6004\r
6005 Reads and returns the current value of DR3. This function is only available\r
6006 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
6007 x64.\r
6008\r
6009 @return The value of Debug Register 3 (DR3).\r
6010\r
6011**/\r
6012UINTN\r
6013EFIAPI\r
6014AsmReadDr3 (\r
6015 VOID\r
6016 );\r
6017\r
6018\r
6019/**\r
6020 Reads the current value of Debug Register 4 (DR4).\r
6021\r
6022 Reads and returns the current value of DR4. This function is only available\r
6023 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
6024 x64.\r
6025\r
6026 @return The value of Debug Register 4 (DR4).\r
6027\r
6028**/\r
6029UINTN\r
6030EFIAPI\r
6031AsmReadDr4 (\r
6032 VOID\r
6033 );\r
6034\r
6035\r
6036/**\r
6037 Reads the current value of Debug Register 5 (DR5).\r
6038\r
6039 Reads and returns the current value of DR5. This function is only available\r
6040 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
6041 x64.\r
6042\r
6043 @return The value of Debug Register 5 (DR5).\r
6044\r
6045**/\r
6046UINTN\r
6047EFIAPI\r
6048AsmReadDr5 (\r
6049 VOID\r
6050 );\r
6051\r
6052\r
6053/**\r
6054 Reads the current value of Debug Register 6 (DR6).\r
6055\r
6056 Reads and returns the current value of DR6. This function is only available\r
6057 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
6058 x64.\r
6059\r
6060 @return The value of Debug Register 6 (DR6).\r
6061\r
6062**/\r
6063UINTN\r
6064EFIAPI\r
6065AsmReadDr6 (\r
6066 VOID\r
6067 );\r
6068\r
6069\r
6070/**\r
6071 Reads the current value of Debug Register 7 (DR7).\r
6072\r
6073 Reads and returns the current value of DR7. This function is only available\r
6074 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
6075 x64.\r
6076\r
6077 @return The value of Debug Register 7 (DR7).\r
6078\r
6079**/\r
6080UINTN\r
6081EFIAPI\r
6082AsmReadDr7 (\r
6083 VOID\r
6084 );\r
6085\r
6086\r
6087/**\r
6088 Writes a value to Debug Register 0 (DR0).\r
6089\r
6090 Writes and returns a new value to DR0. This function is only available on\r
6091 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
6092\r
6093 @param Dr0 The value to write to Dr0.\r
6094\r
6095 @return The value written to Debug Register 0 (DR0).\r
6096\r
6097**/\r
6098UINTN\r
6099EFIAPI\r
6100AsmWriteDr0 (\r
6101 UINTN Dr0\r
6102 );\r
6103\r
6104\r
6105/**\r
6106 Writes a value to Debug Register 1 (DR1).\r
6107\r
6108 Writes and returns a new value to DR1. This function is only available on\r
6109 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
6110\r
6111 @param Dr1 The value to write to Dr1.\r
6112\r
6113 @return The value written to Debug Register 1 (DR1).\r
6114\r
6115**/\r
6116UINTN\r
6117EFIAPI\r
6118AsmWriteDr1 (\r
6119 UINTN Dr1\r
6120 );\r
6121\r
6122\r
6123/**\r
6124 Writes a value to Debug Register 2 (DR2).\r
6125\r
6126 Writes and returns a new value to DR2. This function is only available on\r
6127 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
6128\r
6129 @param Dr2 The value to write to Dr2.\r
6130\r
6131 @return The value written to Debug Register 2 (DR2).\r
6132\r
6133**/\r
6134UINTN\r
6135EFIAPI\r
6136AsmWriteDr2 (\r
6137 UINTN Dr2\r
6138 );\r
6139\r
6140\r
6141/**\r
6142 Writes a value to Debug Register 3 (DR3).\r
6143\r
6144 Writes and returns a new value to DR3. This function is only available on\r
6145 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
6146\r
6147 @param Dr3 The value to write to Dr3.\r
6148\r
6149 @return The value written to Debug Register 3 (DR3).\r
6150\r
6151**/\r
6152UINTN\r
6153EFIAPI\r
6154AsmWriteDr3 (\r
6155 UINTN Dr3\r
6156 );\r
6157\r
6158\r
6159/**\r
6160 Writes a value to Debug Register 4 (DR4).\r
6161\r
6162 Writes and returns a new value to DR4. This function is only available on\r
6163 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
6164\r
6165 @param Dr4 The value to write to Dr4.\r
6166\r
6167 @return The value written to Debug Register 4 (DR4).\r
6168\r
6169**/\r
6170UINTN\r
6171EFIAPI\r
6172AsmWriteDr4 (\r
6173 UINTN Dr4\r
6174 );\r
6175\r
6176\r
6177/**\r
6178 Writes a value to Debug Register 5 (DR5).\r
6179\r
6180 Writes and returns a new value to DR5. This function is only available on\r
6181 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
6182\r
6183 @param Dr5 The value to write to Dr5.\r
6184\r
6185 @return The value written to Debug Register 5 (DR5).\r
6186\r
6187**/\r
6188UINTN\r
6189EFIAPI\r
6190AsmWriteDr5 (\r
6191 UINTN Dr5\r
6192 );\r
6193\r
6194\r
6195/**\r
6196 Writes a value to Debug Register 6 (DR6).\r
6197\r
6198 Writes and returns a new value to DR6. This function is only available on\r
6199 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
6200\r
6201 @param Dr6 The value to write to Dr6.\r
6202\r
6203 @return The value written to Debug Register 6 (DR6).\r
6204\r
6205**/\r
6206UINTN\r
6207EFIAPI\r
6208AsmWriteDr6 (\r
6209 UINTN Dr6\r
6210 );\r
6211\r
6212\r
6213/**\r
6214 Writes a value to Debug Register 7 (DR7).\r
6215\r
6216 Writes and returns a new value to DR7. This function is only available on\r
6217 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
6218\r
6219 @param Dr7 The value to write to Dr7.\r
6220\r
6221 @return The value written to Debug Register 7 (DR7).\r
6222\r
6223**/\r
6224UINTN\r
6225EFIAPI\r
6226AsmWriteDr7 (\r
6227 UINTN Dr7\r
6228 );\r
6229\r
6230\r
6231/**\r
6232 Reads the current value of Code Segment Register (CS).\r
6233\r
6234 Reads and returns the current value of CS. This function is only available on\r
6235 IA-32 and x64.\r
6236\r
6237 @return The current value of CS.\r
6238\r
6239**/\r
6240UINT16\r
6241EFIAPI\r
6242AsmReadCs (\r
6243 VOID\r
6244 );\r
6245\r
6246\r
6247/**\r
6248 Reads the current value of Data Segment Register (DS).\r
6249\r
6250 Reads and returns the current value of DS. This function is only available on\r
6251 IA-32 and x64.\r
6252\r
6253 @return The current value of DS.\r
6254\r
6255**/\r
6256UINT16\r
6257EFIAPI\r
6258AsmReadDs (\r
6259 VOID\r
6260 );\r
6261\r
6262\r
6263/**\r
6264 Reads the current value of Extra Segment Register (ES).\r
6265\r
6266 Reads and returns the current value of ES. This function is only available on\r
6267 IA-32 and x64.\r
6268\r
6269 @return The current value of ES.\r
6270\r
6271**/\r
6272UINT16\r
6273EFIAPI\r
6274AsmReadEs (\r
6275 VOID\r
6276 );\r
6277\r
6278\r
6279/**\r
6280 Reads the current value of FS Data Segment Register (FS).\r
6281\r
6282 Reads and returns the current value of FS. This function is only available on\r
6283 IA-32 and x64.\r
6284\r
6285 @return The current value of FS.\r
6286\r
6287**/\r
6288UINT16\r
6289EFIAPI\r
6290AsmReadFs (\r
6291 VOID\r
6292 );\r
6293\r
6294\r
6295/**\r
6296 Reads the current value of GS Data Segment Register (GS).\r
6297\r
6298 Reads and returns the current value of GS. This function is only available on\r
6299 IA-32 and x64.\r
6300\r
6301 @return The current value of GS.\r
6302\r
6303**/\r
6304UINT16\r
6305EFIAPI\r
6306AsmReadGs (\r
6307 VOID\r
6308 );\r
6309\r
6310\r
6311/**\r
6312 Reads the current value of Stack Segment Register (SS).\r
6313\r
6314 Reads and returns the current value of SS. This function is only available on\r
6315 IA-32 and x64.\r
6316\r
6317 @return The current value of SS.\r
6318\r
6319**/\r
6320UINT16\r
6321EFIAPI\r
6322AsmReadSs (\r
6323 VOID\r
6324 );\r
6325\r
6326\r
6327/**\r
6328 Reads the current value of Task Register (TR).\r
6329\r
6330 Reads and returns the current value of TR. This function is only available on\r
6331 IA-32 and x64.\r
6332\r
6333 @return The current value of TR.\r
6334\r
6335**/\r
6336UINT16\r
6337EFIAPI\r
6338AsmReadTr (\r
6339 VOID\r
6340 );\r
6341\r
6342\r
6343/**\r
6344 Reads the current Global Descriptor Table Register(GDTR) descriptor.\r
6345\r
6346 Reads and returns the current GDTR descriptor and returns it in Gdtr. This\r
6347 function is only available on IA-32 and x64.\r
6348\r
6349 If Gdtr is NULL, then ASSERT().\r
6350\r
6351 @param Gdtr The pointer to a GDTR descriptor.\r
6352\r
6353**/\r
6354VOID\r
6355EFIAPI\r
6356AsmReadGdtr (\r
6357 OUT IA32_DESCRIPTOR *Gdtr\r
6358 );\r
6359\r
6360\r
6361/**\r
6362 Writes the current Global Descriptor Table Register (GDTR) descriptor.\r
6363\r
6364 Writes and the current GDTR descriptor specified by Gdtr. This function is\r
6365 only available on IA-32 and x64.\r
6366\r
6367 If Gdtr is NULL, then ASSERT().\r
6368\r
6369 @param Gdtr The pointer to a GDTR descriptor.\r
6370\r
6371**/\r
6372VOID\r
6373EFIAPI\r
6374AsmWriteGdtr (\r
6375 IN CONST IA32_DESCRIPTOR *Gdtr\r
6376 );\r
6377\r
6378\r
6379/**\r
6380 Reads the current Interrupt Descriptor Table Register(IDTR) descriptor.\r
6381\r
6382 Reads and returns the current IDTR descriptor and returns it in Idtr. This\r
6383 function is only available on IA-32 and x64.\r
6384\r
6385 If Idtr is NULL, then ASSERT().\r
6386\r
6387 @param Idtr The pointer to a IDTR descriptor.\r
6388\r
6389**/\r
6390VOID\r
6391EFIAPI\r
6392AsmReadIdtr (\r
6393 OUT IA32_DESCRIPTOR *Idtr\r
6394 );\r
6395\r
6396\r
6397/**\r
6398 Writes the current Interrupt Descriptor Table Register(IDTR) descriptor.\r
6399\r
6400 Writes the current IDTR descriptor and returns it in Idtr. This function is\r
6401 only available on IA-32 and x64.\r
6402\r
6403 If Idtr is NULL, then ASSERT().\r
6404\r
6405 @param Idtr The pointer to a IDTR descriptor.\r
6406\r
6407**/\r
6408VOID\r
6409EFIAPI\r
6410AsmWriteIdtr (\r
6411 IN CONST IA32_DESCRIPTOR *Idtr\r
6412 );\r
6413\r
6414\r
6415/**\r
6416 Reads the current Local Descriptor Table Register(LDTR) selector.\r
6417\r
6418 Reads and returns the current 16-bit LDTR descriptor value. This function is\r
6419 only available on IA-32 and x64.\r
6420\r
6421 @return The current selector of LDT.\r
6422\r
6423**/\r
6424UINT16\r
6425EFIAPI\r
6426AsmReadLdtr (\r
6427 VOID\r
6428 );\r
6429\r
6430\r
6431/**\r
6432 Writes the current Local Descriptor Table Register (LDTR) selector.\r
6433\r
6434 Writes and the current LDTR descriptor specified by Ldtr. This function is\r
6435 only available on IA-32 and x64.\r
6436\r
6437 @param Ldtr 16-bit LDTR selector value.\r
6438\r
6439**/\r
6440VOID\r
6441EFIAPI\r
6442AsmWriteLdtr (\r
6443 IN UINT16 Ldtr\r
6444 );\r
6445\r
6446\r
6447/**\r
6448 Save the current floating point/SSE/SSE2 context to a buffer.\r
6449\r
6450 Saves the current floating point/SSE/SSE2 state to the buffer specified by\r
6451 Buffer. Buffer must be aligned on a 16-byte boundary. This function is only\r
6452 available on IA-32 and x64.\r
6453\r
6454 If Buffer is NULL, then ASSERT().\r
6455 If Buffer is not aligned on a 16-byte boundary, then ASSERT().\r
6456\r
6457 @param Buffer The pointer to a buffer to save the floating point/SSE/SSE2 context.\r
6458\r
6459**/\r
6460VOID\r
6461EFIAPI\r
6462AsmFxSave (\r
6463 OUT IA32_FX_BUFFER *Buffer\r
6464 );\r
6465\r
6466\r
6467/**\r
6468 Restores the current floating point/SSE/SSE2 context from a buffer.\r
6469\r
6470 Restores the current floating point/SSE/SSE2 state from the buffer specified\r
6471 by Buffer. Buffer must be aligned on a 16-byte boundary. This function is\r
6472 only available on IA-32 and x64.\r
6473\r
6474 If Buffer is NULL, then ASSERT().\r
6475 If Buffer is not aligned on a 16-byte boundary, then ASSERT().\r
6476 If Buffer was not saved with AsmFxSave(), then ASSERT().\r
6477\r
6478 @param Buffer The pointer to a buffer to save the floating point/SSE/SSE2 context.\r
6479\r
6480**/\r
6481VOID\r
6482EFIAPI\r
6483AsmFxRestore (\r
6484 IN CONST IA32_FX_BUFFER *Buffer\r
6485 );\r
6486\r
6487\r
6488/**\r
6489 Reads the current value of 64-bit MMX Register #0 (MM0).\r
6490\r
6491 Reads and returns the current value of MM0. This function is only available\r
6492 on IA-32 and x64.\r
6493\r
6494 @return The current value of MM0.\r
6495\r
6496**/\r
6497UINT64\r
6498EFIAPI\r
6499AsmReadMm0 (\r
6500 VOID\r
6501 );\r
6502\r
6503\r
6504/**\r
6505 Reads the current value of 64-bit MMX Register #1 (MM1).\r
6506\r
6507 Reads and returns the current value of MM1. This function is only available\r
6508 on IA-32 and x64.\r
6509\r
6510 @return The current value of MM1.\r
6511\r
6512**/\r
6513UINT64\r
6514EFIAPI\r
6515AsmReadMm1 (\r
6516 VOID\r
6517 );\r
6518\r
6519\r
6520/**\r
6521 Reads the current value of 64-bit MMX Register #2 (MM2).\r
6522\r
6523 Reads and returns the current value of MM2. This function is only available\r
6524 on IA-32 and x64.\r
6525\r
6526 @return The current value of MM2.\r
6527\r
6528**/\r
6529UINT64\r
6530EFIAPI\r
6531AsmReadMm2 (\r
6532 VOID\r
6533 );\r
6534\r
6535\r
6536/**\r
6537 Reads the current value of 64-bit MMX Register #3 (MM3).\r
6538\r
6539 Reads and returns the current value of MM3. This function is only available\r
6540 on IA-32 and x64.\r
6541\r
6542 @return The current value of MM3.\r
6543\r
6544**/\r
6545UINT64\r
6546EFIAPI\r
6547AsmReadMm3 (\r
6548 VOID\r
6549 );\r
6550\r
6551\r
6552/**\r
6553 Reads the current value of 64-bit MMX Register #4 (MM4).\r
6554\r
6555 Reads and returns the current value of MM4. This function is only available\r
6556 on IA-32 and x64.\r
6557\r
6558 @return The current value of MM4.\r
6559\r
6560**/\r
6561UINT64\r
6562EFIAPI\r
6563AsmReadMm4 (\r
6564 VOID\r
6565 );\r
6566\r
6567\r
6568/**\r
6569 Reads the current value of 64-bit MMX Register #5 (MM5).\r
6570\r
6571 Reads and returns the current value of MM5. This function is only available\r
6572 on IA-32 and x64.\r
6573\r
6574 @return The current value of MM5.\r
6575\r
6576**/\r
6577UINT64\r
6578EFIAPI\r
6579AsmReadMm5 (\r
6580 VOID\r
6581 );\r
6582\r
6583\r
6584/**\r
6585 Reads the current value of 64-bit MMX Register #6 (MM6).\r
6586\r
6587 Reads and returns the current value of MM6. This function is only available\r
6588 on IA-32 and x64.\r
6589\r
6590 @return The current value of MM6.\r
6591\r
6592**/\r
6593UINT64\r
6594EFIAPI\r
6595AsmReadMm6 (\r
6596 VOID\r
6597 );\r
6598\r
6599\r
6600/**\r
6601 Reads the current value of 64-bit MMX Register #7 (MM7).\r
6602\r
6603 Reads and returns the current value of MM7. This function is only available\r
6604 on IA-32 and x64.\r
6605\r
6606 @return The current value of MM7.\r
6607\r
6608**/\r
6609UINT64\r
6610EFIAPI\r
6611AsmReadMm7 (\r
6612 VOID\r
6613 );\r
6614\r
6615\r
6616/**\r
6617 Writes the current value of 64-bit MMX Register #0 (MM0).\r
6618\r
6619 Writes the current value of MM0. This function is only available on IA32 and\r
6620 x64.\r
6621\r
6622 @param Value The 64-bit value to write to MM0.\r
6623\r
6624**/\r
6625VOID\r
6626EFIAPI\r
6627AsmWriteMm0 (\r
6628 IN UINT64 Value\r
6629 );\r
6630\r
6631\r
6632/**\r
6633 Writes the current value of 64-bit MMX Register #1 (MM1).\r
6634\r
6635 Writes the current value of MM1. This function is only available on IA32 and\r
6636 x64.\r
6637\r
6638 @param Value The 64-bit value to write to MM1.\r
6639\r
6640**/\r
6641VOID\r
6642EFIAPI\r
6643AsmWriteMm1 (\r
6644 IN UINT64 Value\r
6645 );\r
6646\r
6647\r
6648/**\r
6649 Writes the current value of 64-bit MMX Register #2 (MM2).\r
6650\r
6651 Writes the current value of MM2. This function is only available on IA32 and\r
6652 x64.\r
6653\r
6654 @param Value The 64-bit value to write to MM2.\r
6655\r
6656**/\r
6657VOID\r
6658EFIAPI\r
6659AsmWriteMm2 (\r
6660 IN UINT64 Value\r
6661 );\r
6662\r
6663\r
6664/**\r
6665 Writes the current value of 64-bit MMX Register #3 (MM3).\r
6666\r
6667 Writes the current value of MM3. This function is only available on IA32 and\r
6668 x64.\r
6669\r
6670 @param Value The 64-bit value to write to MM3.\r
6671\r
6672**/\r
6673VOID\r
6674EFIAPI\r
6675AsmWriteMm3 (\r
6676 IN UINT64 Value\r
6677 );\r
6678\r
6679\r
6680/**\r
6681 Writes the current value of 64-bit MMX Register #4 (MM4).\r
6682\r
6683 Writes the current value of MM4. This function is only available on IA32 and\r
6684 x64.\r
6685\r
6686 @param Value The 64-bit value to write to MM4.\r
6687\r
6688**/\r
6689VOID\r
6690EFIAPI\r
6691AsmWriteMm4 (\r
6692 IN UINT64 Value\r
6693 );\r
6694\r
6695\r
6696/**\r
6697 Writes the current value of 64-bit MMX Register #5 (MM5).\r
6698\r
6699 Writes the current value of MM5. This function is only available on IA32 and\r
6700 x64.\r
6701\r
6702 @param Value The 64-bit value to write to MM5.\r
6703\r
6704**/\r
6705VOID\r
6706EFIAPI\r
6707AsmWriteMm5 (\r
6708 IN UINT64 Value\r
6709 );\r
6710\r
6711\r
6712/**\r
6713 Writes the current value of 64-bit MMX Register #6 (MM6).\r
6714\r
6715 Writes the current value of MM6. This function is only available on IA32 and\r
6716 x64.\r
6717\r
6718 @param Value The 64-bit value to write to MM6.\r
6719\r
6720**/\r
6721VOID\r
6722EFIAPI\r
6723AsmWriteMm6 (\r
6724 IN UINT64 Value\r
6725 );\r
6726\r
6727\r
6728/**\r
6729 Writes the current value of 64-bit MMX Register #7 (MM7).\r
6730\r
6731 Writes the current value of MM7. This function is only available on IA32 and\r
6732 x64.\r
6733\r
6734 @param Value The 64-bit value to write to MM7.\r
6735\r
6736**/\r
6737VOID\r
6738EFIAPI\r
6739AsmWriteMm7 (\r
6740 IN UINT64 Value\r
6741 );\r
6742\r
6743\r
6744/**\r
6745 Reads the current value of Time Stamp Counter (TSC).\r
6746\r
6747 Reads and returns the current value of TSC. This function is only available\r
6748 on IA-32 and x64.\r
6749\r
6750 @return The current value of TSC\r
6751\r
6752**/\r
6753UINT64\r
6754EFIAPI\r
6755AsmReadTsc (\r
6756 VOID\r
6757 );\r
6758\r
6759\r
6760/**\r
6761 Reads the current value of a Performance Counter (PMC).\r
6762\r
6763 Reads and returns the current value of performance counter specified by\r
6764 Index. This function is only available on IA-32 and x64.\r
6765\r
6766 @param Index The 32-bit Performance Counter index to read.\r
6767\r
6768 @return The value of the PMC specified by Index.\r
6769\r
6770**/\r
6771UINT64\r
6772EFIAPI\r
6773AsmReadPmc (\r
6774 IN UINT32 Index\r
6775 );\r
6776\r
6777\r
6778/**\r
6779 Sets up a monitor buffer that is used by AsmMwait().\r
6780\r
6781 Executes a MONITOR instruction with the register state specified by Eax, Ecx\r
6782 and Edx. Returns Eax. This function is only available on IA-32 and x64.\r
6783\r
6784 @param Eax The value to load into EAX or RAX before executing the MONITOR\r
6785 instruction.\r
6786 @param Ecx The value to load into ECX or RCX before executing the MONITOR\r
6787 instruction.\r
6788 @param Edx The value to load into EDX or RDX before executing the MONITOR\r
6789 instruction.\r
6790\r
6791 @return Eax\r
6792\r
6793**/\r
6794UINTN\r
6795EFIAPI\r
6796AsmMonitor (\r
6797 IN UINTN Eax,\r
6798 IN UINTN Ecx,\r
6799 IN UINTN Edx\r
6800 );\r
6801\r
6802\r
6803/**\r
6804 Executes an MWAIT instruction.\r
6805\r
6806 Executes an MWAIT instruction with the register state specified by Eax and\r
6807 Ecx. Returns Eax. This function is only available on IA-32 and x64.\r
6808\r
6809 @param Eax The value to load into EAX or RAX before executing the MONITOR\r
6810 instruction.\r
6811 @param Ecx The value to load into ECX or RCX before executing the MONITOR\r
6812 instruction.\r
6813\r
6814 @return Eax\r
6815\r
6816**/\r
6817UINTN\r
6818EFIAPI\r
6819AsmMwait (\r
6820 IN UINTN Eax,\r
6821 IN UINTN Ecx\r
6822 );\r
6823\r
6824\r
6825/**\r
6826 Executes a WBINVD instruction.\r
6827\r
6828 Executes a WBINVD instruction. This function is only available on IA-32 and\r
6829 x64.\r
6830\r
6831**/\r
6832VOID\r
6833EFIAPI\r
6834AsmWbinvd (\r
6835 VOID\r
6836 );\r
6837\r
6838\r
6839/**\r
6840 Executes a INVD instruction.\r
6841\r
6842 Executes a INVD instruction. This function is only available on IA-32 and\r
6843 x64.\r
6844\r
6845**/\r
6846VOID\r
6847EFIAPI\r
6848AsmInvd (\r
6849 VOID\r
6850 );\r
6851\r
6852\r
6853/**\r
6854 Flushes a cache line from all the instruction and data caches within the\r
6855 coherency domain of the CPU.\r
6856\r
6857 Flushed the cache line specified by LinearAddress, and returns LinearAddress.\r
6858 This function is only available on IA-32 and x64.\r
6859\r
6860 @param LinearAddress The address of the cache line to flush. If the CPU is\r
6861 in a physical addressing mode, then LinearAddress is a\r
6862 physical address. If the CPU is in a virtual\r
6863 addressing mode, then LinearAddress is a virtual\r
6864 address.\r
6865\r
6866 @return LinearAddress.\r
6867**/\r
6868VOID *\r
6869EFIAPI\r
6870AsmFlushCacheLine (\r
6871 IN VOID *LinearAddress\r
6872 );\r
6873\r
6874\r
6875/**\r
6876 Enables the 32-bit paging mode on the CPU.\r
6877\r
6878 Enables the 32-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables\r
6879 must be properly initialized prior to calling this service. This function\r
6880 assumes the current execution mode is 32-bit protected mode. This function is\r
6881 only available on IA-32. After the 32-bit paging mode is enabled, control is\r
6882 transferred to the function specified by EntryPoint using the new stack\r
6883 specified by NewStack and passing in the parameters specified by Context1 and\r
6884 Context2. Context1 and Context2 are optional and may be NULL. The function\r
6885 EntryPoint must never return.\r
6886\r
6887 If the current execution mode is not 32-bit protected mode, then ASSERT().\r
6888 If EntryPoint is NULL, then ASSERT().\r
6889 If NewStack is NULL, then ASSERT().\r
6890\r
6891 There are a number of constraints that must be followed before calling this\r
6892 function:\r
6893 1) Interrupts must be disabled.\r
6894 2) The caller must be in 32-bit protected mode with flat descriptors. This\r
6895 means all descriptors must have a base of 0 and a limit of 4GB.\r
6896 3) CR0 and CR4 must be compatible with 32-bit protected mode with flat\r
6897 descriptors.\r
6898 4) CR3 must point to valid page tables that will be used once the transition\r
6899 is complete, and those page tables must guarantee that the pages for this\r
6900 function and the stack are identity mapped.\r
6901\r
6902 @param EntryPoint A pointer to function to call with the new stack after\r
6903 paging is enabled.\r
6904 @param Context1 A pointer to the context to pass into the EntryPoint\r
6905 function as the first parameter after paging is enabled.\r
6906 @param Context2 A pointer to the context to pass into the EntryPoint\r
6907 function as the second parameter after paging is enabled.\r
6908 @param NewStack A pointer to the new stack to use for the EntryPoint\r
6909 function after paging is enabled.\r
6910\r
6911**/\r
6912VOID\r
6913EFIAPI\r
6914AsmEnablePaging32 (\r
6915 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
6916 IN VOID *Context1, OPTIONAL\r
6917 IN VOID *Context2, OPTIONAL\r
6918 IN VOID *NewStack\r
6919 );\r
6920\r
6921\r
6922/**\r
6923 Disables the 32-bit paging mode on the CPU.\r
6924\r
6925 Disables the 32-bit paging mode on the CPU and returns to 32-bit protected\r
6926 mode. This function assumes the current execution mode is 32-paged protected\r
6927 mode. This function is only available on IA-32. After the 32-bit paging mode\r
6928 is disabled, control is transferred to the function specified by EntryPoint\r
6929 using the new stack specified by NewStack and passing in the parameters\r
6930 specified by Context1 and Context2. Context1 and Context2 are optional and\r
6931 may be NULL. The function EntryPoint must never return.\r
6932\r
6933 If the current execution mode is not 32-bit paged mode, then ASSERT().\r
6934 If EntryPoint is NULL, then ASSERT().\r
6935 If NewStack is NULL, then ASSERT().\r
6936\r
6937 There are a number of constraints that must be followed before calling this\r
6938 function:\r
6939 1) Interrupts must be disabled.\r
6940 2) The caller must be in 32-bit paged mode.\r
6941 3) CR0, CR3, and CR4 must be compatible with 32-bit paged mode.\r
6942 4) CR3 must point to valid page tables that guarantee that the pages for\r
6943 this function and the stack are identity mapped.\r
6944\r
6945 @param EntryPoint A pointer to function to call with the new stack after\r
6946 paging is disabled.\r
6947 @param Context1 A pointer to the context to pass into the EntryPoint\r
6948 function as the first parameter after paging is disabled.\r
6949 @param Context2 A pointer to the context to pass into the EntryPoint\r
6950 function as the second parameter after paging is\r
6951 disabled.\r
6952 @param NewStack A pointer to the new stack to use for the EntryPoint\r
6953 function after paging is disabled.\r
6954\r
6955**/\r
6956VOID\r
6957EFIAPI\r
6958AsmDisablePaging32 (\r
6959 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
6960 IN VOID *Context1, OPTIONAL\r
6961 IN VOID *Context2, OPTIONAL\r
6962 IN VOID *NewStack\r
6963 );\r
6964\r
6965\r
6966/**\r
6967 Enables the 64-bit paging mode on the CPU.\r
6968\r
6969 Enables the 64-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables\r
6970 must be properly initialized prior to calling this service. This function\r
6971 assumes the current execution mode is 32-bit protected mode with flat\r
6972 descriptors. This function is only available on IA-32. After the 64-bit\r
6973 paging mode is enabled, control is transferred to the function specified by\r
6974 EntryPoint using the new stack specified by NewStack and passing in the\r
6975 parameters specified by Context1 and Context2. Context1 and Context2 are\r
6976 optional and may be 0. The function EntryPoint must never return.\r
6977\r
6978 If the current execution mode is not 32-bit protected mode with flat\r
6979 descriptors, then ASSERT().\r
6980 If EntryPoint is 0, then ASSERT().\r
6981 If NewStack is 0, then ASSERT().\r
6982\r
6983 @param Cs The 16-bit selector to load in the CS before EntryPoint\r
6984 is called. The descriptor in the GDT that this selector\r
6985 references must be setup for long mode.\r
6986 @param EntryPoint The 64-bit virtual address of the function to call with\r
6987 the new stack after paging is enabled.\r
6988 @param Context1 The 64-bit virtual address of the context to pass into\r
6989 the EntryPoint function as the first parameter after\r
6990 paging is enabled.\r
6991 @param Context2 The 64-bit virtual address of the context to pass into\r
6992 the EntryPoint function as the second parameter after\r
6993 paging is enabled.\r
6994 @param NewStack The 64-bit virtual address of the new stack to use for\r
6995 the EntryPoint function after paging is enabled.\r
6996\r
6997**/\r
6998VOID\r
6999EFIAPI\r
7000AsmEnablePaging64 (\r
7001 IN UINT16 Cs,\r
7002 IN UINT64 EntryPoint,\r
7003 IN UINT64 Context1, OPTIONAL\r
7004 IN UINT64 Context2, OPTIONAL\r
7005 IN UINT64 NewStack\r
7006 );\r
7007\r
7008\r
7009/**\r
7010 Disables the 64-bit paging mode on the CPU.\r
7011\r
7012 Disables the 64-bit paging mode on the CPU and returns to 32-bit protected\r
7013 mode. This function assumes the current execution mode is 64-paging mode.\r
7014 This function is only available on x64. After the 64-bit paging mode is\r
7015 disabled, control is transferred to the function specified by EntryPoint\r
7016 using the new stack specified by NewStack and passing in the parameters\r
7017 specified by Context1 and Context2. Context1 and Context2 are optional and\r
7018 may be 0. The function EntryPoint must never return.\r
7019\r
7020 If the current execution mode is not 64-bit paged mode, then ASSERT().\r
7021 If EntryPoint is 0, then ASSERT().\r
7022 If NewStack is 0, then ASSERT().\r
7023\r
7024 @param Cs The 16-bit selector to load in the CS before EntryPoint\r
7025 is called. The descriptor in the GDT that this selector\r
7026 references must be setup for 32-bit protected mode.\r
7027 @param EntryPoint The 64-bit virtual address of the function to call with\r
7028 the new stack after paging is disabled.\r
7029 @param Context1 The 64-bit virtual address of the context to pass into\r
7030 the EntryPoint function as the first parameter after\r
7031 paging is disabled.\r
7032 @param Context2 The 64-bit virtual address of the context to pass into\r
7033 the EntryPoint function as the second parameter after\r
7034 paging is disabled.\r
7035 @param NewStack The 64-bit virtual address of the new stack to use for\r
7036 the EntryPoint function after paging is disabled.\r
7037\r
7038**/\r
7039VOID\r
7040EFIAPI\r
7041AsmDisablePaging64 (\r
7042 IN UINT16 Cs,\r
7043 IN UINT32 EntryPoint,\r
7044 IN UINT32 Context1, OPTIONAL\r
7045 IN UINT32 Context2, OPTIONAL\r
7046 IN UINT32 NewStack\r
7047 );\r
7048\r
7049\r
7050//\r
7051// 16-bit thunking services\r
7052//\r
7053\r
7054/**\r
7055 Retrieves the properties for 16-bit thunk functions.\r
7056\r
7057 Computes the size of the buffer and stack below 1MB required to use the\r
7058 AsmPrepareThunk16(), AsmThunk16() and AsmPrepareAndThunk16() functions. This\r
7059 buffer size is returned in RealModeBufferSize, and the stack size is returned\r
7060 in ExtraStackSize. If parameters are passed to the 16-bit real mode code,\r
7061 then the actual minimum stack size is ExtraStackSize plus the maximum number\r
7062 of bytes that need to be passed to the 16-bit real mode code.\r
7063 \r
7064 If RealModeBufferSize is NULL, then ASSERT().\r
7065 If ExtraStackSize is NULL, then ASSERT().\r
7066\r
7067 @param RealModeBufferSize A pointer to the size of the buffer below 1MB\r
7068 required to use the 16-bit thunk functions.\r
7069 @param ExtraStackSize A pointer to the extra size of stack below 1MB\r
7070 that the 16-bit thunk functions require for\r
7071 temporary storage in the transition to and from\r
7072 16-bit real mode.\r
7073\r
7074**/\r
7075VOID\r
7076EFIAPI\r
7077AsmGetThunk16Properties (\r
7078 OUT UINT32 *RealModeBufferSize,\r
7079 OUT UINT32 *ExtraStackSize\r
7080 );\r
7081\r
7082\r
7083/**\r
7084 Prepares all structures a code required to use AsmThunk16().\r
7085\r
7086 Prepares all structures and code required to use AsmThunk16().\r
7087 \r
7088 This interface is limited to be used in either physical mode or virtual modes with paging enabled where the\r
7089 virtual to physical mappings for ThunkContext.RealModeBuffer is mapped 1:1.\r
7090\r
7091 If ThunkContext is NULL, then ASSERT().\r
7092\r
7093 @param ThunkContext A pointer to the context structure that describes the\r
7094 16-bit real mode code to call.\r
7095\r
7096**/\r
7097VOID\r
7098EFIAPI\r
7099AsmPrepareThunk16 (\r
7100 OUT THUNK_CONTEXT *ThunkContext\r
7101 );\r
7102\r
7103\r
7104/**\r
7105 Transfers control to a 16-bit real mode entry point and returns the results.\r
7106\r
7107 Transfers control to a 16-bit real mode entry point and returns the results.\r
7108 AsmPrepareThunk16() must be called with ThunkContext before this function is used.\r
7109 This function must be called with interrupts disabled.\r
7110\r
7111 The register state from the RealModeState field of ThunkContext is restored just prior \r
7112 to calling the 16-bit real mode entry point. This includes the EFLAGS field of RealModeState, \r
7113 which is used to set the interrupt state when a 16-bit real mode entry point is called.\r
7114 Control is transferred to the 16-bit real mode entry point specified by the CS and Eip fields of RealModeState.\r
7115 The stack is initialized to the SS and ESP fields of RealModeState. Any parameters passed to \r
7116 the 16-bit real mode code must be populated by the caller at SS:ESP prior to calling this function. \r
7117 The 16-bit real mode entry point is invoked with a 16-bit CALL FAR instruction,\r
7118 so when accessing stack contents, the 16-bit real mode code must account for the 16-bit segment \r
7119 and 16-bit offset of the return address that were pushed onto the stack. The 16-bit real mode entry \r
7120 point must exit with a RETF instruction. The register state is captured into RealModeState immediately \r
7121 after the RETF instruction is executed.\r
7122 \r
7123 If EFLAGS specifies interrupts enabled, or any of the 16-bit real mode code enables interrupts, \r
7124 or any of the 16-bit real mode code makes a SW interrupt, then the caller is responsible for making sure \r
7125 the IDT at address 0 is initialized to handle any HW or SW interrupts that may occur while in 16-bit real mode. \r
7126 \r
7127 If EFLAGS specifies interrupts enabled, or any of the 16-bit real mode code enables interrupts, \r
7128 then the caller is responsible for making sure the 8259 PIC is in a state compatible with 16-bit real mode. \r
7129 This includes the base vectors, the interrupt masks, and the edge/level trigger mode.\r
7130 \r
7131 If THUNK_ATTRIBUTE_BIG_REAL_MODE is set in the ThunkAttributes field of ThunkContext, then the user code \r
7132 is invoked in big real mode. Otherwise, the user code is invoked in 16-bit real mode with 64KB segment limits.\r
7133 \r
7134 If neither THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 nor THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL are set in \r
7135 ThunkAttributes, then it is assumed that the user code did not enable the A20 mask, and no attempt is made to \r
7136 disable the A20 mask.\r
7137 \r
7138 If THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 is set and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL is clear in \r
7139 ThunkAttributes, then attempt to use the INT 15 service to disable the A20 mask. If this INT 15 call fails, \r
7140 then attempt to disable the A20 mask by directly accessing the 8042 keyboard controller I/O ports.\r
7141 \r
7142 If THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 is clear and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL is set in \r
7143 ThunkAttributes, then attempt to disable the A20 mask by directly accessing the 8042 keyboard controller I/O ports.\r
7144 \r
7145 If ThunkContext is NULL, then ASSERT().\r
7146 If AsmPrepareThunk16() was not previously called with ThunkContext, then ASSERT().\r
7147 If both THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL are set in \r
7148 ThunkAttributes, then ASSERT().\r
7149\r
7150 This interface is limited to be used in either physical mode or virtual modes with paging enabled where the\r
7151 virtual to physical mappings for ThunkContext.RealModeBuffer are mapped 1:1.\r
7152\r
7153 @param ThunkContext A pointer to the context structure that describes the\r
7154 16-bit real mode code to call.\r
7155\r
7156**/\r
7157VOID\r
7158EFIAPI\r
7159AsmThunk16 (\r
7160 IN OUT THUNK_CONTEXT *ThunkContext\r
7161 );\r
7162\r
7163\r
7164/**\r
7165 Prepares all structures and code for a 16-bit real mode thunk, transfers\r
7166 control to a 16-bit real mode entry point, and returns the results.\r
7167\r
7168 Prepares all structures and code for a 16-bit real mode thunk, transfers\r
7169 control to a 16-bit real mode entry point, and returns the results. If the\r
7170 caller only need to perform a single 16-bit real mode thunk, then this\r
7171 service should be used. If the caller intends to make more than one 16-bit\r
7172 real mode thunk, then it is more efficient if AsmPrepareThunk16() is called\r
7173 once and AsmThunk16() can be called for each 16-bit real mode thunk.\r
7174\r
7175 This interface is limited to be used in either physical mode or virtual modes with paging enabled where the\r
7176 virtual to physical mappings for ThunkContext.RealModeBuffer is mapped 1:1.\r
7177\r
7178 See AsmPrepareThunk16() and AsmThunk16() for the detailed description and ASSERT() conditions.\r
7179\r
7180 @param ThunkContext A pointer to the context structure that describes the\r
7181 16-bit real mode code to call.\r
7182\r
7183**/\r
7184VOID\r
7185EFIAPI\r
7186AsmPrepareAndThunk16 (\r
7187 IN OUT THUNK_CONTEXT *ThunkContext\r
7188 );\r
7189\r
7190#endif\r
7191#endif\r
7192\r
7193\r