]> git.proxmox.com Git - mirror_edk2.git/blame_incremental - NetworkPkg/Include/Library/NetLib.h
NetworkPkg/Library: Fix various typos
[mirror_edk2.git] / NetworkPkg / Include / Library / NetLib.h
... / ...
CommitLineData
1/** @file\r
2 This library is only intended to be used by UEFI network stack modules.\r
3 It provides basic functions for the UEFI network stack.\r
4\r
5Copyright (c) 2005 - 2018, Intel Corporation. All rights reserved.<BR>\r
6SPDX-License-Identifier: BSD-2-Clause-Patent\r
7\r
8**/\r
9\r
10#ifndef _NET_LIB_H_\r
11#define _NET_LIB_H_\r
12\r
13#include <Protocol/Ip6.h>\r
14\r
15#include <Library/BaseLib.h>\r
16#include <Library/BaseMemoryLib.h>\r
17\r
18typedef UINT32 IP4_ADDR;\r
19typedef UINT32 TCP_SEQNO;\r
20typedef UINT16 TCP_PORTNO;\r
21\r
22\r
23#define NET_ETHER_ADDR_LEN 6\r
24#define NET_IFTYPE_ETHERNET 0x01\r
25\r
26#define NET_VLAN_TAG_LEN 4\r
27#define ETHER_TYPE_VLAN 0x8100\r
28\r
29#define EFI_IP_PROTO_UDP 0x11\r
30#define EFI_IP_PROTO_TCP 0x06\r
31#define EFI_IP_PROTO_ICMP 0x01\r
32#define IP4_PROTO_IGMP 0x02\r
33#define IP6_ICMP 58\r
34#define DNS_MAX_NAME_SIZE 255\r
35#define DNS_MAX_MESSAGE_SIZE 512\r
36\r
37//\r
38// The address classification\r
39//\r
40#define IP4_ADDR_CLASSA 1 // Deprecated\r
41#define IP4_ADDR_CLASSB 2 // Deprecated\r
42#define IP4_ADDR_CLASSC 3 // Deprecated\r
43#define IP4_ADDR_CLASSD 4\r
44#define IP4_ADDR_CLASSE 5\r
45\r
46#define IP4_MASK_NUM 33\r
47#define IP6_PREFIX_NUM 129\r
48\r
49#define IP4_MASK_MAX 32\r
50#define IP6_PREFIX_MAX 128\r
51\r
52#define IP6_HOP_BY_HOP 0\r
53#define IP6_DESTINATION 60\r
54#define IP6_ROUTING 43\r
55#define IP6_FRAGMENT 44\r
56#define IP6_AH 51\r
57#define IP6_ESP 50\r
58#define IP6_NO_NEXT_HEADER 59\r
59\r
60#define IP_VERSION_4 4\r
61#define IP_VERSION_6 6\r
62\r
63#define IP6_PREFIX_LENGTH 64\r
64\r
65//\r
66// DNS QTYPE values\r
67//\r
68#define DNS_TYPE_A 1\r
69#define DNS_TYPE_NS 2\r
70#define DNS_TYPE_CNAME 5\r
71#define DNS_TYPE_SOA 6\r
72#define DNS_TYPE_WKS 11\r
73#define DNS_TYPE_PTR 12\r
74#define DNS_TYPE_HINFO 13\r
75#define DNS_TYPE_MINFO 14\r
76#define DNS_TYPE_MX 15\r
77#define DNS_TYPE_TXT 16\r
78#define DNS_TYPE_AAAA 28\r
79#define DNS_TYPE_SRV_RR 33\r
80#define DNS_TYPE_AXFR 252\r
81#define DNS_TYPE_MAILB 253\r
82#define DNS_TYPE_ANY 255\r
83\r
84//\r
85// DNS QCLASS values\r
86//\r
87#define DNS_CLASS_INET 1\r
88#define DNS_CLASS_CH 3\r
89#define DNS_CLASS_HS 4\r
90#define DNS_CLASS_ANY 255\r
91\r
92//\r
93// Number of 100ns units time Interval for network media state detect\r
94//\r
95#define MEDIA_STATE_DETECT_TIME_INTERVAL 1000000U\r
96\r
97\r
98#pragma pack(1)\r
99\r
100//\r
101// Ethernet head definition\r
102//\r
103typedef struct {\r
104 UINT8 DstMac [NET_ETHER_ADDR_LEN];\r
105 UINT8 SrcMac [NET_ETHER_ADDR_LEN];\r
106 UINT16 EtherType;\r
107} ETHER_HEAD;\r
108\r
109//\r
110// 802.1Q VLAN Tag Control Information\r
111//\r
112typedef union {\r
113 struct {\r
114 UINT16 Vid : 12; // Unique VLAN identifier (0 to 4094)\r
115 UINT16 Cfi : 1; // Canonical Format Indicator\r
116 UINT16 Priority : 3; // 802.1Q priority level (0 to 7)\r
117 } Bits;\r
118 UINT16 Uint16;\r
119} VLAN_TCI;\r
120\r
121#define VLAN_TCI_CFI_CANONICAL_MAC 0\r
122#define VLAN_TCI_CFI_NON_CANONICAL_MAC 1\r
123\r
124//\r
125// The EFI_IP4_HEADER is hard to use because the source and\r
126// destination address are defined as EFI_IPv4_ADDRESS, which\r
127// is a structure. Two structures can't be compared or masked\r
128// directly. This is why there is an internal representation.\r
129//\r
130typedef struct {\r
131 UINT8 HeadLen : 4;\r
132 UINT8 Ver : 4;\r
133 UINT8 Tos;\r
134 UINT16 TotalLen;\r
135 UINT16 Id;\r
136 UINT16 Fragment;\r
137 UINT8 Ttl;\r
138 UINT8 Protocol;\r
139 UINT16 Checksum;\r
140 IP4_ADDR Src;\r
141 IP4_ADDR Dst;\r
142} IP4_HEAD;\r
143\r
144\r
145//\r
146// ICMP head definition. Each ICMP message is categorized as either an error\r
147// message or query message. Two message types have their own head format.\r
148//\r
149typedef struct {\r
150 UINT8 Type;\r
151 UINT8 Code;\r
152 UINT16 Checksum;\r
153} IP4_ICMP_HEAD;\r
154\r
155typedef struct {\r
156 IP4_ICMP_HEAD Head;\r
157 UINT32 Fourth; // 4th filed of the head, it depends on Type.\r
158 IP4_HEAD IpHead;\r
159} IP4_ICMP_ERROR_HEAD;\r
160\r
161typedef struct {\r
162 IP4_ICMP_HEAD Head;\r
163 UINT16 Id;\r
164 UINT16 Seq;\r
165} IP4_ICMP_QUERY_HEAD;\r
166\r
167typedef struct {\r
168 UINT8 Type;\r
169 UINT8 Code;\r
170 UINT16 Checksum;\r
171} IP6_ICMP_HEAD;\r
172\r
173typedef struct {\r
174 IP6_ICMP_HEAD Head;\r
175 UINT32 Fourth;\r
176 EFI_IP6_HEADER IpHead;\r
177} IP6_ICMP_ERROR_HEAD;\r
178\r
179typedef struct {\r
180 IP6_ICMP_HEAD Head;\r
181 UINT32 Fourth;\r
182} IP6_ICMP_INFORMATION_HEAD;\r
183\r
184//\r
185// UDP header definition\r
186//\r
187typedef struct {\r
188 UINT16 SrcPort;\r
189 UINT16 DstPort;\r
190 UINT16 Length;\r
191 UINT16 Checksum;\r
192} EFI_UDP_HEADER;\r
193\r
194//\r
195// TCP header definition\r
196//\r
197typedef struct {\r
198 TCP_PORTNO SrcPort;\r
199 TCP_PORTNO DstPort;\r
200 TCP_SEQNO Seq;\r
201 TCP_SEQNO Ack;\r
202 UINT8 Res : 4;\r
203 UINT8 HeadLen : 4;\r
204 UINT8 Flag;\r
205 UINT16 Wnd;\r
206 UINT16 Checksum;\r
207 UINT16 Urg;\r
208} TCP_HEAD;\r
209\r
210#pragma pack()\r
211\r
212#define NET_MAC_EQUAL(pMac1, pMac2, Len) \\r
213 (CompareMem ((pMac1), (pMac2), Len) == 0)\r
214\r
215#define NET_MAC_IS_MULTICAST(Mac, BMac, Len) \\r
216 (((*((UINT8 *) Mac) & 0x01) == 0x01) && (!NET_MAC_EQUAL (Mac, BMac, Len)))\r
217\r
218#define NTOHL(x) SwapBytes32 (x)\r
219\r
220#define HTONL(x) NTOHL(x)\r
221\r
222#define NTOHS(x) SwapBytes16 (x)\r
223\r
224#define HTONS(x) NTOHS(x)\r
225#define NTOHLL(x) SwapBytes64 (x)\r
226#define HTONLL(x) NTOHLL(x)\r
227#define NTOHLLL(x) Ip6Swap128 (x)\r
228#define HTONLLL(x) NTOHLLL(x)\r
229\r
230//\r
231// Test the IP's attribute, All the IPs are in host byte order.\r
232//\r
233#define IP4_IS_MULTICAST(Ip) (((Ip) & 0xF0000000) == 0xE0000000)\r
234#define IP4_IS_UNSPECIFIED(Ip) ((Ip) == 0)\r
235#define IP4_IS_LOCAL_BROADCAST(Ip) ((Ip) == 0xFFFFFFFF)\r
236#define IP4_NET_EQUAL(Ip1, Ip2, NetMask) (((Ip1) & (NetMask)) == ((Ip2) & (NetMask)))\r
237#define IP4_IS_VALID_NETMASK(Ip) (NetGetMaskLength (Ip) != (IP4_MASK_MAX + 1))\r
238\r
239#define IP6_IS_MULTICAST(Ip6) (((Ip6)->Addr[0]) == 0xFF)\r
240\r
241//\r
242// Convert the EFI_IP4_ADDRESS to plain UINT32 IP4 address.\r
243//\r
244#define EFI_IP4(EfiIpAddr) (*(IP4_ADDR *) ((EfiIpAddr).Addr))\r
245#define EFI_NTOHL(EfiIp) (NTOHL (EFI_IP4 ((EfiIp))))\r
246#define EFI_IP4_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv4_ADDRESS)) == 0)\r
247\r
248#define EFI_IP6_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv6_ADDRESS)) == 0)\r
249\r
250#define IP4_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv4_ADDRESS)))\r
251#define IP6_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv6_ADDRESS)))\r
252#define IP6_COPY_LINK_ADDRESS(Mac1, Mac2) (CopyMem ((Mac1), (Mac2), sizeof (EFI_MAC_ADDRESS)))\r
253\r
254//\r
255// The debug level definition. This value is also used as the\r
256// syslog's severity level. Don't change it.\r
257//\r
258#define NETDEBUG_LEVEL_TRACE 5\r
259#define NETDEBUG_LEVEL_WARNING 4\r
260#define NETDEBUG_LEVEL_ERROR 3\r
261\r
262//\r
263// Network debug message is sent out as syslog packet.\r
264//\r
265#define NET_SYSLOG_FACILITY 16 // Syslog local facility local use\r
266#define NET_SYSLOG_PACKET_LEN 512\r
267#define NET_SYSLOG_TX_TIMEOUT (500 * 1000 * 10) // 500ms\r
268#define NET_DEBUG_MSG_LEN 470 // 512 - (ether+ip4+udp4 head length)\r
269\r
270//\r
271// The debug output expects the ASCII format string, Use %a to print ASCII\r
272// string, and %s to print UNICODE string. PrintArg must be enclosed in ().\r
273// For example: NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name));\r
274//\r
275#define NET_DEBUG_TRACE(Module, PrintArg) \\r
276 NetDebugOutput ( \\r
277 NETDEBUG_LEVEL_TRACE, \\r
278 Module, \\r
279 __FILE__, \\r
280 __LINE__, \\r
281 NetDebugASPrint PrintArg \\r
282 )\r
283\r
284#define NET_DEBUG_WARNING(Module, PrintArg) \\r
285 NetDebugOutput ( \\r
286 NETDEBUG_LEVEL_WARNING, \\r
287 Module, \\r
288 __FILE__, \\r
289 __LINE__, \\r
290 NetDebugASPrint PrintArg \\r
291 )\r
292\r
293#define NET_DEBUG_ERROR(Module, PrintArg) \\r
294 NetDebugOutput ( \\r
295 NETDEBUG_LEVEL_ERROR, \\r
296 Module, \\r
297 __FILE__, \\r
298 __LINE__, \\r
299 NetDebugASPrint PrintArg \\r
300 )\r
301\r
302/**\r
303 Allocate a buffer, then format the message to it. This is a\r
304 help function for the NET_DEBUG_XXX macros. The PrintArg of\r
305 these macros treats the variable length print parameters as a\r
306 single parameter, and pass it to the NetDebugASPrint. For\r
307 example, NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name))\r
308 if extracted to:\r
309\r
310 NetDebugOutput (\r
311 NETDEBUG_LEVEL_TRACE,\r
312 "Tcp",\r
313 __FILE__,\r
314 __LINE__,\r
315 NetDebugASPrint ("State transit to %a\n", Name)\r
316 )\r
317\r
318 @param Format The ASCII format string.\r
319 @param ... The variable length parameter whose format is determined\r
320 by the Format string.\r
321\r
322 @return The buffer containing the formatted message,\r
323 or NULL if memory allocation failed.\r
324\r
325**/\r
326CHAR8 *\r
327EFIAPI\r
328NetDebugASPrint (\r
329 IN CHAR8 *Format,\r
330 ...\r
331 );\r
332\r
333/**\r
334 Builds an UDP4 syslog packet and send it using SNP.\r
335\r
336 This function will locate a instance of SNP then send the message through it.\r
337 Because it isn't open the SNP BY_DRIVER, apply caution when using it.\r
338\r
339 @param Level The severity level of the message.\r
340 @param Module The Module that generates the log.\r
341 @param File The file that contains the log.\r
342 @param Line The exact line that contains the log.\r
343 @param Message The user message to log.\r
344\r
345 @retval EFI_INVALID_PARAMETER Any input parameter is invalid.\r
346 @retval EFI_OUT_OF_RESOURCES Failed to allocate memory for the packet\r
347 @retval EFI_SUCCESS The log is discard because that it is more verbose\r
348 than the mNetDebugLevelMax. Or, it has been sent out.\r
349**/\r
350EFI_STATUS\r
351EFIAPI\r
352NetDebugOutput (\r
353 IN UINT32 Level,\r
354 IN UINT8 *Module,\r
355 IN UINT8 *File,\r
356 IN UINT32 Line,\r
357 IN UINT8 *Message\r
358 );\r
359\r
360\r
361/**\r
362 Return the length of the mask.\r
363\r
364 Return the length of the mask. Valid values are 0 to 32.\r
365 If the mask is invalid, return the invalid length 33, which is IP4_MASK_NUM.\r
366 NetMask is in the host byte order.\r
367\r
368 @param[in] NetMask The netmask to get the length from.\r
369\r
370 @return The length of the netmask, or IP4_MASK_NUM (33) if the mask is invalid.\r
371\r
372**/\r
373INTN\r
374EFIAPI\r
375NetGetMaskLength (\r
376 IN IP4_ADDR NetMask\r
377 );\r
378\r
379/**\r
380 Return the class of the IP address, such as class A, B, C.\r
381 Addr is in host byte order.\r
382\r
383 [ATTENTION]\r
384 Classful addressing (IP class A/B/C) has been deprecated according to RFC4632.\r
385 Caller of this function could only check the returned value against\r
386 IP4_ADDR_CLASSD (multicast) or IP4_ADDR_CLASSE (reserved) now.\r
387\r
388 The address of class A starts with 0.\r
389 If the address belong to class A, return IP4_ADDR_CLASSA.\r
390 The address of class B starts with 10.\r
391 If the address belong to class B, return IP4_ADDR_CLASSB.\r
392 The address of class C starts with 110.\r
393 If the address belong to class C, return IP4_ADDR_CLASSC.\r
394 The address of class D starts with 1110.\r
395 If the address belong to class D, return IP4_ADDR_CLASSD.\r
396 The address of class E starts with 1111.\r
397 If the address belong to class E, return IP4_ADDR_CLASSE.\r
398\r
399\r
400 @param[in] Addr The address to get the class from.\r
401\r
402 @return IP address class, such as IP4_ADDR_CLASSA.\r
403\r
404**/\r
405INTN\r
406EFIAPI\r
407NetGetIpClass (\r
408 IN IP4_ADDR Addr\r
409 );\r
410\r
411/**\r
412 Check whether the IP is a valid unicast address according to\r
413 the netmask.\r
414\r
415 ASSERT if NetMask is zero.\r
416\r
417 If all bits of the host address of IP are 0 or 1, IP is also not a valid unicast address,\r
418 except when the originator is one of the endpoints of a point-to-point link with a 31-bit\r
419 mask (RFC3021), or a 32bit NetMask (all 0xFF) is used for special network environment (e.g.\r
420 PPP link).\r
421\r
422 @param[in] Ip The IP to check against.\r
423 @param[in] NetMask The mask of the IP.\r
424\r
425 @return TRUE if IP is a valid unicast address on the network, otherwise FALSE.\r
426\r
427**/\r
428BOOLEAN\r
429EFIAPI\r
430NetIp4IsUnicast (\r
431 IN IP4_ADDR Ip,\r
432 IN IP4_ADDR NetMask\r
433 );\r
434\r
435/**\r
436 Check whether the incoming IPv6 address is a valid unicast address.\r
437\r
438 ASSERT if Ip6 is NULL.\r
439\r
440 If the address is a multicast address has binary 0xFF at the start, it is not\r
441 a valid unicast address. If the address is unspecified ::, it is not a valid\r
442 unicast address to be assigned to any node. If the address is loopback address\r
443 ::1, it is also not a valid unicast address to be assigned to any physical\r
444 interface.\r
445\r
446 @param[in] Ip6 The IPv6 address to check against.\r
447\r
448 @return TRUE if Ip6 is a valid unicast address on the network, otherwise FALSE.\r
449\r
450**/\r
451BOOLEAN\r
452EFIAPI\r
453NetIp6IsValidUnicast (\r
454 IN EFI_IPv6_ADDRESS *Ip6\r
455 );\r
456\r
457\r
458/**\r
459 Check whether the incoming Ipv6 address is the unspecified address or not.\r
460\r
461 ASSERT if Ip6 is NULL.\r
462\r
463 @param[in] Ip6 - Ip6 address, in network order.\r
464\r
465 @retval TRUE - Yes, incoming Ipv6 address is the unspecified address.\r
466 @retval FALSE - The incoming Ipv6 address is not the unspecified address\r
467\r
468**/\r
469BOOLEAN\r
470EFIAPI\r
471NetIp6IsUnspecifiedAddr (\r
472 IN EFI_IPv6_ADDRESS *Ip6\r
473 );\r
474\r
475/**\r
476 Check whether the incoming Ipv6 address is a link-local address.\r
477\r
478 ASSERT if Ip6 is NULL.\r
479\r
480 @param[in] Ip6 - Ip6 address, in network order.\r
481\r
482 @retval TRUE - The incoming Ipv6 address is a link-local address.\r
483 @retval FALSE - The incoming Ipv6 address is not a link-local address.\r
484\r
485**/\r
486BOOLEAN\r
487EFIAPI\r
488NetIp6IsLinkLocalAddr (\r
489 IN EFI_IPv6_ADDRESS *Ip6\r
490 );\r
491\r
492/**\r
493 Check whether the Ipv6 address1 and address2 are on the connected network.\r
494\r
495 ASSERT if Ip1 or Ip2 is NULL.\r
496 ASSERT if PrefixLength exceeds or equals to IP6_PREFIX_MAX.\r
497\r
498 @param[in] Ip1 - Ip6 address1, in network order.\r
499 @param[in] Ip2 - Ip6 address2, in network order.\r
500 @param[in] PrefixLength - The prefix length of the checking net.\r
501\r
502 @retval TRUE - Yes, the Ipv6 address1 and address2 are connected.\r
503 @retval FALSE - No the Ipv6 address1 and address2 are not connected.\r
504\r
505**/\r
506BOOLEAN\r
507EFIAPI\r
508NetIp6IsNetEqual (\r
509 EFI_IPv6_ADDRESS *Ip1,\r
510 EFI_IPv6_ADDRESS *Ip2,\r
511 UINT8 PrefixLength\r
512 );\r
513\r
514/**\r
515 Switches the endianess of an IPv6 address.\r
516\r
517 ASSERT if Ip6 is NULL.\r
518\r
519 This function swaps the bytes in a 128-bit IPv6 address to switch the value\r
520 from little endian to big endian or vice versa. The byte swapped value is\r
521 returned.\r
522\r
523 @param Ip6 Points to an IPv6 address.\r
524\r
525 @return The byte swapped IPv6 address.\r
526\r
527**/\r
528EFI_IPv6_ADDRESS *\r
529EFIAPI\r
530Ip6Swap128 (\r
531 EFI_IPv6_ADDRESS *Ip6\r
532 );\r
533\r
534extern IP4_ADDR gIp4AllMasks[IP4_MASK_NUM];\r
535\r
536\r
537extern EFI_IPv4_ADDRESS mZeroIp4Addr;\r
538\r
539#define NET_IS_DIGIT(Ch) (('0' <= (Ch)) && ((Ch) <= '9'))\r
540#define NET_IS_HEX(Ch) ((('0' <= (Ch)) && ((Ch) <= '9')) || (('A' <= (Ch)) && ((Ch) <= 'F')) || (('a' <= (Ch)) && ((Ch) <= 'f')))\r
541#define NET_ROUNDUP(size, unit) (((size) + (unit) - 1) & (~((unit) - 1)))\r
542#define NET_IS_LOWER_CASE_CHAR(Ch) (('a' <= (Ch)) && ((Ch) <= 'z'))\r
543#define NET_IS_UPPER_CASE_CHAR(Ch) (('A' <= (Ch)) && ((Ch) <= 'Z'))\r
544\r
545#define TICKS_PER_MS 10000U\r
546#define TICKS_PER_SECOND 10000000U\r
547\r
548#define NET_RANDOM(Seed) ((UINT32) ((UINT32) (Seed) * 1103515245UL + 12345) % 4294967295UL)\r
549\r
550/**\r
551 Extract a UINT32 from a byte stream.\r
552\r
553 ASSERT if Buf is NULL.\r
554\r
555 This function copies a UINT32 from a byte stream, and then converts it from Network\r
556 byte order to host byte order. Use this function to avoid alignment error.\r
557\r
558 @param[in] Buf The buffer to extract the UINT32.\r
559\r
560 @return The UINT32 extracted.\r
561\r
562**/\r
563UINT32\r
564EFIAPI\r
565NetGetUint32 (\r
566 IN UINT8 *Buf\r
567 );\r
568\r
569/**\r
570 Puts a UINT32 into the byte stream in network byte order.\r
571\r
572 ASSERT if Buf is NULL.\r
573\r
574 Converts a UINT32 from host byte order to network byte order, then copies it to the\r
575 byte stream.\r
576\r
577 @param[in, out] Buf The buffer in which to put the UINT32.\r
578 @param[in] Data The data to be converted and put into the byte stream.\r
579\r
580**/\r
581VOID\r
582EFIAPI\r
583NetPutUint32 (\r
584 IN OUT UINT8 *Buf,\r
585 IN UINT32 Data\r
586 );\r
587\r
588/**\r
589 Initialize a random seed using current time and monotonic count.\r
590\r
591 Get current time and monotonic count first. Then initialize a random seed\r
592 based on some basic mathematics operation on the hour, day, minute, second,\r
593 nanosecond and year of the current time and the monotonic count value.\r
594\r
595 @return The random seed initialized with current time.\r
596\r
597**/\r
598UINT32\r
599EFIAPI\r
600NetRandomInitSeed (\r
601 VOID\r
602 );\r
603\r
604\r
605#define NET_LIST_USER_STRUCT(Entry, Type, Field) \\r
606 BASE_CR(Entry, Type, Field)\r
607\r
608#define NET_LIST_USER_STRUCT_S(Entry, Type, Field, Sig) \\r
609 CR(Entry, Type, Field, Sig)\r
610\r
611//\r
612// Iterate through the double linked list. It is NOT delete safe\r
613//\r
614#define NET_LIST_FOR_EACH(Entry, ListHead) \\r
615 for(Entry = (ListHead)->ForwardLink; Entry != (ListHead); Entry = Entry->ForwardLink)\r
616\r
617//\r
618// Iterate through the double linked list. This is delete-safe.\r
619// Don't touch NextEntry. Also, don't use this macro if list\r
620// entries other than the Entry may be deleted when processing\r
621// the current Entry.\r
622//\r
623#define NET_LIST_FOR_EACH_SAFE(Entry, NextEntry, ListHead) \\r
624 for(Entry = (ListHead)->ForwardLink, NextEntry = Entry->ForwardLink; \\r
625 Entry != (ListHead); \\r
626 Entry = NextEntry, NextEntry = Entry->ForwardLink \\r
627 )\r
628\r
629//\r
630// Make sure the list isn't empty before getting the first/last record.\r
631//\r
632#define NET_LIST_HEAD(ListHead, Type, Field) \\r
633 NET_LIST_USER_STRUCT((ListHead)->ForwardLink, Type, Field)\r
634\r
635#define NET_LIST_TAIL(ListHead, Type, Field) \\r
636 NET_LIST_USER_STRUCT((ListHead)->BackLink, Type, Field)\r
637\r
638\r
639/**\r
640 Remove the first node entry on the list, and return the removed node entry.\r
641\r
642 Removes the first node entry from a doubly linked list. It is up to the caller of\r
643 this function to release the memory used by the first node, if that is required. On\r
644 exit, the removed node is returned.\r
645\r
646 If Head is NULL, then ASSERT().\r
647 If Head was not initialized, then ASSERT().\r
648 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the\r
649 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,\r
650 then ASSERT().\r
651\r
652 @param[in, out] Head The list header.\r
653\r
654 @return The first node entry that is removed from the list, NULL if the list is empty.\r
655\r
656**/\r
657LIST_ENTRY *\r
658EFIAPI\r
659NetListRemoveHead (\r
660 IN OUT LIST_ENTRY *Head\r
661 );\r
662\r
663/**\r
664 Remove the last node entry on the list and return the removed node entry.\r
665\r
666 Removes the last node entry from a doubly linked list. It is up to the caller of\r
667 this function to release the memory used by the first node, if that is required. On\r
668 exit, the removed node is returned.\r
669\r
670 If Head is NULL, then ASSERT().\r
671 If Head was not initialized, then ASSERT().\r
672 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the\r
673 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,\r
674 then ASSERT().\r
675\r
676 @param[in, out] Head The list head.\r
677\r
678 @return The last node entry that is removed from the list, NULL if the list is empty.\r
679\r
680**/\r
681LIST_ENTRY *\r
682EFIAPI\r
683NetListRemoveTail (\r
684 IN OUT LIST_ENTRY *Head\r
685 );\r
686\r
687/**\r
688 Insert a new node entry after a designated node entry of a doubly linked list.\r
689\r
690 ASSERT if PrevEntry or NewEntry is NULL.\r
691\r
692 Inserts a new node entry designated by NewEntry after the node entry designated by PrevEntry\r
693 of the doubly linked list.\r
694\r
695 @param[in, out] PrevEntry The entry after which to insert.\r
696 @param[in, out] NewEntry The new entry to insert.\r
697\r
698**/\r
699VOID\r
700EFIAPI\r
701NetListInsertAfter (\r
702 IN OUT LIST_ENTRY *PrevEntry,\r
703 IN OUT LIST_ENTRY *NewEntry\r
704 );\r
705\r
706/**\r
707 Insert a new node entry before a designated node entry of a doubly linked list.\r
708\r
709 ASSERT if PostEntry or NewEntry is NULL.\r
710\r
711 Inserts a new node entry designated by NewEntry before the node entry designated by PostEntry\r
712 of the doubly linked list.\r
713\r
714 @param[in, out] PostEntry The entry to insert before.\r
715 @param[in, out] NewEntry The new entry to insert.\r
716\r
717**/\r
718VOID\r
719EFIAPI\r
720NetListInsertBefore (\r
721 IN OUT LIST_ENTRY *PostEntry,\r
722 IN OUT LIST_ENTRY *NewEntry\r
723 );\r
724\r
725/**\r
726 Callback function which provided by user to remove one node in NetDestroyLinkList process.\r
727\r
728 @param[in] Entry The entry to be removed.\r
729 @param[in] Context Pointer to the callback context corresponds to the Context in NetDestroyLinkList.\r
730\r
731 @retval EFI_SUCCESS The entry has been removed successfully.\r
732 @retval Others Fail to remove the entry.\r
733\r
734**/\r
735typedef\r
736EFI_STATUS\r
737(EFIAPI *NET_DESTROY_LINK_LIST_CALLBACK) (\r
738 IN LIST_ENTRY *Entry,\r
739 IN VOID *Context OPTIONAL\r
740 );\r
741\r
742/**\r
743 Safe destroy nodes in a linked list, and return the length of the list after all possible operations finished.\r
744\r
745 Destroy network children list by list traversals is not safe due to graph dependencies between nodes.\r
746 This function performs a safe traversal to destroy these nodes by checking to see if the node being destroyed\r
747 has been removed from the list or not.\r
748 If it has been removed, then restart the traversal from the head.\r
749 If it hasn't been removed, then continue with the next node directly.\r
750 This function will end the iterate and return the CallBack's last return value if error happens,\r
751 or return EFI_SUCCESS if 2 complete passes are made with no changes in the number of children in the list.\r
752\r
753 @param[in] List The head of the list.\r
754 @param[in] CallBack Pointer to the callback function to destroy one node in the list.\r
755 @param[in] Context Pointer to the callback function's context: corresponds to the\r
756 parameter Context in NET_DESTROY_LINK_LIST_CALLBACK.\r
757 @param[out] ListLength The length of the link list if the function returns successfully.\r
758\r
759 @retval EFI_SUCCESS Two complete passes are made with no changes in the number of children.\r
760 @retval EFI_INVALID_PARAMETER The input parameter is invalid.\r
761 @retval Others Return the CallBack's last return value.\r
762\r
763**/\r
764EFI_STATUS\r
765EFIAPI\r
766NetDestroyLinkList (\r
767 IN LIST_ENTRY *List,\r
768 IN NET_DESTROY_LINK_LIST_CALLBACK CallBack,\r
769 IN VOID *Context, OPTIONAL\r
770 OUT UINTN *ListLength OPTIONAL\r
771 );\r
772\r
773/**\r
774 This function checks the input Handle to see if it's one of these handles in ChildHandleBuffer.\r
775\r
776 @param[in] Handle Handle to be checked.\r
777 @param[in] NumberOfChildren Number of Handles in ChildHandleBuffer.\r
778 @param[in] ChildHandleBuffer An array of child handles to be freed. May be NULL\r
779 if NumberOfChildren is 0.\r
780\r
781 @retval TRUE Found the input Handle in ChildHandleBuffer.\r
782 @retval FALSE Can't find the input Handle in ChildHandleBuffer.\r
783\r
784**/\r
785BOOLEAN\r
786EFIAPI\r
787NetIsInHandleBuffer (\r
788 IN EFI_HANDLE Handle,\r
789 IN UINTN NumberOfChildren,\r
790 IN EFI_HANDLE *ChildHandleBuffer OPTIONAL\r
791 );\r
792\r
793//\r
794// Object container: EFI network stack spec defines various kinds of\r
795// tokens. The drivers can share code to manage those objects.\r
796//\r
797typedef struct {\r
798 LIST_ENTRY Link;\r
799 VOID *Key;\r
800 VOID *Value;\r
801} NET_MAP_ITEM;\r
802\r
803typedef struct {\r
804 LIST_ENTRY Used;\r
805 LIST_ENTRY Recycled;\r
806 UINTN Count;\r
807} NET_MAP;\r
808\r
809#define NET_MAP_INCREAMENT 64\r
810\r
811/**\r
812 Initialize the netmap. Netmap is a reposity to keep the <Key, Value> pairs.\r
813\r
814 Initialize the forward and backward links of two head nodes donated by Map->Used\r
815 and Map->Recycled of two doubly linked lists.\r
816 Initializes the count of the <Key, Value> pairs in the netmap to zero.\r
817\r
818 If Map is NULL, then ASSERT().\r
819 If the address of Map->Used is NULL, then ASSERT().\r
820 If the address of Map->Recycled is NULl, then ASSERT().\r
821\r
822 @param[in, out] Map The netmap to initialize.\r
823\r
824**/\r
825VOID\r
826EFIAPI\r
827NetMapInit (\r
828 IN OUT NET_MAP *Map\r
829 );\r
830\r
831/**\r
832 To clean up the netmap, that is, release allocated memories.\r
833\r
834 Removes all nodes of the Used doubly linked list and frees memory of all related netmap items.\r
835 Removes all nodes of the Recycled doubly linked list and free memory of all related netmap items.\r
836 The number of the <Key, Value> pairs in the netmap is set to zero.\r
837\r
838 If Map is NULL, then ASSERT().\r
839\r
840 @param[in, out] Map The netmap to clean up.\r
841\r
842**/\r
843VOID\r
844EFIAPI\r
845NetMapClean (\r
846 IN OUT NET_MAP *Map\r
847 );\r
848\r
849/**\r
850 Test whether the netmap is empty and return true if it is.\r
851\r
852 If the number of the <Key, Value> pairs in the netmap is zero, return TRUE.\r
853\r
854 If Map is NULL, then ASSERT().\r
855\r
856 @param[in] Map The net map to test.\r
857\r
858 @return TRUE if the netmap is empty, otherwise FALSE.\r
859\r
860**/\r
861BOOLEAN\r
862EFIAPI\r
863NetMapIsEmpty (\r
864 IN NET_MAP *Map\r
865 );\r
866\r
867/**\r
868 Return the number of the <Key, Value> pairs in the netmap.\r
869\r
870 If Map is NULL, then ASSERT().\r
871\r
872 @param[in] Map The netmap to get the entry number.\r
873\r
874 @return The entry number in the netmap.\r
875\r
876**/\r
877UINTN\r
878EFIAPI\r
879NetMapGetCount (\r
880 IN NET_MAP *Map\r
881 );\r
882\r
883/**\r
884 Allocate an item to save the <Key, Value> pair to the head of the netmap.\r
885\r
886 Allocate an item to save the <Key, Value> pair and add corresponding node entry\r
887 to the beginning of the Used doubly linked list. The number of the <Key, Value>\r
888 pairs in the netmap increase by 1.\r
889\r
890 If Map is NULL, then ASSERT().\r
891 If Key is NULL, then ASSERT().\r
892\r
893 @param[in, out] Map The netmap to insert into.\r
894 @param[in] Key The user's key.\r
895 @param[in] Value The user's value for the key.\r
896\r
897 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.\r
898 @retval EFI_SUCCESS The item is inserted to the head.\r
899\r
900**/\r
901EFI_STATUS\r
902EFIAPI\r
903NetMapInsertHead (\r
904 IN OUT NET_MAP *Map,\r
905 IN VOID *Key,\r
906 IN VOID *Value OPTIONAL\r
907 );\r
908\r
909/**\r
910 Allocate an item to save the <Key, Value> pair to the tail of the netmap.\r
911\r
912 Allocate an item to save the <Key, Value> pair and add corresponding node entry\r
913 to the tail of the Used doubly linked list. The number of the <Key, Value>\r
914 pairs in the netmap increase by 1.\r
915\r
916 If Map is NULL, then ASSERT().\r
917 If Key is NULL, then ASSERT().\r
918\r
919 @param[in, out] Map The netmap to insert into.\r
920 @param[in] Key The user's key.\r
921 @param[in] Value The user's value for the key.\r
922\r
923 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.\r
924 @retval EFI_SUCCESS The item is inserted to the tail.\r
925\r
926**/\r
927EFI_STATUS\r
928EFIAPI\r
929NetMapInsertTail (\r
930 IN OUT NET_MAP *Map,\r
931 IN VOID *Key,\r
932 IN VOID *Value OPTIONAL\r
933 );\r
934\r
935/**\r
936 Finds the key in the netmap and returns the point to the item containing the Key.\r
937\r
938 Iterate the Used doubly linked list of the netmap to get every item. Compare the key of every\r
939 item with the key to search. It returns the point to the item contains the Key if found.\r
940\r
941 If Map is NULL, then ASSERT().\r
942 If Key is NULL, then ASSERT().\r
943\r
944 @param[in] Map The netmap to search within.\r
945 @param[in] Key The key to search.\r
946\r
947 @return The point to the item contains the Key, or NULL if Key isn't in the map.\r
948\r
949**/\r
950NET_MAP_ITEM *\r
951EFIAPI\r
952NetMapFindKey (\r
953 IN NET_MAP *Map,\r
954 IN VOID *Key\r
955 );\r
956\r
957/**\r
958 Remove the node entry of the item from the netmap and return the key of the removed item.\r
959\r
960 Remove the node entry of the item from the Used doubly linked list of the netmap.\r
961 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node\r
962 entry of the item to the Recycled doubly linked list of the netmap. If Value is not NULL,\r
963 Value will point to the value of the item. It returns the key of the removed item.\r
964\r
965 If Map is NULL, then ASSERT().\r
966 If Item is NULL, then ASSERT().\r
967 if item in not in the netmap, then ASSERT().\r
968\r
969 @param[in, out] Map The netmap to remove the item from.\r
970 @param[in, out] Item The item to remove.\r
971 @param[out] Value The variable to receive the value if not NULL.\r
972\r
973 @return The key of the removed item.\r
974\r
975**/\r
976VOID *\r
977EFIAPI\r
978NetMapRemoveItem (\r
979 IN OUT NET_MAP *Map,\r
980 IN OUT NET_MAP_ITEM *Item,\r
981 OUT VOID **Value OPTIONAL\r
982 );\r
983\r
984/**\r
985 Remove the first node entry on the netmap and return the key of the removed item.\r
986\r
987 Remove the first node entry from the Used doubly linked list of the netmap.\r
988 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node\r
989 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,\r
990 parameter Value will point to the value of the item. It returns the key of the removed item.\r
991\r
992 If Map is NULL, then ASSERT().\r
993 If the Used doubly linked list is empty, then ASSERT().\r
994\r
995 @param[in, out] Map The netmap to remove the head from.\r
996 @param[out] Value The variable to receive the value if not NULL.\r
997\r
998 @return The key of the item removed.\r
999\r
1000**/\r
1001VOID *\r
1002EFIAPI\r
1003NetMapRemoveHead (\r
1004 IN OUT NET_MAP *Map,\r
1005 OUT VOID **Value OPTIONAL\r
1006 );\r
1007\r
1008/**\r
1009 Remove the last node entry on the netmap and return the key of the removed item.\r
1010\r
1011 Remove the last node entry from the Used doubly linked list of the netmap.\r
1012 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node\r
1013 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,\r
1014 parameter Value will point to the value of the item. It returns the key of the removed item.\r
1015\r
1016 If Map is NULL, then ASSERT().\r
1017 If the Used doubly linked list is empty, then ASSERT().\r
1018\r
1019 @param[in, out] Map The netmap to remove the tail from.\r
1020 @param[out] Value The variable to receive the value if not NULL.\r
1021\r
1022 @return The key of the item removed.\r
1023\r
1024**/\r
1025VOID *\r
1026EFIAPI\r
1027NetMapRemoveTail (\r
1028 IN OUT NET_MAP *Map,\r
1029 OUT VOID **Value OPTIONAL\r
1030 );\r
1031\r
1032typedef\r
1033EFI_STATUS\r
1034(EFIAPI *NET_MAP_CALLBACK) (\r
1035 IN NET_MAP *Map,\r
1036 IN NET_MAP_ITEM *Item,\r
1037 IN VOID *Arg\r
1038 );\r
1039\r
1040/**\r
1041 Iterate through the netmap and call CallBack for each item.\r
1042\r
1043 It will continue the traverse if CallBack returns EFI_SUCCESS, otherwise, break\r
1044 from the loop. It returns the CallBack's last return value. This function is\r
1045 delete safe for the current item.\r
1046\r
1047 If Map is NULL, then ASSERT().\r
1048 If CallBack is NULL, then ASSERT().\r
1049\r
1050 @param[in] Map The Map to iterate through.\r
1051 @param[in] CallBack The callback function to call for each item.\r
1052 @param[in] Arg The opaque parameter to the callback.\r
1053\r
1054 @retval EFI_SUCCESS There is no item in the netmap, or CallBack for each item\r
1055 returns EFI_SUCCESS.\r
1056 @retval Others It returns the CallBack's last return value.\r
1057\r
1058**/\r
1059EFI_STATUS\r
1060EFIAPI\r
1061NetMapIterate (\r
1062 IN NET_MAP *Map,\r
1063 IN NET_MAP_CALLBACK CallBack,\r
1064 IN VOID *Arg OPTIONAL\r
1065 );\r
1066\r
1067\r
1068//\r
1069// Helper functions to implement driver binding and service binding protocols.\r
1070//\r
1071/**\r
1072 Create a child of the service that is identified by ServiceBindingGuid.\r
1073\r
1074 Get the ServiceBinding Protocol first, then use it to create a child.\r
1075\r
1076 If ServiceBindingGuid is NULL, then ASSERT().\r
1077 If ChildHandle is NULL, then ASSERT().\r
1078\r
1079 @param[in] Controller The controller which has the service installed.\r
1080 @param[in] Image The image handle used to open service.\r
1081 @param[in] ServiceBindingGuid The service's Guid.\r
1082 @param[in, out] ChildHandle The handle to receive the created child.\r
1083\r
1084 @retval EFI_SUCCESS The child was successfully created.\r
1085 @retval Others Failed to create the child.\r
1086\r
1087**/\r
1088EFI_STATUS\r
1089EFIAPI\r
1090NetLibCreateServiceChild (\r
1091 IN EFI_HANDLE Controller,\r
1092 IN EFI_HANDLE Image,\r
1093 IN EFI_GUID *ServiceBindingGuid,\r
1094 IN OUT EFI_HANDLE *ChildHandle\r
1095 );\r
1096\r
1097/**\r
1098 Destroy a child of the service that is identified by ServiceBindingGuid.\r
1099\r
1100 Get the ServiceBinding Protocol first, then use it to destroy a child.\r
1101\r
1102 If ServiceBindingGuid is NULL, then ASSERT().\r
1103\r
1104 @param[in] Controller The controller which has the service installed.\r
1105 @param[in] Image The image handle used to open service.\r
1106 @param[in] ServiceBindingGuid The service's Guid.\r
1107 @param[in] ChildHandle The child to destroy.\r
1108\r
1109 @retval EFI_SUCCESS The child was destroyed.\r
1110 @retval Others Failed to destroy the child.\r
1111\r
1112**/\r
1113EFI_STATUS\r
1114EFIAPI\r
1115NetLibDestroyServiceChild (\r
1116 IN EFI_HANDLE Controller,\r
1117 IN EFI_HANDLE Image,\r
1118 IN EFI_GUID *ServiceBindingGuid,\r
1119 IN EFI_HANDLE ChildHandle\r
1120 );\r
1121\r
1122/**\r
1123 Get handle with Simple Network Protocol installed on it.\r
1124\r
1125 There should be MNP Service Binding Protocol installed on the input ServiceHandle.\r
1126 If Simple Network Protocol is already installed on the ServiceHandle, the\r
1127 ServiceHandle will be returned. If SNP is not installed on the ServiceHandle,\r
1128 try to find its parent handle with SNP installed.\r
1129\r
1130 @param[in] ServiceHandle The handle where network service binding protocols are\r
1131 installed on.\r
1132 @param[out] Snp The pointer to store the address of the SNP instance.\r
1133 This is an optional parameter that may be NULL.\r
1134\r
1135 @return The SNP handle, or NULL if not found.\r
1136\r
1137**/\r
1138EFI_HANDLE\r
1139EFIAPI\r
1140NetLibGetSnpHandle (\r
1141 IN EFI_HANDLE ServiceHandle,\r
1142 OUT EFI_SIMPLE_NETWORK_PROTOCOL **Snp OPTIONAL\r
1143 );\r
1144\r
1145/**\r
1146 Retrieve VLAN ID of a VLAN device handle.\r
1147\r
1148 Search VLAN device path node in Device Path of specified ServiceHandle and\r
1149 return its VLAN ID. If no VLAN device path node found, then this ServiceHandle\r
1150 is not a VLAN device handle, and 0 will be returned.\r
1151\r
1152 @param[in] ServiceHandle The handle where network service binding protocols are\r
1153 installed on.\r
1154\r
1155 @return VLAN ID of the device handle, or 0 if not a VLAN device.\r
1156\r
1157**/\r
1158UINT16\r
1159EFIAPI\r
1160NetLibGetVlanId (\r
1161 IN EFI_HANDLE ServiceHandle\r
1162 );\r
1163\r
1164/**\r
1165 Find VLAN device handle with specified VLAN ID.\r
1166\r
1167 The VLAN child device handle is created by VLAN Config Protocol on ControllerHandle.\r
1168 This function will append VLAN device path node to the parent device path,\r
1169 and then use LocateDevicePath() to find the correct VLAN device handle.\r
1170\r
1171 @param[in] ControllerHandle The handle where network service binding protocols are\r
1172 installed on.\r
1173 @param[in] VlanId The configured VLAN ID for the VLAN device.\r
1174\r
1175 @return The VLAN device handle, or NULL if not found.\r
1176\r
1177**/\r
1178EFI_HANDLE\r
1179EFIAPI\r
1180NetLibGetVlanHandle (\r
1181 IN EFI_HANDLE ControllerHandle,\r
1182 IN UINT16 VlanId\r
1183 );\r
1184\r
1185/**\r
1186 Get MAC address associated with the network service handle.\r
1187\r
1188 If MacAddress is NULL, then ASSERT().\r
1189 If AddressSize is NULL, then ASSERT().\r
1190\r
1191 There should be MNP Service Binding Protocol installed on the input ServiceHandle.\r
1192 If SNP is installed on the ServiceHandle or its parent handle, MAC address will\r
1193 be retrieved from SNP. If no SNP found, try to get SNP mode data use MNP.\r
1194\r
1195 @param[in] ServiceHandle The handle where network service binding protocols are\r
1196 installed on.\r
1197 @param[out] MacAddress The pointer to store the returned MAC address.\r
1198 @param[out] AddressSize The length of returned MAC address.\r
1199\r
1200 @retval EFI_SUCCESS MAC address was returned successfully.\r
1201 @retval Others Failed to get SNP mode data.\r
1202\r
1203**/\r
1204EFI_STATUS\r
1205EFIAPI\r
1206NetLibGetMacAddress (\r
1207 IN EFI_HANDLE ServiceHandle,\r
1208 OUT EFI_MAC_ADDRESS *MacAddress,\r
1209 OUT UINTN *AddressSize\r
1210 );\r
1211\r
1212/**\r
1213 Convert MAC address of the NIC associated with specified Service Binding Handle\r
1214 to a unicode string. Callers are responsible for freeing the string storage.\r
1215\r
1216 If MacString is NULL, then ASSERT().\r
1217\r
1218 Locate simple network protocol associated with the Service Binding Handle and\r
1219 get the mac address from SNP. Then convert the mac address into a unicode\r
1220 string. It takes 2 unicode characters to represent a 1 byte binary buffer.\r
1221 Plus one unicode character for the null-terminator.\r
1222\r
1223 @param[in] ServiceHandle The handle where network service binding protocol is\r
1224 installed.\r
1225 @param[in] ImageHandle The image handle used to act as the agent handle to\r
1226 get the simple network protocol. This parameter is\r
1227 optional and may be NULL.\r
1228 @param[out] MacString The pointer to store the address of the string\r
1229 representation of the mac address.\r
1230\r
1231 @retval EFI_SUCCESS Converted the mac address a unicode string successfully.\r
1232 @retval EFI_OUT_OF_RESOURCES There are not enough memory resources.\r
1233 @retval Others Failed to open the simple network protocol.\r
1234\r
1235**/\r
1236EFI_STATUS\r
1237EFIAPI\r
1238NetLibGetMacString (\r
1239 IN EFI_HANDLE ServiceHandle,\r
1240 IN EFI_HANDLE ImageHandle, OPTIONAL\r
1241 OUT CHAR16 **MacString\r
1242 );\r
1243\r
1244/**\r
1245 Detect media status for specified network device.\r
1246\r
1247 If MediaPresent is NULL, then ASSERT().\r
1248\r
1249 The underlying UNDI driver may or may not support reporting media status from\r
1250 GET_STATUS command (PXE_STATFLAGS_GET_STATUS_NO_MEDIA_SUPPORTED). This routine\r
1251 will try to invoke Snp->GetStatus() to get the media status. If media is already\r
1252 present, it returns directly. If media is not present, it will stop SNP and then\r
1253 restart SNP to get the latest media status. This provides an opportunity to get\r
1254 the correct media status for old UNDI driver, which doesn't support reporting\r
1255 media status from GET_STATUS command.\r
1256 Note: there are two limitations for the current algorithm:\r
1257 1) For UNDI with this capability, when the cable is not attached, there will\r
1258 be an redundant Stop/Start() process.\r
1259 2) for UNDI without this capability, in case that network cable is attached when\r
1260 Snp->Initialize() is invoked while network cable is unattached later,\r
1261 NetLibDetectMedia() will report MediaPresent as TRUE, causing upper layer\r
1262 apps to wait for timeout time.\r
1263\r
1264 @param[in] ServiceHandle The handle where network service binding protocols are\r
1265 installed.\r
1266 @param[out] MediaPresent The pointer to store the media status.\r
1267\r
1268 @retval EFI_SUCCESS Media detection success.\r
1269 @retval EFI_INVALID_PARAMETER ServiceHandle is not a valid network device handle.\r
1270 @retval EFI_UNSUPPORTED The network device does not support media detection.\r
1271 @retval EFI_DEVICE_ERROR SNP is in an unknown state.\r
1272\r
1273**/\r
1274EFI_STATUS\r
1275EFIAPI\r
1276NetLibDetectMedia (\r
1277 IN EFI_HANDLE ServiceHandle,\r
1278 OUT BOOLEAN *MediaPresent\r
1279 );\r
1280\r
1281/**\r
1282 Detect media state for a network device. This routine will wait for a period of time at\r
1283 a specified checking interval when a certain network is under connecting until connection\r
1284 process finishes or timeout. If Aip protocol is supported by low layer drivers, three kinds\r
1285 of media states can be detected: EFI_SUCCESS, EFI_NOT_READY and EFI_NO_MEDIA, represents\r
1286 connected state, connecting state and no media state respectively. When function detects\r
1287 the current state is EFI_NOT_READY, it will loop to wait for next time's check until state\r
1288 turns to be EFI_SUCCESS or EFI_NO_MEDIA. If Aip protocol is not supported, function will\r
1289 call NetLibDetectMedia() and return state directly.\r
1290\r
1291 @param[in] ServiceHandle The handle where network service binding protocols are\r
1292 installed on.\r
1293 @param[in] Timeout The maximum number of 100ns units to wait when network\r
1294 is connecting. Zero value means detect once and return\r
1295 immediately.\r
1296 @param[out] MediaState The pointer to the detected media state.\r
1297\r
1298 @retval EFI_SUCCESS Media detection success.\r
1299 @retval EFI_INVALID_PARAMETER ServiceHandle is not a valid network device handle or\r
1300 MediaState pointer is NULL.\r
1301 @retval EFI_DEVICE_ERROR A device error occurred.\r
1302 @retval EFI_TIMEOUT Network is connecting but timeout.\r
1303\r
1304**/\r
1305EFI_STATUS\r
1306EFIAPI\r
1307NetLibDetectMediaWaitTimeout (\r
1308 IN EFI_HANDLE ServiceHandle,\r
1309 IN UINT64 Timeout,\r
1310 OUT EFI_STATUS *MediaState\r
1311 );\r
1312\r
1313\r
1314/**\r
1315 Create an IPv4 device path node.\r
1316\r
1317 If Node is NULL, then ASSERT().\r
1318\r
1319 The header type of IPv4 device path node is MESSAGING_DEVICE_PATH.\r
1320 The header subtype of IPv4 device path node is MSG_IPv4_DP.\r
1321 The length of the IPv4 device path node in bytes is 19.\r
1322 Get other information from parameters to make up the whole IPv4 device path node.\r
1323\r
1324 @param[in, out] Node The pointer to the IPv4 device path node.\r
1325 @param[in] Controller The controller handle.\r
1326 @param[in] LocalIp The local IPv4 address.\r
1327 @param[in] LocalPort The local port.\r
1328 @param[in] RemoteIp The remote IPv4 address.\r
1329 @param[in] RemotePort The remote port.\r
1330 @param[in] Protocol The protocol type in the IP header.\r
1331 @param[in] UseDefaultAddress Whether this instance is using default address or not.\r
1332\r
1333**/\r
1334VOID\r
1335EFIAPI\r
1336NetLibCreateIPv4DPathNode (\r
1337 IN OUT IPv4_DEVICE_PATH *Node,\r
1338 IN EFI_HANDLE Controller,\r
1339 IN IP4_ADDR LocalIp,\r
1340 IN UINT16 LocalPort,\r
1341 IN IP4_ADDR RemoteIp,\r
1342 IN UINT16 RemotePort,\r
1343 IN UINT16 Protocol,\r
1344 IN BOOLEAN UseDefaultAddress\r
1345 );\r
1346\r
1347/**\r
1348 Create an IPv6 device path node.\r
1349\r
1350 If Node is NULL, then ASSERT().\r
1351 If LocalIp is NULL, then ASSERT().\r
1352 If RemoteIp is NULL, then ASSERT().\r
1353\r
1354 The header type of IPv6 device path node is MESSAGING_DEVICE_PATH.\r
1355 The header subtype of IPv6 device path node is MSG_IPv6_DP.\r
1356 The length of the IPv6 device path node in bytes is 43.\r
1357 Get other information from parameters to make up the whole IPv6 device path node.\r
1358\r
1359 @param[in, out] Node The pointer to the IPv6 device path node.\r
1360 @param[in] Controller The controller handle.\r
1361 @param[in] LocalIp The local IPv6 address.\r
1362 @param[in] LocalPort The local port.\r
1363 @param[in] RemoteIp The remote IPv6 address.\r
1364 @param[in] RemotePort The remote port.\r
1365 @param[in] Protocol The protocol type in the IP header.\r
1366\r
1367**/\r
1368VOID\r
1369EFIAPI\r
1370NetLibCreateIPv6DPathNode (\r
1371 IN OUT IPv6_DEVICE_PATH *Node,\r
1372 IN EFI_HANDLE Controller,\r
1373 IN EFI_IPv6_ADDRESS *LocalIp,\r
1374 IN UINT16 LocalPort,\r
1375 IN EFI_IPv6_ADDRESS *RemoteIp,\r
1376 IN UINT16 RemotePort,\r
1377 IN UINT16 Protocol\r
1378 );\r
1379\r
1380\r
1381/**\r
1382 Find the UNDI/SNP handle from controller and protocol GUID.\r
1383\r
1384 If ProtocolGuid is NULL, then ASSERT().\r
1385\r
1386 For example, IP will open an MNP child to transmit/receive\r
1387 packets. When MNP is stopped, IP should also be stopped. IP\r
1388 needs to find its own private data that is related the IP's\r
1389 service binding instance that is installed on the UNDI/SNP handle.\r
1390 The controller is then either an MNP or an ARP child handle. Note that\r
1391 IP opens these handles using BY_DRIVER. Use that information to get the\r
1392 UNDI/SNP handle.\r
1393\r
1394 @param[in] Controller The protocol handle to check.\r
1395 @param[in] ProtocolGuid The protocol that is related with the handle.\r
1396\r
1397 @return The UNDI/SNP handle or NULL for errors.\r
1398\r
1399**/\r
1400EFI_HANDLE\r
1401EFIAPI\r
1402NetLibGetNicHandle (\r
1403 IN EFI_HANDLE Controller,\r
1404 IN EFI_GUID *ProtocolGuid\r
1405 );\r
1406\r
1407/**\r
1408 This is the default unload handle for all the network drivers.\r
1409\r
1410 Disconnect the driver specified by ImageHandle from all the devices in the handle database.\r
1411 Uninstall all the protocols installed in the driver entry point.\r
1412\r
1413 @param[in] ImageHandle The drivers' driver image.\r
1414\r
1415 @retval EFI_SUCCESS The image is unloaded.\r
1416 @retval Others Failed to unload the image.\r
1417\r
1418**/\r
1419EFI_STATUS\r
1420EFIAPI\r
1421NetLibDefaultUnload (\r
1422 IN EFI_HANDLE ImageHandle\r
1423 );\r
1424\r
1425/**\r
1426 Convert one Null-terminated ASCII string (decimal dotted) to EFI_IPv4_ADDRESS.\r
1427\r
1428 @param[in] String The pointer to the Ascii string.\r
1429 @param[out] Ip4Address The pointer to the converted IPv4 address.\r
1430\r
1431 @retval EFI_SUCCESS Converted to an IPv4 address successfully.\r
1432 @retval EFI_INVALID_PARAMETER The string is malformatted, or Ip4Address is NULL.\r
1433\r
1434**/\r
1435EFI_STATUS\r
1436EFIAPI\r
1437NetLibAsciiStrToIp4 (\r
1438 IN CONST CHAR8 *String,\r
1439 OUT EFI_IPv4_ADDRESS *Ip4Address\r
1440 );\r
1441\r
1442/**\r
1443 Convert one Null-terminated ASCII string to EFI_IPv6_ADDRESS. The format of the\r
1444 string is defined in RFC 4291 - Text Representation of Addresses.\r
1445\r
1446 @param[in] String The pointer to the Ascii string.\r
1447 @param[out] Ip6Address The pointer to the converted IPv6 address.\r
1448\r
1449 @retval EFI_SUCCESS Converted to an IPv6 address successfully.\r
1450 @retval EFI_INVALID_PARAMETER The string is malformatted, or Ip6Address is NULL.\r
1451\r
1452**/\r
1453EFI_STATUS\r
1454EFIAPI\r
1455NetLibAsciiStrToIp6 (\r
1456 IN CONST CHAR8 *String,\r
1457 OUT EFI_IPv6_ADDRESS *Ip6Address\r
1458 );\r
1459\r
1460/**\r
1461 Convert one Null-terminated Unicode string (decimal dotted) to EFI_IPv4_ADDRESS.\r
1462\r
1463 @param[in] String The pointer to the Ascii string.\r
1464 @param[out] Ip4Address The pointer to the converted IPv4 address.\r
1465\r
1466 @retval EFI_SUCCESS Converted to an IPv4 address successfully.\r
1467 @retval EFI_INVALID_PARAMETER The string is mal-formatted or Ip4Address is NULL.\r
1468\r
1469**/\r
1470EFI_STATUS\r
1471EFIAPI\r
1472NetLibStrToIp4 (\r
1473 IN CONST CHAR16 *String,\r
1474 OUT EFI_IPv4_ADDRESS *Ip4Address\r
1475 );\r
1476\r
1477/**\r
1478 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS. The format of\r
1479 the string is defined in RFC 4291 - Text Representation of Addresses.\r
1480\r
1481 @param[in] String The pointer to the Ascii string.\r
1482 @param[out] Ip6Address The pointer to the converted IPv6 address.\r
1483\r
1484 @retval EFI_SUCCESS Converted to an IPv6 address successfully.\r
1485 @retval EFI_INVALID_PARAMETER The string is malformatted or Ip6Address is NULL.\r
1486\r
1487**/\r
1488EFI_STATUS\r
1489EFIAPI\r
1490NetLibStrToIp6 (\r
1491 IN CONST CHAR16 *String,\r
1492 OUT EFI_IPv6_ADDRESS *Ip6Address\r
1493 );\r
1494\r
1495/**\r
1496 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS and prefix length.\r
1497 The format of the string is defined in RFC 4291 - Text Representation of Addresses\r
1498 Prefixes: ipv6-address/prefix-length.\r
1499\r
1500 @param[in] String The pointer to the Ascii string.\r
1501 @param[out] Ip6Address The pointer to the converted IPv6 address.\r
1502 @param[out] PrefixLength The pointer to the converted prefix length.\r
1503\r
1504 @retval EFI_SUCCESS Converted to an IPv6 address successfully.\r
1505 @retval EFI_INVALID_PARAMETER The string is malformatted, or Ip6Address is NULL.\r
1506\r
1507**/\r
1508EFI_STATUS\r
1509EFIAPI\r
1510NetLibStrToIp6andPrefix (\r
1511 IN CONST CHAR16 *String,\r
1512 OUT EFI_IPv6_ADDRESS *Ip6Address,\r
1513 OUT UINT8 *PrefixLength\r
1514 );\r
1515\r
1516/**\r
1517\r
1518 Convert one EFI_IPv6_ADDRESS to Null-terminated Unicode string.\r
1519 The text representation of address is defined in RFC 4291.\r
1520\r
1521 @param[in] Ip6Address The pointer to the IPv6 address.\r
1522 @param[out] String The buffer to return the converted string.\r
1523 @param[in] StringSize The length in bytes of the input String.\r
1524\r
1525 @retval EFI_SUCCESS Convert to string successfully.\r
1526 @retval EFI_INVALID_PARAMETER The input parameter is invalid.\r
1527 @retval EFI_BUFFER_TOO_SMALL The BufferSize is too small for the result. BufferSize has been\r
1528 updated with the size needed to complete the request.\r
1529**/\r
1530EFI_STATUS\r
1531EFIAPI\r
1532NetLibIp6ToStr (\r
1533 IN EFI_IPv6_ADDRESS *Ip6Address,\r
1534 OUT CHAR16 *String,\r
1535 IN UINTN StringSize\r
1536 );\r
1537\r
1538//\r
1539// Various signatures\r
1540//\r
1541#define NET_BUF_SIGNATURE SIGNATURE_32 ('n', 'b', 'u', 'f')\r
1542#define NET_VECTOR_SIGNATURE SIGNATURE_32 ('n', 'v', 'e', 'c')\r
1543#define NET_QUE_SIGNATURE SIGNATURE_32 ('n', 'b', 'q', 'u')\r
1544\r
1545\r
1546#define NET_PROTO_DATA 64 // Opaque buffer for protocols\r
1547#define NET_BUF_HEAD 1 // Trim or allocate space from head\r
1548#define NET_BUF_TAIL 0 // Trim or allocate space from tail\r
1549#define NET_VECTOR_OWN_FIRST 0x01 // We allocated the 1st block in the vector\r
1550\r
1551#define NET_CHECK_SIGNATURE(PData, SIGNATURE) \\r
1552 ASSERT (((PData) != NULL) && ((PData)->Signature == (SIGNATURE)))\r
1553\r
1554//\r
1555// Single memory block in the vector.\r
1556//\r
1557typedef struct {\r
1558 UINT32 Len; // The block's length\r
1559 UINT8 *Bulk; // The block's Data\r
1560} NET_BLOCK;\r
1561\r
1562typedef VOID (EFIAPI *NET_VECTOR_EXT_FREE) (VOID *Arg);\r
1563\r
1564//\r
1565//NET_VECTOR contains several blocks to hold all packet's\r
1566//fragments and other house-keeping stuff for sharing. It\r
1567//doesn't specify the where actual packet fragment begins.\r
1568//\r
1569typedef struct {\r
1570 UINT32 Signature;\r
1571 INTN RefCnt; // Reference count to share NET_VECTOR.\r
1572 NET_VECTOR_EXT_FREE Free; // external function to free NET_VECTOR\r
1573 VOID *Arg; // opaque argument to Free\r
1574 UINT32 Flag; // Flags, NET_VECTOR_OWN_FIRST\r
1575 UINT32 Len; // Total length of the associated BLOCKs\r
1576\r
1577 UINT32 BlockNum;\r
1578 NET_BLOCK Block[1];\r
1579} NET_VECTOR;\r
1580\r
1581//\r
1582//NET_BLOCK_OP operates on the NET_BLOCK. It specifies\r
1583//where the actual fragment begins and ends\r
1584//\r
1585typedef struct {\r
1586 UINT8 *BlockHead; // Block's head, or the smallest valid Head\r
1587 UINT8 *BlockTail; // Block's tail. BlockTail-BlockHead=block length\r
1588 UINT8 *Head; // 1st byte of the data in the block\r
1589 UINT8 *Tail; // Tail of the data in the block, Tail-Head=Size\r
1590 UINT32 Size; // The size of the data\r
1591} NET_BLOCK_OP;\r
1592\r
1593typedef union {\r
1594 IP4_HEAD *Ip4;\r
1595 EFI_IP6_HEADER *Ip6;\r
1596} NET_IP_HEAD;\r
1597\r
1598//\r
1599//NET_BUF is the buffer manage structure used by the\r
1600//network stack. Every network packet may be fragmented. The Vector points to\r
1601//memory blocks used by each fragment, and BlockOp\r
1602//specifies where each fragment begins and ends.\r
1603//\r
1604//It also contains an opaque area for the protocol to store\r
1605//per-packet information. Protocol must be careful not\r
1606//to overwrite the members after that.\r
1607//\r
1608typedef struct {\r
1609 UINT32 Signature;\r
1610 INTN RefCnt;\r
1611 LIST_ENTRY List; // The List this NET_BUF is on\r
1612\r
1613 NET_IP_HEAD Ip; // Network layer header, for fast access\r
1614 TCP_HEAD *Tcp; // Transport layer header, for fast access\r
1615 EFI_UDP_HEADER *Udp; // User Datagram Protocol header\r
1616 UINT8 ProtoData [NET_PROTO_DATA]; //Protocol specific data\r
1617\r
1618 NET_VECTOR *Vector; // The vector containing the packet\r
1619\r
1620 UINT32 BlockOpNum; // Total number of BlockOp in the buffer\r
1621 UINT32 TotalSize; // Total size of the actual packet\r
1622 NET_BLOCK_OP BlockOp[1]; // Specify the position of actual packet\r
1623} NET_BUF;\r
1624\r
1625//\r
1626//A queue of NET_BUFs. It is a thin extension of\r
1627//NET_BUF functions.\r
1628//\r
1629typedef struct {\r
1630 UINT32 Signature;\r
1631 INTN RefCnt;\r
1632 LIST_ENTRY List; // The List this buffer queue is on\r
1633\r
1634 LIST_ENTRY BufList; // list of queued buffers\r
1635 UINT32 BufSize; // total length of DATA in the buffers\r
1636 UINT32 BufNum; // total number of buffers on the chain\r
1637} NET_BUF_QUEUE;\r
1638\r
1639//\r
1640// Pseudo header for TCP and UDP checksum\r
1641//\r
1642#pragma pack(1)\r
1643typedef struct {\r
1644 IP4_ADDR SrcIp;\r
1645 IP4_ADDR DstIp;\r
1646 UINT8 Reserved;\r
1647 UINT8 Protocol;\r
1648 UINT16 Len;\r
1649} NET_PSEUDO_HDR;\r
1650\r
1651typedef struct {\r
1652 EFI_IPv6_ADDRESS SrcIp;\r
1653 EFI_IPv6_ADDRESS DstIp;\r
1654 UINT32 Len;\r
1655 UINT32 Reserved:24;\r
1656 UINT32 NextHeader:8;\r
1657} NET_IP6_PSEUDO_HDR;\r
1658#pragma pack()\r
1659\r
1660//\r
1661// The fragment entry table used in network interfaces. This is\r
1662// the same as NET_BLOCK now. Use two different to distinguish\r
1663// the two in case that NET_BLOCK be enhanced later.\r
1664//\r
1665typedef struct {\r
1666 UINT32 Len;\r
1667 UINT8 *Bulk;\r
1668} NET_FRAGMENT;\r
1669\r
1670#define NET_GET_REF(PData) ((PData)->RefCnt++)\r
1671#define NET_PUT_REF(PData) ((PData)->RefCnt--)\r
1672#define NETBUF_FROM_PROTODATA(Info) BASE_CR((Info), NET_BUF, ProtoData)\r
1673\r
1674#define NET_BUF_SHARED(Buf) \\r
1675 (((Buf)->RefCnt > 1) || ((Buf)->Vector->RefCnt > 1))\r
1676\r
1677#define NET_VECTOR_SIZE(BlockNum) \\r
1678 (sizeof (NET_VECTOR) + ((BlockNum) - 1) * sizeof (NET_BLOCK))\r
1679\r
1680#define NET_BUF_SIZE(BlockOpNum) \\r
1681 (sizeof (NET_BUF) + ((BlockOpNum) - 1) * sizeof (NET_BLOCK_OP))\r
1682\r
1683#define NET_HEADSPACE(BlockOp) \\r
1684 ((UINTN)((BlockOp)->Head) - (UINTN)((BlockOp)->BlockHead))\r
1685\r
1686#define NET_TAILSPACE(BlockOp) \\r
1687 ((UINTN)((BlockOp)->BlockTail) - (UINTN)((BlockOp)->Tail))\r
1688\r
1689/**\r
1690 Allocate a single block NET_BUF. Upon allocation, all the\r
1691 free space is in the tail room.\r
1692\r
1693 @param[in] Len The length of the block.\r
1694\r
1695 @return The pointer to the allocated NET_BUF, or NULL if the\r
1696 allocation failed due to resource limitations.\r
1697\r
1698**/\r
1699NET_BUF *\r
1700EFIAPI\r
1701NetbufAlloc (\r
1702 IN UINT32 Len\r
1703 );\r
1704\r
1705/**\r
1706 Free the net buffer and its associated NET_VECTOR.\r
1707\r
1708 Decrease the reference count of the net buffer by one. Free the associated net\r
1709 vector and itself if the reference count of the net buffer is decreased to 0.\r
1710 The net vector free operation decreases the reference count of the net\r
1711 vector by one, and performs the resource free operation when the reference count\r
1712 of the net vector is 0.\r
1713\r
1714 @param[in] Nbuf The pointer to the NET_BUF to be freed.\r
1715\r
1716**/\r
1717VOID\r
1718EFIAPI\r
1719NetbufFree (\r
1720 IN NET_BUF *Nbuf\r
1721 );\r
1722\r
1723/**\r
1724 Get the index of NET_BLOCK_OP that contains the byte at Offset in the net\r
1725 buffer.\r
1726\r
1727 For example, this function can be used to retrieve the IP header in the packet. It\r
1728 also can be used to get the fragment that contains the byte used\r
1729 mainly by the library implementation itself.\r
1730\r
1731 @param[in] Nbuf The pointer to the net buffer.\r
1732 @param[in] Offset The offset of the byte.\r
1733 @param[out] Index Index of the NET_BLOCK_OP that contains the byte at\r
1734 Offset.\r
1735\r
1736 @return The pointer to the Offset'th byte of data in the net buffer, or NULL\r
1737 if there is no such data in the net buffer.\r
1738\r
1739**/\r
1740UINT8 *\r
1741EFIAPI\r
1742NetbufGetByte (\r
1743 IN NET_BUF *Nbuf,\r
1744 IN UINT32 Offset,\r
1745 OUT UINT32 *Index OPTIONAL\r
1746 );\r
1747\r
1748/**\r
1749 Create a copy of the net buffer that shares the associated net vector.\r
1750\r
1751 The reference count of the newly created net buffer is set to 1. The reference\r
1752 count of the associated net vector is increased by one.\r
1753\r
1754 @param[in] Nbuf The pointer to the net buffer to be cloned.\r
1755\r
1756 @return The pointer to the cloned net buffer, or NULL if the\r
1757 allocation failed due to resource limitations.\r
1758\r
1759**/\r
1760NET_BUF *\r
1761EFIAPI\r
1762NetbufClone (\r
1763 IN NET_BUF *Nbuf\r
1764 );\r
1765\r
1766/**\r
1767 Create a duplicated copy of the net buffer with data copied and HeadSpace\r
1768 bytes of head space reserved.\r
1769\r
1770 The duplicated net buffer will allocate its own memory to hold the data of the\r
1771 source net buffer.\r
1772\r
1773 @param[in] Nbuf The pointer to the net buffer to be duplicated from.\r
1774 @param[in, out] Duplicate The pointer to the net buffer to duplicate to. If\r
1775 NULL, a new net buffer is allocated.\r
1776 @param[in] HeadSpace The length of the head space to reserve.\r
1777\r
1778 @return The pointer to the duplicated net buffer, or NULL if\r
1779 the allocation failed due to resource limitations.\r
1780\r
1781**/\r
1782NET_BUF *\r
1783EFIAPI\r
1784NetbufDuplicate (\r
1785 IN NET_BUF *Nbuf,\r
1786 IN OUT NET_BUF *Duplicate OPTIONAL,\r
1787 IN UINT32 HeadSpace\r
1788 );\r
1789\r
1790/**\r
1791 Create a NET_BUF structure which contains Len byte data of Nbuf starting from\r
1792 Offset.\r
1793\r
1794 A new NET_BUF structure will be created but the associated data in NET_VECTOR\r
1795 is shared. This function exists to perform IP packet fragmentation.\r
1796\r
1797 @param[in] Nbuf The pointer to the net buffer to be extracted.\r
1798 @param[in] Offset Starting point of the data to be included in the new\r
1799 net buffer.\r
1800 @param[in] Len The bytes of data to be included in the new net buffer.\r
1801 @param[in] HeadSpace The bytes of the head space to reserve for the protocol header.\r
1802\r
1803 @return The pointer to the cloned net buffer, or NULL if the\r
1804 allocation failed due to resource limitations.\r
1805\r
1806**/\r
1807NET_BUF *\r
1808EFIAPI\r
1809NetbufGetFragment (\r
1810 IN NET_BUF *Nbuf,\r
1811 IN UINT32 Offset,\r
1812 IN UINT32 Len,\r
1813 IN UINT32 HeadSpace\r
1814 );\r
1815\r
1816/**\r
1817 Reserve some space in the header room of the net buffer.\r
1818\r
1819 Upon allocation, all the space is in the tail room of the buffer. Call this\r
1820 function to move space to the header room. This function is quite limited\r
1821 in that it can only reserve space from the first block of an empty NET_BUF not\r
1822 built from the external. However, it should be enough for the network stack.\r
1823\r
1824 @param[in, out] Nbuf The pointer to the net buffer.\r
1825 @param[in] Len The length of buffer to be reserved from the header.\r
1826\r
1827**/\r
1828VOID\r
1829EFIAPI\r
1830NetbufReserve (\r
1831 IN OUT NET_BUF *Nbuf,\r
1832 IN UINT32 Len\r
1833 );\r
1834\r
1835/**\r
1836 Allocate Len bytes of space from the header or tail of the buffer.\r
1837\r
1838 @param[in, out] Nbuf The pointer to the net buffer.\r
1839 @param[in] Len The length of the buffer to be allocated.\r
1840 @param[in] FromHead The flag to indicate whether to reserve the data\r
1841 from head (TRUE) or tail (FALSE).\r
1842\r
1843 @return The pointer to the first byte of the allocated buffer,\r
1844 or NULL, if there is no sufficient space.\r
1845\r
1846**/\r
1847UINT8*\r
1848EFIAPI\r
1849NetbufAllocSpace (\r
1850 IN OUT NET_BUF *Nbuf,\r
1851 IN UINT32 Len,\r
1852 IN BOOLEAN FromHead\r
1853 );\r
1854\r
1855/**\r
1856 Trim Len bytes from the header or the tail of the net buffer.\r
1857\r
1858 @param[in, out] Nbuf The pointer to the net buffer.\r
1859 @param[in] Len The length of the data to be trimmed.\r
1860 @param[in] FromHead The flag to indicate whether trim data is from the\r
1861 head (TRUE) or the tail (FALSE).\r
1862\r
1863 @return The length of the actual trimmed data, which may be less\r
1864 than Len if the TotalSize of Nbuf is less than Len.\r
1865\r
1866**/\r
1867UINT32\r
1868EFIAPI\r
1869NetbufTrim (\r
1870 IN OUT NET_BUF *Nbuf,\r
1871 IN UINT32 Len,\r
1872 IN BOOLEAN FromHead\r
1873 );\r
1874\r
1875/**\r
1876 Copy Len bytes of data from the specific offset of the net buffer to the\r
1877 destination memory.\r
1878\r
1879 The Len bytes of data may cross several fragments of the net buffer.\r
1880\r
1881 @param[in] Nbuf The pointer to the net buffer.\r
1882 @param[in] Offset The sequence number of the first byte to copy.\r
1883 @param[in] Len The length of the data to copy.\r
1884 @param[in] Dest The destination of the data to copy to.\r
1885\r
1886 @return The length of the actual copied data, or 0 if the offset\r
1887 specified exceeds the total size of net buffer.\r
1888\r
1889**/\r
1890UINT32\r
1891EFIAPI\r
1892NetbufCopy (\r
1893 IN NET_BUF *Nbuf,\r
1894 IN UINT32 Offset,\r
1895 IN UINT32 Len,\r
1896 IN UINT8 *Dest\r
1897 );\r
1898\r
1899/**\r
1900 Build a NET_BUF from external blocks.\r
1901\r
1902 A new NET_BUF structure will be created from external blocks. An additional block\r
1903 of memory will be allocated to hold reserved HeadSpace bytes of header room\r
1904 and existing HeadLen bytes of header, but the external blocks are shared by the\r
1905 net buffer to avoid data copying.\r
1906\r
1907 @param[in] ExtFragment The pointer to the data block.\r
1908 @param[in] ExtNum The number of the data blocks.\r
1909 @param[in] HeadSpace The head space to be reserved.\r
1910 @param[in] HeadLen The length of the protocol header. The function\r
1911 pulls this amount of data into a linear block.\r
1912 @param[in] ExtFree The pointer to the caller-provided free function.\r
1913 @param[in] Arg The argument passed to ExtFree when ExtFree is\r
1914 called.\r
1915\r
1916 @return The pointer to the net buffer built from the data blocks,\r
1917 or NULL if the allocation failed due to resource\r
1918 limit.\r
1919\r
1920**/\r
1921NET_BUF *\r
1922EFIAPI\r
1923NetbufFromExt (\r
1924 IN NET_FRAGMENT *ExtFragment,\r
1925 IN UINT32 ExtNum,\r
1926 IN UINT32 HeadSpace,\r
1927 IN UINT32 HeadLen,\r
1928 IN NET_VECTOR_EXT_FREE ExtFree,\r
1929 IN VOID *Arg OPTIONAL\r
1930 );\r
1931\r
1932/**\r
1933 Build a fragment table to contain the fragments in the net buffer. This is the\r
1934 opposite operation of the NetbufFromExt.\r
1935\r
1936 @param[in] Nbuf Points to the net buffer.\r
1937 @param[in, out] ExtFragment The pointer to the data block.\r
1938 @param[in, out] ExtNum The number of the data blocks.\r
1939\r
1940 @retval EFI_BUFFER_TOO_SMALL The number of non-empty blocks is bigger than\r
1941 ExtNum.\r
1942 @retval EFI_SUCCESS The fragment table was built successfully.\r
1943\r
1944**/\r
1945EFI_STATUS\r
1946EFIAPI\r
1947NetbufBuildExt (\r
1948 IN NET_BUF *Nbuf,\r
1949 IN OUT NET_FRAGMENT *ExtFragment,\r
1950 IN OUT UINT32 *ExtNum\r
1951 );\r
1952\r
1953/**\r
1954 Build a net buffer from a list of net buffers.\r
1955\r
1956 All the fragments will be collected from the list of NEW_BUF, and then a new\r
1957 net buffer will be created through NetbufFromExt.\r
1958\r
1959 @param[in] BufList A List of the net buffer.\r
1960 @param[in] HeadSpace The head space to be reserved.\r
1961 @param[in] HeaderLen The length of the protocol header. The function\r
1962 pulls this amount of data into a linear block.\r
1963 @param[in] ExtFree The pointer to the caller provided free function.\r
1964 @param[in] Arg The argument passed to ExtFree when ExtFree is called.\r
1965\r
1966 @return The pointer to the net buffer built from the list of net\r
1967 buffers.\r
1968\r
1969**/\r
1970NET_BUF *\r
1971EFIAPI\r
1972NetbufFromBufList (\r
1973 IN LIST_ENTRY *BufList,\r
1974 IN UINT32 HeadSpace,\r
1975 IN UINT32 HeaderLen,\r
1976 IN NET_VECTOR_EXT_FREE ExtFree,\r
1977 IN VOID *Arg OPTIONAL\r
1978 );\r
1979\r
1980/**\r
1981 Free a list of net buffers.\r
1982\r
1983 @param[in, out] Head The pointer to the head of linked net buffers.\r
1984\r
1985**/\r
1986VOID\r
1987EFIAPI\r
1988NetbufFreeList (\r
1989 IN OUT LIST_ENTRY *Head\r
1990 );\r
1991\r
1992/**\r
1993 Initiate the net buffer queue.\r
1994\r
1995 @param[in, out] NbufQue The pointer to the net buffer queue to be initialized.\r
1996\r
1997**/\r
1998VOID\r
1999EFIAPI\r
2000NetbufQueInit (\r
2001 IN OUT NET_BUF_QUEUE *NbufQue\r
2002 );\r
2003\r
2004/**\r
2005 Allocate and initialize a net buffer queue.\r
2006\r
2007 @return The pointer to the allocated net buffer queue, or NULL if the\r
2008 allocation failed due to resource limit.\r
2009\r
2010**/\r
2011NET_BUF_QUEUE *\r
2012EFIAPI\r
2013NetbufQueAlloc (\r
2014 VOID\r
2015 );\r
2016\r
2017/**\r
2018 Free a net buffer queue.\r
2019\r
2020 Decrease the reference count of the net buffer queue by one. The real resource\r
2021 free operation isn't performed until the reference count of the net buffer\r
2022 queue is decreased to 0.\r
2023\r
2024 @param[in] NbufQue The pointer to the net buffer queue to be freed.\r
2025\r
2026**/\r
2027VOID\r
2028EFIAPI\r
2029NetbufQueFree (\r
2030 IN NET_BUF_QUEUE *NbufQue\r
2031 );\r
2032\r
2033/**\r
2034 Remove a net buffer from the head in the specific queue and return it.\r
2035\r
2036 @param[in, out] NbufQue The pointer to the net buffer queue.\r
2037\r
2038 @return The pointer to the net buffer removed from the specific queue,\r
2039 or NULL if there is no net buffer in the specific queue.\r
2040\r
2041**/\r
2042NET_BUF *\r
2043EFIAPI\r
2044NetbufQueRemove (\r
2045 IN OUT NET_BUF_QUEUE *NbufQue\r
2046 );\r
2047\r
2048/**\r
2049 Append a net buffer to the net buffer queue.\r
2050\r
2051 @param[in, out] NbufQue The pointer to the net buffer queue.\r
2052 @param[in, out] Nbuf The pointer to the net buffer to be appended.\r
2053\r
2054**/\r
2055VOID\r
2056EFIAPI\r
2057NetbufQueAppend (\r
2058 IN OUT NET_BUF_QUEUE *NbufQue,\r
2059 IN OUT NET_BUF *Nbuf\r
2060 );\r
2061\r
2062/**\r
2063 Copy Len bytes of data from the net buffer queue at the specific offset to the\r
2064 destination memory.\r
2065\r
2066 The copying operation is the same as NetbufCopy, but applies to the net buffer\r
2067 queue instead of the net buffer.\r
2068\r
2069 @param[in] NbufQue The pointer to the net buffer queue.\r
2070 @param[in] Offset The sequence number of the first byte to copy.\r
2071 @param[in] Len The length of the data to copy.\r
2072 @param[out] Dest The destination of the data to copy to.\r
2073\r
2074 @return The length of the actual copied data, or 0 if the offset\r
2075 specified exceeds the total size of net buffer queue.\r
2076\r
2077**/\r
2078UINT32\r
2079EFIAPI\r
2080NetbufQueCopy (\r
2081 IN NET_BUF_QUEUE *NbufQue,\r
2082 IN UINT32 Offset,\r
2083 IN UINT32 Len,\r
2084 OUT UINT8 *Dest\r
2085 );\r
2086\r
2087/**\r
2088 Trim Len bytes of data from the buffer queue and free any net buffer\r
2089 that is completely trimmed.\r
2090\r
2091 The trimming operation is the same as NetbufTrim but applies to the net buffer\r
2092 queue instead of the net buffer.\r
2093\r
2094 @param[in, out] NbufQue The pointer to the net buffer queue.\r
2095 @param[in] Len The length of the data to trim.\r
2096\r
2097 @return The actual length of the data trimmed.\r
2098\r
2099**/\r
2100UINT32\r
2101EFIAPI\r
2102NetbufQueTrim (\r
2103 IN OUT NET_BUF_QUEUE *NbufQue,\r
2104 IN UINT32 Len\r
2105 );\r
2106\r
2107\r
2108/**\r
2109 Flush the net buffer queue.\r
2110\r
2111 @param[in, out] NbufQue The pointer to the queue to be flushed.\r
2112\r
2113**/\r
2114VOID\r
2115EFIAPI\r
2116NetbufQueFlush (\r
2117 IN OUT NET_BUF_QUEUE *NbufQue\r
2118 );\r
2119\r
2120/**\r
2121 Compute the checksum for a bulk of data.\r
2122\r
2123 @param[in] Bulk The pointer to the data.\r
2124 @param[in] Len The length of the data, in bytes.\r
2125\r
2126 @return The computed checksum.\r
2127\r
2128**/\r
2129UINT16\r
2130EFIAPI\r
2131NetblockChecksum (\r
2132 IN UINT8 *Bulk,\r
2133 IN UINT32 Len\r
2134 );\r
2135\r
2136/**\r
2137 Add two checksums.\r
2138\r
2139 @param[in] Checksum1 The first checksum to be added.\r
2140 @param[in] Checksum2 The second checksum to be added.\r
2141\r
2142 @return The new checksum.\r
2143\r
2144**/\r
2145UINT16\r
2146EFIAPI\r
2147NetAddChecksum (\r
2148 IN UINT16 Checksum1,\r
2149 IN UINT16 Checksum2\r
2150 );\r
2151\r
2152/**\r
2153 Compute the checksum for a NET_BUF.\r
2154\r
2155 @param[in] Nbuf The pointer to the net buffer.\r
2156\r
2157 @return The computed checksum.\r
2158\r
2159**/\r
2160UINT16\r
2161EFIAPI\r
2162NetbufChecksum (\r
2163 IN NET_BUF *Nbuf\r
2164 );\r
2165\r
2166/**\r
2167 Compute the checksum for TCP/UDP pseudo header.\r
2168\r
2169 Src and Dst are in network byte order, and Len is in host byte order.\r
2170\r
2171 @param[in] Src The source address of the packet.\r
2172 @param[in] Dst The destination address of the packet.\r
2173 @param[in] Proto The protocol type of the packet.\r
2174 @param[in] Len The length of the packet.\r
2175\r
2176 @return The computed checksum.\r
2177\r
2178**/\r
2179UINT16\r
2180EFIAPI\r
2181NetPseudoHeadChecksum (\r
2182 IN IP4_ADDR Src,\r
2183 IN IP4_ADDR Dst,\r
2184 IN UINT8 Proto,\r
2185 IN UINT16 Len\r
2186 );\r
2187\r
2188/**\r
2189 Compute the checksum for the TCP6/UDP6 pseudo header.\r
2190\r
2191 Src and Dst are in network byte order, and Len is in host byte order.\r
2192\r
2193 @param[in] Src The source address of the packet.\r
2194 @param[in] Dst The destination address of the packet.\r
2195 @param[in] NextHeader The protocol type of the packet.\r
2196 @param[in] Len The length of the packet.\r
2197\r
2198 @return The computed checksum.\r
2199\r
2200**/\r
2201UINT16\r
2202EFIAPI\r
2203NetIp6PseudoHeadChecksum (\r
2204 IN EFI_IPv6_ADDRESS *Src,\r
2205 IN EFI_IPv6_ADDRESS *Dst,\r
2206 IN UINT8 NextHeader,\r
2207 IN UINT32 Len\r
2208 );\r
2209\r
2210/**\r
2211 The function frees the net buffer which allocated by the IP protocol. It releases\r
2212 only the net buffer and doesn't call the external free function.\r
2213\r
2214 This function should be called after finishing the process of mIpSec->ProcessExt()\r
2215 for outbound traffic. The (EFI_IPSEC2_PROTOCOL)->ProcessExt() allocates a new\r
2216 buffer for the ESP, so there needs a function to free the old net buffer.\r
2217\r
2218 @param[in] Nbuf The network buffer to be freed.\r
2219\r
2220**/\r
2221VOID\r
2222NetIpSecNetbufFree (\r
2223 NET_BUF *Nbuf\r
2224 );\r
2225\r
2226/**\r
2227 This function obtains the system guid from the smbios table.\r
2228\r
2229 If SystemGuid is NULL, then ASSERT().\r
2230\r
2231 @param[out] SystemGuid The pointer of the returned system guid.\r
2232\r
2233 @retval EFI_SUCCESS Successfully obtained the system guid.\r
2234 @retval EFI_NOT_FOUND Did not find the SMBIOS table.\r
2235\r
2236**/\r
2237EFI_STATUS\r
2238EFIAPI\r
2239NetLibGetSystemGuid (\r
2240 OUT EFI_GUID *SystemGuid\r
2241 );\r
2242\r
2243/**\r
2244 Create Dns QName according the queried domain name.\r
2245\r
2246 If DomainName is NULL, then ASSERT().\r
2247\r
2248 QName is a domain name represented as a sequence of labels,\r
2249 where each label consists of a length octet followed by that\r
2250 number of octets. The QName terminates with the zero\r
2251 length octet for the null label of the root. Caller should\r
2252 take responsibility to free the buffer in returned pointer.\r
2253\r
2254 @param DomainName The pointer to the queried domain name string.\r
2255\r
2256 @retval NULL Failed to fill QName.\r
2257 @return QName filled successfully.\r
2258\r
2259**/\r
2260CHAR8 *\r
2261EFIAPI\r
2262NetLibCreateDnsQName (\r
2263 IN CHAR16 *DomainName\r
2264 );\r
2265\r
2266#endif\r