]> git.proxmox.com Git - mirror_edk2.git/blame_incremental - OvmfPkg/IoMmuDxe/AmdSevIoMmu.c
OvmfPkg/AmdSevDxe: refresh #includes and LibraryClasses
[mirror_edk2.git] / OvmfPkg / IoMmuDxe / AmdSevIoMmu.c
... / ...
CommitLineData
1/** @file\r
2\r
3 The protocol provides support to allocate, free, map and umap a DMA buffer\r
4 for bus master (e.g PciHostBridge). When SEV is enabled, the DMA operations\r
5 must be performed on unencrypted buffer hence we use a bounce buffer to map\r
6 the guest buffer into an unencrypted DMA buffer.\r
7\r
8 Copyright (c) 2017, AMD Inc. All rights reserved.<BR>\r
9 Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>\r
10\r
11 This program and the accompanying materials are licensed and made available\r
12 under the terms and conditions of the BSD License which accompanies this\r
13 distribution. The full text of the license may be found at\r
14 http://opensource.org/licenses/bsd-license.php\r
15\r
16 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
17 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
18\r
19**/\r
20\r
21#include "AmdSevIoMmu.h"\r
22\r
23#define MAP_INFO_SIG SIGNATURE_64 ('M', 'A', 'P', '_', 'I', 'N', 'F', 'O')\r
24\r
25typedef struct {\r
26 UINT64 Signature;\r
27 LIST_ENTRY Link;\r
28 EDKII_IOMMU_OPERATION Operation;\r
29 UINTN NumberOfBytes;\r
30 UINTN NumberOfPages;\r
31 EFI_PHYSICAL_ADDRESS CryptedAddress;\r
32 EFI_PHYSICAL_ADDRESS PlainTextAddress;\r
33} MAP_INFO;\r
34\r
35//\r
36// List of the MAP_INFO structures that have been set up by IoMmuMap() and not\r
37// yet torn down by IoMmuUnmap(). The list represents the full set of mappings\r
38// currently in effect.\r
39//\r
40STATIC LIST_ENTRY mMapInfos = INITIALIZE_LIST_HEAD_VARIABLE (mMapInfos);\r
41\r
42#define COMMON_BUFFER_SIG SIGNATURE_64 ('C', 'M', 'N', 'B', 'U', 'F', 'F', 'R')\r
43\r
44//\r
45// ASCII names for EDKII_IOMMU_OPERATION constants, for debug logging.\r
46//\r
47STATIC CONST CHAR8 * CONST\r
48mBusMasterOperationName[EdkiiIoMmuOperationMaximum] = {\r
49 "Read",\r
50 "Write",\r
51 "CommonBuffer",\r
52 "Read64",\r
53 "Write64",\r
54 "CommonBuffer64"\r
55};\r
56\r
57//\r
58// The following structure enables Map() and Unmap() to perform in-place\r
59// decryption and encryption, respectively, for BusMasterCommonBuffer[64]\r
60// operations, without dynamic memory allocation or release.\r
61//\r
62// Both COMMON_BUFFER_HEADER and COMMON_BUFFER_HEADER.StashBuffer are allocated\r
63// by AllocateBuffer() and released by FreeBuffer().\r
64//\r
65#pragma pack (1)\r
66typedef struct {\r
67 UINT64 Signature;\r
68\r
69 //\r
70 // Always allocated from EfiBootServicesData type memory, and always\r
71 // encrypted.\r
72 //\r
73 VOID *StashBuffer;\r
74\r
75 //\r
76 // Followed by the actual common buffer, starting at the next page.\r
77 //\r
78} COMMON_BUFFER_HEADER;\r
79#pragma pack ()\r
80\r
81/**\r
82 Provides the controller-specific addresses required to access system memory\r
83 from a DMA bus master. On SEV guest, the DMA operations must be performed on\r
84 shared buffer hence we allocate a bounce buffer to map the HostAddress to a\r
85 DeviceAddress. The Encryption attribute is removed from the DeviceAddress\r
86 buffer.\r
87\r
88 @param This The protocol instance pointer.\r
89 @param Operation Indicates if the bus master is going to read or\r
90 write to system memory.\r
91 @param HostAddress The system memory address to map to the PCI\r
92 controller.\r
93 @param NumberOfBytes On input the number of bytes to map. On output\r
94 the number of bytes that were mapped.\r
95 @param DeviceAddress The resulting map address for the bus master\r
96 PCI controller to use to access the hosts\r
97 HostAddress.\r
98 @param Mapping A resulting value to pass to Unmap().\r
99\r
100 @retval EFI_SUCCESS The range was mapped for the returned\r
101 NumberOfBytes.\r
102 @retval EFI_UNSUPPORTED The HostAddress cannot be mapped as a common\r
103 buffer.\r
104 @retval EFI_INVALID_PARAMETER One or more parameters are invalid.\r
105 @retval EFI_OUT_OF_RESOURCES The request could not be completed due to a\r
106 lack of resources.\r
107 @retval EFI_DEVICE_ERROR The system hardware could not map the requested\r
108 address.\r
109\r
110**/\r
111EFI_STATUS\r
112EFIAPI\r
113IoMmuMap (\r
114 IN EDKII_IOMMU_PROTOCOL *This,\r
115 IN EDKII_IOMMU_OPERATION Operation,\r
116 IN VOID *HostAddress,\r
117 IN OUT UINTN *NumberOfBytes,\r
118 OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,\r
119 OUT VOID **Mapping\r
120 )\r
121{\r
122 EFI_STATUS Status;\r
123 MAP_INFO *MapInfo;\r
124 EFI_ALLOCATE_TYPE AllocateType;\r
125 COMMON_BUFFER_HEADER *CommonBufferHeader;\r
126 VOID *DecryptionSource;\r
127\r
128 DEBUG ((\r
129 DEBUG_VERBOSE,\r
130 "%a: Operation=%a Host=0x%p Bytes=0x%Lx\n",\r
131 __FUNCTION__,\r
132 ((Operation >= 0 &&\r
133 Operation < ARRAY_SIZE (mBusMasterOperationName)) ?\r
134 mBusMasterOperationName[Operation] :\r
135 "Invalid"),\r
136 HostAddress,\r
137 (UINT64)((NumberOfBytes == NULL) ? 0 : *NumberOfBytes)\r
138 ));\r
139\r
140 if (HostAddress == NULL || NumberOfBytes == NULL || DeviceAddress == NULL ||\r
141 Mapping == NULL) {\r
142 return EFI_INVALID_PARAMETER;\r
143 }\r
144\r
145 //\r
146 // Allocate a MAP_INFO structure to remember the mapping when Unmap() is\r
147 // called later.\r
148 //\r
149 MapInfo = AllocatePool (sizeof (MAP_INFO));\r
150 if (MapInfo == NULL) {\r
151 Status = EFI_OUT_OF_RESOURCES;\r
152 goto Failed;\r
153 }\r
154\r
155 //\r
156 // Initialize the MAP_INFO structure, except the PlainTextAddress field\r
157 //\r
158 ZeroMem (&MapInfo->Link, sizeof MapInfo->Link);\r
159 MapInfo->Signature = MAP_INFO_SIG;\r
160 MapInfo->Operation = Operation;\r
161 MapInfo->NumberOfBytes = *NumberOfBytes;\r
162 MapInfo->NumberOfPages = EFI_SIZE_TO_PAGES (MapInfo->NumberOfBytes);\r
163 MapInfo->CryptedAddress = (UINTN)HostAddress;\r
164\r
165 //\r
166 // In the switch statement below, we point "MapInfo->PlainTextAddress" to the\r
167 // plaintext buffer, according to Operation. We also set "DecryptionSource".\r
168 //\r
169 MapInfo->PlainTextAddress = MAX_ADDRESS;\r
170 AllocateType = AllocateAnyPages;\r
171 DecryptionSource = (VOID *)(UINTN)MapInfo->CryptedAddress;\r
172 switch (Operation) {\r
173 //\r
174 // For BusMasterRead[64] and BusMasterWrite[64] operations, a bounce buffer\r
175 // is necessary regardless of whether the original (crypted) buffer crosses\r
176 // the 4GB limit or not -- we have to allocate a separate plaintext buffer.\r
177 // The only variable is whether the plaintext buffer should be under 4GB.\r
178 //\r
179 case EdkiiIoMmuOperationBusMasterRead:\r
180 case EdkiiIoMmuOperationBusMasterWrite:\r
181 MapInfo->PlainTextAddress = BASE_4GB - 1;\r
182 AllocateType = AllocateMaxAddress;\r
183 //\r
184 // fall through\r
185 //\r
186 case EdkiiIoMmuOperationBusMasterRead64:\r
187 case EdkiiIoMmuOperationBusMasterWrite64:\r
188 //\r
189 // Allocate the implicit plaintext bounce buffer.\r
190 //\r
191 Status = gBS->AllocatePages (\r
192 AllocateType,\r
193 EfiBootServicesData,\r
194 MapInfo->NumberOfPages,\r
195 &MapInfo->PlainTextAddress\r
196 );\r
197 if (EFI_ERROR (Status)) {\r
198 goto FreeMapInfo;\r
199 }\r
200 break;\r
201\r
202 //\r
203 // For BusMasterCommonBuffer[64] operations, a to-be-plaintext buffer and a\r
204 // stash buffer (for in-place decryption) have been allocated already, with\r
205 // AllocateBuffer(). We only check whether the address of the to-be-plaintext\r
206 // buffer is low enough for the requested operation.\r
207 //\r
208 case EdkiiIoMmuOperationBusMasterCommonBuffer:\r
209 if ((MapInfo->CryptedAddress > BASE_4GB) ||\r
210 (EFI_PAGES_TO_SIZE (MapInfo->NumberOfPages) >\r
211 BASE_4GB - MapInfo->CryptedAddress)) {\r
212 //\r
213 // CommonBuffer operations cannot be remapped. If the common buffer is\r
214 // above 4GB, then it is not possible to generate a mapping, so return an\r
215 // error.\r
216 //\r
217 Status = EFI_UNSUPPORTED;\r
218 goto FreeMapInfo;\r
219 }\r
220 //\r
221 // fall through\r
222 //\r
223 case EdkiiIoMmuOperationBusMasterCommonBuffer64:\r
224 //\r
225 // The buffer at MapInfo->CryptedAddress comes from AllocateBuffer().\r
226 //\r
227 MapInfo->PlainTextAddress = MapInfo->CryptedAddress;\r
228 //\r
229 // Stash the crypted data.\r
230 //\r
231 CommonBufferHeader = (COMMON_BUFFER_HEADER *)(\r
232 (UINTN)MapInfo->CryptedAddress - EFI_PAGE_SIZE\r
233 );\r
234 ASSERT (CommonBufferHeader->Signature == COMMON_BUFFER_SIG);\r
235 CopyMem (\r
236 CommonBufferHeader->StashBuffer,\r
237 (VOID *)(UINTN)MapInfo->CryptedAddress,\r
238 MapInfo->NumberOfBytes\r
239 );\r
240 //\r
241 // Point "DecryptionSource" to the stash buffer so that we decrypt\r
242 // it to the original location, after the switch statement.\r
243 //\r
244 DecryptionSource = CommonBufferHeader->StashBuffer;\r
245 break;\r
246\r
247 default:\r
248 //\r
249 // Operation is invalid\r
250 //\r
251 Status = EFI_INVALID_PARAMETER;\r
252 goto FreeMapInfo;\r
253 }\r
254\r
255 //\r
256 // Clear the memory encryption mask on the plaintext buffer.\r
257 //\r
258 Status = MemEncryptSevClearPageEncMask (\r
259 0,\r
260 MapInfo->PlainTextAddress,\r
261 MapInfo->NumberOfPages,\r
262 TRUE\r
263 );\r
264 ASSERT_EFI_ERROR (Status);\r
265 if (EFI_ERROR (Status)) {\r
266 CpuDeadLoop ();\r
267 }\r
268\r
269 //\r
270 // If this is a read operation from the Bus Master's point of view,\r
271 // then copy the contents of the real buffer into the mapped buffer\r
272 // so the Bus Master can read the contents of the real buffer.\r
273 //\r
274 // For BusMasterCommonBuffer[64] operations, the CopyMem() below will decrypt\r
275 // the original data (from the stash buffer) back to the original location.\r
276 //\r
277 if (Operation == EdkiiIoMmuOperationBusMasterRead ||\r
278 Operation == EdkiiIoMmuOperationBusMasterRead64 ||\r
279 Operation == EdkiiIoMmuOperationBusMasterCommonBuffer ||\r
280 Operation == EdkiiIoMmuOperationBusMasterCommonBuffer64) {\r
281 CopyMem (\r
282 (VOID *) (UINTN) MapInfo->PlainTextAddress,\r
283 DecryptionSource,\r
284 MapInfo->NumberOfBytes\r
285 );\r
286 }\r
287\r
288 //\r
289 // Track all MAP_INFO structures.\r
290 //\r
291 InsertHeadList (&mMapInfos, &MapInfo->Link);\r
292 //\r
293 // Populate output parameters.\r
294 //\r
295 *DeviceAddress = MapInfo->PlainTextAddress;\r
296 *Mapping = MapInfo;\r
297\r
298 DEBUG ((\r
299 DEBUG_VERBOSE,\r
300 "%a: Mapping=0x%p Device(PlainText)=0x%Lx Crypted=0x%Lx Pages=0x%Lx\n",\r
301 __FUNCTION__,\r
302 MapInfo,\r
303 MapInfo->PlainTextAddress,\r
304 MapInfo->CryptedAddress,\r
305 (UINT64)MapInfo->NumberOfPages\r
306 ));\r
307\r
308 return EFI_SUCCESS;\r
309\r
310FreeMapInfo:\r
311 FreePool (MapInfo);\r
312\r
313Failed:\r
314 *NumberOfBytes = 0;\r
315 return Status;\r
316}\r
317\r
318/**\r
319 Completes the Map() operation and releases any corresponding resources.\r
320\r
321 This is an internal worker function that only extends the Map() API with\r
322 the MemoryMapLocked parameter.\r
323\r
324 @param This The protocol instance pointer.\r
325 @param Mapping The mapping value returned from Map().\r
326 @param MemoryMapLocked The function is executing on the stack of\r
327 gBS->ExitBootServices(); changes to the UEFI\r
328 memory map are forbidden.\r
329\r
330 @retval EFI_SUCCESS The range was unmapped.\r
331 @retval EFI_INVALID_PARAMETER Mapping is not a value that was returned by\r
332 Map().\r
333 @retval EFI_DEVICE_ERROR The data was not committed to the target system\r
334 memory.\r
335**/\r
336STATIC\r
337EFI_STATUS\r
338EFIAPI\r
339IoMmuUnmapWorker (\r
340 IN EDKII_IOMMU_PROTOCOL *This,\r
341 IN VOID *Mapping,\r
342 IN BOOLEAN MemoryMapLocked\r
343 )\r
344{\r
345 MAP_INFO *MapInfo;\r
346 EFI_STATUS Status;\r
347 COMMON_BUFFER_HEADER *CommonBufferHeader;\r
348 VOID *EncryptionTarget;\r
349\r
350 DEBUG ((\r
351 DEBUG_VERBOSE,\r
352 "%a: Mapping=0x%p MemoryMapLocked=%d\n",\r
353 __FUNCTION__,\r
354 Mapping,\r
355 MemoryMapLocked\r
356 ));\r
357\r
358 if (Mapping == NULL) {\r
359 return EFI_INVALID_PARAMETER;\r
360 }\r
361\r
362 MapInfo = (MAP_INFO *)Mapping;\r
363\r
364 //\r
365 // set CommonBufferHeader to suppress incorrect compiler/analyzer warnings\r
366 //\r
367 CommonBufferHeader = NULL;\r
368\r
369 //\r
370 // For BusMasterWrite[64] operations and BusMasterCommonBuffer[64] operations\r
371 // we have to encrypt the results, ultimately to the original place (i.e.,\r
372 // "MapInfo->CryptedAddress").\r
373 //\r
374 // For BusMasterCommonBuffer[64] operations however, this encryption has to\r
375 // land in-place, so divert the encryption to the stash buffer first.\r
376 //\r
377 EncryptionTarget = (VOID *)(UINTN)MapInfo->CryptedAddress;\r
378\r
379 switch (MapInfo->Operation) {\r
380 case EdkiiIoMmuOperationBusMasterCommonBuffer:\r
381 case EdkiiIoMmuOperationBusMasterCommonBuffer64:\r
382 ASSERT (MapInfo->PlainTextAddress == MapInfo->CryptedAddress);\r
383\r
384 CommonBufferHeader = (COMMON_BUFFER_HEADER *)(\r
385 (UINTN)MapInfo->PlainTextAddress - EFI_PAGE_SIZE\r
386 );\r
387 ASSERT (CommonBufferHeader->Signature == COMMON_BUFFER_SIG);\r
388 EncryptionTarget = CommonBufferHeader->StashBuffer;\r
389 //\r
390 // fall through\r
391 //\r
392\r
393 case EdkiiIoMmuOperationBusMasterWrite:\r
394 case EdkiiIoMmuOperationBusMasterWrite64:\r
395 CopyMem (\r
396 EncryptionTarget,\r
397 (VOID *) (UINTN) MapInfo->PlainTextAddress,\r
398 MapInfo->NumberOfBytes\r
399 );\r
400 break;\r
401\r
402 default:\r
403 //\r
404 // nothing to encrypt after BusMasterRead[64] operations\r
405 //\r
406 break;\r
407 }\r
408\r
409 //\r
410 // Restore the memory encryption mask on the area we used to hold the\r
411 // plaintext.\r
412 //\r
413 Status = MemEncryptSevSetPageEncMask (\r
414 0,\r
415 MapInfo->PlainTextAddress,\r
416 MapInfo->NumberOfPages,\r
417 TRUE\r
418 );\r
419 ASSERT_EFI_ERROR (Status);\r
420 if (EFI_ERROR (Status)) {\r
421 CpuDeadLoop ();\r
422 }\r
423\r
424 //\r
425 // For BusMasterCommonBuffer[64] operations, copy the stashed data to the\r
426 // original (now encrypted) location.\r
427 //\r
428 // For all other operations, fill the late bounce buffer (which existed as\r
429 // plaintext at some point) with zeros, and then release it (unless the UEFI\r
430 // memory map is locked).\r
431 //\r
432 if (MapInfo->Operation == EdkiiIoMmuOperationBusMasterCommonBuffer ||\r
433 MapInfo->Operation == EdkiiIoMmuOperationBusMasterCommonBuffer64) {\r
434 CopyMem (\r
435 (VOID *)(UINTN)MapInfo->CryptedAddress,\r
436 CommonBufferHeader->StashBuffer,\r
437 MapInfo->NumberOfBytes\r
438 );\r
439 } else {\r
440 ZeroMem (\r
441 (VOID *)(UINTN)MapInfo->PlainTextAddress,\r
442 EFI_PAGES_TO_SIZE (MapInfo->NumberOfPages)\r
443 );\r
444 if (!MemoryMapLocked) {\r
445 gBS->FreePages (MapInfo->PlainTextAddress, MapInfo->NumberOfPages);\r
446 }\r
447 }\r
448\r
449 //\r
450 // Forget the MAP_INFO structure, then free it (unless the UEFI memory map is\r
451 // locked).\r
452 //\r
453 RemoveEntryList (&MapInfo->Link);\r
454 if (!MemoryMapLocked) {\r
455 FreePool (MapInfo);\r
456 }\r
457\r
458 return EFI_SUCCESS;\r
459}\r
460\r
461/**\r
462 Completes the Map() operation and releases any corresponding resources.\r
463\r
464 @param This The protocol instance pointer.\r
465 @param Mapping The mapping value returned from Map().\r
466\r
467 @retval EFI_SUCCESS The range was unmapped.\r
468 @retval EFI_INVALID_PARAMETER Mapping is not a value that was returned by\r
469 Map().\r
470 @retval EFI_DEVICE_ERROR The data was not committed to the target system\r
471 memory.\r
472**/\r
473EFI_STATUS\r
474EFIAPI\r
475IoMmuUnmap (\r
476 IN EDKII_IOMMU_PROTOCOL *This,\r
477 IN VOID *Mapping\r
478 )\r
479{\r
480 return IoMmuUnmapWorker (\r
481 This,\r
482 Mapping,\r
483 FALSE // MemoryMapLocked\r
484 );\r
485}\r
486\r
487/**\r
488 Allocates pages that are suitable for an OperationBusMasterCommonBuffer or\r
489 OperationBusMasterCommonBuffer64 mapping.\r
490\r
491 @param This The protocol instance pointer.\r
492 @param Type This parameter is not used and must be ignored.\r
493 @param MemoryType The type of memory to allocate,\r
494 EfiBootServicesData or EfiRuntimeServicesData.\r
495 @param Pages The number of pages to allocate.\r
496 @param HostAddress A pointer to store the base system memory\r
497 address of the allocated range.\r
498 @param Attributes The requested bit mask of attributes for the\r
499 allocated range.\r
500\r
501 @retval EFI_SUCCESS The requested memory pages were allocated.\r
502 @retval EFI_UNSUPPORTED Attributes is unsupported. The only legal\r
503 attribute bits are MEMORY_WRITE_COMBINE and\r
504 MEMORY_CACHED.\r
505 @retval EFI_INVALID_PARAMETER One or more parameters are invalid.\r
506 @retval EFI_OUT_OF_RESOURCES The memory pages could not be allocated.\r
507\r
508**/\r
509EFI_STATUS\r
510EFIAPI\r
511IoMmuAllocateBuffer (\r
512 IN EDKII_IOMMU_PROTOCOL *This,\r
513 IN EFI_ALLOCATE_TYPE Type,\r
514 IN EFI_MEMORY_TYPE MemoryType,\r
515 IN UINTN Pages,\r
516 IN OUT VOID **HostAddress,\r
517 IN UINT64 Attributes\r
518 )\r
519{\r
520 EFI_STATUS Status;\r
521 EFI_PHYSICAL_ADDRESS PhysicalAddress;\r
522 VOID *StashBuffer;\r
523 UINTN CommonBufferPages;\r
524 COMMON_BUFFER_HEADER *CommonBufferHeader;\r
525\r
526 DEBUG ((\r
527 DEBUG_VERBOSE,\r
528 "%a: MemoryType=%u Pages=0x%Lx Attributes=0x%Lx\n",\r
529 __FUNCTION__,\r
530 (UINT32)MemoryType,\r
531 (UINT64)Pages,\r
532 Attributes\r
533 ));\r
534\r
535 //\r
536 // Validate Attributes\r
537 //\r
538 if ((Attributes & EDKII_IOMMU_ATTRIBUTE_INVALID_FOR_ALLOCATE_BUFFER) != 0) {\r
539 return EFI_UNSUPPORTED;\r
540 }\r
541\r
542 //\r
543 // Check for invalid inputs\r
544 //\r
545 if (HostAddress == NULL) {\r
546 return EFI_INVALID_PARAMETER;\r
547 }\r
548\r
549 //\r
550 // The only valid memory types are EfiBootServicesData and\r
551 // EfiRuntimeServicesData\r
552 //\r
553 if (MemoryType != EfiBootServicesData &&\r
554 MemoryType != EfiRuntimeServicesData) {\r
555 return EFI_INVALID_PARAMETER;\r
556 }\r
557\r
558 //\r
559 // We'll need a header page for the COMMON_BUFFER_HEADER structure.\r
560 //\r
561 if (Pages > MAX_UINTN - 1) {\r
562 return EFI_OUT_OF_RESOURCES;\r
563 }\r
564 CommonBufferPages = Pages + 1;\r
565\r
566 //\r
567 // Allocate the stash in EfiBootServicesData type memory.\r
568 //\r
569 // Map() will temporarily save encrypted data in the stash for\r
570 // BusMasterCommonBuffer[64] operations, so the data can be decrypted to the\r
571 // original location.\r
572 //\r
573 // Unmap() will temporarily save plaintext data in the stash for\r
574 // BusMasterCommonBuffer[64] operations, so the data can be encrypted to the\r
575 // original location.\r
576 //\r
577 // StashBuffer always resides in encrypted memory.\r
578 //\r
579 StashBuffer = AllocatePages (Pages);\r
580 if (StashBuffer == NULL) {\r
581 return EFI_OUT_OF_RESOURCES;\r
582 }\r
583\r
584 PhysicalAddress = (UINTN)-1;\r
585 if ((Attributes & EDKII_IOMMU_ATTRIBUTE_DUAL_ADDRESS_CYCLE) == 0) {\r
586 //\r
587 // Limit allocations to memory below 4GB\r
588 //\r
589 PhysicalAddress = SIZE_4GB - 1;\r
590 }\r
591 Status = gBS->AllocatePages (\r
592 AllocateMaxAddress,\r
593 MemoryType,\r
594 CommonBufferPages,\r
595 &PhysicalAddress\r
596 );\r
597 if (EFI_ERROR (Status)) {\r
598 goto FreeStashBuffer;\r
599 }\r
600\r
601 CommonBufferHeader = (VOID *)(UINTN)PhysicalAddress;\r
602 PhysicalAddress += EFI_PAGE_SIZE;\r
603\r
604 CommonBufferHeader->Signature = COMMON_BUFFER_SIG;\r
605 CommonBufferHeader->StashBuffer = StashBuffer;\r
606\r
607 *HostAddress = (VOID *)(UINTN)PhysicalAddress;\r
608\r
609 DEBUG ((\r
610 DEBUG_VERBOSE,\r
611 "%a: Host=0x%Lx Stash=0x%p\n",\r
612 __FUNCTION__,\r
613 PhysicalAddress,\r
614 StashBuffer\r
615 ));\r
616 return EFI_SUCCESS;\r
617\r
618FreeStashBuffer:\r
619 FreePages (StashBuffer, Pages);\r
620 return Status;\r
621}\r
622\r
623/**\r
624 Frees memory that was allocated with AllocateBuffer().\r
625\r
626 @param This The protocol instance pointer.\r
627 @param Pages The number of pages to free.\r
628 @param HostAddress The base system memory address of the allocated\r
629 range.\r
630\r
631 @retval EFI_SUCCESS The requested memory pages were freed.\r
632 @retval EFI_INVALID_PARAMETER The memory range specified by HostAddress and\r
633 Pages was not allocated with AllocateBuffer().\r
634\r
635**/\r
636EFI_STATUS\r
637EFIAPI\r
638IoMmuFreeBuffer (\r
639 IN EDKII_IOMMU_PROTOCOL *This,\r
640 IN UINTN Pages,\r
641 IN VOID *HostAddress\r
642 )\r
643{\r
644 UINTN CommonBufferPages;\r
645 COMMON_BUFFER_HEADER *CommonBufferHeader;\r
646\r
647 DEBUG ((\r
648 DEBUG_VERBOSE,\r
649 "%a: Host=0x%p Pages=0x%Lx\n",\r
650 __FUNCTION__,\r
651 HostAddress,\r
652 (UINT64)Pages\r
653 ));\r
654\r
655 CommonBufferPages = Pages + 1;\r
656 CommonBufferHeader = (COMMON_BUFFER_HEADER *)(\r
657 (UINTN)HostAddress - EFI_PAGE_SIZE\r
658 );\r
659\r
660 //\r
661 // Check the signature.\r
662 //\r
663 ASSERT (CommonBufferHeader->Signature == COMMON_BUFFER_SIG);\r
664 if (CommonBufferHeader->Signature != COMMON_BUFFER_SIG) {\r
665 return EFI_INVALID_PARAMETER;\r
666 }\r
667\r
668 //\r
669 // Free the stash buffer. This buffer was always encrypted, so no need to\r
670 // zero it.\r
671 //\r
672 FreePages (CommonBufferHeader->StashBuffer, Pages);\r
673\r
674 //\r
675 // Release the common buffer itself. Unmap() has re-encrypted it in-place, so\r
676 // no need to zero it.\r
677 //\r
678 return gBS->FreePages ((UINTN)CommonBufferHeader, CommonBufferPages);\r
679}\r
680\r
681\r
682/**\r
683 Set IOMMU attribute for a system memory.\r
684\r
685 If the IOMMU protocol exists, the system memory cannot be used\r
686 for DMA by default.\r
687\r
688 When a device requests a DMA access for a system memory,\r
689 the device driver need use SetAttribute() to update the IOMMU\r
690 attribute to request DMA access (read and/or write).\r
691\r
692 The DeviceHandle is used to identify which device submits the request.\r
693 The IOMMU implementation need translate the device path to an IOMMU device\r
694 ID, and set IOMMU hardware register accordingly.\r
695 1) DeviceHandle can be a standard PCI device.\r
696 The memory for BusMasterRead need set EDKII_IOMMU_ACCESS_READ.\r
697 The memory for BusMasterWrite need set EDKII_IOMMU_ACCESS_WRITE.\r
698 The memory for BusMasterCommonBuffer need set\r
699 EDKII_IOMMU_ACCESS_READ|EDKII_IOMMU_ACCESS_WRITE.\r
700 After the memory is used, the memory need set 0 to keep it being\r
701 protected.\r
702 2) DeviceHandle can be an ACPI device (ISA, I2C, SPI, etc).\r
703 The memory for DMA access need set EDKII_IOMMU_ACCESS_READ and/or\r
704 EDKII_IOMMU_ACCESS_WRITE.\r
705\r
706 @param[in] This The protocol instance pointer.\r
707 @param[in] DeviceHandle The device who initiates the DMA access\r
708 request.\r
709 @param[in] Mapping The mapping value returned from Map().\r
710 @param[in] IoMmuAccess The IOMMU access.\r
711\r
712 @retval EFI_SUCCESS The IoMmuAccess is set for the memory range\r
713 specified by DeviceAddress and Length.\r
714 @retval EFI_INVALID_PARAMETER DeviceHandle is an invalid handle.\r
715 @retval EFI_INVALID_PARAMETER Mapping is not a value that was returned by\r
716 Map().\r
717 @retval EFI_INVALID_PARAMETER IoMmuAccess specified an illegal combination\r
718 of access.\r
719 @retval EFI_UNSUPPORTED DeviceHandle is unknown by the IOMMU.\r
720 @retval EFI_UNSUPPORTED The bit mask of IoMmuAccess is not supported\r
721 by the IOMMU.\r
722 @retval EFI_UNSUPPORTED The IOMMU does not support the memory range\r
723 specified by Mapping.\r
724 @retval EFI_OUT_OF_RESOURCES There are not enough resources available to\r
725 modify the IOMMU access.\r
726 @retval EFI_DEVICE_ERROR The IOMMU device reported an error while\r
727 attempting the operation.\r
728\r
729**/\r
730EFI_STATUS\r
731EFIAPI\r
732IoMmuSetAttribute (\r
733 IN EDKII_IOMMU_PROTOCOL *This,\r
734 IN EFI_HANDLE DeviceHandle,\r
735 IN VOID *Mapping,\r
736 IN UINT64 IoMmuAccess\r
737 )\r
738{\r
739 return EFI_UNSUPPORTED;\r
740}\r
741\r
742EDKII_IOMMU_PROTOCOL mAmdSev = {\r
743 EDKII_IOMMU_PROTOCOL_REVISION,\r
744 IoMmuSetAttribute,\r
745 IoMmuMap,\r
746 IoMmuUnmap,\r
747 IoMmuAllocateBuffer,\r
748 IoMmuFreeBuffer,\r
749};\r
750\r
751/**\r
752 Notification function that is queued when gBS->ExitBootServices() signals the\r
753 EFI_EVENT_GROUP_EXIT_BOOT_SERVICES event group. This function signals another\r
754 event, received as Context, and returns.\r
755\r
756 Signaling an event in this context is safe. The UEFI spec allows\r
757 gBS->SignalEvent() to return EFI_SUCCESS only; EFI_OUT_OF_RESOURCES is not\r
758 listed, hence memory is not allocated. The edk2 implementation also does not\r
759 release memory (and we only have to care about the edk2 implementation\r
760 because EDKII_IOMMU_PROTOCOL is edk2-specific anyway).\r
761\r
762 @param[in] Event Event whose notification function is being invoked.\r
763 Event is permitted to request the queueing of this\r
764 function at TPL_CALLBACK or TPL_NOTIFY task\r
765 priority level.\r
766\r
767 @param[in] EventToSignal Identifies the EFI_EVENT to signal. EventToSignal\r
768 is permitted to request the queueing of its\r
769 notification function only at TPL_CALLBACK level.\r
770**/\r
771STATIC\r
772VOID\r
773EFIAPI\r
774AmdSevExitBoot (\r
775 IN EFI_EVENT Event,\r
776 IN VOID *EventToSignal\r
777 )\r
778{\r
779 //\r
780 // (1) The NotifyFunctions of all the events in\r
781 // EFI_EVENT_GROUP_EXIT_BOOT_SERVICES will have been queued before\r
782 // AmdSevExitBoot() is entered.\r
783 //\r
784 // (2) AmdSevExitBoot() is executing minimally at TPL_CALLBACK.\r
785 //\r
786 // (3) AmdSevExitBoot() has been queued in unspecified order relative to the\r
787 // NotifyFunctions of all the other events in\r
788 // EFI_EVENT_GROUP_EXIT_BOOT_SERVICES whose NotifyTpl is the same as\r
789 // Event's.\r
790 //\r
791 // Consequences:\r
792 //\r
793 // - If Event's NotifyTpl is TPL_CALLBACK, then some other NotifyFunctions\r
794 // queued at TPL_CALLBACK may be invoked after AmdSevExitBoot() returns.\r
795 //\r
796 // - If Event's NotifyTpl is TPL_NOTIFY, then some other NotifyFunctions\r
797 // queued at TPL_NOTIFY may be invoked after AmdSevExitBoot() returns; plus\r
798 // *all* NotifyFunctions queued at TPL_CALLBACK will be invoked strictly\r
799 // after all NotifyFunctions queued at TPL_NOTIFY, including\r
800 // AmdSevExitBoot(), have been invoked.\r
801 //\r
802 // - By signaling EventToSignal here, whose NotifyTpl is TPL_CALLBACK, we\r
803 // queue EventToSignal's NotifyFunction after the NotifyFunctions of *all*\r
804 // events in EFI_EVENT_GROUP_EXIT_BOOT_SERVICES.\r
805 //\r
806 DEBUG ((DEBUG_VERBOSE, "%a\n", __FUNCTION__));\r
807 gBS->SignalEvent (EventToSignal);\r
808}\r
809\r
810/**\r
811 Notification function that is queued after the notification functions of all\r
812 events in the EFI_EVENT_GROUP_EXIT_BOOT_SERVICES event group. The same memory\r
813 map restrictions apply.\r
814\r
815 This function unmaps all currently existing IOMMU mappings.\r
816\r
817 @param[in] Event Event whose notification function is being invoked. Event\r
818 is permitted to request the queueing of this function\r
819 only at TPL_CALLBACK task priority level.\r
820\r
821 @param[in] Context Ignored.\r
822**/\r
823STATIC\r
824VOID\r
825EFIAPI\r
826AmdSevUnmapAllMappings (\r
827 IN EFI_EVENT Event,\r
828 IN VOID *Context\r
829 )\r
830{\r
831 LIST_ENTRY *Node;\r
832 LIST_ENTRY *NextNode;\r
833 MAP_INFO *MapInfo;\r
834\r
835 DEBUG ((DEBUG_VERBOSE, "%a\n", __FUNCTION__));\r
836\r
837 //\r
838 // All drivers that had set up IOMMU mappings have halted their respective\r
839 // controllers by now; tear down the mappings.\r
840 //\r
841 for (Node = GetFirstNode (&mMapInfos); Node != &mMapInfos; Node = NextNode) {\r
842 NextNode = GetNextNode (&mMapInfos, Node);\r
843 MapInfo = CR (Node, MAP_INFO, Link, MAP_INFO_SIG);\r
844 IoMmuUnmapWorker (\r
845 &mAmdSev, // This\r
846 MapInfo, // Mapping\r
847 TRUE // MemoryMapLocked\r
848 );\r
849 }\r
850}\r
851\r
852/**\r
853 Initialize Iommu Protocol.\r
854\r
855**/\r
856EFI_STATUS\r
857EFIAPI\r
858AmdSevInstallIoMmuProtocol (\r
859 VOID\r
860 )\r
861{\r
862 EFI_STATUS Status;\r
863 EFI_EVENT UnmapAllMappingsEvent;\r
864 EFI_EVENT ExitBootEvent;\r
865 EFI_HANDLE Handle;\r
866\r
867 //\r
868 // Create the "late" event whose notification function will tear down all\r
869 // left-over IOMMU mappings.\r
870 //\r
871 Status = gBS->CreateEvent (\r
872 EVT_NOTIFY_SIGNAL, // Type\r
873 TPL_CALLBACK, // NotifyTpl\r
874 AmdSevUnmapAllMappings, // NotifyFunction\r
875 NULL, // NotifyContext\r
876 &UnmapAllMappingsEvent // Event\r
877 );\r
878 if (EFI_ERROR (Status)) {\r
879 return Status;\r
880 }\r
881\r
882 //\r
883 // Create the event whose notification function will be queued by\r
884 // gBS->ExitBootServices() and will signal the event created above.\r
885 //\r
886 Status = gBS->CreateEvent (\r
887 EVT_SIGNAL_EXIT_BOOT_SERVICES, // Type\r
888 TPL_CALLBACK, // NotifyTpl\r
889 AmdSevExitBoot, // NotifyFunction\r
890 UnmapAllMappingsEvent, // NotifyContext\r
891 &ExitBootEvent // Event\r
892 );\r
893 if (EFI_ERROR (Status)) {\r
894 goto CloseUnmapAllMappingsEvent;\r
895 }\r
896\r
897 Handle = NULL;\r
898 Status = gBS->InstallMultipleProtocolInterfaces (\r
899 &Handle,\r
900 &gEdkiiIoMmuProtocolGuid, &mAmdSev,\r
901 NULL\r
902 );\r
903 if (EFI_ERROR (Status)) {\r
904 goto CloseExitBootEvent;\r
905 }\r
906\r
907 return EFI_SUCCESS;\r
908\r
909CloseExitBootEvent:\r
910 gBS->CloseEvent (ExitBootEvent);\r
911\r
912CloseUnmapAllMappingsEvent:\r
913 gBS->CloseEvent (UnmapAllMappingsEvent);\r
914\r
915 return Status;\r
916}\r