]> git.proxmox.com Git - mirror_edk2.git/blame_incremental - ShellPkg/Library/UefiShellDebug1CommandsLib/Compress.c
ShellPkg/mm: Fix mm to support multiple root bridge platform
[mirror_edk2.git] / ShellPkg / Library / UefiShellDebug1CommandsLib / Compress.c
... / ...
CommitLineData
1/** @file\r
2 Main file for compression routine.\r
3\r
4 Compression routine. The compression algorithm is a mixture of\r
5 LZ77 and Huffman coding. LZ77 transforms the source data into a\r
6 sequence of Original Characters and Pointers to repeated strings.\r
7 This sequence is further divided into Blocks and Huffman codings\r
8 are applied to each Block.\r
9\r
10 Copyright (c) 2007 - 2014, Intel Corporation. All rights reserved.<BR>\r
11 This program and the accompanying materials\r
12 are licensed and made available under the terms and conditions of the BSD License\r
13 which accompanies this distribution. The full text of the license may be found at\r
14 http://opensource.org/licenses/bsd-license.php\r
15\r
16 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
17 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
18\r
19**/\r
20\r
21#include <Library/MemoryAllocationLib.h>\r
22#include <Library/BaseMemoryLib.h>\r
23#include <Library/DebugLib.h>\r
24#include <ShellBase.h>\r
25#include <Uefi.h>\r
26\r
27//\r
28// Macro Definitions\r
29//\r
30typedef INT16 NODE;\r
31#define UINT8_MAX 0xff\r
32#define UINT8_BIT 8\r
33#define THRESHOLD 3\r
34#define INIT_CRC 0\r
35#define WNDBIT 13\r
36#define WNDSIZ (1U << WNDBIT)\r
37#define MAXMATCH 256\r
38#define BLKSIZ (1U << 14) // 16 * 1024U\r
39#define PERC_FLAG 0x8000U\r
40#define CODE_BIT 16\r
41#define NIL 0\r
42#define MAX_HASH_VAL (3 * WNDSIZ + (WNDSIZ / 512 + 1) * UINT8_MAX)\r
43#define HASH(LoopVar7, LoopVar5) ((LoopVar7) + ((LoopVar5) << (WNDBIT - 9)) + WNDSIZ * 2)\r
44#define CRCPOLY 0xA001\r
45#define UPDATE_CRC(LoopVar5) mCrc = mCrcTable[(mCrc ^ (LoopVar5)) & 0xFF] ^ (mCrc >> UINT8_BIT)\r
46\r
47//\r
48// C: the Char&Len Set; P: the Position Set; T: the exTra Set\r
49//\r
50#define NC (UINT8_MAX + MAXMATCH + 2 - THRESHOLD)\r
51#define CBIT 9\r
52#define NP (WNDBIT + 1)\r
53#define PBIT 4\r
54#define NT (CODE_BIT + 3)\r
55#define TBIT 5\r
56#if NT > NP\r
57 #define NPT NT\r
58#else\r
59 #define NPT NP\r
60#endif\r
61//\r
62// Function Prototypes\r
63//\r
64\r
65/**\r
66 Put a dword to output stream\r
67\r
68 @param[in] Data The dword to put.\r
69**/\r
70VOID\r
71EFIAPI\r
72PutDword(\r
73 IN UINT32 Data\r
74 );\r
75\r
76//\r
77// Global Variables\r
78//\r
79STATIC UINT8 *mSrc;\r
80STATIC UINT8 *mDst;\r
81STATIC UINT8 *mSrcUpperLimit;\r
82STATIC UINT8 *mDstUpperLimit;\r
83\r
84STATIC UINT8 *mLevel;\r
85STATIC UINT8 *mText;\r
86STATIC UINT8 *mChildCount;\r
87STATIC UINT8 *mBuf;\r
88STATIC UINT8 mCLen[NC];\r
89STATIC UINT8 mPTLen[NPT];\r
90STATIC UINT8 *mLen;\r
91STATIC INT16 mHeap[NC + 1];\r
92STATIC INT32 mRemainder;\r
93STATIC INT32 mMatchLen;\r
94STATIC INT32 mBitCount;\r
95STATIC INT32 mHeapSize;\r
96STATIC INT32 mTempInt32;\r
97STATIC UINT32 mBufSiz = 0;\r
98STATIC UINT32 mOutputPos;\r
99STATIC UINT32 mOutputMask;\r
100STATIC UINT32 mSubBitBuf;\r
101STATIC UINT32 mCrc;\r
102STATIC UINT32 mCompSize;\r
103STATIC UINT32 mOrigSize;\r
104\r
105STATIC UINT16 *mFreq;\r
106STATIC UINT16 *mSortPtr;\r
107STATIC UINT16 mLenCnt[17];\r
108STATIC UINT16 mLeft[2 * NC - 1];\r
109STATIC UINT16 mRight[2 * NC - 1];\r
110STATIC UINT16 mCrcTable[UINT8_MAX + 1];\r
111STATIC UINT16 mCFreq[2 * NC - 1];\r
112STATIC UINT16 mCCode[NC];\r
113STATIC UINT16 mPFreq[2 * NP - 1];\r
114STATIC UINT16 mPTCode[NPT];\r
115STATIC UINT16 mTFreq[2 * NT - 1];\r
116\r
117STATIC NODE mPos;\r
118STATIC NODE mMatchPos;\r
119STATIC NODE mAvail;\r
120STATIC NODE *mPosition;\r
121STATIC NODE *mParent;\r
122STATIC NODE *mPrev;\r
123STATIC NODE *mNext = NULL;\r
124INT32 mHuffmanDepth = 0;\r
125\r
126/**\r
127 Make a CRC table.\r
128\r
129**/\r
130VOID\r
131EFIAPI\r
132MakeCrcTable (\r
133 VOID\r
134 )\r
135{\r
136 UINT32 LoopVar1;\r
137\r
138 UINT32 LoopVar2;\r
139\r
140 UINT32 LoopVar4;\r
141\r
142 for (LoopVar1 = 0; LoopVar1 <= UINT8_MAX; LoopVar1++) {\r
143 LoopVar4 = LoopVar1;\r
144 for (LoopVar2 = 0; LoopVar2 < UINT8_BIT; LoopVar2++) {\r
145 if ((LoopVar4 & 1) != 0) {\r
146 LoopVar4 = (LoopVar4 >> 1) ^ CRCPOLY;\r
147 } else {\r
148 LoopVar4 >>= 1;\r
149 }\r
150 }\r
151\r
152 mCrcTable[LoopVar1] = (UINT16) LoopVar4;\r
153 }\r
154}\r
155\r
156/**\r
157 Put a dword to output stream\r
158\r
159 @param[in] Data The dword to put.\r
160**/\r
161VOID\r
162EFIAPI\r
163PutDword (\r
164 IN UINT32 Data\r
165 )\r
166{\r
167 if (mDst < mDstUpperLimit) {\r
168 *mDst++ = (UINT8) (((UINT8) (Data)) & 0xff);\r
169 }\r
170\r
171 if (mDst < mDstUpperLimit) {\r
172 *mDst++ = (UINT8) (((UINT8) (Data >> 0x08)) & 0xff);\r
173 }\r
174\r
175 if (mDst < mDstUpperLimit) {\r
176 *mDst++ = (UINT8) (((UINT8) (Data >> 0x10)) & 0xff);\r
177 }\r
178\r
179 if (mDst < mDstUpperLimit) {\r
180 *mDst++ = (UINT8) (((UINT8) (Data >> 0x18)) & 0xff);\r
181 }\r
182}\r
183\r
184/**\r
185 Allocate memory spaces for data structures used in compression process.\r
186 \r
187 @retval EFI_SUCCESS Memory was allocated successfully.\r
188 @retval EFI_OUT_OF_RESOURCES A memory allocation failed.\r
189**/\r
190EFI_STATUS\r
191EFIAPI\r
192AllocateMemory (\r
193 VOID\r
194 )\r
195{\r
196 mText = AllocateZeroPool (WNDSIZ * 2 + MAXMATCH);\r
197 mLevel = AllocateZeroPool ((WNDSIZ + UINT8_MAX + 1) * sizeof (*mLevel));\r
198 mChildCount = AllocateZeroPool ((WNDSIZ + UINT8_MAX + 1) * sizeof (*mChildCount));\r
199 mPosition = AllocateZeroPool ((WNDSIZ + UINT8_MAX + 1) * sizeof (*mPosition));\r
200 mParent = AllocateZeroPool (WNDSIZ * 2 * sizeof (*mParent));\r
201 mPrev = AllocateZeroPool (WNDSIZ * 2 * sizeof (*mPrev));\r
202 mNext = AllocateZeroPool ((MAX_HASH_VAL + 1) * sizeof (*mNext));\r
203\r
204 mBufSiz = BLKSIZ;\r
205 mBuf = AllocateZeroPool (mBufSiz);\r
206 while (mBuf == NULL) {\r
207 mBufSiz = (mBufSiz / 10U) * 9U;\r
208 if (mBufSiz < 4 * 1024U) {\r
209 return EFI_OUT_OF_RESOURCES;\r
210 }\r
211\r
212 mBuf = AllocateZeroPool (mBufSiz);\r
213 }\r
214\r
215 mBuf[0] = 0;\r
216\r
217 return EFI_SUCCESS;\r
218}\r
219\r
220/**\r
221 Called when compression is completed to free memory previously allocated.\r
222\r
223**/\r
224VOID\r
225EFIAPI\r
226FreeMemory (\r
227 VOID\r
228 )\r
229{\r
230 SHELL_FREE_NON_NULL (mText);\r
231 SHELL_FREE_NON_NULL (mLevel);\r
232 SHELL_FREE_NON_NULL (mChildCount);\r
233 SHELL_FREE_NON_NULL (mPosition);\r
234 SHELL_FREE_NON_NULL (mParent);\r
235 SHELL_FREE_NON_NULL (mPrev);\r
236 SHELL_FREE_NON_NULL (mNext);\r
237 SHELL_FREE_NON_NULL (mBuf);\r
238}\r
239\r
240/**\r
241 Initialize String Info Log data structures.\r
242**/\r
243VOID\r
244EFIAPI\r
245InitSlide (\r
246 VOID\r
247 )\r
248{\r
249 NODE LoopVar1;\r
250\r
251 SetMem (mLevel + WNDSIZ, (UINT8_MAX + 1) * sizeof (UINT8), 1);\r
252 SetMem (mPosition + WNDSIZ, (UINT8_MAX + 1) * sizeof (NODE), 0);\r
253\r
254 SetMem (mParent + WNDSIZ, WNDSIZ * sizeof (NODE), 0);\r
255\r
256 mAvail = 1;\r
257 for (LoopVar1 = 1; LoopVar1 < WNDSIZ - 1; LoopVar1++) {\r
258 mNext[LoopVar1] = (NODE) (LoopVar1 + 1);\r
259 }\r
260\r
261 mNext[WNDSIZ - 1] = NIL;\r
262 SetMem (mNext + WNDSIZ * 2, (MAX_HASH_VAL - WNDSIZ * 2 + 1) * sizeof (NODE), 0);\r
263}\r
264\r
265/**\r
266 Find child node given the parent node and the edge character\r
267\r
268 @param[in] LoopVar6 The parent node.\r
269 @param[in] LoopVar5 The edge character.\r
270\r
271 @return The child node.\r
272 @retval NIL(Zero) No child could be found.\r
273\r
274**/\r
275NODE\r
276EFIAPI\r
277Child (\r
278 IN NODE LoopVar6,\r
279 IN UINT8 LoopVar5\r
280 )\r
281{\r
282 NODE LoopVar4;\r
283\r
284 LoopVar4 = mNext[HASH (LoopVar6, LoopVar5)];\r
285 mParent[NIL] = LoopVar6; /* sentinel */\r
286 while (mParent[LoopVar4] != LoopVar6) {\r
287 LoopVar4 = mNext[LoopVar4];\r
288 }\r
289\r
290 return LoopVar4;\r
291}\r
292\r
293/**\r
294 Create a new child for a given parent node.\r
295\r
296 @param[in] LoopVar6 The parent node.\r
297 @param[in] LoopVar5 The edge character.\r
298 @param[in] LoopVar4 The child node.\r
299**/\r
300VOID\r
301EFIAPI\r
302MakeChild (\r
303 IN NODE LoopVar6,\r
304 IN UINT8 LoopVar5,\r
305 IN NODE LoopVar4\r
306 )\r
307{\r
308 NODE LoopVar12;\r
309\r
310 NODE LoopVar10;\r
311\r
312 LoopVar12 = (NODE) HASH (LoopVar6, LoopVar5);\r
313 LoopVar10 = mNext[LoopVar12];\r
314 mNext[LoopVar12] = LoopVar4;\r
315 mNext[LoopVar4] = LoopVar10;\r
316 mPrev[LoopVar10] = LoopVar4;\r
317 mPrev[LoopVar4] = LoopVar12;\r
318 mParent[LoopVar4] = LoopVar6;\r
319 mChildCount[LoopVar6]++;\r
320}\r
321\r
322/**\r
323 Split a node.\r
324\r
325 @param[in] Old The node to split.\r
326**/\r
327VOID\r
328EFIAPI\r
329Split (\r
330 IN NODE Old\r
331 )\r
332{\r
333 NODE New;\r
334\r
335 NODE LoopVar10;\r
336\r
337 New = mAvail;\r
338 mAvail = mNext[New];\r
339 mChildCount[New] = 0;\r
340 LoopVar10 = mPrev[Old];\r
341 mPrev[New] = LoopVar10;\r
342 mNext[LoopVar10] = New;\r
343 LoopVar10 = mNext[Old];\r
344 mNext[New] = LoopVar10;\r
345 mPrev[LoopVar10] = New;\r
346 mParent[New] = mParent[Old];\r
347 mLevel[New] = (UINT8) mMatchLen;\r
348 mPosition[New] = mPos;\r
349 MakeChild (New, mText[mMatchPos + mMatchLen], Old);\r
350 MakeChild (New, mText[mPos + mMatchLen], mPos);\r
351}\r
352\r
353/**\r
354 Insert string info for current position into the String Info Log.\r
355\r
356**/\r
357VOID\r
358EFIAPI\r
359InsertNode (\r
360 VOID\r
361 )\r
362{\r
363 NODE LoopVar6;\r
364\r
365 NODE LoopVar4;\r
366\r
367 NODE LoopVar2;\r
368\r
369 NODE LoopVar10;\r
370 UINT8 LoopVar5;\r
371 UINT8 *TempString3;\r
372 UINT8 *TempString2;\r
373\r
374 if (mMatchLen >= 4) {\r
375 //\r
376 // We have just got a long match, the target tree\r
377 // can be located by MatchPos + 1. Travese the tree\r
378 // from bottom up to get to a proper starting point.\r
379 // The usage of PERC_FLAG ensures proper node deletion\r
380 // in DeleteNode() later.\r
381 //\r
382 mMatchLen--;\r
383 LoopVar4 = (NODE) ((mMatchPos + 1) | WNDSIZ);\r
384 LoopVar6 = mParent[LoopVar4];\r
385 while (LoopVar6 == NIL) {\r
386 LoopVar4 = mNext[LoopVar4];\r
387 LoopVar6 = mParent[LoopVar4];\r
388 }\r
389\r
390 while (mLevel[LoopVar6] >= mMatchLen) {\r
391 LoopVar4 = LoopVar6;\r
392 LoopVar6 = mParent[LoopVar6];\r
393 }\r
394\r
395 LoopVar10 = LoopVar6;\r
396 while (mPosition[LoopVar10] < 0) {\r
397 mPosition[LoopVar10] = mPos;\r
398 LoopVar10 = mParent[LoopVar10];\r
399 }\r
400\r
401 if (LoopVar10 < WNDSIZ) {\r
402 mPosition[LoopVar10] = (NODE) (mPos | PERC_FLAG);\r
403 }\r
404 } else {\r
405 //\r
406 // Locate the target tree\r
407 //\r
408 LoopVar6 = (NODE) (mText[mPos] + WNDSIZ);\r
409 LoopVar5 = mText[mPos + 1];\r
410 LoopVar4 = Child (LoopVar6, LoopVar5);\r
411 if (LoopVar4 == NIL) {\r
412 MakeChild (LoopVar6, LoopVar5, mPos);\r
413 mMatchLen = 1;\r
414 return ;\r
415 }\r
416\r
417 mMatchLen = 2;\r
418 }\r
419 //\r
420 // Traverse down the tree to find a match.\r
421 // Update Position value along the route.\r
422 // Node split or creation is involved.\r
423 //\r
424 for (;;) {\r
425 if (LoopVar4 >= WNDSIZ) {\r
426 LoopVar2 = MAXMATCH;\r
427 mMatchPos = LoopVar4;\r
428 } else {\r
429 LoopVar2 = mLevel[LoopVar4];\r
430 mMatchPos = (NODE) (mPosition[LoopVar4] & ~PERC_FLAG);\r
431 }\r
432\r
433 if (mMatchPos >= mPos) {\r
434 mMatchPos -= WNDSIZ;\r
435 }\r
436\r
437 TempString3 = &mText[mPos + mMatchLen];\r
438 TempString2 = &mText[mMatchPos + mMatchLen];\r
439 while (mMatchLen < LoopVar2) {\r
440 if (*TempString3 != *TempString2) {\r
441 Split (LoopVar4);\r
442 return ;\r
443 }\r
444\r
445 mMatchLen++;\r
446 TempString3++;\r
447 TempString2++;\r
448 }\r
449\r
450 if (mMatchLen >= MAXMATCH) {\r
451 break;\r
452 }\r
453\r
454 mPosition[LoopVar4] = mPos;\r
455 LoopVar6 = LoopVar4;\r
456 LoopVar4 = Child (LoopVar6, *TempString3);\r
457 if (LoopVar4 == NIL) {\r
458 MakeChild (LoopVar6, *TempString3, mPos);\r
459 return ;\r
460 }\r
461\r
462 mMatchLen++;\r
463 }\r
464\r
465 LoopVar10 = mPrev[LoopVar4];\r
466 mPrev[mPos] = LoopVar10;\r
467 mNext[LoopVar10] = mPos;\r
468 LoopVar10 = mNext[LoopVar4];\r
469 mNext[mPos] = LoopVar10;\r
470 mPrev[LoopVar10] = mPos;\r
471 mParent[mPos] = LoopVar6;\r
472 mParent[LoopVar4] = NIL;\r
473\r
474 //\r
475 // Special usage of 'next'\r
476 //\r
477 mNext[LoopVar4] = mPos;\r
478\r
479}\r
480\r
481/**\r
482 Delete outdated string info. (The Usage of PERC_FLAG\r
483 ensures a clean deletion).\r
484\r
485**/\r
486VOID\r
487EFIAPI\r
488DeleteNode (\r
489 VOID\r
490 )\r
491{\r
492 NODE LoopVar6;\r
493\r
494 NODE LoopVar4;\r
495\r
496 NODE LoopVar11;\r
497\r
498 NODE LoopVar10;\r
499\r
500 NODE LoopVar9;\r
501\r
502 if (mParent[mPos] == NIL) {\r
503 return ;\r
504 }\r
505\r
506 LoopVar4 = mPrev[mPos];\r
507 LoopVar11 = mNext[mPos];\r
508 mNext[LoopVar4] = LoopVar11;\r
509 mPrev[LoopVar11] = LoopVar4;\r
510 LoopVar4 = mParent[mPos];\r
511 mParent[mPos] = NIL;\r
512 if (LoopVar4 >= WNDSIZ) {\r
513 return ;\r
514 }\r
515\r
516 mChildCount[LoopVar4]--;\r
517 if (mChildCount[LoopVar4] > 1) {\r
518 return ;\r
519 }\r
520\r
521 LoopVar10 = (NODE) (mPosition[LoopVar4] & ~PERC_FLAG);\r
522 if (LoopVar10 >= mPos) {\r
523 LoopVar10 -= WNDSIZ;\r
524 }\r
525\r
526 LoopVar11 = LoopVar10;\r
527 LoopVar6 = mParent[LoopVar4];\r
528 LoopVar9 = mPosition[LoopVar6];\r
529 while ((LoopVar9 & PERC_FLAG) != 0){\r
530 LoopVar9 &= ~PERC_FLAG;\r
531 if (LoopVar9 >= mPos) {\r
532 LoopVar9 -= WNDSIZ;\r
533 }\r
534\r
535 if (LoopVar9 > LoopVar11) {\r
536 LoopVar11 = LoopVar9;\r
537 }\r
538\r
539 mPosition[LoopVar6] = (NODE) (LoopVar11 | WNDSIZ);\r
540 LoopVar6 = mParent[LoopVar6];\r
541 LoopVar9 = mPosition[LoopVar6];\r
542 }\r
543\r
544 if (LoopVar6 < WNDSIZ) {\r
545 if (LoopVar9 >= mPos) {\r
546 LoopVar9 -= WNDSIZ;\r
547 }\r
548\r
549 if (LoopVar9 > LoopVar11) {\r
550 LoopVar11 = LoopVar9;\r
551 }\r
552\r
553 mPosition[LoopVar6] = (NODE) (LoopVar11 | WNDSIZ | PERC_FLAG);\r
554 }\r
555\r
556 LoopVar11 = Child (LoopVar4, mText[LoopVar10 + mLevel[LoopVar4]]);\r
557 LoopVar10 = mPrev[LoopVar11];\r
558 LoopVar9 = mNext[LoopVar11];\r
559 mNext[LoopVar10] = LoopVar9;\r
560 mPrev[LoopVar9] = LoopVar10;\r
561 LoopVar10 = mPrev[LoopVar4];\r
562 mNext[LoopVar10] = LoopVar11;\r
563 mPrev[LoopVar11] = LoopVar10;\r
564 LoopVar10 = mNext[LoopVar4];\r
565 mPrev[LoopVar10] = LoopVar11;\r
566 mNext[LoopVar11] = LoopVar10;\r
567 mParent[LoopVar11] = mParent[LoopVar4];\r
568 mParent[LoopVar4] = NIL;\r
569 mNext[LoopVar4] = mAvail;\r
570 mAvail = LoopVar4;\r
571}\r
572\r
573/**\r
574 Read in source data\r
575\r
576 @param[out] LoopVar7 The buffer to hold the data.\r
577 @param[in] LoopVar8 The number of bytes to read.\r
578\r
579 @return The number of bytes actually read.\r
580**/\r
581INT32\r
582EFIAPI\r
583FreadCrc (\r
584 OUT UINT8 *LoopVar7,\r
585 IN INT32 LoopVar8\r
586 )\r
587{\r
588 INT32 LoopVar1;\r
589\r
590 for (LoopVar1 = 0; mSrc < mSrcUpperLimit && LoopVar1 < LoopVar8; LoopVar1++) {\r
591 *LoopVar7++ = *mSrc++;\r
592 }\r
593\r
594 LoopVar8 = LoopVar1;\r
595\r
596 LoopVar7 -= LoopVar8;\r
597 mOrigSize += LoopVar8;\r
598 LoopVar1--;\r
599 while (LoopVar1 >= 0) {\r
600 UPDATE_CRC (*LoopVar7++);\r
601 LoopVar1--;\r
602 }\r
603\r
604 return LoopVar8;\r
605}\r
606\r
607/**\r
608 Advance the current position (read in new data if needed).\r
609 Delete outdated string info. Find a match string for current position.\r
610\r
611 @retval TRUE The operation was successful.\r
612 @retval FALSE The operation failed due to insufficient memory.\r
613**/\r
614BOOLEAN\r
615EFIAPI\r
616GetNextMatch (\r
617 VOID\r
618 )\r
619{\r
620 INT32 LoopVar8;\r
621 VOID *Temp;\r
622\r
623 mRemainder--;\r
624 mPos++;\r
625 if (mPos == WNDSIZ * 2) {\r
626 Temp = AllocateZeroPool (WNDSIZ + MAXMATCH);\r
627 if (Temp == NULL) {\r
628 return (FALSE);\r
629 }\r
630 CopyMem (Temp, &mText[WNDSIZ], WNDSIZ + MAXMATCH);\r
631 CopyMem (&mText[0], Temp, WNDSIZ + MAXMATCH);\r
632 FreePool (Temp);\r
633 LoopVar8 = FreadCrc (&mText[WNDSIZ + MAXMATCH], WNDSIZ);\r
634 mRemainder += LoopVar8;\r
635 mPos = WNDSIZ;\r
636 }\r
637\r
638 DeleteNode ();\r
639 InsertNode ();\r
640\r
641 return (TRUE);\r
642}\r
643\r
644/**\r
645 Send entry LoopVar1 down the queue.\r
646\r
647 @param[in] LoopVar1 The index of the item to move.\r
648**/\r
649VOID\r
650EFIAPI\r
651DownHeap (\r
652 IN INT32 i\r
653 )\r
654{\r
655 INT32 LoopVar1;\r
656\r
657 INT32 LoopVar2;\r
658\r
659 //\r
660 // priority queue: send i-th entry down heap\r
661 //\r
662 LoopVar2 = mHeap[i];\r
663 LoopVar1 = 2 * i;\r
664 while (LoopVar1 <= mHeapSize) {\r
665 if (LoopVar1 < mHeapSize && mFreq[mHeap[LoopVar1]] > mFreq[mHeap[LoopVar1 + 1]]) {\r
666 LoopVar1++;\r
667 }\r
668\r
669 if (mFreq[LoopVar2] <= mFreq[mHeap[LoopVar1]]) {\r
670 break;\r
671 }\r
672\r
673 mHeap[i] = mHeap[LoopVar1];\r
674 i = LoopVar1;\r
675 LoopVar1 = 2 * i;\r
676 }\r
677\r
678 mHeap[i] = (INT16) LoopVar2;\r
679}\r
680\r
681/**\r
682 Count the number of each code length for a Huffman tree.\r
683\r
684 @param[in] LoopVar1 The top node.\r
685**/\r
686VOID\r
687EFIAPI\r
688CountLen (\r
689 IN INT32 LoopVar1\r
690 )\r
691{\r
692 if (LoopVar1 < mTempInt32) {\r
693 mLenCnt[(mHuffmanDepth < 16) ? mHuffmanDepth : 16]++;\r
694 } else {\r
695 mHuffmanDepth++;\r
696 CountLen (mLeft[LoopVar1]);\r
697 CountLen (mRight[LoopVar1]);\r
698 mHuffmanDepth--;\r
699 }\r
700}\r
701\r
702/**\r
703 Create code length array for a Huffman tree.\r
704\r
705 @param[in] Root The root of the tree.\r
706**/\r
707VOID\r
708EFIAPI\r
709MakeLen (\r
710 IN INT32 Root\r
711 )\r
712{\r
713 INT32 LoopVar1;\r
714\r
715 INT32 LoopVar2;\r
716 UINT32 Cum;\r
717\r
718 for (LoopVar1 = 0; LoopVar1 <= 16; LoopVar1++) {\r
719 mLenCnt[LoopVar1] = 0;\r
720 }\r
721\r
722 CountLen (Root);\r
723\r
724 //\r
725 // Adjust the length count array so that\r
726 // no code will be generated longer than its designated length\r
727 //\r
728 Cum = 0;\r
729 for (LoopVar1 = 16; LoopVar1 > 0; LoopVar1--) {\r
730 Cum += mLenCnt[LoopVar1] << (16 - LoopVar1);\r
731 }\r
732\r
733 while (Cum != (1U << 16)) {\r
734 mLenCnt[16]--;\r
735 for (LoopVar1 = 15; LoopVar1 > 0; LoopVar1--) {\r
736 if (mLenCnt[LoopVar1] != 0) {\r
737 mLenCnt[LoopVar1]--;\r
738 mLenCnt[LoopVar1 + 1] += 2;\r
739 break;\r
740 }\r
741 }\r
742\r
743 Cum--;\r
744 }\r
745\r
746 for (LoopVar1 = 16; LoopVar1 > 0; LoopVar1--) {\r
747 LoopVar2 = mLenCnt[LoopVar1];\r
748 LoopVar2--;\r
749 while (LoopVar2 >= 0) {\r
750 mLen[*mSortPtr++] = (UINT8) LoopVar1;\r
751 LoopVar2--;\r
752 }\r
753 }\r
754}\r
755\r
756/**\r
757 Assign code to each symbol based on the code length array.\r
758 \r
759 @param[in] LoopVar8 The number of symbols.\r
760 @param[in] Len The code length array.\r
761 @param[out] Code The stores codes for each symbol.\r
762**/\r
763VOID\r
764EFIAPI\r
765MakeCode (\r
766 IN INT32 LoopVar8,\r
767 IN UINT8 Len[ ],\r
768 OUT UINT16 Code[ ]\r
769 )\r
770{\r
771 INT32 LoopVar1;\r
772 UINT16 Start[18];\r
773\r
774 Start[1] = 0;\r
775 for (LoopVar1 = 1; LoopVar1 <= 16; LoopVar1++) {\r
776 Start[LoopVar1 + 1] = (UINT16) ((Start[LoopVar1] + mLenCnt[LoopVar1]) << 1);\r
777 }\r
778\r
779 for (LoopVar1 = 0; LoopVar1 < LoopVar8; LoopVar1++) {\r
780 Code[LoopVar1] = Start[Len[LoopVar1]]++;\r
781 }\r
782}\r
783 \r
784/**\r
785 Generates Huffman codes given a frequency distribution of symbols.\r
786\r
787 @param[in] NParm The number of symbols.\r
788 @param[in] FreqParm The frequency of each symbol.\r
789 @param[out] LenParm The code length for each symbol.\r
790 @param[out] CodeParm The code for each symbol.\r
791\r
792 @return The root of the Huffman tree.\r
793**/\r
794INT32\r
795EFIAPI\r
796MakeTree (\r
797 IN INT32 NParm,\r
798 IN UINT16 FreqParm[ ],\r
799 OUT UINT8 LenParm[ ],\r
800 OUT UINT16 CodeParm[ ]\r
801 )\r
802{\r
803 INT32 LoopVar1;\r
804\r
805 INT32 LoopVar2;\r
806\r
807 INT32 LoopVar3;\r
808\r
809 INT32 Avail;\r
810\r
811 //\r
812 // make tree, calculate len[], return root\r
813 //\r
814 mTempInt32 = NParm;\r
815 mFreq = FreqParm;\r
816 mLen = LenParm;\r
817 Avail = mTempInt32;\r
818 mHeapSize = 0;\r
819 mHeap[1] = 0;\r
820 for (LoopVar1 = 0; LoopVar1 < mTempInt32; LoopVar1++) {\r
821 mLen[LoopVar1] = 0;\r
822 if ((mFreq[LoopVar1]) != 0) {\r
823 mHeapSize++;\r
824 mHeap[mHeapSize] = (INT16) LoopVar1;\r
825 }\r
826 }\r
827\r
828 if (mHeapSize < 2) {\r
829 CodeParm[mHeap[1]] = 0;\r
830 return mHeap[1];\r
831 }\r
832\r
833 for (LoopVar1 = mHeapSize / 2; LoopVar1 >= 1; LoopVar1--) {\r
834 //\r
835 // make priority queue\r
836 //\r
837 DownHeap (LoopVar1);\r
838 }\r
839\r
840 mSortPtr = CodeParm;\r
841 do {\r
842 LoopVar1 = mHeap[1];\r
843 if (LoopVar1 < mTempInt32) {\r
844 *mSortPtr++ = (UINT16) LoopVar1;\r
845 }\r
846\r
847 mHeap[1] = mHeap[mHeapSize--];\r
848 DownHeap (1);\r
849 LoopVar2 = mHeap[1];\r
850 if (LoopVar2 < mTempInt32) {\r
851 *mSortPtr++ = (UINT16) LoopVar2;\r
852 }\r
853\r
854 LoopVar3 = Avail++;\r
855 mFreq[LoopVar3] = (UINT16) (mFreq[LoopVar1] + mFreq[LoopVar2]);\r
856 mHeap[1] = (INT16) LoopVar3;\r
857 DownHeap (1);\r
858 mLeft[LoopVar3] = (UINT16) LoopVar1;\r
859 mRight[LoopVar3] = (UINT16) LoopVar2;\r
860 } while (mHeapSize > 1);\r
861\r
862 mSortPtr = CodeParm;\r
863 MakeLen (LoopVar3);\r
864 MakeCode (NParm, LenParm, CodeParm);\r
865\r
866 //\r
867 // return root\r
868 //\r
869 return LoopVar3;\r
870}\r
871\r
872/**\r
873 Outputs rightmost LoopVar8 bits of x\r
874\r
875 @param[in] LoopVar8 The rightmost LoopVar8 bits of the data is used.\r
876 @param[in] x The data.\r
877**/\r
878VOID\r
879EFIAPI\r
880PutBits (\r
881 IN INT32 LoopVar8,\r
882 IN UINT32 x\r
883 )\r
884{\r
885 UINT8 Temp;\r
886\r
887 if (LoopVar8 < mBitCount) {\r
888 mSubBitBuf |= x << (mBitCount -= LoopVar8);\r
889 } else {\r
890\r
891 Temp = (UINT8)(mSubBitBuf | (x >> (LoopVar8 -= mBitCount)));\r
892 if (mDst < mDstUpperLimit) {\r
893 *mDst++ = Temp;\r
894 }\r
895 mCompSize++;\r
896\r
897 if (LoopVar8 < UINT8_BIT) {\r
898 mSubBitBuf = x << (mBitCount = UINT8_BIT - LoopVar8);\r
899 } else {\r
900\r
901 Temp = (UINT8)(x >> (LoopVar8 - UINT8_BIT));\r
902 if (mDst < mDstUpperLimit) {\r
903 *mDst++ = Temp;\r
904 }\r
905 mCompSize++;\r
906\r
907 mSubBitBuf = x << (mBitCount = 2 * UINT8_BIT - LoopVar8);\r
908 }\r
909 }\r
910}\r
911\r
912/**\r
913 Encode a signed 32 bit number.\r
914\r
915 @param[in] LoopVar5 The number to encode.\r
916**/\r
917VOID\r
918EFIAPI\r
919EncodeC (\r
920 IN INT32 LoopVar5\r
921 )\r
922{\r
923 PutBits (mCLen[LoopVar5], mCCode[LoopVar5]);\r
924}\r
925\r
926/**\r
927 Encode a unsigned 32 bit number.\r
928\r
929 @param[in] LoopVar7 The number to encode.\r
930**/\r
931VOID\r
932EFIAPI\r
933EncodeP (\r
934 IN UINT32 LoopVar7\r
935 )\r
936{\r
937 UINT32 LoopVar5;\r
938\r
939 UINT32 LoopVar6;\r
940\r
941 LoopVar5 = 0;\r
942 LoopVar6 = LoopVar7;\r
943 while (LoopVar6 != 0) {\r
944 LoopVar6 >>= 1;\r
945 LoopVar5++;\r
946 }\r
947\r
948 PutBits (mPTLen[LoopVar5], mPTCode[LoopVar5]);\r
949 if (LoopVar5 > 1) {\r
950 PutBits(LoopVar5 - 1, LoopVar7 & (0xFFFFU >> (17 - LoopVar5)));\r
951 }\r
952}\r
953\r
954/**\r
955 Count the frequencies for the Extra Set.\r
956\r
957**/\r
958VOID\r
959EFIAPI\r
960CountTFreq (\r
961 VOID\r
962 )\r
963{\r
964 INT32 LoopVar1;\r
965\r
966 INT32 LoopVar3;\r
967\r
968 INT32 LoopVar8;\r
969\r
970 INT32 Count;\r
971\r
972 for (LoopVar1 = 0; LoopVar1 < NT; LoopVar1++) {\r
973 mTFreq[LoopVar1] = 0;\r
974 }\r
975\r
976 LoopVar8 = NC;\r
977 while (LoopVar8 > 0 && mCLen[LoopVar8 - 1] == 0) {\r
978 LoopVar8--;\r
979 }\r
980\r
981 LoopVar1 = 0;\r
982 while (LoopVar1 < LoopVar8) {\r
983 LoopVar3 = mCLen[LoopVar1++];\r
984 if (LoopVar3 == 0) {\r
985 Count = 1;\r
986 while (LoopVar1 < LoopVar8 && mCLen[LoopVar1] == 0) {\r
987 LoopVar1++;\r
988 Count++;\r
989 }\r
990\r
991 if (Count <= 2) {\r
992 mTFreq[0] = (UINT16) (mTFreq[0] + Count);\r
993 } else if (Count <= 18) {\r
994 mTFreq[1]++;\r
995 } else if (Count == 19) {\r
996 mTFreq[0]++;\r
997 mTFreq[1]++;\r
998 } else {\r
999 mTFreq[2]++;\r
1000 }\r
1001 } else {\r
1002 ASSERT((LoopVar3+2)<(2 * NT - 1));\r
1003 mTFreq[LoopVar3 + 2]++;\r
1004 }\r
1005 }\r
1006}\r
1007\r
1008/**\r
1009 Outputs the code length array for the Extra Set or the Position Set.\r
1010\r
1011 @param[in] LoopVar8 The number of symbols.\r
1012 @param[in] nbit The number of bits needed to represent 'LoopVar8'.\r
1013 @param[in] Special The special symbol that needs to be take care of.\r
1014\r
1015**/\r
1016VOID\r
1017EFIAPI\r
1018WritePTLen (\r
1019 IN INT32 LoopVar8,\r
1020 IN INT32 nbit,\r
1021 IN INT32 Special\r
1022 )\r
1023{\r
1024 INT32 LoopVar1;\r
1025\r
1026 INT32 LoopVar3;\r
1027\r
1028 while (LoopVar8 > 0 && mPTLen[LoopVar8 - 1] == 0) {\r
1029 LoopVar8--;\r
1030 }\r
1031\r
1032 PutBits (nbit, LoopVar8);\r
1033 LoopVar1 = 0;\r
1034 while (LoopVar1 < LoopVar8) {\r
1035 LoopVar3 = mPTLen[LoopVar1++];\r
1036 if (LoopVar3 <= 6) {\r
1037 PutBits (3, LoopVar3);\r
1038 } else {\r
1039 PutBits (LoopVar3 - 3, (1U << (LoopVar3 - 3)) - 2);\r
1040 }\r
1041\r
1042 if (LoopVar1 == Special) {\r
1043 while (LoopVar1 < 6 && mPTLen[LoopVar1] == 0) {\r
1044 LoopVar1++;\r
1045 }\r
1046\r
1047 PutBits (2, (LoopVar1 - 3) & 3);\r
1048 }\r
1049 }\r
1050}\r
1051\r
1052/**\r
1053 Outputs the code length array for Char&Length Set.\r
1054**/\r
1055VOID\r
1056EFIAPI\r
1057WriteCLen (\r
1058 VOID\r
1059 )\r
1060{\r
1061 INT32 LoopVar1;\r
1062\r
1063 INT32 LoopVar3;\r
1064\r
1065 INT32 LoopVar8;\r
1066\r
1067 INT32 Count;\r
1068\r
1069 LoopVar8 = NC;\r
1070 while (LoopVar8 > 0 && mCLen[LoopVar8 - 1] == 0) {\r
1071 LoopVar8--;\r
1072 }\r
1073\r
1074 PutBits (CBIT, LoopVar8);\r
1075 LoopVar1 = 0;\r
1076 while (LoopVar1 < LoopVar8) {\r
1077 LoopVar3 = mCLen[LoopVar1++];\r
1078 if (LoopVar3 == 0) {\r
1079 Count = 1;\r
1080 while (LoopVar1 < LoopVar8 && mCLen[LoopVar1] == 0) {\r
1081 LoopVar1++;\r
1082 Count++;\r
1083 }\r
1084\r
1085 if (Count <= 2) {\r
1086 for (LoopVar3 = 0; LoopVar3 < Count; LoopVar3++) {\r
1087 PutBits (mPTLen[0], mPTCode[0]);\r
1088 }\r
1089 } else if (Count <= 18) {\r
1090 PutBits (mPTLen[1], mPTCode[1]);\r
1091 PutBits (4, Count - 3);\r
1092 } else if (Count == 19) {\r
1093 PutBits (mPTLen[0], mPTCode[0]);\r
1094 PutBits (mPTLen[1], mPTCode[1]);\r
1095 PutBits (4, 15);\r
1096 } else {\r
1097 PutBits (mPTLen[2], mPTCode[2]);\r
1098 PutBits (CBIT, Count - 20);\r
1099 }\r
1100 } else {\r
1101 ASSERT((LoopVar3+2)<NPT);\r
1102 PutBits (mPTLen[LoopVar3 + 2], mPTCode[LoopVar3 + 2]);\r
1103 }\r
1104 }\r
1105}\r
1106\r
1107/**\r
1108 Huffman code the block and output it.\r
1109\r
1110**/\r
1111VOID\r
1112EFIAPI\r
1113SendBlock (\r
1114 VOID\r
1115 )\r
1116{\r
1117 UINT32 LoopVar1;\r
1118\r
1119 UINT32 LoopVar3;\r
1120\r
1121 UINT32 Flags;\r
1122\r
1123 UINT32 Root;\r
1124\r
1125 UINT32 Pos;\r
1126\r
1127 UINT32 Size;\r
1128 Flags = 0;\r
1129\r
1130 Root = MakeTree (NC, mCFreq, mCLen, mCCode);\r
1131 Size = mCFreq[Root];\r
1132 PutBits (16, Size);\r
1133 if (Root >= NC) {\r
1134 CountTFreq ();\r
1135 Root = MakeTree (NT, mTFreq, mPTLen, mPTCode);\r
1136 if (Root >= NT) {\r
1137 WritePTLen (NT, TBIT, 3);\r
1138 } else {\r
1139 PutBits (TBIT, 0);\r
1140 PutBits (TBIT, Root);\r
1141 }\r
1142\r
1143 WriteCLen ();\r
1144 } else {\r
1145 PutBits (TBIT, 0);\r
1146 PutBits (TBIT, 0);\r
1147 PutBits (CBIT, 0);\r
1148 PutBits (CBIT, Root);\r
1149 }\r
1150\r
1151 Root = MakeTree (NP, mPFreq, mPTLen, mPTCode);\r
1152 if (Root >= NP) {\r
1153 WritePTLen (NP, PBIT, -1);\r
1154 } else {\r
1155 PutBits (PBIT, 0);\r
1156 PutBits (PBIT, Root);\r
1157 }\r
1158\r
1159 Pos = 0;\r
1160 for (LoopVar1 = 0; LoopVar1 < Size; LoopVar1++) {\r
1161 if (LoopVar1 % UINT8_BIT == 0) {\r
1162 Flags = mBuf[Pos++];\r
1163 } else {\r
1164 Flags <<= 1;\r
1165 }\r
1166 if ((Flags & (1U << (UINT8_BIT - 1))) != 0){\r
1167 EncodeC(mBuf[Pos++] + (1U << UINT8_BIT));\r
1168 LoopVar3 = mBuf[Pos++] << UINT8_BIT;\r
1169 LoopVar3 += mBuf[Pos++];\r
1170\r
1171 EncodeP (LoopVar3);\r
1172 } else {\r
1173 EncodeC (mBuf[Pos++]);\r
1174 }\r
1175 }\r
1176\r
1177 SetMem (mCFreq, NC * sizeof (UINT16), 0);\r
1178 SetMem (mPFreq, NP * sizeof (UINT16), 0);\r
1179}\r
1180\r
1181/**\r
1182 Start the huffman encoding.\r
1183\r
1184**/\r
1185VOID\r
1186EFIAPI\r
1187HufEncodeStart (\r
1188 VOID\r
1189 )\r
1190{\r
1191 SetMem (mCFreq, NC * sizeof (UINT16), 0);\r
1192 SetMem (mPFreq, NP * sizeof (UINT16), 0);\r
1193\r
1194 mOutputPos = mOutputMask = 0;\r
1195\r
1196 mBitCount = UINT8_BIT;\r
1197 mSubBitBuf = 0;\r
1198}\r
1199\r
1200/**\r
1201 Outputs an Original Character or a Pointer.\r
1202\r
1203 @param[in] LoopVar5 The original character or the 'String Length' element of \r
1204 a Pointer.\r
1205 @param[in] LoopVar7 The 'Position' field of a Pointer.\r
1206**/\r
1207VOID\r
1208EFIAPI\r
1209CompressOutput (\r
1210 IN UINT32 LoopVar5,\r
1211 IN UINT32 LoopVar7\r
1212 )\r
1213{\r
1214 STATIC UINT32 CPos;\r
1215\r
1216 if ((mOutputMask >>= 1) == 0) {\r
1217 mOutputMask = 1U << (UINT8_BIT - 1);\r
1218 if (mOutputPos >= mBufSiz - 3 * UINT8_BIT) {\r
1219 SendBlock ();\r
1220 mOutputPos = 0;\r
1221 }\r
1222\r
1223 CPos = mOutputPos++;\r
1224 mBuf[CPos] = 0;\r
1225 }\r
1226 mBuf[mOutputPos++] = (UINT8) LoopVar5;\r
1227 mCFreq[LoopVar5]++;\r
1228 if (LoopVar5 >= (1U << UINT8_BIT)) {\r
1229 mBuf[CPos] = (UINT8)(mBuf[CPos]|mOutputMask);\r
1230 mBuf[mOutputPos++] = (UINT8)(LoopVar7 >> UINT8_BIT);\r
1231 mBuf[mOutputPos++] = (UINT8) LoopVar7;\r
1232 LoopVar5 = 0;\r
1233 while (LoopVar7!=0) {\r
1234 LoopVar7 >>= 1;\r
1235 LoopVar5++;\r
1236 }\r
1237 mPFreq[LoopVar5]++;\r
1238 }\r
1239}\r
1240\r
1241/**\r
1242 End the huffman encoding.\r
1243\r
1244**/\r
1245VOID\r
1246EFIAPI\r
1247HufEncodeEnd (\r
1248 VOID\r
1249 )\r
1250{\r
1251 SendBlock ();\r
1252\r
1253 //\r
1254 // Flush remaining bits\r
1255 //\r
1256 PutBits (UINT8_BIT - 1, 0);\r
1257}\r
1258\r
1259/**\r
1260 The main controlling routine for compression process.\r
1261\r
1262 @retval EFI_SUCCESS The compression is successful.\r
1263 @retval EFI_OUT_0F_RESOURCES Not enough memory for compression process.\r
1264**/\r
1265EFI_STATUS\r
1266EFIAPI\r
1267Encode (\r
1268 VOID\r
1269 )\r
1270{\r
1271 EFI_STATUS Status;\r
1272 INT32 LastMatchLen;\r
1273 NODE LastMatchPos;\r
1274\r
1275 Status = AllocateMemory ();\r
1276 if (EFI_ERROR (Status)) {\r
1277 FreeMemory ();\r
1278 return Status;\r
1279 }\r
1280\r
1281 InitSlide ();\r
1282\r
1283 HufEncodeStart ();\r
1284\r
1285 mRemainder = FreadCrc (&mText[WNDSIZ], WNDSIZ + MAXMATCH);\r
1286\r
1287 mMatchLen = 0;\r
1288 mPos = WNDSIZ;\r
1289 InsertNode ();\r
1290 if (mMatchLen > mRemainder) {\r
1291 mMatchLen = mRemainder;\r
1292 }\r
1293\r
1294 while (mRemainder > 0) {\r
1295 LastMatchLen = mMatchLen;\r
1296 LastMatchPos = mMatchPos;\r
1297 if (!GetNextMatch ()) {\r
1298 Status = EFI_OUT_OF_RESOURCES;\r
1299 }\r
1300 if (mMatchLen > mRemainder) {\r
1301 mMatchLen = mRemainder;\r
1302 }\r
1303\r
1304 if (mMatchLen > LastMatchLen || LastMatchLen < THRESHOLD) {\r
1305 //\r
1306 // Not enough benefits are gained by outputting a pointer,\r
1307 // so just output the original character\r
1308 //\r
1309 CompressOutput(mText[mPos - 1], 0);\r
1310 } else {\r
1311 //\r
1312 // Outputting a pointer is beneficial enough, do it.\r
1313 //\r
1314\r
1315 CompressOutput(LastMatchLen + (UINT8_MAX + 1 - THRESHOLD),\r
1316 (mPos - LastMatchPos - 2) & (WNDSIZ - 1));\r
1317 LastMatchLen--;\r
1318 while (LastMatchLen > 0) {\r
1319 if (!GetNextMatch ()) {\r
1320 Status = EFI_OUT_OF_RESOURCES;\r
1321 }\r
1322 LastMatchLen--;\r
1323 }\r
1324\r
1325 if (mMatchLen > mRemainder) {\r
1326 mMatchLen = mRemainder;\r
1327 }\r
1328 }\r
1329 }\r
1330\r
1331 HufEncodeEnd ();\r
1332 FreeMemory ();\r
1333 return (Status);\r
1334}\r
1335\r
1336/**\r
1337 The compression routine.\r
1338\r
1339 @param[in] SrcBuffer The buffer containing the source data.\r
1340 @param[in] SrcSize The number of bytes in SrcBuffer.\r
1341 @param[in] DstBuffer The buffer to put the compressed image in.\r
1342 @param[in, out] DstSize On input the size (in bytes) of DstBuffer, on\r
1343 return the number of bytes placed in DstBuffer.\r
1344\r
1345 @retval EFI_SUCCESS The compression was sucessful.\r
1346 @retval EFI_BUFFER_TOO_SMALL The buffer was too small. DstSize is required.\r
1347**/\r
1348EFI_STATUS\r
1349EFIAPI\r
1350Compress (\r
1351 IN VOID *SrcBuffer,\r
1352 IN UINT64 SrcSize,\r
1353 IN VOID *DstBuffer,\r
1354 IN OUT UINT64 *DstSize\r
1355 )\r
1356{\r
1357 EFI_STATUS Status;\r
1358\r
1359 //\r
1360 // Initializations\r
1361 //\r
1362 mBufSiz = 0;\r
1363 mBuf = NULL;\r
1364 mText = NULL;\r
1365 mLevel = NULL;\r
1366 mChildCount = NULL;\r
1367 mPosition = NULL;\r
1368 mParent = NULL;\r
1369 mPrev = NULL;\r
1370 mNext = NULL;\r
1371\r
1372 mSrc = SrcBuffer;\r
1373 mSrcUpperLimit = mSrc + SrcSize;\r
1374 mDst = DstBuffer;\r
1375 mDstUpperLimit = mDst +*DstSize;\r
1376\r
1377 PutDword (0L);\r
1378 PutDword (0L);\r
1379\r
1380 MakeCrcTable ();\r
1381\r
1382 mOrigSize = mCompSize = 0;\r
1383 mCrc = INIT_CRC;\r
1384\r
1385 //\r
1386 // Compress it\r
1387 //\r
1388 Status = Encode ();\r
1389 if (EFI_ERROR (Status)) {\r
1390 return EFI_OUT_OF_RESOURCES;\r
1391 }\r
1392 //\r
1393 // Null terminate the compressed data\r
1394 //\r
1395 if (mDst < mDstUpperLimit) {\r
1396 *mDst++ = 0;\r
1397 }\r
1398 //\r
1399 // Fill in compressed size and original size\r
1400 //\r
1401 mDst = DstBuffer;\r
1402 PutDword (mCompSize + 1);\r
1403 PutDword (mOrigSize);\r
1404\r
1405 //\r
1406 // Return\r
1407 //\r
1408 if (mCompSize + 1 + 8 > *DstSize) {\r
1409 *DstSize = mCompSize + 1 + 8;\r
1410 return EFI_BUFFER_TOO_SMALL;\r
1411 } else {\r
1412 *DstSize = mCompSize + 1 + 8;\r
1413 return EFI_SUCCESS;\r
1414 }\r
1415\r
1416}\r
1417\r