]> git.proxmox.com Git - mirror_edk2.git/blame_incremental - UefiCpuPkg/PiSmmCpuDxeSmm/MpService.c
MdeModulePkg/DxeCore: Fix coding style issues
[mirror_edk2.git] / UefiCpuPkg / PiSmmCpuDxeSmm / MpService.c
... / ...
CommitLineData
1/** @file\r
2SMM MP service implementation\r
3\r
4Copyright (c) 2009 - 2016, Intel Corporation. All rights reserved.<BR>\r
5Copyright (c) 2017, AMD Incorporated. All rights reserved.<BR>\r
6\r
7This program and the accompanying materials\r
8are licensed and made available under the terms and conditions of the BSD License\r
9which accompanies this distribution. The full text of the license may be found at\r
10http://opensource.org/licenses/bsd-license.php\r
11\r
12THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
13WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
14\r
15**/\r
16\r
17#include "PiSmmCpuDxeSmm.h"\r
18\r
19//\r
20// Slots for all MTRR( FIXED MTRR + VARIABLE MTRR + MTRR_LIB_IA32_MTRR_DEF_TYPE)\r
21//\r
22MTRR_SETTINGS gSmiMtrrs;\r
23UINT64 gPhyMask;\r
24SMM_DISPATCHER_MP_SYNC_DATA *mSmmMpSyncData = NULL;\r
25UINTN mSmmMpSyncDataSize;\r
26SMM_CPU_SEMAPHORES mSmmCpuSemaphores;\r
27UINTN mSemaphoreSize;\r
28SPIN_LOCK *mPFLock = NULL;\r
29SMM_CPU_SYNC_MODE mCpuSmmSyncMode;\r
30\r
31/**\r
32 Performs an atomic compare exchange operation to get semaphore.\r
33 The compare exchange operation must be performed using\r
34 MP safe mechanisms.\r
35\r
36 @param Sem IN: 32-bit unsigned integer\r
37 OUT: original integer - 1\r
38 @return Original integer - 1\r
39\r
40**/\r
41UINT32\r
42WaitForSemaphore (\r
43 IN OUT volatile UINT32 *Sem\r
44 )\r
45{\r
46 UINT32 Value;\r
47\r
48 do {\r
49 Value = *Sem;\r
50 } while (Value == 0 ||\r
51 InterlockedCompareExchange32 (\r
52 (UINT32*)Sem,\r
53 Value,\r
54 Value - 1\r
55 ) != Value);\r
56 return Value - 1;\r
57}\r
58\r
59\r
60/**\r
61 Performs an atomic compare exchange operation to release semaphore.\r
62 The compare exchange operation must be performed using\r
63 MP safe mechanisms.\r
64\r
65 @param Sem IN: 32-bit unsigned integer\r
66 OUT: original integer + 1\r
67 @return Original integer + 1\r
68\r
69**/\r
70UINT32\r
71ReleaseSemaphore (\r
72 IN OUT volatile UINT32 *Sem\r
73 )\r
74{\r
75 UINT32 Value;\r
76\r
77 do {\r
78 Value = *Sem;\r
79 } while (Value + 1 != 0 &&\r
80 InterlockedCompareExchange32 (\r
81 (UINT32*)Sem,\r
82 Value,\r
83 Value + 1\r
84 ) != Value);\r
85 return Value + 1;\r
86}\r
87\r
88/**\r
89 Performs an atomic compare exchange operation to lock semaphore.\r
90 The compare exchange operation must be performed using\r
91 MP safe mechanisms.\r
92\r
93 @param Sem IN: 32-bit unsigned integer\r
94 OUT: -1\r
95 @return Original integer\r
96\r
97**/\r
98UINT32\r
99LockdownSemaphore (\r
100 IN OUT volatile UINT32 *Sem\r
101 )\r
102{\r
103 UINT32 Value;\r
104\r
105 do {\r
106 Value = *Sem;\r
107 } while (InterlockedCompareExchange32 (\r
108 (UINT32*)Sem,\r
109 Value, (UINT32)-1\r
110 ) != Value);\r
111 return Value;\r
112}\r
113\r
114/**\r
115 Wait all APs to performs an atomic compare exchange operation to release semaphore.\r
116\r
117 @param NumberOfAPs AP number\r
118\r
119**/\r
120VOID\r
121WaitForAllAPs (\r
122 IN UINTN NumberOfAPs\r
123 )\r
124{\r
125 UINTN BspIndex;\r
126\r
127 BspIndex = mSmmMpSyncData->BspIndex;\r
128 while (NumberOfAPs-- > 0) {\r
129 WaitForSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);\r
130 }\r
131}\r
132\r
133/**\r
134 Performs an atomic compare exchange operation to release semaphore\r
135 for each AP.\r
136\r
137**/\r
138VOID\r
139ReleaseAllAPs (\r
140 VOID\r
141 )\r
142{\r
143 UINTN Index;\r
144 UINTN BspIndex;\r
145\r
146 BspIndex = mSmmMpSyncData->BspIndex;\r
147 for (Index = mMaxNumberOfCpus; Index-- > 0;) {\r
148 if (Index != BspIndex && *(mSmmMpSyncData->CpuData[Index].Present)) {\r
149 ReleaseSemaphore (mSmmMpSyncData->CpuData[Index].Run);\r
150 }\r
151 }\r
152}\r
153\r
154/**\r
155 Checks if all CPUs (with certain exceptions) have checked in for this SMI run\r
156\r
157 @param Exceptions CPU Arrival exception flags.\r
158\r
159 @retval TRUE if all CPUs the have checked in.\r
160 @retval FALSE if at least one Normal AP hasn't checked in.\r
161\r
162**/\r
163BOOLEAN\r
164AllCpusInSmmWithExceptions (\r
165 SMM_CPU_ARRIVAL_EXCEPTIONS Exceptions\r
166 )\r
167{\r
168 UINTN Index;\r
169 SMM_CPU_DATA_BLOCK *CpuData;\r
170 EFI_PROCESSOR_INFORMATION *ProcessorInfo;\r
171\r
172 ASSERT (*mSmmMpSyncData->Counter <= mNumberOfCpus);\r
173\r
174 if (*mSmmMpSyncData->Counter == mNumberOfCpus) {\r
175 return TRUE;\r
176 }\r
177\r
178 CpuData = mSmmMpSyncData->CpuData;\r
179 ProcessorInfo = gSmmCpuPrivate->ProcessorInfo;\r
180 for (Index = mMaxNumberOfCpus; Index-- > 0;) {\r
181 if (!(*(CpuData[Index].Present)) && ProcessorInfo[Index].ProcessorId != INVALID_APIC_ID) {\r
182 if (((Exceptions & ARRIVAL_EXCEPTION_DELAYED) != 0) && SmmCpuFeaturesGetSmmRegister (Index, SmmRegSmmDelayed) != 0) {\r
183 continue;\r
184 }\r
185 if (((Exceptions & ARRIVAL_EXCEPTION_BLOCKED) != 0) && SmmCpuFeaturesGetSmmRegister (Index, SmmRegSmmBlocked) != 0) {\r
186 continue;\r
187 }\r
188 if (((Exceptions & ARRIVAL_EXCEPTION_SMI_DISABLED) != 0) && SmmCpuFeaturesGetSmmRegister (Index, SmmRegSmmEnable) != 0) {\r
189 continue;\r
190 }\r
191 return FALSE;\r
192 }\r
193 }\r
194\r
195\r
196 return TRUE;\r
197}\r
198\r
199\r
200/**\r
201 Given timeout constraint, wait for all APs to arrive, and insure when this function returns, no AP will execute normal mode code before\r
202 entering SMM, except SMI disabled APs.\r
203\r
204**/\r
205VOID\r
206SmmWaitForApArrival (\r
207 VOID\r
208 )\r
209{\r
210 UINT64 Timer;\r
211 UINTN Index;\r
212\r
213 ASSERT (*mSmmMpSyncData->Counter <= mNumberOfCpus);\r
214\r
215 //\r
216 // Platform implementor should choose a timeout value appropriately:\r
217 // - The timeout value should balance the SMM time constrains and the likelihood that delayed CPUs are excluded in the SMM run. Note\r
218 // the SMI Handlers must ALWAYS take into account the cases that not all APs are available in an SMI run.\r
219 // - The timeout value must, in the case of 2nd timeout, be at least long enough to give time for all APs to receive the SMI IPI\r
220 // and either enter SMM or buffer the SMI, to insure there is no CPU running normal mode code when SMI handling starts. This will\r
221 // be TRUE even if a blocked CPU is brought out of the blocked state by a normal mode CPU (before the normal mode CPU received the\r
222 // SMI IPI), because with a buffered SMI, and CPU will enter SMM immediately after it is brought out of the blocked state.\r
223 // - The timeout value must be longer than longest possible IO operation in the system\r
224 //\r
225\r
226 //\r
227 // Sync with APs 1st timeout\r
228 //\r
229 for (Timer = StartSyncTimer ();\r
230 !IsSyncTimerTimeout (Timer) &&\r
231 !AllCpusInSmmWithExceptions (ARRIVAL_EXCEPTION_BLOCKED | ARRIVAL_EXCEPTION_SMI_DISABLED );\r
232 ) {\r
233 CpuPause ();\r
234 }\r
235\r
236 //\r
237 // Not all APs have arrived, so we need 2nd round of timeout. IPIs should be sent to ALL none present APs,\r
238 // because:\r
239 // a) Delayed AP may have just come out of the delayed state. Blocked AP may have just been brought out of blocked state by some AP running\r
240 // normal mode code. These APs need to be guaranteed to have an SMI pending to insure that once they are out of delayed / blocked state, they\r
241 // enter SMI immediately without executing instructions in normal mode. Note traditional flow requires there are no APs doing normal mode\r
242 // work while SMI handling is on-going.\r
243 // b) As a consequence of SMI IPI sending, (spurious) SMI may occur after this SMM run.\r
244 // c) ** NOTE **: Use SMI disabling feature VERY CAREFULLY (if at all) for traditional flow, because a processor in SMI-disabled state\r
245 // will execute normal mode code, which breaks the traditional SMI handlers' assumption that no APs are doing normal\r
246 // mode work while SMI handling is on-going.\r
247 // d) We don't add code to check SMI disabling status to skip sending IPI to SMI disabled APs, because:\r
248 // - In traditional flow, SMI disabling is discouraged.\r
249 // - In relaxed flow, CheckApArrival() will check SMI disabling status before calling this function.\r
250 // In both cases, adding SMI-disabling checking code increases overhead.\r
251 //\r
252 if (*mSmmMpSyncData->Counter < mNumberOfCpus) {\r
253 //\r
254 // Send SMI IPIs to bring outside processors in\r
255 //\r
256 for (Index = mMaxNumberOfCpus; Index-- > 0;) {\r
257 if (!(*(mSmmMpSyncData->CpuData[Index].Present)) && gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId != INVALID_APIC_ID) {\r
258 SendSmiIpi ((UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId);\r
259 }\r
260 }\r
261\r
262 //\r
263 // Sync with APs 2nd timeout.\r
264 //\r
265 for (Timer = StartSyncTimer ();\r
266 !IsSyncTimerTimeout (Timer) &&\r
267 !AllCpusInSmmWithExceptions (ARRIVAL_EXCEPTION_BLOCKED | ARRIVAL_EXCEPTION_SMI_DISABLED );\r
268 ) {\r
269 CpuPause ();\r
270 }\r
271 }\r
272\r
273 return;\r
274}\r
275\r
276\r
277/**\r
278 Replace OS MTRR's with SMI MTRR's.\r
279\r
280 @param CpuIndex Processor Index\r
281\r
282**/\r
283VOID\r
284ReplaceOSMtrrs (\r
285 IN UINTN CpuIndex\r
286 )\r
287{\r
288 SmmCpuFeaturesDisableSmrr ();\r
289\r
290 //\r
291 // Replace all MTRRs registers\r
292 //\r
293 MtrrSetAllMtrrs (&gSmiMtrrs);\r
294}\r
295\r
296/**\r
297 SMI handler for BSP.\r
298\r
299 @param CpuIndex BSP processor Index\r
300 @param SyncMode SMM MP sync mode\r
301\r
302**/\r
303VOID\r
304BSPHandler (\r
305 IN UINTN CpuIndex,\r
306 IN SMM_CPU_SYNC_MODE SyncMode\r
307 )\r
308{\r
309 UINTN Index;\r
310 MTRR_SETTINGS Mtrrs;\r
311 UINTN ApCount;\r
312 BOOLEAN ClearTopLevelSmiResult;\r
313 UINTN PresentCount;\r
314\r
315 ASSERT (CpuIndex == mSmmMpSyncData->BspIndex);\r
316 ApCount = 0;\r
317\r
318 //\r
319 // Flag BSP's presence\r
320 //\r
321 *mSmmMpSyncData->InsideSmm = TRUE;\r
322\r
323 //\r
324 // Initialize Debug Agent to start source level debug in BSP handler\r
325 //\r
326 InitializeDebugAgent (DEBUG_AGENT_INIT_ENTER_SMI, NULL, NULL);\r
327\r
328 //\r
329 // Mark this processor's presence\r
330 //\r
331 *(mSmmMpSyncData->CpuData[CpuIndex].Present) = TRUE;\r
332\r
333 //\r
334 // Clear platform top level SMI status bit before calling SMI handlers. If\r
335 // we cleared it after SMI handlers are run, we would miss the SMI that\r
336 // occurs after SMI handlers are done and before SMI status bit is cleared.\r
337 //\r
338 ClearTopLevelSmiResult = ClearTopLevelSmiStatus();\r
339 ASSERT (ClearTopLevelSmiResult == TRUE);\r
340\r
341 //\r
342 // Set running processor index\r
343 //\r
344 gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu = CpuIndex;\r
345\r
346 //\r
347 // If Traditional Sync Mode or need to configure MTRRs: gather all available APs.\r
348 //\r
349 if (SyncMode == SmmCpuSyncModeTradition || SmmCpuFeaturesNeedConfigureMtrrs()) {\r
350\r
351 //\r
352 // Wait for APs to arrive\r
353 //\r
354 SmmWaitForApArrival();\r
355\r
356 //\r
357 // Lock the counter down and retrieve the number of APs\r
358 //\r
359 *mSmmMpSyncData->AllCpusInSync = TRUE;\r
360 ApCount = LockdownSemaphore (mSmmMpSyncData->Counter) - 1;\r
361\r
362 //\r
363 // Wait for all APs to get ready for programming MTRRs\r
364 //\r
365 WaitForAllAPs (ApCount);\r
366\r
367 if (SmmCpuFeaturesNeedConfigureMtrrs()) {\r
368 //\r
369 // Signal all APs it's time for backup MTRRs\r
370 //\r
371 ReleaseAllAPs ();\r
372\r
373 //\r
374 // WaitForSemaphore() may wait for ever if an AP happens to enter SMM at\r
375 // exactly this point. Please make sure PcdCpuSmmMaxSyncLoops has been set\r
376 // to a large enough value to avoid this situation.\r
377 // Note: For HT capable CPUs, threads within a core share the same set of MTRRs.\r
378 // We do the backup first and then set MTRR to avoid race condition for threads\r
379 // in the same core.\r
380 //\r
381 MtrrGetAllMtrrs(&Mtrrs);\r
382\r
383 //\r
384 // Wait for all APs to complete their MTRR saving\r
385 //\r
386 WaitForAllAPs (ApCount);\r
387\r
388 //\r
389 // Let all processors program SMM MTRRs together\r
390 //\r
391 ReleaseAllAPs ();\r
392\r
393 //\r
394 // WaitForSemaphore() may wait for ever if an AP happens to enter SMM at\r
395 // exactly this point. Please make sure PcdCpuSmmMaxSyncLoops has been set\r
396 // to a large enough value to avoid this situation.\r
397 //\r
398 ReplaceOSMtrrs (CpuIndex);\r
399\r
400 //\r
401 // Wait for all APs to complete their MTRR programming\r
402 //\r
403 WaitForAllAPs (ApCount);\r
404 }\r
405 }\r
406\r
407 //\r
408 // The BUSY lock is initialized to Acquired state\r
409 //\r
410 AcquireSpinLockOrFail (mSmmMpSyncData->CpuData[CpuIndex].Busy);\r
411\r
412 //\r
413 // Perform the pre tasks\r
414 //\r
415 PerformPreTasks ();\r
416\r
417 //\r
418 // Invoke SMM Foundation EntryPoint with the processor information context.\r
419 //\r
420 gSmmCpuPrivate->SmmCoreEntry (&gSmmCpuPrivate->SmmCoreEntryContext);\r
421\r
422 //\r
423 // Make sure all APs have completed their pending none-block tasks\r
424 //\r
425 for (Index = mMaxNumberOfCpus; Index-- > 0;) {\r
426 if (Index != CpuIndex && *(mSmmMpSyncData->CpuData[Index].Present)) {\r
427 AcquireSpinLock (mSmmMpSyncData->CpuData[Index].Busy);\r
428 ReleaseSpinLock (mSmmMpSyncData->CpuData[Index].Busy);\r
429 }\r
430 }\r
431\r
432 //\r
433 // Perform the remaining tasks\r
434 //\r
435 PerformRemainingTasks ();\r
436\r
437 //\r
438 // If Relaxed-AP Sync Mode: gather all available APs after BSP SMM handlers are done, and\r
439 // make those APs to exit SMI synchronously. APs which arrive later will be excluded and\r
440 // will run through freely.\r
441 //\r
442 if (SyncMode != SmmCpuSyncModeTradition && !SmmCpuFeaturesNeedConfigureMtrrs()) {\r
443\r
444 //\r
445 // Lock the counter down and retrieve the number of APs\r
446 //\r
447 *mSmmMpSyncData->AllCpusInSync = TRUE;\r
448 ApCount = LockdownSemaphore (mSmmMpSyncData->Counter) - 1;\r
449 //\r
450 // Make sure all APs have their Present flag set\r
451 //\r
452 while (TRUE) {\r
453 PresentCount = 0;\r
454 for (Index = mMaxNumberOfCpus; Index-- > 0;) {\r
455 if (*(mSmmMpSyncData->CpuData[Index].Present)) {\r
456 PresentCount ++;\r
457 }\r
458 }\r
459 if (PresentCount > ApCount) {\r
460 break;\r
461 }\r
462 }\r
463 }\r
464\r
465 //\r
466 // Notify all APs to exit\r
467 //\r
468 *mSmmMpSyncData->InsideSmm = FALSE;\r
469 ReleaseAllAPs ();\r
470\r
471 //\r
472 // Wait for all APs to complete their pending tasks\r
473 //\r
474 WaitForAllAPs (ApCount);\r
475\r
476 if (SmmCpuFeaturesNeedConfigureMtrrs()) {\r
477 //\r
478 // Signal APs to restore MTRRs\r
479 //\r
480 ReleaseAllAPs ();\r
481\r
482 //\r
483 // Restore OS MTRRs\r
484 //\r
485 SmmCpuFeaturesReenableSmrr ();\r
486 MtrrSetAllMtrrs(&Mtrrs);\r
487\r
488 //\r
489 // Wait for all APs to complete MTRR programming\r
490 //\r
491 WaitForAllAPs (ApCount);\r
492 }\r
493\r
494 //\r
495 // Stop source level debug in BSP handler, the code below will not be\r
496 // debugged.\r
497 //\r
498 InitializeDebugAgent (DEBUG_AGENT_INIT_EXIT_SMI, NULL, NULL);\r
499\r
500 //\r
501 // Signal APs to Reset states/semaphore for this processor\r
502 //\r
503 ReleaseAllAPs ();\r
504\r
505 //\r
506 // Perform pending operations for hot-plug\r
507 //\r
508 SmmCpuUpdate ();\r
509\r
510 //\r
511 // Clear the Present flag of BSP\r
512 //\r
513 *(mSmmMpSyncData->CpuData[CpuIndex].Present) = FALSE;\r
514\r
515 //\r
516 // Gather APs to exit SMM synchronously. Note the Present flag is cleared by now but\r
517 // WaitForAllAps does not depend on the Present flag.\r
518 //\r
519 WaitForAllAPs (ApCount);\r
520\r
521 //\r
522 // Reset BspIndex to -1, meaning BSP has not been elected.\r
523 //\r
524 if (FeaturePcdGet (PcdCpuSmmEnableBspElection)) {\r
525 mSmmMpSyncData->BspIndex = (UINT32)-1;\r
526 }\r
527\r
528 //\r
529 // Allow APs to check in from this point on\r
530 //\r
531 *mSmmMpSyncData->Counter = 0;\r
532 *mSmmMpSyncData->AllCpusInSync = FALSE;\r
533}\r
534\r
535/**\r
536 SMI handler for AP.\r
537\r
538 @param CpuIndex AP processor Index.\r
539 @param ValidSmi Indicates that current SMI is a valid SMI or not.\r
540 @param SyncMode SMM MP sync mode.\r
541\r
542**/\r
543VOID\r
544APHandler (\r
545 IN UINTN CpuIndex,\r
546 IN BOOLEAN ValidSmi,\r
547 IN SMM_CPU_SYNC_MODE SyncMode\r
548 )\r
549{\r
550 UINT64 Timer;\r
551 UINTN BspIndex;\r
552 MTRR_SETTINGS Mtrrs;\r
553\r
554 //\r
555 // Timeout BSP\r
556 //\r
557 for (Timer = StartSyncTimer ();\r
558 !IsSyncTimerTimeout (Timer) &&\r
559 !(*mSmmMpSyncData->InsideSmm);\r
560 ) {\r
561 CpuPause ();\r
562 }\r
563\r
564 if (!(*mSmmMpSyncData->InsideSmm)) {\r
565 //\r
566 // BSP timeout in the first round\r
567 //\r
568 if (mSmmMpSyncData->BspIndex != -1) {\r
569 //\r
570 // BSP Index is known\r
571 //\r
572 BspIndex = mSmmMpSyncData->BspIndex;\r
573 ASSERT (CpuIndex != BspIndex);\r
574\r
575 //\r
576 // Send SMI IPI to bring BSP in\r
577 //\r
578 SendSmiIpi ((UINT32)gSmmCpuPrivate->ProcessorInfo[BspIndex].ProcessorId);\r
579\r
580 //\r
581 // Now clock BSP for the 2nd time\r
582 //\r
583 for (Timer = StartSyncTimer ();\r
584 !IsSyncTimerTimeout (Timer) &&\r
585 !(*mSmmMpSyncData->InsideSmm);\r
586 ) {\r
587 CpuPause ();\r
588 }\r
589\r
590 if (!(*mSmmMpSyncData->InsideSmm)) {\r
591 //\r
592 // Give up since BSP is unable to enter SMM\r
593 // and signal the completion of this AP\r
594 WaitForSemaphore (mSmmMpSyncData->Counter);\r
595 return;\r
596 }\r
597 } else {\r
598 //\r
599 // Don't know BSP index. Give up without sending IPI to BSP.\r
600 //\r
601 WaitForSemaphore (mSmmMpSyncData->Counter);\r
602 return;\r
603 }\r
604 }\r
605\r
606 //\r
607 // BSP is available\r
608 //\r
609 BspIndex = mSmmMpSyncData->BspIndex;\r
610 ASSERT (CpuIndex != BspIndex);\r
611\r
612 //\r
613 // Mark this processor's presence\r
614 //\r
615 *(mSmmMpSyncData->CpuData[CpuIndex].Present) = TRUE;\r
616\r
617 if (SyncMode == SmmCpuSyncModeTradition || SmmCpuFeaturesNeedConfigureMtrrs()) {\r
618 //\r
619 // Notify BSP of arrival at this point\r
620 //\r
621 ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);\r
622 }\r
623\r
624 if (SmmCpuFeaturesNeedConfigureMtrrs()) {\r
625 //\r
626 // Wait for the signal from BSP to backup MTRRs\r
627 //\r
628 WaitForSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);\r
629\r
630 //\r
631 // Backup OS MTRRs\r
632 //\r
633 MtrrGetAllMtrrs(&Mtrrs);\r
634\r
635 //\r
636 // Signal BSP the completion of this AP\r
637 //\r
638 ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);\r
639\r
640 //\r
641 // Wait for BSP's signal to program MTRRs\r
642 //\r
643 WaitForSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);\r
644\r
645 //\r
646 // Replace OS MTRRs with SMI MTRRs\r
647 //\r
648 ReplaceOSMtrrs (CpuIndex);\r
649\r
650 //\r
651 // Signal BSP the completion of this AP\r
652 //\r
653 ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);\r
654 }\r
655\r
656 while (TRUE) {\r
657 //\r
658 // Wait for something to happen\r
659 //\r
660 WaitForSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);\r
661\r
662 //\r
663 // Check if BSP wants to exit SMM\r
664 //\r
665 if (!(*mSmmMpSyncData->InsideSmm)) {\r
666 break;\r
667 }\r
668\r
669 //\r
670 // BUSY should be acquired by SmmStartupThisAp()\r
671 //\r
672 ASSERT (\r
673 !AcquireSpinLockOrFail (mSmmMpSyncData->CpuData[CpuIndex].Busy)\r
674 );\r
675\r
676 //\r
677 // Invoke the scheduled procedure\r
678 //\r
679 (*mSmmMpSyncData->CpuData[CpuIndex].Procedure) (\r
680 (VOID*)mSmmMpSyncData->CpuData[CpuIndex].Parameter\r
681 );\r
682\r
683 //\r
684 // Release BUSY\r
685 //\r
686 ReleaseSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy);\r
687 }\r
688\r
689 if (SmmCpuFeaturesNeedConfigureMtrrs()) {\r
690 //\r
691 // Notify BSP the readiness of this AP to program MTRRs\r
692 //\r
693 ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);\r
694\r
695 //\r
696 // Wait for the signal from BSP to program MTRRs\r
697 //\r
698 WaitForSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);\r
699\r
700 //\r
701 // Restore OS MTRRs\r
702 //\r
703 SmmCpuFeaturesReenableSmrr ();\r
704 MtrrSetAllMtrrs(&Mtrrs);\r
705 }\r
706\r
707 //\r
708 // Notify BSP the readiness of this AP to Reset states/semaphore for this processor\r
709 //\r
710 ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);\r
711\r
712 //\r
713 // Wait for the signal from BSP to Reset states/semaphore for this processor\r
714 //\r
715 WaitForSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);\r
716\r
717 //\r
718 // Reset states/semaphore for this processor\r
719 //\r
720 *(mSmmMpSyncData->CpuData[CpuIndex].Present) = FALSE;\r
721\r
722 //\r
723 // Notify BSP the readiness of this AP to exit SMM\r
724 //\r
725 ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);\r
726\r
727}\r
728\r
729/**\r
730 Create 4G PageTable in SMRAM.\r
731\r
732 @param[in] Is32BitPageTable Whether the page table is 32-bit PAE\r
733 @return PageTable Address\r
734\r
735**/\r
736UINT32\r
737Gen4GPageTable (\r
738 IN BOOLEAN Is32BitPageTable\r
739 )\r
740{\r
741 VOID *PageTable;\r
742 UINTN Index;\r
743 UINT64 *Pte;\r
744 UINTN PagesNeeded;\r
745 UINTN Low2MBoundary;\r
746 UINTN High2MBoundary;\r
747 UINTN Pages;\r
748 UINTN GuardPage;\r
749 UINT64 *Pdpte;\r
750 UINTN PageIndex;\r
751 UINTN PageAddress;\r
752\r
753 Low2MBoundary = 0;\r
754 High2MBoundary = 0;\r
755 PagesNeeded = 0;\r
756 if (FeaturePcdGet (PcdCpuSmmStackGuard)) {\r
757 //\r
758 // Add one more page for known good stack, then find the lower 2MB aligned address.\r
759 //\r
760 Low2MBoundary = (mSmmStackArrayBase + EFI_PAGE_SIZE) & ~(SIZE_2MB-1);\r
761 //\r
762 // Add two more pages for known good stack and stack guard page,\r
763 // then find the lower 2MB aligned address.\r
764 //\r
765 High2MBoundary = (mSmmStackArrayEnd - mSmmStackSize + EFI_PAGE_SIZE * 2) & ~(SIZE_2MB-1);\r
766 PagesNeeded = ((High2MBoundary - Low2MBoundary) / SIZE_2MB) + 1;\r
767 }\r
768 //\r
769 // Allocate the page table\r
770 //\r
771 PageTable = AllocatePageTableMemory (5 + PagesNeeded);\r
772 ASSERT (PageTable != NULL);\r
773\r
774 PageTable = (VOID *)((UINTN)PageTable);\r
775 Pte = (UINT64*)PageTable;\r
776\r
777 //\r
778 // Zero out all page table entries first\r
779 //\r
780 ZeroMem (Pte, EFI_PAGES_TO_SIZE (1));\r
781\r
782 //\r
783 // Set Page Directory Pointers\r
784 //\r
785 for (Index = 0; Index < 4; Index++) {\r
786 Pte[Index] = (UINT64)((UINTN)PageTable + EFI_PAGE_SIZE * (Index + 1)) | mAddressEncMask |\r
787 (Is32BitPageTable ? IA32_PAE_PDPTE_ATTRIBUTE_BITS : PAGE_ATTRIBUTE_BITS);\r
788 }\r
789 Pte += EFI_PAGE_SIZE / sizeof (*Pte);\r
790\r
791 //\r
792 // Fill in Page Directory Entries\r
793 //\r
794 for (Index = 0; Index < EFI_PAGE_SIZE * 4 / sizeof (*Pte); Index++) {\r
795 Pte[Index] = (Index << 21) | mAddressEncMask | IA32_PG_PS | PAGE_ATTRIBUTE_BITS;\r
796 }\r
797\r
798 if (FeaturePcdGet (PcdCpuSmmStackGuard)) {\r
799 Pages = (UINTN)PageTable + EFI_PAGES_TO_SIZE (5);\r
800 GuardPage = mSmmStackArrayBase + EFI_PAGE_SIZE;\r
801 Pdpte = (UINT64*)PageTable;\r
802 for (PageIndex = Low2MBoundary; PageIndex <= High2MBoundary; PageIndex += SIZE_2MB) {\r
803 Pte = (UINT64*)(UINTN)(Pdpte[BitFieldRead32 ((UINT32)PageIndex, 30, 31)] & ~mAddressEncMask & ~(EFI_PAGE_SIZE - 1));\r
804 Pte[BitFieldRead32 ((UINT32)PageIndex, 21, 29)] = (UINT64)Pages | mAddressEncMask | PAGE_ATTRIBUTE_BITS;\r
805 //\r
806 // Fill in Page Table Entries\r
807 //\r
808 Pte = (UINT64*)Pages;\r
809 PageAddress = PageIndex;\r
810 for (Index = 0; Index < EFI_PAGE_SIZE / sizeof (*Pte); Index++) {\r
811 if (PageAddress == GuardPage) {\r
812 //\r
813 // Mark the guard page as non-present\r
814 //\r
815 Pte[Index] = PageAddress | mAddressEncMask;\r
816 GuardPage += mSmmStackSize;\r
817 if (GuardPage > mSmmStackArrayEnd) {\r
818 GuardPage = 0;\r
819 }\r
820 } else {\r
821 Pte[Index] = PageAddress | mAddressEncMask | PAGE_ATTRIBUTE_BITS;\r
822 }\r
823 PageAddress+= EFI_PAGE_SIZE;\r
824 }\r
825 Pages += EFI_PAGE_SIZE;\r
826 }\r
827 }\r
828\r
829 return (UINT32)(UINTN)PageTable;\r
830}\r
831\r
832/**\r
833 Schedule a procedure to run on the specified CPU.\r
834\r
835 @param[in] Procedure The address of the procedure to run\r
836 @param[in] CpuIndex Target CPU Index\r
837 @param[in, out] ProcArguments The parameter to pass to the procedure\r
838 @param[in] BlockingMode Startup AP in blocking mode or not\r
839\r
840 @retval EFI_INVALID_PARAMETER CpuNumber not valid\r
841 @retval EFI_INVALID_PARAMETER CpuNumber specifying BSP\r
842 @retval EFI_INVALID_PARAMETER The AP specified by CpuNumber did not enter SMM\r
843 @retval EFI_INVALID_PARAMETER The AP specified by CpuNumber is busy\r
844 @retval EFI_SUCCESS The procedure has been successfully scheduled\r
845\r
846**/\r
847EFI_STATUS\r
848InternalSmmStartupThisAp (\r
849 IN EFI_AP_PROCEDURE Procedure,\r
850 IN UINTN CpuIndex,\r
851 IN OUT VOID *ProcArguments OPTIONAL,\r
852 IN BOOLEAN BlockingMode\r
853 )\r
854{\r
855 if (CpuIndex >= gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus) {\r
856 DEBUG((DEBUG_ERROR, "CpuIndex(%d) >= gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus(%d)\n", CpuIndex, gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus));\r
857 return EFI_INVALID_PARAMETER;\r
858 }\r
859 if (CpuIndex == gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu) {\r
860 DEBUG((DEBUG_ERROR, "CpuIndex(%d) == gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu\n", CpuIndex));\r
861 return EFI_INVALID_PARAMETER;\r
862 }\r
863 if (!(*(mSmmMpSyncData->CpuData[CpuIndex].Present))) {\r
864 if (mSmmMpSyncData->EffectiveSyncMode == SmmCpuSyncModeTradition) {\r
865 DEBUG((DEBUG_ERROR, "!mSmmMpSyncData->CpuData[%d].Present\n", CpuIndex));\r
866 }\r
867 return EFI_INVALID_PARAMETER;\r
868 }\r
869 if (gSmmCpuPrivate->Operation[CpuIndex] == SmmCpuRemove) {\r
870 if (!FeaturePcdGet (PcdCpuHotPlugSupport)) {\r
871 DEBUG((DEBUG_ERROR, "gSmmCpuPrivate->Operation[%d] == SmmCpuRemove\n", CpuIndex));\r
872 }\r
873 return EFI_INVALID_PARAMETER;\r
874 }\r
875\r
876 if (BlockingMode) {\r
877 AcquireSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy);\r
878 } else {\r
879 if (!AcquireSpinLockOrFail (mSmmMpSyncData->CpuData[CpuIndex].Busy)) {\r
880 DEBUG((DEBUG_ERROR, "mSmmMpSyncData->CpuData[%d].Busy\n", CpuIndex));\r
881 return EFI_INVALID_PARAMETER;\r
882 }\r
883 }\r
884\r
885 mSmmMpSyncData->CpuData[CpuIndex].Procedure = Procedure;\r
886 mSmmMpSyncData->CpuData[CpuIndex].Parameter = ProcArguments;\r
887 ReleaseSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);\r
888\r
889 if (BlockingMode) {\r
890 AcquireSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy);\r
891 ReleaseSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy);\r
892 }\r
893 return EFI_SUCCESS;\r
894}\r
895\r
896/**\r
897 Schedule a procedure to run on the specified CPU in blocking mode.\r
898\r
899 @param[in] Procedure The address of the procedure to run\r
900 @param[in] CpuIndex Target CPU Index\r
901 @param[in, out] ProcArguments The parameter to pass to the procedure\r
902\r
903 @retval EFI_INVALID_PARAMETER CpuNumber not valid\r
904 @retval EFI_INVALID_PARAMETER CpuNumber specifying BSP\r
905 @retval EFI_INVALID_PARAMETER The AP specified by CpuNumber did not enter SMM\r
906 @retval EFI_INVALID_PARAMETER The AP specified by CpuNumber is busy\r
907 @retval EFI_SUCCESS The procedure has been successfully scheduled\r
908\r
909**/\r
910EFI_STATUS\r
911EFIAPI\r
912SmmBlockingStartupThisAp (\r
913 IN EFI_AP_PROCEDURE Procedure,\r
914 IN UINTN CpuIndex,\r
915 IN OUT VOID *ProcArguments OPTIONAL\r
916 )\r
917{\r
918 return InternalSmmStartupThisAp(Procedure, CpuIndex, ProcArguments, TRUE);\r
919}\r
920\r
921/**\r
922 Schedule a procedure to run on the specified CPU.\r
923\r
924 @param Procedure The address of the procedure to run\r
925 @param CpuIndex Target CPU Index\r
926 @param ProcArguments The parameter to pass to the procedure\r
927\r
928 @retval EFI_INVALID_PARAMETER CpuNumber not valid\r
929 @retval EFI_INVALID_PARAMETER CpuNumber specifying BSP\r
930 @retval EFI_INVALID_PARAMETER The AP specified by CpuNumber did not enter SMM\r
931 @retval EFI_INVALID_PARAMETER The AP specified by CpuNumber is busy\r
932 @retval EFI_SUCCESS The procedure has been successfully scheduled\r
933\r
934**/\r
935EFI_STATUS\r
936EFIAPI\r
937SmmStartupThisAp (\r
938 IN EFI_AP_PROCEDURE Procedure,\r
939 IN UINTN CpuIndex,\r
940 IN OUT VOID *ProcArguments OPTIONAL\r
941 )\r
942{\r
943 return InternalSmmStartupThisAp(Procedure, CpuIndex, ProcArguments, FeaturePcdGet (PcdCpuSmmBlockStartupThisAp));\r
944}\r
945\r
946/**\r
947 This function sets DR6 & DR7 according to SMM save state, before running SMM C code.\r
948 They are useful when you want to enable hardware breakpoints in SMM without entry SMM mode.\r
949\r
950 NOTE: It might not be appreciated in runtime since it might\r
951 conflict with OS debugging facilities. Turn them off in RELEASE.\r
952\r
953 @param CpuIndex CPU Index\r
954\r
955**/\r
956VOID\r
957EFIAPI\r
958CpuSmmDebugEntry (\r
959 IN UINTN CpuIndex\r
960 )\r
961{\r
962 SMRAM_SAVE_STATE_MAP *CpuSaveState;\r
963 \r
964 if (FeaturePcdGet (PcdCpuSmmDebug)) {\r
965 ASSERT(CpuIndex < mMaxNumberOfCpus);\r
966 CpuSaveState = (SMRAM_SAVE_STATE_MAP *)gSmmCpuPrivate->CpuSaveState[CpuIndex];\r
967 if (mSmmSaveStateRegisterLma == EFI_SMM_SAVE_STATE_REGISTER_LMA_32BIT) {\r
968 AsmWriteDr6 (CpuSaveState->x86._DR6);\r
969 AsmWriteDr7 (CpuSaveState->x86._DR7);\r
970 } else {\r
971 AsmWriteDr6 ((UINTN)CpuSaveState->x64._DR6);\r
972 AsmWriteDr7 ((UINTN)CpuSaveState->x64._DR7);\r
973 }\r
974 }\r
975}\r
976\r
977/**\r
978 This function restores DR6 & DR7 to SMM save state.\r
979\r
980 NOTE: It might not be appreciated in runtime since it might\r
981 conflict with OS debugging facilities. Turn them off in RELEASE.\r
982\r
983 @param CpuIndex CPU Index\r
984\r
985**/\r
986VOID\r
987EFIAPI\r
988CpuSmmDebugExit (\r
989 IN UINTN CpuIndex\r
990 )\r
991{\r
992 SMRAM_SAVE_STATE_MAP *CpuSaveState;\r
993\r
994 if (FeaturePcdGet (PcdCpuSmmDebug)) {\r
995 ASSERT(CpuIndex < mMaxNumberOfCpus);\r
996 CpuSaveState = (SMRAM_SAVE_STATE_MAP *)gSmmCpuPrivate->CpuSaveState[CpuIndex];\r
997 if (mSmmSaveStateRegisterLma == EFI_SMM_SAVE_STATE_REGISTER_LMA_32BIT) {\r
998 CpuSaveState->x86._DR7 = (UINT32)AsmReadDr7 ();\r
999 CpuSaveState->x86._DR6 = (UINT32)AsmReadDr6 ();\r
1000 } else {\r
1001 CpuSaveState->x64._DR7 = AsmReadDr7 ();\r
1002 CpuSaveState->x64._DR6 = AsmReadDr6 ();\r
1003 }\r
1004 }\r
1005}\r
1006\r
1007/**\r
1008 C function for SMI entry, each processor comes here upon SMI trigger.\r
1009\r
1010 @param CpuIndex CPU Index\r
1011\r
1012**/\r
1013VOID\r
1014EFIAPI\r
1015SmiRendezvous (\r
1016 IN UINTN CpuIndex\r
1017 )\r
1018{\r
1019 EFI_STATUS Status;\r
1020 BOOLEAN ValidSmi;\r
1021 BOOLEAN IsBsp;\r
1022 BOOLEAN BspInProgress;\r
1023 UINTN Index;\r
1024 UINTN Cr2;\r
1025\r
1026 ASSERT(CpuIndex < mMaxNumberOfCpus);\r
1027\r
1028 //\r
1029 // Save Cr2 because Page Fault exception in SMM may override its value\r
1030 //\r
1031 Cr2 = AsmReadCr2 ();\r
1032\r
1033 //\r
1034 // Perform CPU specific entry hooks\r
1035 //\r
1036 SmmCpuFeaturesRendezvousEntry (CpuIndex);\r
1037\r
1038 //\r
1039 // Determine if this is a valid SMI\r
1040 //\r
1041 ValidSmi = PlatformValidSmi();\r
1042\r
1043 //\r
1044 // Determine if BSP has been already in progress. Note this must be checked after\r
1045 // ValidSmi because BSP may clear a valid SMI source after checking in.\r
1046 //\r
1047 BspInProgress = *mSmmMpSyncData->InsideSmm;\r
1048\r
1049 if (!BspInProgress && !ValidSmi) {\r
1050 //\r
1051 // If we reach here, it means when we sampled the ValidSmi flag, SMI status had not\r
1052 // been cleared by BSP in a new SMI run (so we have a truly invalid SMI), or SMI\r
1053 // status had been cleared by BSP and an existing SMI run has almost ended. (Note\r
1054 // we sampled ValidSmi flag BEFORE judging BSP-in-progress status.) In both cases, there\r
1055 // is nothing we need to do.\r
1056 //\r
1057 goto Exit;\r
1058 } else {\r
1059 //\r
1060 // Signal presence of this processor\r
1061 //\r
1062 if (ReleaseSemaphore (mSmmMpSyncData->Counter) == 0) {\r
1063 //\r
1064 // BSP has already ended the synchronization, so QUIT!!!\r
1065 //\r
1066\r
1067 //\r
1068 // Wait for BSP's signal to finish SMI\r
1069 //\r
1070 while (*mSmmMpSyncData->AllCpusInSync) {\r
1071 CpuPause ();\r
1072 }\r
1073 goto Exit;\r
1074 } else {\r
1075\r
1076 //\r
1077 // The BUSY lock is initialized to Released state.\r
1078 // This needs to be done early enough to be ready for BSP's SmmStartupThisAp() call.\r
1079 // E.g., with Relaxed AP flow, SmmStartupThisAp() may be called immediately\r
1080 // after AP's present flag is detected.\r
1081 //\r
1082 InitializeSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy);\r
1083 }\r
1084\r
1085 if (FeaturePcdGet (PcdCpuSmmProfileEnable)) {\r
1086 ActivateSmmProfile (CpuIndex);\r
1087 }\r
1088\r
1089 if (BspInProgress) {\r
1090 //\r
1091 // BSP has been elected. Follow AP path, regardless of ValidSmi flag\r
1092 // as BSP may have cleared the SMI status\r
1093 //\r
1094 APHandler (CpuIndex, ValidSmi, mSmmMpSyncData->EffectiveSyncMode);\r
1095 } else {\r
1096 //\r
1097 // We have a valid SMI\r
1098 //\r
1099\r
1100 //\r
1101 // Elect BSP\r
1102 //\r
1103 IsBsp = FALSE;\r
1104 if (FeaturePcdGet (PcdCpuSmmEnableBspElection)) {\r
1105 if (!mSmmMpSyncData->SwitchBsp || mSmmMpSyncData->CandidateBsp[CpuIndex]) {\r
1106 //\r
1107 // Call platform hook to do BSP election\r
1108 //\r
1109 Status = PlatformSmmBspElection (&IsBsp);\r
1110 if (EFI_SUCCESS == Status) {\r
1111 //\r
1112 // Platform hook determines successfully\r
1113 //\r
1114 if (IsBsp) {\r
1115 mSmmMpSyncData->BspIndex = (UINT32)CpuIndex;\r
1116 }\r
1117 } else {\r
1118 //\r
1119 // Platform hook fails to determine, use default BSP election method\r
1120 //\r
1121 InterlockedCompareExchange32 (\r
1122 (UINT32*)&mSmmMpSyncData->BspIndex,\r
1123 (UINT32)-1,\r
1124 (UINT32)CpuIndex\r
1125 );\r
1126 }\r
1127 }\r
1128 }\r
1129\r
1130 //\r
1131 // "mSmmMpSyncData->BspIndex == CpuIndex" means this is the BSP\r
1132 //\r
1133 if (mSmmMpSyncData->BspIndex == CpuIndex) {\r
1134\r
1135 //\r
1136 // Clear last request for SwitchBsp.\r
1137 //\r
1138 if (mSmmMpSyncData->SwitchBsp) {\r
1139 mSmmMpSyncData->SwitchBsp = FALSE;\r
1140 for (Index = 0; Index < mMaxNumberOfCpus; Index++) {\r
1141 mSmmMpSyncData->CandidateBsp[Index] = FALSE;\r
1142 }\r
1143 }\r
1144\r
1145 if (FeaturePcdGet (PcdCpuSmmProfileEnable)) {\r
1146 SmmProfileRecordSmiNum ();\r
1147 }\r
1148\r
1149 //\r
1150 // BSP Handler is always called with a ValidSmi == TRUE\r
1151 //\r
1152 BSPHandler (CpuIndex, mSmmMpSyncData->EffectiveSyncMode);\r
1153 } else {\r
1154 APHandler (CpuIndex, ValidSmi, mSmmMpSyncData->EffectiveSyncMode);\r
1155 }\r
1156 }\r
1157\r
1158 ASSERT (*mSmmMpSyncData->CpuData[CpuIndex].Run == 0);\r
1159\r
1160 //\r
1161 // Wait for BSP's signal to exit SMI\r
1162 //\r
1163 while (*mSmmMpSyncData->AllCpusInSync) {\r
1164 CpuPause ();\r
1165 }\r
1166 }\r
1167\r
1168Exit:\r
1169 SmmCpuFeaturesRendezvousExit (CpuIndex);\r
1170 //\r
1171 // Restore Cr2\r
1172 //\r
1173 AsmWriteCr2 (Cr2);\r
1174}\r
1175\r
1176/**\r
1177 Allocate buffer for all semaphores and spin locks.\r
1178\r
1179**/\r
1180VOID\r
1181InitializeSmmCpuSemaphores (\r
1182 VOID\r
1183 )\r
1184{\r
1185 UINTN ProcessorCount;\r
1186 UINTN TotalSize;\r
1187 UINTN GlobalSemaphoresSize;\r
1188 UINTN CpuSemaphoresSize;\r
1189 UINTN MsrSemahporeSize;\r
1190 UINTN SemaphoreSize;\r
1191 UINTN Pages;\r
1192 UINTN *SemaphoreBlock;\r
1193 UINTN SemaphoreAddr;\r
1194\r
1195 SemaphoreSize = GetSpinLockProperties ();\r
1196 ProcessorCount = gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus;\r
1197 GlobalSemaphoresSize = (sizeof (SMM_CPU_SEMAPHORE_GLOBAL) / sizeof (VOID *)) * SemaphoreSize;\r
1198 CpuSemaphoresSize = (sizeof (SMM_CPU_SEMAPHORE_CPU) / sizeof (VOID *)) * ProcessorCount * SemaphoreSize;\r
1199 MsrSemahporeSize = MSR_SPIN_LOCK_INIT_NUM * SemaphoreSize;\r
1200 TotalSize = GlobalSemaphoresSize + CpuSemaphoresSize + MsrSemahporeSize;\r
1201 DEBUG((EFI_D_INFO, "One Semaphore Size = 0x%x\n", SemaphoreSize));\r
1202 DEBUG((EFI_D_INFO, "Total Semaphores Size = 0x%x\n", TotalSize));\r
1203 Pages = EFI_SIZE_TO_PAGES (TotalSize);\r
1204 SemaphoreBlock = AllocatePages (Pages);\r
1205 ASSERT (SemaphoreBlock != NULL);\r
1206 ZeroMem (SemaphoreBlock, TotalSize);\r
1207\r
1208 SemaphoreAddr = (UINTN)SemaphoreBlock;\r
1209 mSmmCpuSemaphores.SemaphoreGlobal.Counter = (UINT32 *)SemaphoreAddr;\r
1210 SemaphoreAddr += SemaphoreSize;\r
1211 mSmmCpuSemaphores.SemaphoreGlobal.InsideSmm = (BOOLEAN *)SemaphoreAddr;\r
1212 SemaphoreAddr += SemaphoreSize;\r
1213 mSmmCpuSemaphores.SemaphoreGlobal.AllCpusInSync = (BOOLEAN *)SemaphoreAddr;\r
1214 SemaphoreAddr += SemaphoreSize;\r
1215 mSmmCpuSemaphores.SemaphoreGlobal.PFLock = (SPIN_LOCK *)SemaphoreAddr;\r
1216 SemaphoreAddr += SemaphoreSize;\r
1217 mSmmCpuSemaphores.SemaphoreGlobal.CodeAccessCheckLock\r
1218 = (SPIN_LOCK *)SemaphoreAddr;\r
1219 SemaphoreAddr += SemaphoreSize;\r
1220 mSmmCpuSemaphores.SemaphoreGlobal.MemoryMappedLock\r
1221 = (SPIN_LOCK *)SemaphoreAddr;\r
1222\r
1223 SemaphoreAddr = (UINTN)SemaphoreBlock + GlobalSemaphoresSize;\r
1224 mSmmCpuSemaphores.SemaphoreCpu.Busy = (SPIN_LOCK *)SemaphoreAddr;\r
1225 SemaphoreAddr += ProcessorCount * SemaphoreSize;\r
1226 mSmmCpuSemaphores.SemaphoreCpu.Run = (UINT32 *)SemaphoreAddr;\r
1227 SemaphoreAddr += ProcessorCount * SemaphoreSize;\r
1228 mSmmCpuSemaphores.SemaphoreCpu.Present = (BOOLEAN *)SemaphoreAddr;\r
1229\r
1230 SemaphoreAddr = (UINTN)SemaphoreBlock + GlobalSemaphoresSize + CpuSemaphoresSize;\r
1231 mSmmCpuSemaphores.SemaphoreMsr.Msr = (SPIN_LOCK *)SemaphoreAddr;\r
1232 mSmmCpuSemaphores.SemaphoreMsr.AvailableCounter =\r
1233 ((UINTN)SemaphoreBlock + Pages * SIZE_4KB - SemaphoreAddr) / SemaphoreSize;\r
1234 ASSERT (mSmmCpuSemaphores.SemaphoreMsr.AvailableCounter >= MSR_SPIN_LOCK_INIT_NUM);\r
1235\r
1236 mPFLock = mSmmCpuSemaphores.SemaphoreGlobal.PFLock;\r
1237 mConfigSmmCodeAccessCheckLock = mSmmCpuSemaphores.SemaphoreGlobal.CodeAccessCheckLock;\r
1238 mMemoryMappedLock = mSmmCpuSemaphores.SemaphoreGlobal.MemoryMappedLock;\r
1239\r
1240 mSemaphoreSize = SemaphoreSize;\r
1241}\r
1242\r
1243/**\r
1244 Initialize un-cacheable data.\r
1245\r
1246**/\r
1247VOID\r
1248EFIAPI\r
1249InitializeMpSyncData (\r
1250 VOID\r
1251 )\r
1252{\r
1253 UINTN CpuIndex;\r
1254\r
1255 if (mSmmMpSyncData != NULL) {\r
1256 //\r
1257 // mSmmMpSyncDataSize includes one structure of SMM_DISPATCHER_MP_SYNC_DATA, one\r
1258 // CpuData array of SMM_CPU_DATA_BLOCK and one CandidateBsp array of BOOLEAN.\r
1259 //\r
1260 ZeroMem (mSmmMpSyncData, mSmmMpSyncDataSize);\r
1261 mSmmMpSyncData->CpuData = (SMM_CPU_DATA_BLOCK *)((UINT8 *)mSmmMpSyncData + sizeof (SMM_DISPATCHER_MP_SYNC_DATA));\r
1262 mSmmMpSyncData->CandidateBsp = (BOOLEAN *)(mSmmMpSyncData->CpuData + gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus);\r
1263 if (FeaturePcdGet (PcdCpuSmmEnableBspElection)) {\r
1264 //\r
1265 // Enable BSP election by setting BspIndex to -1\r
1266 //\r
1267 mSmmMpSyncData->BspIndex = (UINT32)-1;\r
1268 }\r
1269 mSmmMpSyncData->EffectiveSyncMode = mCpuSmmSyncMode;\r
1270\r
1271 mSmmMpSyncData->Counter = mSmmCpuSemaphores.SemaphoreGlobal.Counter;\r
1272 mSmmMpSyncData->InsideSmm = mSmmCpuSemaphores.SemaphoreGlobal.InsideSmm;\r
1273 mSmmMpSyncData->AllCpusInSync = mSmmCpuSemaphores.SemaphoreGlobal.AllCpusInSync;\r
1274 ASSERT (mSmmMpSyncData->Counter != NULL && mSmmMpSyncData->InsideSmm != NULL &&\r
1275 mSmmMpSyncData->AllCpusInSync != NULL);\r
1276 *mSmmMpSyncData->Counter = 0;\r
1277 *mSmmMpSyncData->InsideSmm = FALSE;\r
1278 *mSmmMpSyncData->AllCpusInSync = FALSE;\r
1279\r
1280 for (CpuIndex = 0; CpuIndex < gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus; CpuIndex ++) {\r
1281 mSmmMpSyncData->CpuData[CpuIndex].Busy =\r
1282 (SPIN_LOCK *)((UINTN)mSmmCpuSemaphores.SemaphoreCpu.Busy + mSemaphoreSize * CpuIndex);\r
1283 mSmmMpSyncData->CpuData[CpuIndex].Run =\r
1284 (UINT32 *)((UINTN)mSmmCpuSemaphores.SemaphoreCpu.Run + mSemaphoreSize * CpuIndex);\r
1285 mSmmMpSyncData->CpuData[CpuIndex].Present =\r
1286 (BOOLEAN *)((UINTN)mSmmCpuSemaphores.SemaphoreCpu.Present + mSemaphoreSize * CpuIndex);\r
1287 *(mSmmMpSyncData->CpuData[CpuIndex].Busy) = 0;\r
1288 *(mSmmMpSyncData->CpuData[CpuIndex].Run) = 0;\r
1289 *(mSmmMpSyncData->CpuData[CpuIndex].Present) = FALSE;\r
1290 }\r
1291 }\r
1292}\r
1293\r
1294/**\r
1295 Initialize global data for MP synchronization.\r
1296\r
1297 @param Stacks Base address of SMI stack buffer for all processors.\r
1298 @param StackSize Stack size for each processor in SMM.\r
1299\r
1300**/\r
1301UINT32\r
1302InitializeMpServiceData (\r
1303 IN VOID *Stacks,\r
1304 IN UINTN StackSize\r
1305 )\r
1306{\r
1307 UINT32 Cr3;\r
1308 UINTN Index;\r
1309 UINT8 *GdtTssTables;\r
1310 UINTN GdtTableStepSize;\r
1311\r
1312 //\r
1313 // Allocate memory for all locks and semaphores\r
1314 //\r
1315 InitializeSmmCpuSemaphores ();\r
1316\r
1317 //\r
1318 // Initialize mSmmMpSyncData\r
1319 //\r
1320 mSmmMpSyncDataSize = sizeof (SMM_DISPATCHER_MP_SYNC_DATA) +\r
1321 (sizeof (SMM_CPU_DATA_BLOCK) + sizeof (BOOLEAN)) * gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus;\r
1322 mSmmMpSyncData = (SMM_DISPATCHER_MP_SYNC_DATA*) AllocatePages (EFI_SIZE_TO_PAGES (mSmmMpSyncDataSize));\r
1323 ASSERT (mSmmMpSyncData != NULL);\r
1324 mCpuSmmSyncMode = (SMM_CPU_SYNC_MODE)PcdGet8 (PcdCpuSmmSyncMode);\r
1325 InitializeMpSyncData ();\r
1326\r
1327 //\r
1328 // Initialize physical address mask\r
1329 // NOTE: Physical memory above virtual address limit is not supported !!!\r
1330 //\r
1331 AsmCpuid (0x80000008, (UINT32*)&Index, NULL, NULL, NULL);\r
1332 gPhyMask = LShiftU64 (1, (UINT8)Index) - 1;\r
1333 gPhyMask &= (1ull << 48) - EFI_PAGE_SIZE;\r
1334\r
1335 //\r
1336 // Create page tables\r
1337 //\r
1338 Cr3 = SmmInitPageTable ();\r
1339\r
1340 GdtTssTables = InitGdt (Cr3, &GdtTableStepSize);\r
1341\r
1342 //\r
1343 // Install SMI handler for each CPU\r
1344 //\r
1345 for (Index = 0; Index < mMaxNumberOfCpus; Index++) {\r
1346 InstallSmiHandler (\r
1347 Index,\r
1348 (UINT32)mCpuHotPlugData.SmBase[Index],\r
1349 (VOID*)((UINTN)Stacks + (StackSize * Index)),\r
1350 StackSize,\r
1351 (UINTN)(GdtTssTables + GdtTableStepSize * Index),\r
1352 gcSmiGdtr.Limit + 1,\r
1353 gcSmiIdtr.Base,\r
1354 gcSmiIdtr.Limit + 1,\r
1355 Cr3\r
1356 );\r
1357 }\r
1358\r
1359 //\r
1360 // Record current MTRR settings\r
1361 //\r
1362 ZeroMem (&gSmiMtrrs, sizeof (gSmiMtrrs));\r
1363 MtrrGetAllMtrrs (&gSmiMtrrs);\r
1364\r
1365 return Cr3;\r
1366}\r
1367\r
1368/**\r
1369\r
1370 Register the SMM Foundation entry point.\r
1371\r
1372 @param This Pointer to EFI_SMM_CONFIGURATION_PROTOCOL instance\r
1373 @param SmmEntryPoint SMM Foundation EntryPoint\r
1374\r
1375 @retval EFI_SUCCESS Successfully to register SMM foundation entry point\r
1376\r
1377**/\r
1378EFI_STATUS\r
1379EFIAPI\r
1380RegisterSmmEntry (\r
1381 IN CONST EFI_SMM_CONFIGURATION_PROTOCOL *This,\r
1382 IN EFI_SMM_ENTRY_POINT SmmEntryPoint\r
1383 )\r
1384{\r
1385 //\r
1386 // Record SMM Foundation EntryPoint, later invoke it on SMI entry vector.\r
1387 //\r
1388 gSmmCpuPrivate->SmmCoreEntry = SmmEntryPoint;\r
1389 return EFI_SUCCESS;\r
1390}\r