]> git.proxmox.com Git - mirror_edk2.git/blame_incremental - UefiCpuPkg/PiSmmCpuDxeSmm/MpService.c
UefiCpuPkg/PiSmmCpuDxeSmm: Add logic to support semaphore type.
[mirror_edk2.git] / UefiCpuPkg / PiSmmCpuDxeSmm / MpService.c
... / ...
CommitLineData
1/** @file\r
2SMM MP service implementation\r
3\r
4Copyright (c) 2009 - 2018, Intel Corporation. All rights reserved.<BR>\r
5Copyright (c) 2017, AMD Incorporated. All rights reserved.<BR>\r
6\r
7This program and the accompanying materials\r
8are licensed and made available under the terms and conditions of the BSD License\r
9which accompanies this distribution. The full text of the license may be found at\r
10http://opensource.org/licenses/bsd-license.php\r
11\r
12THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
13WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
14\r
15**/\r
16\r
17#include "PiSmmCpuDxeSmm.h"\r
18\r
19//\r
20// Slots for all MTRR( FIXED MTRR + VARIABLE MTRR + MTRR_LIB_IA32_MTRR_DEF_TYPE)\r
21//\r
22MTRR_SETTINGS gSmiMtrrs;\r
23UINT64 gPhyMask;\r
24SMM_DISPATCHER_MP_SYNC_DATA *mSmmMpSyncData = NULL;\r
25UINTN mSmmMpSyncDataSize;\r
26SMM_CPU_SEMAPHORES mSmmCpuSemaphores;\r
27UINTN mSemaphoreSize;\r
28SPIN_LOCK *mPFLock = NULL;\r
29SMM_CPU_SYNC_MODE mCpuSmmSyncMode;\r
30BOOLEAN mMachineCheckSupported = FALSE;\r
31\r
32/**\r
33 Performs an atomic compare exchange operation to get semaphore.\r
34 The compare exchange operation must be performed using\r
35 MP safe mechanisms.\r
36\r
37 @param Sem IN: 32-bit unsigned integer\r
38 OUT: original integer - 1\r
39 @return Original integer - 1\r
40\r
41**/\r
42UINT32\r
43WaitForSemaphore (\r
44 IN OUT volatile UINT32 *Sem\r
45 )\r
46{\r
47 UINT32 Value;\r
48\r
49 do {\r
50 Value = *Sem;\r
51 } while (Value == 0 ||\r
52 InterlockedCompareExchange32 (\r
53 (UINT32*)Sem,\r
54 Value,\r
55 Value - 1\r
56 ) != Value);\r
57 return Value - 1;\r
58}\r
59\r
60\r
61/**\r
62 Performs an atomic compare exchange operation to release semaphore.\r
63 The compare exchange operation must be performed using\r
64 MP safe mechanisms.\r
65\r
66 @param Sem IN: 32-bit unsigned integer\r
67 OUT: original integer + 1\r
68 @return Original integer + 1\r
69\r
70**/\r
71UINT32\r
72ReleaseSemaphore (\r
73 IN OUT volatile UINT32 *Sem\r
74 )\r
75{\r
76 UINT32 Value;\r
77\r
78 do {\r
79 Value = *Sem;\r
80 } while (Value + 1 != 0 &&\r
81 InterlockedCompareExchange32 (\r
82 (UINT32*)Sem,\r
83 Value,\r
84 Value + 1\r
85 ) != Value);\r
86 return Value + 1;\r
87}\r
88\r
89/**\r
90 Performs an atomic compare exchange operation to lock semaphore.\r
91 The compare exchange operation must be performed using\r
92 MP safe mechanisms.\r
93\r
94 @param Sem IN: 32-bit unsigned integer\r
95 OUT: -1\r
96 @return Original integer\r
97\r
98**/\r
99UINT32\r
100LockdownSemaphore (\r
101 IN OUT volatile UINT32 *Sem\r
102 )\r
103{\r
104 UINT32 Value;\r
105\r
106 do {\r
107 Value = *Sem;\r
108 } while (InterlockedCompareExchange32 (\r
109 (UINT32*)Sem,\r
110 Value, (UINT32)-1\r
111 ) != Value);\r
112 return Value;\r
113}\r
114\r
115/**\r
116 Wait all APs to performs an atomic compare exchange operation to release semaphore.\r
117\r
118 @param NumberOfAPs AP number\r
119\r
120**/\r
121VOID\r
122WaitForAllAPs (\r
123 IN UINTN NumberOfAPs\r
124 )\r
125{\r
126 UINTN BspIndex;\r
127\r
128 BspIndex = mSmmMpSyncData->BspIndex;\r
129 while (NumberOfAPs-- > 0) {\r
130 WaitForSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);\r
131 }\r
132}\r
133\r
134/**\r
135 Performs an atomic compare exchange operation to release semaphore\r
136 for each AP.\r
137\r
138**/\r
139VOID\r
140ReleaseAllAPs (\r
141 VOID\r
142 )\r
143{\r
144 UINTN Index;\r
145 UINTN BspIndex;\r
146\r
147 BspIndex = mSmmMpSyncData->BspIndex;\r
148 for (Index = mMaxNumberOfCpus; Index-- > 0;) {\r
149 if (Index != BspIndex && *(mSmmMpSyncData->CpuData[Index].Present)) {\r
150 ReleaseSemaphore (mSmmMpSyncData->CpuData[Index].Run);\r
151 }\r
152 }\r
153}\r
154\r
155/**\r
156 Checks if all CPUs (with certain exceptions) have checked in for this SMI run\r
157\r
158 @param Exceptions CPU Arrival exception flags.\r
159\r
160 @retval TRUE if all CPUs the have checked in.\r
161 @retval FALSE if at least one Normal AP hasn't checked in.\r
162\r
163**/\r
164BOOLEAN\r
165AllCpusInSmmWithExceptions (\r
166 SMM_CPU_ARRIVAL_EXCEPTIONS Exceptions\r
167 )\r
168{\r
169 UINTN Index;\r
170 SMM_CPU_DATA_BLOCK *CpuData;\r
171 EFI_PROCESSOR_INFORMATION *ProcessorInfo;\r
172\r
173 ASSERT (*mSmmMpSyncData->Counter <= mNumberOfCpus);\r
174\r
175 if (*mSmmMpSyncData->Counter == mNumberOfCpus) {\r
176 return TRUE;\r
177 }\r
178\r
179 CpuData = mSmmMpSyncData->CpuData;\r
180 ProcessorInfo = gSmmCpuPrivate->ProcessorInfo;\r
181 for (Index = mMaxNumberOfCpus; Index-- > 0;) {\r
182 if (!(*(CpuData[Index].Present)) && ProcessorInfo[Index].ProcessorId != INVALID_APIC_ID) {\r
183 if (((Exceptions & ARRIVAL_EXCEPTION_DELAYED) != 0) && SmmCpuFeaturesGetSmmRegister (Index, SmmRegSmmDelayed) != 0) {\r
184 continue;\r
185 }\r
186 if (((Exceptions & ARRIVAL_EXCEPTION_BLOCKED) != 0) && SmmCpuFeaturesGetSmmRegister (Index, SmmRegSmmBlocked) != 0) {\r
187 continue;\r
188 }\r
189 if (((Exceptions & ARRIVAL_EXCEPTION_SMI_DISABLED) != 0) && SmmCpuFeaturesGetSmmRegister (Index, SmmRegSmmEnable) != 0) {\r
190 continue;\r
191 }\r
192 return FALSE;\r
193 }\r
194 }\r
195\r
196\r
197 return TRUE;\r
198}\r
199\r
200/**\r
201 Has OS enabled Lmce in the MSR_IA32_MCG_EXT_CTL\r
202\r
203 @retval TRUE Os enable lmce.\r
204 @retval FALSE Os not enable lmce.\r
205\r
206**/\r
207BOOLEAN\r
208IsLmceOsEnabled (\r
209 VOID\r
210 )\r
211{\r
212 MSR_IA32_MCG_CAP_REGISTER McgCap;\r
213 MSR_IA32_FEATURE_CONTROL_REGISTER FeatureCtrl;\r
214 MSR_IA32_MCG_EXT_CTL_REGISTER McgExtCtrl;\r
215\r
216 McgCap.Uint64 = AsmReadMsr64 (MSR_IA32_MCG_CAP);\r
217 if (McgCap.Bits.MCG_LMCE_P == 0) {\r
218 return FALSE;\r
219 }\r
220\r
221 FeatureCtrl.Uint64 = AsmReadMsr64 (MSR_IA32_FEATURE_CONTROL);\r
222 if (FeatureCtrl.Bits.LmceOn == 0) {\r
223 return FALSE;\r
224 }\r
225\r
226 McgExtCtrl.Uint64 = AsmReadMsr64 (MSR_IA32_MCG_EXT_CTL);\r
227 return (BOOLEAN) (McgExtCtrl.Bits.LMCE_EN == 1);\r
228}\r
229\r
230/**\r
231 Return if Local machine check exception signaled.\r
232\r
233 Indicates (when set) that a local machine check exception was generated. This indicates that the current machine-check event was\r
234 delivered to only the logical processor.\r
235\r
236 @retval TRUE LMCE was signaled.\r
237 @retval FALSE LMCE was not signaled.\r
238\r
239**/\r
240BOOLEAN\r
241IsLmceSignaled (\r
242 VOID\r
243 )\r
244{\r
245 MSR_IA32_MCG_STATUS_REGISTER McgStatus;\r
246\r
247 McgStatus.Uint64 = AsmReadMsr64 (MSR_IA32_MCG_STATUS);\r
248 return (BOOLEAN) (McgStatus.Bits.LMCE_S == 1);\r
249}\r
250\r
251/**\r
252 Given timeout constraint, wait for all APs to arrive, and insure when this function returns, no AP will execute normal mode code before\r
253 entering SMM, except SMI disabled APs.\r
254\r
255**/\r
256VOID\r
257SmmWaitForApArrival (\r
258 VOID\r
259 )\r
260{\r
261 UINT64 Timer;\r
262 UINTN Index;\r
263 BOOLEAN LmceEn;\r
264 BOOLEAN LmceSignal;\r
265\r
266 ASSERT (*mSmmMpSyncData->Counter <= mNumberOfCpus);\r
267\r
268 LmceEn = FALSE;\r
269 LmceSignal = FALSE;\r
270 if (mMachineCheckSupported) {\r
271 LmceEn = IsLmceOsEnabled ();\r
272 LmceSignal = IsLmceSignaled();\r
273 }\r
274\r
275 //\r
276 // Platform implementor should choose a timeout value appropriately:\r
277 // - The timeout value should balance the SMM time constrains and the likelihood that delayed CPUs are excluded in the SMM run. Note\r
278 // the SMI Handlers must ALWAYS take into account the cases that not all APs are available in an SMI run.\r
279 // - The timeout value must, in the case of 2nd timeout, be at least long enough to give time for all APs to receive the SMI IPI\r
280 // and either enter SMM or buffer the SMI, to insure there is no CPU running normal mode code when SMI handling starts. This will\r
281 // be TRUE even if a blocked CPU is brought out of the blocked state by a normal mode CPU (before the normal mode CPU received the\r
282 // SMI IPI), because with a buffered SMI, and CPU will enter SMM immediately after it is brought out of the blocked state.\r
283 // - The timeout value must be longer than longest possible IO operation in the system\r
284 //\r
285\r
286 //\r
287 // Sync with APs 1st timeout\r
288 //\r
289 for (Timer = StartSyncTimer ();\r
290 !IsSyncTimerTimeout (Timer) && !(LmceEn && LmceSignal) &&\r
291 !AllCpusInSmmWithExceptions (ARRIVAL_EXCEPTION_BLOCKED | ARRIVAL_EXCEPTION_SMI_DISABLED );\r
292 ) {\r
293 CpuPause ();\r
294 }\r
295\r
296 //\r
297 // Not all APs have arrived, so we need 2nd round of timeout. IPIs should be sent to ALL none present APs,\r
298 // because:\r
299 // a) Delayed AP may have just come out of the delayed state. Blocked AP may have just been brought out of blocked state by some AP running\r
300 // normal mode code. These APs need to be guaranteed to have an SMI pending to insure that once they are out of delayed / blocked state, they\r
301 // enter SMI immediately without executing instructions in normal mode. Note traditional flow requires there are no APs doing normal mode\r
302 // work while SMI handling is on-going.\r
303 // b) As a consequence of SMI IPI sending, (spurious) SMI may occur after this SMM run.\r
304 // c) ** NOTE **: Use SMI disabling feature VERY CAREFULLY (if at all) for traditional flow, because a processor in SMI-disabled state\r
305 // will execute normal mode code, which breaks the traditional SMI handlers' assumption that no APs are doing normal\r
306 // mode work while SMI handling is on-going.\r
307 // d) We don't add code to check SMI disabling status to skip sending IPI to SMI disabled APs, because:\r
308 // - In traditional flow, SMI disabling is discouraged.\r
309 // - In relaxed flow, CheckApArrival() will check SMI disabling status before calling this function.\r
310 // In both cases, adding SMI-disabling checking code increases overhead.\r
311 //\r
312 if (*mSmmMpSyncData->Counter < mNumberOfCpus) {\r
313 //\r
314 // Send SMI IPIs to bring outside processors in\r
315 //\r
316 for (Index = mMaxNumberOfCpus; Index-- > 0;) {\r
317 if (!(*(mSmmMpSyncData->CpuData[Index].Present)) && gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId != INVALID_APIC_ID) {\r
318 SendSmiIpi ((UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId);\r
319 }\r
320 }\r
321\r
322 //\r
323 // Sync with APs 2nd timeout.\r
324 //\r
325 for (Timer = StartSyncTimer ();\r
326 !IsSyncTimerTimeout (Timer) &&\r
327 !AllCpusInSmmWithExceptions (ARRIVAL_EXCEPTION_BLOCKED | ARRIVAL_EXCEPTION_SMI_DISABLED );\r
328 ) {\r
329 CpuPause ();\r
330 }\r
331 }\r
332\r
333 return;\r
334}\r
335\r
336\r
337/**\r
338 Replace OS MTRR's with SMI MTRR's.\r
339\r
340 @param CpuIndex Processor Index\r
341\r
342**/\r
343VOID\r
344ReplaceOSMtrrs (\r
345 IN UINTN CpuIndex\r
346 )\r
347{\r
348 SmmCpuFeaturesDisableSmrr ();\r
349\r
350 //\r
351 // Replace all MTRRs registers\r
352 //\r
353 MtrrSetAllMtrrs (&gSmiMtrrs);\r
354}\r
355\r
356/**\r
357 SMI handler for BSP.\r
358\r
359 @param CpuIndex BSP processor Index\r
360 @param SyncMode SMM MP sync mode\r
361\r
362**/\r
363VOID\r
364BSPHandler (\r
365 IN UINTN CpuIndex,\r
366 IN SMM_CPU_SYNC_MODE SyncMode\r
367 )\r
368{\r
369 UINTN Index;\r
370 MTRR_SETTINGS Mtrrs;\r
371 UINTN ApCount;\r
372 BOOLEAN ClearTopLevelSmiResult;\r
373 UINTN PresentCount;\r
374\r
375 ASSERT (CpuIndex == mSmmMpSyncData->BspIndex);\r
376 ApCount = 0;\r
377\r
378 //\r
379 // Flag BSP's presence\r
380 //\r
381 *mSmmMpSyncData->InsideSmm = TRUE;\r
382\r
383 //\r
384 // Initialize Debug Agent to start source level debug in BSP handler\r
385 //\r
386 InitializeDebugAgent (DEBUG_AGENT_INIT_ENTER_SMI, NULL, NULL);\r
387\r
388 //\r
389 // Mark this processor's presence\r
390 //\r
391 *(mSmmMpSyncData->CpuData[CpuIndex].Present) = TRUE;\r
392\r
393 //\r
394 // Clear platform top level SMI status bit before calling SMI handlers. If\r
395 // we cleared it after SMI handlers are run, we would miss the SMI that\r
396 // occurs after SMI handlers are done and before SMI status bit is cleared.\r
397 //\r
398 ClearTopLevelSmiResult = ClearTopLevelSmiStatus();\r
399 ASSERT (ClearTopLevelSmiResult == TRUE);\r
400\r
401 //\r
402 // Set running processor index\r
403 //\r
404 gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu = CpuIndex;\r
405\r
406 //\r
407 // If Traditional Sync Mode or need to configure MTRRs: gather all available APs.\r
408 //\r
409 if (SyncMode == SmmCpuSyncModeTradition || SmmCpuFeaturesNeedConfigureMtrrs()) {\r
410\r
411 //\r
412 // Wait for APs to arrive\r
413 //\r
414 SmmWaitForApArrival();\r
415\r
416 //\r
417 // Lock the counter down and retrieve the number of APs\r
418 //\r
419 *mSmmMpSyncData->AllCpusInSync = TRUE;\r
420 ApCount = LockdownSemaphore (mSmmMpSyncData->Counter) - 1;\r
421\r
422 //\r
423 // Wait for all APs to get ready for programming MTRRs\r
424 //\r
425 WaitForAllAPs (ApCount);\r
426\r
427 if (SmmCpuFeaturesNeedConfigureMtrrs()) {\r
428 //\r
429 // Signal all APs it's time for backup MTRRs\r
430 //\r
431 ReleaseAllAPs ();\r
432\r
433 //\r
434 // WaitForSemaphore() may wait for ever if an AP happens to enter SMM at\r
435 // exactly this point. Please make sure PcdCpuSmmMaxSyncLoops has been set\r
436 // to a large enough value to avoid this situation.\r
437 // Note: For HT capable CPUs, threads within a core share the same set of MTRRs.\r
438 // We do the backup first and then set MTRR to avoid race condition for threads\r
439 // in the same core.\r
440 //\r
441 MtrrGetAllMtrrs(&Mtrrs);\r
442\r
443 //\r
444 // Wait for all APs to complete their MTRR saving\r
445 //\r
446 WaitForAllAPs (ApCount);\r
447\r
448 //\r
449 // Let all processors program SMM MTRRs together\r
450 //\r
451 ReleaseAllAPs ();\r
452\r
453 //\r
454 // WaitForSemaphore() may wait for ever if an AP happens to enter SMM at\r
455 // exactly this point. Please make sure PcdCpuSmmMaxSyncLoops has been set\r
456 // to a large enough value to avoid this situation.\r
457 //\r
458 ReplaceOSMtrrs (CpuIndex);\r
459\r
460 //\r
461 // Wait for all APs to complete their MTRR programming\r
462 //\r
463 WaitForAllAPs (ApCount);\r
464 }\r
465 }\r
466\r
467 //\r
468 // The BUSY lock is initialized to Acquired state\r
469 //\r
470 AcquireSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy);\r
471\r
472 //\r
473 // Perform the pre tasks\r
474 //\r
475 PerformPreTasks ();\r
476\r
477 //\r
478 // Invoke SMM Foundation EntryPoint with the processor information context.\r
479 //\r
480 gSmmCpuPrivate->SmmCoreEntry (&gSmmCpuPrivate->SmmCoreEntryContext);\r
481\r
482 //\r
483 // Make sure all APs have completed their pending none-block tasks\r
484 //\r
485 for (Index = mMaxNumberOfCpus; Index-- > 0;) {\r
486 if (Index != CpuIndex && *(mSmmMpSyncData->CpuData[Index].Present)) {\r
487 AcquireSpinLock (mSmmMpSyncData->CpuData[Index].Busy);\r
488 ReleaseSpinLock (mSmmMpSyncData->CpuData[Index].Busy);\r
489 }\r
490 }\r
491\r
492 //\r
493 // Perform the remaining tasks\r
494 //\r
495 PerformRemainingTasks ();\r
496\r
497 //\r
498 // If Relaxed-AP Sync Mode: gather all available APs after BSP SMM handlers are done, and\r
499 // make those APs to exit SMI synchronously. APs which arrive later will be excluded and\r
500 // will run through freely.\r
501 //\r
502 if (SyncMode != SmmCpuSyncModeTradition && !SmmCpuFeaturesNeedConfigureMtrrs()) {\r
503\r
504 //\r
505 // Lock the counter down and retrieve the number of APs\r
506 //\r
507 *mSmmMpSyncData->AllCpusInSync = TRUE;\r
508 ApCount = LockdownSemaphore (mSmmMpSyncData->Counter) - 1;\r
509 //\r
510 // Make sure all APs have their Present flag set\r
511 //\r
512 while (TRUE) {\r
513 PresentCount = 0;\r
514 for (Index = mMaxNumberOfCpus; Index-- > 0;) {\r
515 if (*(mSmmMpSyncData->CpuData[Index].Present)) {\r
516 PresentCount ++;\r
517 }\r
518 }\r
519 if (PresentCount > ApCount) {\r
520 break;\r
521 }\r
522 }\r
523 }\r
524\r
525 //\r
526 // Notify all APs to exit\r
527 //\r
528 *mSmmMpSyncData->InsideSmm = FALSE;\r
529 ReleaseAllAPs ();\r
530\r
531 //\r
532 // Wait for all APs to complete their pending tasks\r
533 //\r
534 WaitForAllAPs (ApCount);\r
535\r
536 if (SmmCpuFeaturesNeedConfigureMtrrs()) {\r
537 //\r
538 // Signal APs to restore MTRRs\r
539 //\r
540 ReleaseAllAPs ();\r
541\r
542 //\r
543 // Restore OS MTRRs\r
544 //\r
545 SmmCpuFeaturesReenableSmrr ();\r
546 MtrrSetAllMtrrs(&Mtrrs);\r
547\r
548 //\r
549 // Wait for all APs to complete MTRR programming\r
550 //\r
551 WaitForAllAPs (ApCount);\r
552 }\r
553\r
554 //\r
555 // Stop source level debug in BSP handler, the code below will not be\r
556 // debugged.\r
557 //\r
558 InitializeDebugAgent (DEBUG_AGENT_INIT_EXIT_SMI, NULL, NULL);\r
559\r
560 //\r
561 // Signal APs to Reset states/semaphore for this processor\r
562 //\r
563 ReleaseAllAPs ();\r
564\r
565 //\r
566 // Perform pending operations for hot-plug\r
567 //\r
568 SmmCpuUpdate ();\r
569\r
570 //\r
571 // Clear the Present flag of BSP\r
572 //\r
573 *(mSmmMpSyncData->CpuData[CpuIndex].Present) = FALSE;\r
574\r
575 //\r
576 // Gather APs to exit SMM synchronously. Note the Present flag is cleared by now but\r
577 // WaitForAllAps does not depend on the Present flag.\r
578 //\r
579 WaitForAllAPs (ApCount);\r
580\r
581 //\r
582 // Reset BspIndex to -1, meaning BSP has not been elected.\r
583 //\r
584 if (FeaturePcdGet (PcdCpuSmmEnableBspElection)) {\r
585 mSmmMpSyncData->BspIndex = (UINT32)-1;\r
586 }\r
587\r
588 //\r
589 // Allow APs to check in from this point on\r
590 //\r
591 *mSmmMpSyncData->Counter = 0;\r
592 *mSmmMpSyncData->AllCpusInSync = FALSE;\r
593}\r
594\r
595/**\r
596 SMI handler for AP.\r
597\r
598 @param CpuIndex AP processor Index.\r
599 @param ValidSmi Indicates that current SMI is a valid SMI or not.\r
600 @param SyncMode SMM MP sync mode.\r
601\r
602**/\r
603VOID\r
604APHandler (\r
605 IN UINTN CpuIndex,\r
606 IN BOOLEAN ValidSmi,\r
607 IN SMM_CPU_SYNC_MODE SyncMode\r
608 )\r
609{\r
610 UINT64 Timer;\r
611 UINTN BspIndex;\r
612 MTRR_SETTINGS Mtrrs;\r
613\r
614 //\r
615 // Timeout BSP\r
616 //\r
617 for (Timer = StartSyncTimer ();\r
618 !IsSyncTimerTimeout (Timer) &&\r
619 !(*mSmmMpSyncData->InsideSmm);\r
620 ) {\r
621 CpuPause ();\r
622 }\r
623\r
624 if (!(*mSmmMpSyncData->InsideSmm)) {\r
625 //\r
626 // BSP timeout in the first round\r
627 //\r
628 if (mSmmMpSyncData->BspIndex != -1) {\r
629 //\r
630 // BSP Index is known\r
631 //\r
632 BspIndex = mSmmMpSyncData->BspIndex;\r
633 ASSERT (CpuIndex != BspIndex);\r
634\r
635 //\r
636 // Send SMI IPI to bring BSP in\r
637 //\r
638 SendSmiIpi ((UINT32)gSmmCpuPrivate->ProcessorInfo[BspIndex].ProcessorId);\r
639\r
640 //\r
641 // Now clock BSP for the 2nd time\r
642 //\r
643 for (Timer = StartSyncTimer ();\r
644 !IsSyncTimerTimeout (Timer) &&\r
645 !(*mSmmMpSyncData->InsideSmm);\r
646 ) {\r
647 CpuPause ();\r
648 }\r
649\r
650 if (!(*mSmmMpSyncData->InsideSmm)) {\r
651 //\r
652 // Give up since BSP is unable to enter SMM\r
653 // and signal the completion of this AP\r
654 WaitForSemaphore (mSmmMpSyncData->Counter);\r
655 return;\r
656 }\r
657 } else {\r
658 //\r
659 // Don't know BSP index. Give up without sending IPI to BSP.\r
660 //\r
661 WaitForSemaphore (mSmmMpSyncData->Counter);\r
662 return;\r
663 }\r
664 }\r
665\r
666 //\r
667 // BSP is available\r
668 //\r
669 BspIndex = mSmmMpSyncData->BspIndex;\r
670 ASSERT (CpuIndex != BspIndex);\r
671\r
672 //\r
673 // Mark this processor's presence\r
674 //\r
675 *(mSmmMpSyncData->CpuData[CpuIndex].Present) = TRUE;\r
676\r
677 if (SyncMode == SmmCpuSyncModeTradition || SmmCpuFeaturesNeedConfigureMtrrs()) {\r
678 //\r
679 // Notify BSP of arrival at this point\r
680 //\r
681 ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);\r
682 }\r
683\r
684 if (SmmCpuFeaturesNeedConfigureMtrrs()) {\r
685 //\r
686 // Wait for the signal from BSP to backup MTRRs\r
687 //\r
688 WaitForSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);\r
689\r
690 //\r
691 // Backup OS MTRRs\r
692 //\r
693 MtrrGetAllMtrrs(&Mtrrs);\r
694\r
695 //\r
696 // Signal BSP the completion of this AP\r
697 //\r
698 ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);\r
699\r
700 //\r
701 // Wait for BSP's signal to program MTRRs\r
702 //\r
703 WaitForSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);\r
704\r
705 //\r
706 // Replace OS MTRRs with SMI MTRRs\r
707 //\r
708 ReplaceOSMtrrs (CpuIndex);\r
709\r
710 //\r
711 // Signal BSP the completion of this AP\r
712 //\r
713 ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);\r
714 }\r
715\r
716 while (TRUE) {\r
717 //\r
718 // Wait for something to happen\r
719 //\r
720 WaitForSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);\r
721\r
722 //\r
723 // Check if BSP wants to exit SMM\r
724 //\r
725 if (!(*mSmmMpSyncData->InsideSmm)) {\r
726 break;\r
727 }\r
728\r
729 //\r
730 // BUSY should be acquired by SmmStartupThisAp()\r
731 //\r
732 ASSERT (\r
733 !AcquireSpinLockOrFail (mSmmMpSyncData->CpuData[CpuIndex].Busy)\r
734 );\r
735\r
736 //\r
737 // Invoke the scheduled procedure\r
738 //\r
739 (*mSmmMpSyncData->CpuData[CpuIndex].Procedure) (\r
740 (VOID*)mSmmMpSyncData->CpuData[CpuIndex].Parameter\r
741 );\r
742\r
743 //\r
744 // Release BUSY\r
745 //\r
746 ReleaseSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy);\r
747 }\r
748\r
749 if (SmmCpuFeaturesNeedConfigureMtrrs()) {\r
750 //\r
751 // Notify BSP the readiness of this AP to program MTRRs\r
752 //\r
753 ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);\r
754\r
755 //\r
756 // Wait for the signal from BSP to program MTRRs\r
757 //\r
758 WaitForSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);\r
759\r
760 //\r
761 // Restore OS MTRRs\r
762 //\r
763 SmmCpuFeaturesReenableSmrr ();\r
764 MtrrSetAllMtrrs(&Mtrrs);\r
765 }\r
766\r
767 //\r
768 // Notify BSP the readiness of this AP to Reset states/semaphore for this processor\r
769 //\r
770 ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);\r
771\r
772 //\r
773 // Wait for the signal from BSP to Reset states/semaphore for this processor\r
774 //\r
775 WaitForSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);\r
776\r
777 //\r
778 // Reset states/semaphore for this processor\r
779 //\r
780 *(mSmmMpSyncData->CpuData[CpuIndex].Present) = FALSE;\r
781\r
782 //\r
783 // Notify BSP the readiness of this AP to exit SMM\r
784 //\r
785 ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);\r
786\r
787}\r
788\r
789/**\r
790 Create 4G PageTable in SMRAM.\r
791\r
792 @param[in] Is32BitPageTable Whether the page table is 32-bit PAE\r
793 @return PageTable Address\r
794\r
795**/\r
796UINT32\r
797Gen4GPageTable (\r
798 IN BOOLEAN Is32BitPageTable\r
799 )\r
800{\r
801 VOID *PageTable;\r
802 UINTN Index;\r
803 UINT64 *Pte;\r
804 UINTN PagesNeeded;\r
805 UINTN Low2MBoundary;\r
806 UINTN High2MBoundary;\r
807 UINTN Pages;\r
808 UINTN GuardPage;\r
809 UINT64 *Pdpte;\r
810 UINTN PageIndex;\r
811 UINTN PageAddress;\r
812\r
813 Low2MBoundary = 0;\r
814 High2MBoundary = 0;\r
815 PagesNeeded = 0;\r
816 if (FeaturePcdGet (PcdCpuSmmStackGuard)) {\r
817 //\r
818 // Add one more page for known good stack, then find the lower 2MB aligned address.\r
819 //\r
820 Low2MBoundary = (mSmmStackArrayBase + EFI_PAGE_SIZE) & ~(SIZE_2MB-1);\r
821 //\r
822 // Add two more pages for known good stack and stack guard page,\r
823 // then find the lower 2MB aligned address.\r
824 //\r
825 High2MBoundary = (mSmmStackArrayEnd - mSmmStackSize + EFI_PAGE_SIZE * 2) & ~(SIZE_2MB-1);\r
826 PagesNeeded = ((High2MBoundary - Low2MBoundary) / SIZE_2MB) + 1;\r
827 }\r
828 //\r
829 // Allocate the page table\r
830 //\r
831 PageTable = AllocatePageTableMemory (5 + PagesNeeded);\r
832 ASSERT (PageTable != NULL);\r
833\r
834 PageTable = (VOID *)((UINTN)PageTable);\r
835 Pte = (UINT64*)PageTable;\r
836\r
837 //\r
838 // Zero out all page table entries first\r
839 //\r
840 ZeroMem (Pte, EFI_PAGES_TO_SIZE (1));\r
841\r
842 //\r
843 // Set Page Directory Pointers\r
844 //\r
845 for (Index = 0; Index < 4; Index++) {\r
846 Pte[Index] = ((UINTN)PageTable + EFI_PAGE_SIZE * (Index + 1)) | mAddressEncMask |\r
847 (Is32BitPageTable ? IA32_PAE_PDPTE_ATTRIBUTE_BITS : PAGE_ATTRIBUTE_BITS);\r
848 }\r
849 Pte += EFI_PAGE_SIZE / sizeof (*Pte);\r
850\r
851 //\r
852 // Fill in Page Directory Entries\r
853 //\r
854 for (Index = 0; Index < EFI_PAGE_SIZE * 4 / sizeof (*Pte); Index++) {\r
855 Pte[Index] = (Index << 21) | mAddressEncMask | IA32_PG_PS | PAGE_ATTRIBUTE_BITS;\r
856 }\r
857\r
858 Pdpte = (UINT64*)PageTable;\r
859 if (FeaturePcdGet (PcdCpuSmmStackGuard)) {\r
860 Pages = (UINTN)PageTable + EFI_PAGES_TO_SIZE (5);\r
861 GuardPage = mSmmStackArrayBase + EFI_PAGE_SIZE;\r
862 for (PageIndex = Low2MBoundary; PageIndex <= High2MBoundary; PageIndex += SIZE_2MB) {\r
863 Pte = (UINT64*)(UINTN)(Pdpte[BitFieldRead32 ((UINT32)PageIndex, 30, 31)] & ~mAddressEncMask & ~(EFI_PAGE_SIZE - 1));\r
864 Pte[BitFieldRead32 ((UINT32)PageIndex, 21, 29)] = (UINT64)Pages | mAddressEncMask | PAGE_ATTRIBUTE_BITS;\r
865 //\r
866 // Fill in Page Table Entries\r
867 //\r
868 Pte = (UINT64*)Pages;\r
869 PageAddress = PageIndex;\r
870 for (Index = 0; Index < EFI_PAGE_SIZE / sizeof (*Pte); Index++) {\r
871 if (PageAddress == GuardPage) {\r
872 //\r
873 // Mark the guard page as non-present\r
874 //\r
875 Pte[Index] = PageAddress | mAddressEncMask;\r
876 GuardPage += mSmmStackSize;\r
877 if (GuardPage > mSmmStackArrayEnd) {\r
878 GuardPage = 0;\r
879 }\r
880 } else {\r
881 Pte[Index] = PageAddress | mAddressEncMask | PAGE_ATTRIBUTE_BITS;\r
882 }\r
883 PageAddress+= EFI_PAGE_SIZE;\r
884 }\r
885 Pages += EFI_PAGE_SIZE;\r
886 }\r
887 }\r
888\r
889 if ((PcdGet8 (PcdNullPointerDetectionPropertyMask) & BIT1) != 0) {\r
890 Pte = (UINT64*)(UINTN)(Pdpte[0] & ~mAddressEncMask & ~(EFI_PAGE_SIZE - 1));\r
891 if ((Pte[0] & IA32_PG_PS) == 0) {\r
892 // 4K-page entries are already mapped. Just hide the first one anyway.\r
893 Pte = (UINT64*)(UINTN)(Pte[0] & ~mAddressEncMask & ~(EFI_PAGE_SIZE - 1));\r
894 Pte[0] &= ~(UINT64)IA32_PG_P; // Hide page 0\r
895 } else {\r
896 // Create 4K-page entries\r
897 Pages = (UINTN)AllocatePageTableMemory (1);\r
898 ASSERT (Pages != 0);\r
899\r
900 Pte[0] = (UINT64)(Pages | mAddressEncMask | PAGE_ATTRIBUTE_BITS);\r
901\r
902 Pte = (UINT64*)Pages;\r
903 PageAddress = 0;\r
904 Pte[0] = PageAddress | mAddressEncMask; // Hide page 0 but present left\r
905 for (Index = 1; Index < EFI_PAGE_SIZE / sizeof (*Pte); Index++) {\r
906 PageAddress += EFI_PAGE_SIZE;\r
907 Pte[Index] = PageAddress | mAddressEncMask | PAGE_ATTRIBUTE_BITS;\r
908 }\r
909 }\r
910 }\r
911\r
912 return (UINT32)(UINTN)PageTable;\r
913}\r
914\r
915/**\r
916 Schedule a procedure to run on the specified CPU.\r
917\r
918 @param[in] Procedure The address of the procedure to run\r
919 @param[in] CpuIndex Target CPU Index\r
920 @param[in, out] ProcArguments The parameter to pass to the procedure\r
921 @param[in] BlockingMode Startup AP in blocking mode or not\r
922\r
923 @retval EFI_INVALID_PARAMETER CpuNumber not valid\r
924 @retval EFI_INVALID_PARAMETER CpuNumber specifying BSP\r
925 @retval EFI_INVALID_PARAMETER The AP specified by CpuNumber did not enter SMM\r
926 @retval EFI_INVALID_PARAMETER The AP specified by CpuNumber is busy\r
927 @retval EFI_SUCCESS The procedure has been successfully scheduled\r
928\r
929**/\r
930EFI_STATUS\r
931InternalSmmStartupThisAp (\r
932 IN EFI_AP_PROCEDURE Procedure,\r
933 IN UINTN CpuIndex,\r
934 IN OUT VOID *ProcArguments OPTIONAL,\r
935 IN BOOLEAN BlockingMode\r
936 )\r
937{\r
938 if (CpuIndex >= gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus) {\r
939 DEBUG((DEBUG_ERROR, "CpuIndex(%d) >= gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus(%d)\n", CpuIndex, gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus));\r
940 return EFI_INVALID_PARAMETER;\r
941 }\r
942 if (CpuIndex == gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu) {\r
943 DEBUG((DEBUG_ERROR, "CpuIndex(%d) == gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu\n", CpuIndex));\r
944 return EFI_INVALID_PARAMETER;\r
945 }\r
946 if (gSmmCpuPrivate->ProcessorInfo[CpuIndex].ProcessorId == INVALID_APIC_ID) {\r
947 return EFI_INVALID_PARAMETER;\r
948 }\r
949 if (!(*(mSmmMpSyncData->CpuData[CpuIndex].Present))) {\r
950 if (mSmmMpSyncData->EffectiveSyncMode == SmmCpuSyncModeTradition) {\r
951 DEBUG((DEBUG_ERROR, "!mSmmMpSyncData->CpuData[%d].Present\n", CpuIndex));\r
952 }\r
953 return EFI_INVALID_PARAMETER;\r
954 }\r
955 if (gSmmCpuPrivate->Operation[CpuIndex] == SmmCpuRemove) {\r
956 if (!FeaturePcdGet (PcdCpuHotPlugSupport)) {\r
957 DEBUG((DEBUG_ERROR, "gSmmCpuPrivate->Operation[%d] == SmmCpuRemove\n", CpuIndex));\r
958 }\r
959 return EFI_INVALID_PARAMETER;\r
960 }\r
961\r
962 if (BlockingMode) {\r
963 AcquireSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy);\r
964 } else {\r
965 if (!AcquireSpinLockOrFail (mSmmMpSyncData->CpuData[CpuIndex].Busy)) {\r
966 DEBUG((DEBUG_ERROR, "mSmmMpSyncData->CpuData[%d].Busy\n", CpuIndex));\r
967 return EFI_INVALID_PARAMETER;\r
968 }\r
969 }\r
970\r
971 mSmmMpSyncData->CpuData[CpuIndex].Procedure = Procedure;\r
972 mSmmMpSyncData->CpuData[CpuIndex].Parameter = ProcArguments;\r
973 ReleaseSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);\r
974\r
975 if (BlockingMode) {\r
976 AcquireSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy);\r
977 ReleaseSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy);\r
978 }\r
979 return EFI_SUCCESS;\r
980}\r
981\r
982/**\r
983 Schedule a procedure to run on the specified CPU in blocking mode.\r
984\r
985 @param[in] Procedure The address of the procedure to run\r
986 @param[in] CpuIndex Target CPU Index\r
987 @param[in, out] ProcArguments The parameter to pass to the procedure\r
988\r
989 @retval EFI_INVALID_PARAMETER CpuNumber not valid\r
990 @retval EFI_INVALID_PARAMETER CpuNumber specifying BSP\r
991 @retval EFI_INVALID_PARAMETER The AP specified by CpuNumber did not enter SMM\r
992 @retval EFI_INVALID_PARAMETER The AP specified by CpuNumber is busy\r
993 @retval EFI_SUCCESS The procedure has been successfully scheduled\r
994\r
995**/\r
996EFI_STATUS\r
997EFIAPI\r
998SmmBlockingStartupThisAp (\r
999 IN EFI_AP_PROCEDURE Procedure,\r
1000 IN UINTN CpuIndex,\r
1001 IN OUT VOID *ProcArguments OPTIONAL\r
1002 )\r
1003{\r
1004 return InternalSmmStartupThisAp(Procedure, CpuIndex, ProcArguments, TRUE);\r
1005}\r
1006\r
1007/**\r
1008 Schedule a procedure to run on the specified CPU.\r
1009\r
1010 @param Procedure The address of the procedure to run\r
1011 @param CpuIndex Target CPU Index\r
1012 @param ProcArguments The parameter to pass to the procedure\r
1013\r
1014 @retval EFI_INVALID_PARAMETER CpuNumber not valid\r
1015 @retval EFI_INVALID_PARAMETER CpuNumber specifying BSP\r
1016 @retval EFI_INVALID_PARAMETER The AP specified by CpuNumber did not enter SMM\r
1017 @retval EFI_INVALID_PARAMETER The AP specified by CpuNumber is busy\r
1018 @retval EFI_SUCCESS The procedure has been successfully scheduled\r
1019\r
1020**/\r
1021EFI_STATUS\r
1022EFIAPI\r
1023SmmStartupThisAp (\r
1024 IN EFI_AP_PROCEDURE Procedure,\r
1025 IN UINTN CpuIndex,\r
1026 IN OUT VOID *ProcArguments OPTIONAL\r
1027 )\r
1028{\r
1029 return InternalSmmStartupThisAp(Procedure, CpuIndex, ProcArguments, FeaturePcdGet (PcdCpuSmmBlockStartupThisAp));\r
1030}\r
1031\r
1032/**\r
1033 This function sets DR6 & DR7 according to SMM save state, before running SMM C code.\r
1034 They are useful when you want to enable hardware breakpoints in SMM without entry SMM mode.\r
1035\r
1036 NOTE: It might not be appreciated in runtime since it might\r
1037 conflict with OS debugging facilities. Turn them off in RELEASE.\r
1038\r
1039 @param CpuIndex CPU Index\r
1040\r
1041**/\r
1042VOID\r
1043EFIAPI\r
1044CpuSmmDebugEntry (\r
1045 IN UINTN CpuIndex\r
1046 )\r
1047{\r
1048 SMRAM_SAVE_STATE_MAP *CpuSaveState;\r
1049\r
1050 if (FeaturePcdGet (PcdCpuSmmDebug)) {\r
1051 ASSERT(CpuIndex < mMaxNumberOfCpus);\r
1052 CpuSaveState = (SMRAM_SAVE_STATE_MAP *)gSmmCpuPrivate->CpuSaveState[CpuIndex];\r
1053 if (mSmmSaveStateRegisterLma == EFI_SMM_SAVE_STATE_REGISTER_LMA_32BIT) {\r
1054 AsmWriteDr6 (CpuSaveState->x86._DR6);\r
1055 AsmWriteDr7 (CpuSaveState->x86._DR7);\r
1056 } else {\r
1057 AsmWriteDr6 ((UINTN)CpuSaveState->x64._DR6);\r
1058 AsmWriteDr7 ((UINTN)CpuSaveState->x64._DR7);\r
1059 }\r
1060 }\r
1061}\r
1062\r
1063/**\r
1064 This function restores DR6 & DR7 to SMM save state.\r
1065\r
1066 NOTE: It might not be appreciated in runtime since it might\r
1067 conflict with OS debugging facilities. Turn them off in RELEASE.\r
1068\r
1069 @param CpuIndex CPU Index\r
1070\r
1071**/\r
1072VOID\r
1073EFIAPI\r
1074CpuSmmDebugExit (\r
1075 IN UINTN CpuIndex\r
1076 )\r
1077{\r
1078 SMRAM_SAVE_STATE_MAP *CpuSaveState;\r
1079\r
1080 if (FeaturePcdGet (PcdCpuSmmDebug)) {\r
1081 ASSERT(CpuIndex < mMaxNumberOfCpus);\r
1082 CpuSaveState = (SMRAM_SAVE_STATE_MAP *)gSmmCpuPrivate->CpuSaveState[CpuIndex];\r
1083 if (mSmmSaveStateRegisterLma == EFI_SMM_SAVE_STATE_REGISTER_LMA_32BIT) {\r
1084 CpuSaveState->x86._DR7 = (UINT32)AsmReadDr7 ();\r
1085 CpuSaveState->x86._DR6 = (UINT32)AsmReadDr6 ();\r
1086 } else {\r
1087 CpuSaveState->x64._DR7 = AsmReadDr7 ();\r
1088 CpuSaveState->x64._DR6 = AsmReadDr6 ();\r
1089 }\r
1090 }\r
1091}\r
1092\r
1093/**\r
1094 C function for SMI entry, each processor comes here upon SMI trigger.\r
1095\r
1096 @param CpuIndex CPU Index\r
1097\r
1098**/\r
1099VOID\r
1100EFIAPI\r
1101SmiRendezvous (\r
1102 IN UINTN CpuIndex\r
1103 )\r
1104{\r
1105 EFI_STATUS Status;\r
1106 BOOLEAN ValidSmi;\r
1107 BOOLEAN IsBsp;\r
1108 BOOLEAN BspInProgress;\r
1109 UINTN Index;\r
1110 UINTN Cr2;\r
1111\r
1112 ASSERT(CpuIndex < mMaxNumberOfCpus);\r
1113\r
1114 //\r
1115 // Save Cr2 because Page Fault exception in SMM may override its value\r
1116 //\r
1117 Cr2 = AsmReadCr2 ();\r
1118\r
1119 //\r
1120 // Perform CPU specific entry hooks\r
1121 //\r
1122 SmmCpuFeaturesRendezvousEntry (CpuIndex);\r
1123\r
1124 //\r
1125 // Determine if this is a valid SMI\r
1126 //\r
1127 ValidSmi = PlatformValidSmi();\r
1128\r
1129 //\r
1130 // Determine if BSP has been already in progress. Note this must be checked after\r
1131 // ValidSmi because BSP may clear a valid SMI source after checking in.\r
1132 //\r
1133 BspInProgress = *mSmmMpSyncData->InsideSmm;\r
1134\r
1135 if (!BspInProgress && !ValidSmi) {\r
1136 //\r
1137 // If we reach here, it means when we sampled the ValidSmi flag, SMI status had not\r
1138 // been cleared by BSP in a new SMI run (so we have a truly invalid SMI), or SMI\r
1139 // status had been cleared by BSP and an existing SMI run has almost ended. (Note\r
1140 // we sampled ValidSmi flag BEFORE judging BSP-in-progress status.) In both cases, there\r
1141 // is nothing we need to do.\r
1142 //\r
1143 goto Exit;\r
1144 } else {\r
1145 //\r
1146 // Signal presence of this processor\r
1147 //\r
1148 if (ReleaseSemaphore (mSmmMpSyncData->Counter) == 0) {\r
1149 //\r
1150 // BSP has already ended the synchronization, so QUIT!!!\r
1151 //\r
1152\r
1153 //\r
1154 // Wait for BSP's signal to finish SMI\r
1155 //\r
1156 while (*mSmmMpSyncData->AllCpusInSync) {\r
1157 CpuPause ();\r
1158 }\r
1159 goto Exit;\r
1160 } else {\r
1161\r
1162 //\r
1163 // The BUSY lock is initialized to Released state.\r
1164 // This needs to be done early enough to be ready for BSP's SmmStartupThisAp() call.\r
1165 // E.g., with Relaxed AP flow, SmmStartupThisAp() may be called immediately\r
1166 // after AP's present flag is detected.\r
1167 //\r
1168 InitializeSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy);\r
1169 }\r
1170\r
1171 if (FeaturePcdGet (PcdCpuSmmProfileEnable)) {\r
1172 ActivateSmmProfile (CpuIndex);\r
1173 }\r
1174\r
1175 if (BspInProgress) {\r
1176 //\r
1177 // BSP has been elected. Follow AP path, regardless of ValidSmi flag\r
1178 // as BSP may have cleared the SMI status\r
1179 //\r
1180 APHandler (CpuIndex, ValidSmi, mSmmMpSyncData->EffectiveSyncMode);\r
1181 } else {\r
1182 //\r
1183 // We have a valid SMI\r
1184 //\r
1185\r
1186 //\r
1187 // Elect BSP\r
1188 //\r
1189 IsBsp = FALSE;\r
1190 if (FeaturePcdGet (PcdCpuSmmEnableBspElection)) {\r
1191 if (!mSmmMpSyncData->SwitchBsp || mSmmMpSyncData->CandidateBsp[CpuIndex]) {\r
1192 //\r
1193 // Call platform hook to do BSP election\r
1194 //\r
1195 Status = PlatformSmmBspElection (&IsBsp);\r
1196 if (EFI_SUCCESS == Status) {\r
1197 //\r
1198 // Platform hook determines successfully\r
1199 //\r
1200 if (IsBsp) {\r
1201 mSmmMpSyncData->BspIndex = (UINT32)CpuIndex;\r
1202 }\r
1203 } else {\r
1204 //\r
1205 // Platform hook fails to determine, use default BSP election method\r
1206 //\r
1207 InterlockedCompareExchange32 (\r
1208 (UINT32*)&mSmmMpSyncData->BspIndex,\r
1209 (UINT32)-1,\r
1210 (UINT32)CpuIndex\r
1211 );\r
1212 }\r
1213 }\r
1214 }\r
1215\r
1216 //\r
1217 // "mSmmMpSyncData->BspIndex == CpuIndex" means this is the BSP\r
1218 //\r
1219 if (mSmmMpSyncData->BspIndex == CpuIndex) {\r
1220\r
1221 //\r
1222 // Clear last request for SwitchBsp.\r
1223 //\r
1224 if (mSmmMpSyncData->SwitchBsp) {\r
1225 mSmmMpSyncData->SwitchBsp = FALSE;\r
1226 for (Index = 0; Index < mMaxNumberOfCpus; Index++) {\r
1227 mSmmMpSyncData->CandidateBsp[Index] = FALSE;\r
1228 }\r
1229 }\r
1230\r
1231 if (FeaturePcdGet (PcdCpuSmmProfileEnable)) {\r
1232 SmmProfileRecordSmiNum ();\r
1233 }\r
1234\r
1235 //\r
1236 // BSP Handler is always called with a ValidSmi == TRUE\r
1237 //\r
1238 BSPHandler (CpuIndex, mSmmMpSyncData->EffectiveSyncMode);\r
1239 } else {\r
1240 APHandler (CpuIndex, ValidSmi, mSmmMpSyncData->EffectiveSyncMode);\r
1241 }\r
1242 }\r
1243\r
1244 ASSERT (*mSmmMpSyncData->CpuData[CpuIndex].Run == 0);\r
1245\r
1246 //\r
1247 // Wait for BSP's signal to exit SMI\r
1248 //\r
1249 while (*mSmmMpSyncData->AllCpusInSync) {\r
1250 CpuPause ();\r
1251 }\r
1252 }\r
1253\r
1254Exit:\r
1255 SmmCpuFeaturesRendezvousExit (CpuIndex);\r
1256 //\r
1257 // Restore Cr2\r
1258 //\r
1259 AsmWriteCr2 (Cr2);\r
1260}\r
1261\r
1262/**\r
1263 Allocate buffer for all semaphores and spin locks.\r
1264\r
1265**/\r
1266VOID\r
1267InitializeSmmCpuSemaphores (\r
1268 VOID\r
1269 )\r
1270{\r
1271 UINTN ProcessorCount;\r
1272 UINTN TotalSize;\r
1273 UINTN GlobalSemaphoresSize;\r
1274 UINTN CpuSemaphoresSize;\r
1275 UINTN MsrSemahporeSize;\r
1276 UINTN SemaphoreSize;\r
1277 UINTN Pages;\r
1278 UINTN *SemaphoreBlock;\r
1279 UINTN SemaphoreAddr;\r
1280\r
1281 SemaphoreSize = GetSpinLockProperties ();\r
1282 ProcessorCount = gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus;\r
1283 GlobalSemaphoresSize = (sizeof (SMM_CPU_SEMAPHORE_GLOBAL) / sizeof (VOID *)) * SemaphoreSize;\r
1284 CpuSemaphoresSize = (sizeof (SMM_CPU_SEMAPHORE_CPU) / sizeof (VOID *)) * ProcessorCount * SemaphoreSize;\r
1285 MsrSemahporeSize = MSR_SPIN_LOCK_INIT_NUM * SemaphoreSize;\r
1286 TotalSize = GlobalSemaphoresSize + CpuSemaphoresSize + MsrSemahporeSize;\r
1287 DEBUG((EFI_D_INFO, "One Semaphore Size = 0x%x\n", SemaphoreSize));\r
1288 DEBUG((EFI_D_INFO, "Total Semaphores Size = 0x%x\n", TotalSize));\r
1289 Pages = EFI_SIZE_TO_PAGES (TotalSize);\r
1290 SemaphoreBlock = AllocatePages (Pages);\r
1291 ASSERT (SemaphoreBlock != NULL);\r
1292 ZeroMem (SemaphoreBlock, TotalSize);\r
1293\r
1294 SemaphoreAddr = (UINTN)SemaphoreBlock;\r
1295 mSmmCpuSemaphores.SemaphoreGlobal.Counter = (UINT32 *)SemaphoreAddr;\r
1296 SemaphoreAddr += SemaphoreSize;\r
1297 mSmmCpuSemaphores.SemaphoreGlobal.InsideSmm = (BOOLEAN *)SemaphoreAddr;\r
1298 SemaphoreAddr += SemaphoreSize;\r
1299 mSmmCpuSemaphores.SemaphoreGlobal.AllCpusInSync = (BOOLEAN *)SemaphoreAddr;\r
1300 SemaphoreAddr += SemaphoreSize;\r
1301 mSmmCpuSemaphores.SemaphoreGlobal.PFLock = (SPIN_LOCK *)SemaphoreAddr;\r
1302 SemaphoreAddr += SemaphoreSize;\r
1303 mSmmCpuSemaphores.SemaphoreGlobal.CodeAccessCheckLock\r
1304 = (SPIN_LOCK *)SemaphoreAddr;\r
1305 SemaphoreAddr += SemaphoreSize;\r
1306\r
1307 SemaphoreAddr = (UINTN)SemaphoreBlock + GlobalSemaphoresSize;\r
1308 mSmmCpuSemaphores.SemaphoreCpu.Busy = (SPIN_LOCK *)SemaphoreAddr;\r
1309 SemaphoreAddr += ProcessorCount * SemaphoreSize;\r
1310 mSmmCpuSemaphores.SemaphoreCpu.Run = (UINT32 *)SemaphoreAddr;\r
1311 SemaphoreAddr += ProcessorCount * SemaphoreSize;\r
1312 mSmmCpuSemaphores.SemaphoreCpu.Present = (BOOLEAN *)SemaphoreAddr;\r
1313\r
1314 SemaphoreAddr = (UINTN)SemaphoreBlock + GlobalSemaphoresSize + CpuSemaphoresSize;\r
1315 mSmmCpuSemaphores.SemaphoreMsr.Msr = (SPIN_LOCK *)SemaphoreAddr;\r
1316 mSmmCpuSemaphores.SemaphoreMsr.AvailableCounter =\r
1317 ((UINTN)SemaphoreBlock + Pages * SIZE_4KB - SemaphoreAddr) / SemaphoreSize;\r
1318 ASSERT (mSmmCpuSemaphores.SemaphoreMsr.AvailableCounter >= MSR_SPIN_LOCK_INIT_NUM);\r
1319\r
1320 mPFLock = mSmmCpuSemaphores.SemaphoreGlobal.PFLock;\r
1321 mConfigSmmCodeAccessCheckLock = mSmmCpuSemaphores.SemaphoreGlobal.CodeAccessCheckLock;\r
1322\r
1323 mSemaphoreSize = SemaphoreSize;\r
1324}\r
1325\r
1326/**\r
1327 Initialize un-cacheable data.\r
1328\r
1329**/\r
1330VOID\r
1331EFIAPI\r
1332InitializeMpSyncData (\r
1333 VOID\r
1334 )\r
1335{\r
1336 UINTN CpuIndex;\r
1337\r
1338 if (mSmmMpSyncData != NULL) {\r
1339 //\r
1340 // mSmmMpSyncDataSize includes one structure of SMM_DISPATCHER_MP_SYNC_DATA, one\r
1341 // CpuData array of SMM_CPU_DATA_BLOCK and one CandidateBsp array of BOOLEAN.\r
1342 //\r
1343 ZeroMem (mSmmMpSyncData, mSmmMpSyncDataSize);\r
1344 mSmmMpSyncData->CpuData = (SMM_CPU_DATA_BLOCK *)((UINT8 *)mSmmMpSyncData + sizeof (SMM_DISPATCHER_MP_SYNC_DATA));\r
1345 mSmmMpSyncData->CandidateBsp = (BOOLEAN *)(mSmmMpSyncData->CpuData + gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus);\r
1346 if (FeaturePcdGet (PcdCpuSmmEnableBspElection)) {\r
1347 //\r
1348 // Enable BSP election by setting BspIndex to -1\r
1349 //\r
1350 mSmmMpSyncData->BspIndex = (UINT32)-1;\r
1351 }\r
1352 mSmmMpSyncData->EffectiveSyncMode = mCpuSmmSyncMode;\r
1353\r
1354 mSmmMpSyncData->Counter = mSmmCpuSemaphores.SemaphoreGlobal.Counter;\r
1355 mSmmMpSyncData->InsideSmm = mSmmCpuSemaphores.SemaphoreGlobal.InsideSmm;\r
1356 mSmmMpSyncData->AllCpusInSync = mSmmCpuSemaphores.SemaphoreGlobal.AllCpusInSync;\r
1357 ASSERT (mSmmMpSyncData->Counter != NULL && mSmmMpSyncData->InsideSmm != NULL &&\r
1358 mSmmMpSyncData->AllCpusInSync != NULL);\r
1359 *mSmmMpSyncData->Counter = 0;\r
1360 *mSmmMpSyncData->InsideSmm = FALSE;\r
1361 *mSmmMpSyncData->AllCpusInSync = FALSE;\r
1362\r
1363 for (CpuIndex = 0; CpuIndex < gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus; CpuIndex ++) {\r
1364 mSmmMpSyncData->CpuData[CpuIndex].Busy =\r
1365 (SPIN_LOCK *)((UINTN)mSmmCpuSemaphores.SemaphoreCpu.Busy + mSemaphoreSize * CpuIndex);\r
1366 mSmmMpSyncData->CpuData[CpuIndex].Run =\r
1367 (UINT32 *)((UINTN)mSmmCpuSemaphores.SemaphoreCpu.Run + mSemaphoreSize * CpuIndex);\r
1368 mSmmMpSyncData->CpuData[CpuIndex].Present =\r
1369 (BOOLEAN *)((UINTN)mSmmCpuSemaphores.SemaphoreCpu.Present + mSemaphoreSize * CpuIndex);\r
1370 *(mSmmMpSyncData->CpuData[CpuIndex].Busy) = 0;\r
1371 *(mSmmMpSyncData->CpuData[CpuIndex].Run) = 0;\r
1372 *(mSmmMpSyncData->CpuData[CpuIndex].Present) = FALSE;\r
1373 }\r
1374 }\r
1375}\r
1376\r
1377/**\r
1378 Initialize global data for MP synchronization.\r
1379\r
1380 @param Stacks Base address of SMI stack buffer for all processors.\r
1381 @param StackSize Stack size for each processor in SMM.\r
1382\r
1383**/\r
1384UINT32\r
1385InitializeMpServiceData (\r
1386 IN VOID *Stacks,\r
1387 IN UINTN StackSize\r
1388 )\r
1389{\r
1390 UINT32 Cr3;\r
1391 UINTN Index;\r
1392 UINT8 *GdtTssTables;\r
1393 UINTN GdtTableStepSize;\r
1394 CPUID_VERSION_INFO_EDX RegEdx;\r
1395\r
1396 //\r
1397 // Determine if this CPU supports machine check\r
1398 //\r
1399 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &RegEdx.Uint32);\r
1400 mMachineCheckSupported = (BOOLEAN)(RegEdx.Bits.MCA == 1);\r
1401\r
1402 //\r
1403 // Allocate memory for all locks and semaphores\r
1404 //\r
1405 InitializeSmmCpuSemaphores ();\r
1406\r
1407 //\r
1408 // Initialize mSmmMpSyncData\r
1409 //\r
1410 mSmmMpSyncDataSize = sizeof (SMM_DISPATCHER_MP_SYNC_DATA) +\r
1411 (sizeof (SMM_CPU_DATA_BLOCK) + sizeof (BOOLEAN)) * gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus;\r
1412 mSmmMpSyncData = (SMM_DISPATCHER_MP_SYNC_DATA*) AllocatePages (EFI_SIZE_TO_PAGES (mSmmMpSyncDataSize));\r
1413 ASSERT (mSmmMpSyncData != NULL);\r
1414 mCpuSmmSyncMode = (SMM_CPU_SYNC_MODE)PcdGet8 (PcdCpuSmmSyncMode);\r
1415 InitializeMpSyncData ();\r
1416\r
1417 //\r
1418 // Initialize physical address mask\r
1419 // NOTE: Physical memory above virtual address limit is not supported !!!\r
1420 //\r
1421 AsmCpuid (0x80000008, (UINT32*)&Index, NULL, NULL, NULL);\r
1422 gPhyMask = LShiftU64 (1, (UINT8)Index) - 1;\r
1423 gPhyMask &= (1ull << 48) - EFI_PAGE_SIZE;\r
1424\r
1425 //\r
1426 // Create page tables\r
1427 //\r
1428 Cr3 = SmmInitPageTable ();\r
1429\r
1430 GdtTssTables = InitGdt (Cr3, &GdtTableStepSize);\r
1431\r
1432 //\r
1433 // Install SMI handler for each CPU\r
1434 //\r
1435 for (Index = 0; Index < mMaxNumberOfCpus; Index++) {\r
1436 InstallSmiHandler (\r
1437 Index,\r
1438 (UINT32)mCpuHotPlugData.SmBase[Index],\r
1439 (VOID*)((UINTN)Stacks + (StackSize * Index)),\r
1440 StackSize,\r
1441 (UINTN)(GdtTssTables + GdtTableStepSize * Index),\r
1442 gcSmiGdtr.Limit + 1,\r
1443 gcSmiIdtr.Base,\r
1444 gcSmiIdtr.Limit + 1,\r
1445 Cr3\r
1446 );\r
1447 }\r
1448\r
1449 //\r
1450 // Record current MTRR settings\r
1451 //\r
1452 ZeroMem (&gSmiMtrrs, sizeof (gSmiMtrrs));\r
1453 MtrrGetAllMtrrs (&gSmiMtrrs);\r
1454\r
1455 return Cr3;\r
1456}\r
1457\r
1458/**\r
1459\r
1460 Register the SMM Foundation entry point.\r
1461\r
1462 @param This Pointer to EFI_SMM_CONFIGURATION_PROTOCOL instance\r
1463 @param SmmEntryPoint SMM Foundation EntryPoint\r
1464\r
1465 @retval EFI_SUCCESS Successfully to register SMM foundation entry point\r
1466\r
1467**/\r
1468EFI_STATUS\r
1469EFIAPI\r
1470RegisterSmmEntry (\r
1471 IN CONST EFI_SMM_CONFIGURATION_PROTOCOL *This,\r
1472 IN EFI_SMM_ENTRY_POINT SmmEntryPoint\r
1473 )\r
1474{\r
1475 //\r
1476 // Record SMM Foundation EntryPoint, later invoke it on SMI entry vector.\r
1477 //\r
1478 gSmmCpuPrivate->SmmCoreEntry = SmmEntryPoint;\r
1479 return EFI_SUCCESS;\r
1480}\r