]> git.proxmox.com Git - mirror_edk2.git/blame_incremental - UefiCpuPkg/PiSmmCpuDxeSmm/PiSmmCpuDxeSmm.c
UefiCpuPkg: Move AsmRelocateApLoopStart from Mpfuncs.nasm to AmdSev.nasm
[mirror_edk2.git] / UefiCpuPkg / PiSmmCpuDxeSmm / PiSmmCpuDxeSmm.c
... / ...
CommitLineData
1/** @file\r
2Agent Module to load other modules to deploy SMM Entry Vector for X86 CPU.\r
3\r
4Copyright (c) 2009 - 2019, Intel Corporation. All rights reserved.<BR>\r
5Copyright (c) 2017, AMD Incorporated. All rights reserved.<BR>\r
6\r
7SPDX-License-Identifier: BSD-2-Clause-Patent\r
8\r
9**/\r
10\r
11#include "PiSmmCpuDxeSmm.h"\r
12\r
13//\r
14// SMM CPU Private Data structure that contains SMM Configuration Protocol\r
15// along its supporting fields.\r
16//\r
17SMM_CPU_PRIVATE_DATA mSmmCpuPrivateData = {\r
18 SMM_CPU_PRIVATE_DATA_SIGNATURE, // Signature\r
19 NULL, // SmmCpuHandle\r
20 NULL, // Pointer to ProcessorInfo array\r
21 NULL, // Pointer to Operation array\r
22 NULL, // Pointer to CpuSaveStateSize array\r
23 NULL, // Pointer to CpuSaveState array\r
24 {\r
25 { 0 }\r
26 }, // SmmReservedSmramRegion\r
27 {\r
28 SmmStartupThisAp, // SmmCoreEntryContext.SmmStartupThisAp\r
29 0, // SmmCoreEntryContext.CurrentlyExecutingCpu\r
30 0, // SmmCoreEntryContext.NumberOfCpus\r
31 NULL, // SmmCoreEntryContext.CpuSaveStateSize\r
32 NULL // SmmCoreEntryContext.CpuSaveState\r
33 },\r
34 NULL, // SmmCoreEntry\r
35 {\r
36 mSmmCpuPrivateData.SmmReservedSmramRegion, // SmmConfiguration.SmramReservedRegions\r
37 RegisterSmmEntry // SmmConfiguration.RegisterSmmEntry\r
38 },\r
39 NULL, // pointer to Ap Wrapper Func array\r
40 { NULL, NULL }, // List_Entry for Tokens.\r
41};\r
42\r
43CPU_HOT_PLUG_DATA mCpuHotPlugData = {\r
44 CPU_HOT_PLUG_DATA_REVISION_1, // Revision\r
45 0, // Array Length of SmBase and APIC ID\r
46 NULL, // Pointer to APIC ID array\r
47 NULL, // Pointer to SMBASE array\r
48 0, // Reserved\r
49 0, // SmrrBase\r
50 0 // SmrrSize\r
51};\r
52\r
53//\r
54// Global pointer used to access mSmmCpuPrivateData from outside and inside SMM\r
55//\r
56SMM_CPU_PRIVATE_DATA *gSmmCpuPrivate = &mSmmCpuPrivateData;\r
57\r
58//\r
59// SMM Relocation variables\r
60//\r
61volatile BOOLEAN *mRebased;\r
62volatile BOOLEAN mIsBsp;\r
63\r
64///\r
65/// Handle for the SMM CPU Protocol\r
66///\r
67EFI_HANDLE mSmmCpuHandle = NULL;\r
68\r
69///\r
70/// SMM CPU Protocol instance\r
71///\r
72EFI_SMM_CPU_PROTOCOL mSmmCpu = {\r
73 SmmReadSaveState,\r
74 SmmWriteSaveState\r
75};\r
76\r
77///\r
78/// SMM Memory Attribute Protocol instance\r
79///\r
80EDKII_SMM_MEMORY_ATTRIBUTE_PROTOCOL mSmmMemoryAttribute = {\r
81 EdkiiSmmGetMemoryAttributes,\r
82 EdkiiSmmSetMemoryAttributes,\r
83 EdkiiSmmClearMemoryAttributes\r
84};\r
85\r
86EFI_CPU_INTERRUPT_HANDLER mExternalVectorTable[EXCEPTION_VECTOR_NUMBER];\r
87\r
88//\r
89// SMM stack information\r
90//\r
91UINTN mSmmStackArrayBase;\r
92UINTN mSmmStackArrayEnd;\r
93UINTN mSmmStackSize;\r
94\r
95UINTN mSmmShadowStackSize;\r
96BOOLEAN mCetSupported = TRUE;\r
97\r
98UINTN mMaxNumberOfCpus = 1;\r
99UINTN mNumberOfCpus = 1;\r
100\r
101//\r
102// SMM ready to lock flag\r
103//\r
104BOOLEAN mSmmReadyToLock = FALSE;\r
105\r
106//\r
107// Global used to cache PCD for SMM Code Access Check enable\r
108//\r
109BOOLEAN mSmmCodeAccessCheckEnable = FALSE;\r
110\r
111//\r
112// Global copy of the PcdPteMemoryEncryptionAddressOrMask\r
113//\r
114UINT64 mAddressEncMask = 0;\r
115\r
116//\r
117// Spin lock used to serialize setting of SMM Code Access Check feature\r
118//\r
119SPIN_LOCK *mConfigSmmCodeAccessCheckLock = NULL;\r
120\r
121//\r
122// Saved SMM ranges information\r
123//\r
124EFI_SMRAM_DESCRIPTOR *mSmmCpuSmramRanges;\r
125UINTN mSmmCpuSmramRangeCount;\r
126\r
127UINT8 mPhysicalAddressBits;\r
128\r
129//\r
130// Control register contents saved for SMM S3 resume state initialization.\r
131//\r
132UINT32 mSmmCr0;\r
133UINT32 mSmmCr4;\r
134\r
135/**\r
136 Initialize IDT to setup exception handlers for SMM.\r
137\r
138**/\r
139VOID\r
140InitializeSmmIdt (\r
141 VOID\r
142 )\r
143{\r
144 EFI_STATUS Status;\r
145 BOOLEAN InterruptState;\r
146 IA32_DESCRIPTOR DxeIdtr;\r
147\r
148 //\r
149 // There are 32 (not 255) entries in it since only processor\r
150 // generated exceptions will be handled.\r
151 //\r
152 gcSmiIdtr.Limit = (sizeof (IA32_IDT_GATE_DESCRIPTOR) * 32) - 1;\r
153 //\r
154 // Allocate page aligned IDT, because it might be set as read only.\r
155 //\r
156 gcSmiIdtr.Base = (UINTN)AllocateCodePages (EFI_SIZE_TO_PAGES (gcSmiIdtr.Limit + 1));\r
157 ASSERT (gcSmiIdtr.Base != 0);\r
158 ZeroMem ((VOID *)gcSmiIdtr.Base, gcSmiIdtr.Limit + 1);\r
159\r
160 //\r
161 // Disable Interrupt and save DXE IDT table\r
162 //\r
163 InterruptState = SaveAndDisableInterrupts ();\r
164 AsmReadIdtr (&DxeIdtr);\r
165 //\r
166 // Load SMM temporary IDT table\r
167 //\r
168 AsmWriteIdtr (&gcSmiIdtr);\r
169 //\r
170 // Setup SMM default exception handlers, SMM IDT table\r
171 // will be updated and saved in gcSmiIdtr\r
172 //\r
173 Status = InitializeCpuExceptionHandlers (NULL);\r
174 ASSERT_EFI_ERROR (Status);\r
175 //\r
176 // Restore DXE IDT table and CPU interrupt\r
177 //\r
178 AsmWriteIdtr ((IA32_DESCRIPTOR *)&DxeIdtr);\r
179 SetInterruptState (InterruptState);\r
180}\r
181\r
182/**\r
183 Search module name by input IP address and output it.\r
184\r
185 @param CallerIpAddress Caller instruction pointer.\r
186\r
187**/\r
188VOID\r
189DumpModuleInfoByIp (\r
190 IN UINTN CallerIpAddress\r
191 )\r
192{\r
193 UINTN Pe32Data;\r
194 VOID *PdbPointer;\r
195\r
196 //\r
197 // Find Image Base\r
198 //\r
199 Pe32Data = PeCoffSearchImageBase (CallerIpAddress);\r
200 if (Pe32Data != 0) {\r
201 DEBUG ((DEBUG_ERROR, "It is invoked from the instruction before IP(0x%p)", (VOID *)CallerIpAddress));\r
202 PdbPointer = PeCoffLoaderGetPdbPointer ((VOID *)Pe32Data);\r
203 if (PdbPointer != NULL) {\r
204 DEBUG ((DEBUG_ERROR, " in module (%a)\n", PdbPointer));\r
205 }\r
206 }\r
207}\r
208\r
209/**\r
210 Read information from the CPU save state.\r
211\r
212 @param This EFI_SMM_CPU_PROTOCOL instance\r
213 @param Width The number of bytes to read from the CPU save state.\r
214 @param Register Specifies the CPU register to read form the save state.\r
215 @param CpuIndex Specifies the zero-based index of the CPU save state.\r
216 @param Buffer Upon return, this holds the CPU register value read from the save state.\r
217\r
218 @retval EFI_SUCCESS The register was read from Save State\r
219 @retval EFI_NOT_FOUND The register is not defined for the Save State of Processor\r
220 @retval EFI_INVALID_PARAMETER This or Buffer is NULL.\r
221\r
222**/\r
223EFI_STATUS\r
224EFIAPI\r
225SmmReadSaveState (\r
226 IN CONST EFI_SMM_CPU_PROTOCOL *This,\r
227 IN UINTN Width,\r
228 IN EFI_SMM_SAVE_STATE_REGISTER Register,\r
229 IN UINTN CpuIndex,\r
230 OUT VOID *Buffer\r
231 )\r
232{\r
233 EFI_STATUS Status;\r
234\r
235 //\r
236 // Retrieve pointer to the specified CPU's SMM Save State buffer\r
237 //\r
238 if ((CpuIndex >= gSmst->NumberOfCpus) || (Buffer == NULL)) {\r
239 return EFI_INVALID_PARAMETER;\r
240 }\r
241\r
242 //\r
243 // The SpeculationBarrier() call here is to ensure the above check for the\r
244 // CpuIndex has been completed before the execution of subsequent codes.\r
245 //\r
246 SpeculationBarrier ();\r
247\r
248 //\r
249 // Check for special EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID\r
250 //\r
251 if (Register == EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID) {\r
252 //\r
253 // The pseudo-register only supports the 64-bit size specified by Width.\r
254 //\r
255 if (Width != sizeof (UINT64)) {\r
256 return EFI_INVALID_PARAMETER;\r
257 }\r
258\r
259 //\r
260 // If the processor is in SMM at the time the SMI occurred,\r
261 // the pseudo register value for EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID is returned in Buffer.\r
262 // Otherwise, EFI_NOT_FOUND is returned.\r
263 //\r
264 if (*(mSmmMpSyncData->CpuData[CpuIndex].Present)) {\r
265 *(UINT64 *)Buffer = gSmmCpuPrivate->ProcessorInfo[CpuIndex].ProcessorId;\r
266 return EFI_SUCCESS;\r
267 } else {\r
268 return EFI_NOT_FOUND;\r
269 }\r
270 }\r
271\r
272 if (!(*(mSmmMpSyncData->CpuData[CpuIndex].Present))) {\r
273 return EFI_INVALID_PARAMETER;\r
274 }\r
275\r
276 Status = SmmCpuFeaturesReadSaveStateRegister (CpuIndex, Register, Width, Buffer);\r
277 if (Status == EFI_UNSUPPORTED) {\r
278 Status = ReadSaveStateRegister (CpuIndex, Register, Width, Buffer);\r
279 }\r
280\r
281 return Status;\r
282}\r
283\r
284/**\r
285 Write data to the CPU save state.\r
286\r
287 @param This EFI_SMM_CPU_PROTOCOL instance\r
288 @param Width The number of bytes to read from the CPU save state.\r
289 @param Register Specifies the CPU register to write to the save state.\r
290 @param CpuIndex Specifies the zero-based index of the CPU save state\r
291 @param Buffer Upon entry, this holds the new CPU register value.\r
292\r
293 @retval EFI_SUCCESS The register was written from Save State\r
294 @retval EFI_NOT_FOUND The register is not defined for the Save State of Processor\r
295 @retval EFI_INVALID_PARAMETER ProcessorIndex or Width is not correct\r
296\r
297**/\r
298EFI_STATUS\r
299EFIAPI\r
300SmmWriteSaveState (\r
301 IN CONST EFI_SMM_CPU_PROTOCOL *This,\r
302 IN UINTN Width,\r
303 IN EFI_SMM_SAVE_STATE_REGISTER Register,\r
304 IN UINTN CpuIndex,\r
305 IN CONST VOID *Buffer\r
306 )\r
307{\r
308 EFI_STATUS Status;\r
309\r
310 //\r
311 // Retrieve pointer to the specified CPU's SMM Save State buffer\r
312 //\r
313 if ((CpuIndex >= gSmst->NumberOfCpus) || (Buffer == NULL)) {\r
314 return EFI_INVALID_PARAMETER;\r
315 }\r
316\r
317 //\r
318 // Writes to EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID are ignored\r
319 //\r
320 if (Register == EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID) {\r
321 return EFI_SUCCESS;\r
322 }\r
323\r
324 if (!mSmmMpSyncData->CpuData[CpuIndex].Present) {\r
325 return EFI_INVALID_PARAMETER;\r
326 }\r
327\r
328 Status = SmmCpuFeaturesWriteSaveStateRegister (CpuIndex, Register, Width, Buffer);\r
329 if (Status == EFI_UNSUPPORTED) {\r
330 Status = WriteSaveStateRegister (CpuIndex, Register, Width, Buffer);\r
331 }\r
332\r
333 return Status;\r
334}\r
335\r
336/**\r
337 C function for SMI handler. To change all processor's SMMBase Register.\r
338\r
339**/\r
340VOID\r
341EFIAPI\r
342SmmInitHandler (\r
343 VOID\r
344 )\r
345{\r
346 UINT32 ApicId;\r
347 UINTN Index;\r
348\r
349 //\r
350 // Update SMM IDT entries' code segment and load IDT\r
351 //\r
352 AsmWriteIdtr (&gcSmiIdtr);\r
353 ApicId = GetApicId ();\r
354\r
355 ASSERT (mNumberOfCpus <= mMaxNumberOfCpus);\r
356\r
357 for (Index = 0; Index < mNumberOfCpus; Index++) {\r
358 if (ApicId == (UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId) {\r
359 //\r
360 // Initialize SMM specific features on the currently executing CPU\r
361 //\r
362 SmmCpuFeaturesInitializeProcessor (\r
363 Index,\r
364 mIsBsp,\r
365 gSmmCpuPrivate->ProcessorInfo,\r
366 &mCpuHotPlugData\r
367 );\r
368\r
369 if (!mSmmS3Flag) {\r
370 //\r
371 // Check XD and BTS features on each processor on normal boot\r
372 //\r
373 CheckFeatureSupported ();\r
374 }\r
375\r
376 if (mIsBsp) {\r
377 //\r
378 // BSP rebase is already done above.\r
379 // Initialize private data during S3 resume\r
380 //\r
381 InitializeMpSyncData ();\r
382 }\r
383\r
384 //\r
385 // Hook return after RSM to set SMM re-based flag\r
386 //\r
387 SemaphoreHook (Index, &mRebased[Index]);\r
388\r
389 return;\r
390 }\r
391 }\r
392\r
393 ASSERT (FALSE);\r
394}\r
395\r
396/**\r
397 Relocate SmmBases for each processor.\r
398\r
399 Execute on first boot and all S3 resumes\r
400\r
401**/\r
402VOID\r
403EFIAPI\r
404SmmRelocateBases (\r
405 VOID\r
406 )\r
407{\r
408 UINT8 BakBuf[BACK_BUF_SIZE];\r
409 SMRAM_SAVE_STATE_MAP BakBuf2;\r
410 SMRAM_SAVE_STATE_MAP *CpuStatePtr;\r
411 UINT8 *U8Ptr;\r
412 UINT32 ApicId;\r
413 UINTN Index;\r
414 UINTN BspIndex;\r
415\r
416 //\r
417 // Make sure the reserved size is large enough for procedure SmmInitTemplate.\r
418 //\r
419 ASSERT (sizeof (BakBuf) >= gcSmmInitSize);\r
420\r
421 //\r
422 // Patch ASM code template with current CR0, CR3, and CR4 values\r
423 //\r
424 mSmmCr0 = (UINT32)AsmReadCr0 ();\r
425 PatchInstructionX86 (gPatchSmmCr0, mSmmCr0, 4);\r
426 PatchInstructionX86 (gPatchSmmCr3, AsmReadCr3 (), 4);\r
427 mSmmCr4 = (UINT32)AsmReadCr4 ();\r
428 PatchInstructionX86 (gPatchSmmCr4, mSmmCr4 & (~CR4_CET_ENABLE), 4);\r
429\r
430 //\r
431 // Patch GDTR for SMM base relocation\r
432 //\r
433 gcSmiInitGdtr.Base = gcSmiGdtr.Base;\r
434 gcSmiInitGdtr.Limit = gcSmiGdtr.Limit;\r
435\r
436 U8Ptr = (UINT8 *)(UINTN)(SMM_DEFAULT_SMBASE + SMM_HANDLER_OFFSET);\r
437 CpuStatePtr = (SMRAM_SAVE_STATE_MAP *)(UINTN)(SMM_DEFAULT_SMBASE + SMRAM_SAVE_STATE_MAP_OFFSET);\r
438\r
439 //\r
440 // Backup original contents at address 0x38000\r
441 //\r
442 CopyMem (BakBuf, U8Ptr, sizeof (BakBuf));\r
443 CopyMem (&BakBuf2, CpuStatePtr, sizeof (BakBuf2));\r
444\r
445 //\r
446 // Load image for relocation\r
447 //\r
448 CopyMem (U8Ptr, gcSmmInitTemplate, gcSmmInitSize);\r
449\r
450 //\r
451 // Retrieve the local APIC ID of current processor\r
452 //\r
453 ApicId = GetApicId ();\r
454\r
455 //\r
456 // Relocate SM bases for all APs\r
457 // This is APs' 1st SMI - rebase will be done here, and APs' default SMI handler will be overridden by gcSmmInitTemplate\r
458 //\r
459 mIsBsp = FALSE;\r
460 BspIndex = (UINTN)-1;\r
461 for (Index = 0; Index < mNumberOfCpus; Index++) {\r
462 mRebased[Index] = FALSE;\r
463 if (ApicId != (UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId) {\r
464 SendSmiIpi ((UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId);\r
465 //\r
466 // Wait for this AP to finish its 1st SMI\r
467 //\r
468 while (!mRebased[Index]) {\r
469 }\r
470 } else {\r
471 //\r
472 // BSP will be Relocated later\r
473 //\r
474 BspIndex = Index;\r
475 }\r
476 }\r
477\r
478 //\r
479 // Relocate BSP's SMM base\r
480 //\r
481 ASSERT (BspIndex != (UINTN)-1);\r
482 mIsBsp = TRUE;\r
483 SendSmiIpi (ApicId);\r
484 //\r
485 // Wait for the BSP to finish its 1st SMI\r
486 //\r
487 while (!mRebased[BspIndex]) {\r
488 }\r
489\r
490 //\r
491 // Restore contents at address 0x38000\r
492 //\r
493 CopyMem (CpuStatePtr, &BakBuf2, sizeof (BakBuf2));\r
494 CopyMem (U8Ptr, BakBuf, sizeof (BakBuf));\r
495}\r
496\r
497/**\r
498 SMM Ready To Lock event notification handler.\r
499\r
500 The CPU S3 data is copied to SMRAM for security and mSmmReadyToLock is set to\r
501 perform additional lock actions that must be performed from SMM on the next SMI.\r
502\r
503 @param[in] Protocol Points to the protocol's unique identifier.\r
504 @param[in] Interface Points to the interface instance.\r
505 @param[in] Handle The handle on which the interface was installed.\r
506\r
507 @retval EFI_SUCCESS Notification handler runs successfully.\r
508 **/\r
509EFI_STATUS\r
510EFIAPI\r
511SmmReadyToLockEventNotify (\r
512 IN CONST EFI_GUID *Protocol,\r
513 IN VOID *Interface,\r
514 IN EFI_HANDLE Handle\r
515 )\r
516{\r
517 GetAcpiCpuData ();\r
518\r
519 //\r
520 // Cache a copy of UEFI memory map before we start profiling feature.\r
521 //\r
522 GetUefiMemoryMap ();\r
523\r
524 //\r
525 // Set SMM ready to lock flag and return\r
526 //\r
527 mSmmReadyToLock = TRUE;\r
528 return EFI_SUCCESS;\r
529}\r
530\r
531/**\r
532 The module Entry Point of the CPU SMM driver.\r
533\r
534 @param ImageHandle The firmware allocated handle for the EFI image.\r
535 @param SystemTable A pointer to the EFI System Table.\r
536\r
537 @retval EFI_SUCCESS The entry point is executed successfully.\r
538 @retval Other Some error occurs when executing this entry point.\r
539\r
540**/\r
541EFI_STATUS\r
542EFIAPI\r
543PiCpuSmmEntry (\r
544 IN EFI_HANDLE ImageHandle,\r
545 IN EFI_SYSTEM_TABLE *SystemTable\r
546 )\r
547{\r
548 EFI_STATUS Status;\r
549 EFI_MP_SERVICES_PROTOCOL *MpServices;\r
550 UINTN NumberOfEnabledProcessors;\r
551 UINTN Index;\r
552 VOID *Buffer;\r
553 UINTN BufferPages;\r
554 UINTN TileCodeSize;\r
555 UINTN TileDataSize;\r
556 UINTN TileSize;\r
557 UINT8 *Stacks;\r
558 VOID *Registration;\r
559 UINT32 RegEax;\r
560 UINT32 RegEbx;\r
561 UINT32 RegEcx;\r
562 UINT32 RegEdx;\r
563 UINTN FamilyId;\r
564 UINTN ModelId;\r
565 UINT32 Cr3;\r
566\r
567 //\r
568 // Initialize address fixup\r
569 //\r
570 PiSmmCpuSmmInitFixupAddress ();\r
571 PiSmmCpuSmiEntryFixupAddress ();\r
572\r
573 //\r
574 // Initialize Debug Agent to support source level debug in SMM code\r
575 //\r
576 InitializeDebugAgent (DEBUG_AGENT_INIT_SMM, NULL, NULL);\r
577\r
578 //\r
579 // Report the start of CPU SMM initialization.\r
580 //\r
581 REPORT_STATUS_CODE (\r
582 EFI_PROGRESS_CODE,\r
583 EFI_COMPUTING_UNIT_HOST_PROCESSOR | EFI_CU_HP_PC_SMM_INIT\r
584 );\r
585\r
586 //\r
587 // Find out SMRR Base and SMRR Size\r
588 //\r
589 FindSmramInfo (&mCpuHotPlugData.SmrrBase, &mCpuHotPlugData.SmrrSize);\r
590\r
591 //\r
592 // Get MP Services Protocol\r
593 //\r
594 Status = SystemTable->BootServices->LocateProtocol (&gEfiMpServiceProtocolGuid, NULL, (VOID **)&MpServices);\r
595 ASSERT_EFI_ERROR (Status);\r
596\r
597 //\r
598 // Use MP Services Protocol to retrieve the number of processors and number of enabled processors\r
599 //\r
600 Status = MpServices->GetNumberOfProcessors (MpServices, &mNumberOfCpus, &NumberOfEnabledProcessors);\r
601 ASSERT_EFI_ERROR (Status);\r
602 ASSERT (mNumberOfCpus <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));\r
603\r
604 //\r
605 // If support CPU hot plug, PcdCpuSmmEnableBspElection should be set to TRUE.\r
606 // A constant BSP index makes no sense because it may be hot removed.\r
607 //\r
608 DEBUG_CODE_BEGIN ();\r
609 if (FeaturePcdGet (PcdCpuHotPlugSupport)) {\r
610 ASSERT (FeaturePcdGet (PcdCpuSmmEnableBspElection));\r
611 }\r
612\r
613 DEBUG_CODE_END ();\r
614\r
615 //\r
616 // Save the PcdCpuSmmCodeAccessCheckEnable value into a global variable.\r
617 //\r
618 mSmmCodeAccessCheckEnable = PcdGetBool (PcdCpuSmmCodeAccessCheckEnable);\r
619 DEBUG ((DEBUG_INFO, "PcdCpuSmmCodeAccessCheckEnable = %d\n", mSmmCodeAccessCheckEnable));\r
620\r
621 //\r
622 // Save the PcdPteMemoryEncryptionAddressOrMask value into a global variable.\r
623 // Make sure AddressEncMask is contained to smallest supported address field.\r
624 //\r
625 mAddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) & PAGING_1G_ADDRESS_MASK_64;\r
626 DEBUG ((DEBUG_INFO, "mAddressEncMask = 0x%lx\n", mAddressEncMask));\r
627\r
628 //\r
629 // If support CPU hot plug, we need to allocate resources for possibly hot-added processors\r
630 //\r
631 if (FeaturePcdGet (PcdCpuHotPlugSupport)) {\r
632 mMaxNumberOfCpus = PcdGet32 (PcdCpuMaxLogicalProcessorNumber);\r
633 } else {\r
634 mMaxNumberOfCpus = mNumberOfCpus;\r
635 }\r
636\r
637 gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus = mMaxNumberOfCpus;\r
638\r
639 //\r
640 // The CPU save state and code for the SMI entry point are tiled within an SMRAM\r
641 // allocated buffer. The minimum size of this buffer for a uniprocessor system\r
642 // is 32 KB, because the entry point is SMBASE + 32KB, and CPU save state area\r
643 // just below SMBASE + 64KB. If more than one CPU is present in the platform,\r
644 // then the SMI entry point and the CPU save state areas can be tiles to minimize\r
645 // the total amount SMRAM required for all the CPUs. The tile size can be computed\r
646 // by adding the // CPU save state size, any extra CPU specific context, and\r
647 // the size of code that must be placed at the SMI entry point to transfer\r
648 // control to a C function in the native SMM execution mode. This size is\r
649 // rounded up to the nearest power of 2 to give the tile size for a each CPU.\r
650 // The total amount of memory required is the maximum number of CPUs that\r
651 // platform supports times the tile size. The picture below shows the tiling,\r
652 // where m is the number of tiles that fit in 32KB.\r
653 //\r
654 // +-----------------------------+ <-- 2^n offset from Base of allocated buffer\r
655 // | CPU m+1 Save State |\r
656 // +-----------------------------+\r
657 // | CPU m+1 Extra Data |\r
658 // +-----------------------------+\r
659 // | Padding |\r
660 // +-----------------------------+\r
661 // | CPU 2m SMI Entry |\r
662 // +#############################+ <-- Base of allocated buffer + 64 KB\r
663 // | CPU m-1 Save State |\r
664 // +-----------------------------+\r
665 // | CPU m-1 Extra Data |\r
666 // +-----------------------------+\r
667 // | Padding |\r
668 // +-----------------------------+\r
669 // | CPU 2m-1 SMI Entry |\r
670 // +=============================+ <-- 2^n offset from Base of allocated buffer\r
671 // | . . . . . . . . . . . . |\r
672 // +=============================+ <-- 2^n offset from Base of allocated buffer\r
673 // | CPU 2 Save State |\r
674 // +-----------------------------+\r
675 // | CPU 2 Extra Data |\r
676 // +-----------------------------+\r
677 // | Padding |\r
678 // +-----------------------------+\r
679 // | CPU m+1 SMI Entry |\r
680 // +=============================+ <-- Base of allocated buffer + 32 KB\r
681 // | CPU 1 Save State |\r
682 // +-----------------------------+\r
683 // | CPU 1 Extra Data |\r
684 // +-----------------------------+\r
685 // | Padding |\r
686 // +-----------------------------+\r
687 // | CPU m SMI Entry |\r
688 // +#############################+ <-- Base of allocated buffer + 32 KB == CPU 0 SMBASE + 64 KB\r
689 // | CPU 0 Save State |\r
690 // +-----------------------------+\r
691 // | CPU 0 Extra Data |\r
692 // +-----------------------------+\r
693 // | Padding |\r
694 // +-----------------------------+\r
695 // | CPU m-1 SMI Entry |\r
696 // +=============================+ <-- 2^n offset from Base of allocated buffer\r
697 // | . . . . . . . . . . . . |\r
698 // +=============================+ <-- 2^n offset from Base of allocated buffer\r
699 // | Padding |\r
700 // +-----------------------------+\r
701 // | CPU 1 SMI Entry |\r
702 // +=============================+ <-- 2^n offset from Base of allocated buffer\r
703 // | Padding |\r
704 // +-----------------------------+\r
705 // | CPU 0 SMI Entry |\r
706 // +#############################+ <-- Base of allocated buffer == CPU 0 SMBASE + 32 KB\r
707 //\r
708\r
709 //\r
710 // Retrieve CPU Family\r
711 //\r
712 AsmCpuid (CPUID_VERSION_INFO, &RegEax, NULL, NULL, NULL);\r
713 FamilyId = (RegEax >> 8) & 0xf;\r
714 ModelId = (RegEax >> 4) & 0xf;\r
715 if ((FamilyId == 0x06) || (FamilyId == 0x0f)) {\r
716 ModelId = ModelId | ((RegEax >> 12) & 0xf0);\r
717 }\r
718\r
719 RegEdx = 0;\r
720 AsmCpuid (CPUID_EXTENDED_FUNCTION, &RegEax, NULL, NULL, NULL);\r
721 if (RegEax >= CPUID_EXTENDED_CPU_SIG) {\r
722 AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &RegEdx);\r
723 }\r
724\r
725 //\r
726 // Determine the mode of the CPU at the time an SMI occurs\r
727 // Intel(R) 64 and IA-32 Architectures Software Developer's Manual\r
728 // Volume 3C, Section 34.4.1.1\r
729 //\r
730 mSmmSaveStateRegisterLma = EFI_SMM_SAVE_STATE_REGISTER_LMA_32BIT;\r
731 if ((RegEdx & BIT29) != 0) {\r
732 mSmmSaveStateRegisterLma = EFI_SMM_SAVE_STATE_REGISTER_LMA_64BIT;\r
733 }\r
734\r
735 if (FamilyId == 0x06) {\r
736 if ((ModelId == 0x17) || (ModelId == 0x0f) || (ModelId == 0x1c)) {\r
737 mSmmSaveStateRegisterLma = EFI_SMM_SAVE_STATE_REGISTER_LMA_64BIT;\r
738 }\r
739 }\r
740\r
741 DEBUG ((DEBUG_INFO, "PcdControlFlowEnforcementPropertyMask = %d\n", PcdGet32 (PcdControlFlowEnforcementPropertyMask)));\r
742 if (PcdGet32 (PcdControlFlowEnforcementPropertyMask) != 0) {\r
743 AsmCpuid (CPUID_SIGNATURE, &RegEax, NULL, NULL, NULL);\r
744 if (RegEax >= CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS) {\r
745 AsmCpuidEx (CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS, CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_SUB_LEAF_INFO, NULL, NULL, &RegEcx, &RegEdx);\r
746 DEBUG ((DEBUG_INFO, "CPUID[7/0] ECX - 0x%08x\n", RegEcx));\r
747 DEBUG ((DEBUG_INFO, " CET_SS - 0x%08x\n", RegEcx & CPUID_CET_SS));\r
748 DEBUG ((DEBUG_INFO, " CET_IBT - 0x%08x\n", RegEdx & CPUID_CET_IBT));\r
749 if ((RegEcx & CPUID_CET_SS) == 0) {\r
750 mCetSupported = FALSE;\r
751 PatchInstructionX86 (mPatchCetSupported, mCetSupported, 1);\r
752 }\r
753\r
754 if (mCetSupported) {\r
755 AsmCpuidEx (CPUID_EXTENDED_STATE, CPUID_EXTENDED_STATE_SUB_LEAF, NULL, &RegEbx, &RegEcx, NULL);\r
756 DEBUG ((DEBUG_INFO, "CPUID[D/1] EBX - 0x%08x, ECX - 0x%08x\n", RegEbx, RegEcx));\r
757 AsmCpuidEx (CPUID_EXTENDED_STATE, 11, &RegEax, NULL, &RegEcx, NULL);\r
758 DEBUG ((DEBUG_INFO, "CPUID[D/11] EAX - 0x%08x, ECX - 0x%08x\n", RegEax, RegEcx));\r
759 AsmCpuidEx (CPUID_EXTENDED_STATE, 12, &RegEax, NULL, &RegEcx, NULL);\r
760 DEBUG ((DEBUG_INFO, "CPUID[D/12] EAX - 0x%08x, ECX - 0x%08x\n", RegEax, RegEcx));\r
761 }\r
762 } else {\r
763 mCetSupported = FALSE;\r
764 PatchInstructionX86 (mPatchCetSupported, mCetSupported, 1);\r
765 }\r
766 } else {\r
767 mCetSupported = FALSE;\r
768 PatchInstructionX86 (mPatchCetSupported, mCetSupported, 1);\r
769 }\r
770\r
771 //\r
772 // Compute tile size of buffer required to hold the CPU SMRAM Save State Map, extra CPU\r
773 // specific context start starts at SMBASE + SMM_PSD_OFFSET, and the SMI entry point.\r
774 // This size is rounded up to nearest power of 2.\r
775 //\r
776 TileCodeSize = GetSmiHandlerSize ();\r
777 TileCodeSize = ALIGN_VALUE (TileCodeSize, SIZE_4KB);\r
778 TileDataSize = (SMRAM_SAVE_STATE_MAP_OFFSET - SMM_PSD_OFFSET) + sizeof (SMRAM_SAVE_STATE_MAP);\r
779 TileDataSize = ALIGN_VALUE (TileDataSize, SIZE_4KB);\r
780 TileSize = TileDataSize + TileCodeSize - 1;\r
781 TileSize = 2 * GetPowerOfTwo32 ((UINT32)TileSize);\r
782 DEBUG ((DEBUG_INFO, "SMRAM TileSize = 0x%08x (0x%08x, 0x%08x)\n", TileSize, TileCodeSize, TileDataSize));\r
783\r
784 //\r
785 // If the TileSize is larger than space available for the SMI Handler of\r
786 // CPU[i], the extra CPU specific context of CPU[i+1], and the SMRAM Save\r
787 // State Map of CPU[i+1], then ASSERT(). If this ASSERT() is triggered, then\r
788 // the SMI Handler size must be reduced or the size of the extra CPU specific\r
789 // context must be reduced.\r
790 //\r
791 ASSERT (TileSize <= (SMRAM_SAVE_STATE_MAP_OFFSET + sizeof (SMRAM_SAVE_STATE_MAP) - SMM_HANDLER_OFFSET));\r
792\r
793 //\r
794 // Allocate buffer for all of the tiles.\r
795 //\r
796 // Intel(R) 64 and IA-32 Architectures Software Developer's Manual\r
797 // Volume 3C, Section 34.11 SMBASE Relocation\r
798 // For Pentium and Intel486 processors, the SMBASE values must be\r
799 // aligned on a 32-KByte boundary or the processor will enter shutdown\r
800 // state during the execution of a RSM instruction.\r
801 //\r
802 // Intel486 processors: FamilyId is 4\r
803 // Pentium processors : FamilyId is 5\r
804 //\r
805 BufferPages = EFI_SIZE_TO_PAGES (SIZE_32KB + TileSize * (mMaxNumberOfCpus - 1));\r
806 if ((FamilyId == 4) || (FamilyId == 5)) {\r
807 Buffer = AllocateAlignedCodePages (BufferPages, SIZE_32KB);\r
808 } else {\r
809 Buffer = AllocateAlignedCodePages (BufferPages, SIZE_4KB);\r
810 }\r
811\r
812 ASSERT (Buffer != NULL);\r
813 DEBUG ((DEBUG_INFO, "SMRAM SaveState Buffer (0x%08x, 0x%08x)\n", Buffer, EFI_PAGES_TO_SIZE (BufferPages)));\r
814\r
815 //\r
816 // Allocate buffer for pointers to array in SMM_CPU_PRIVATE_DATA.\r
817 //\r
818 gSmmCpuPrivate->ProcessorInfo = (EFI_PROCESSOR_INFORMATION *)AllocatePool (sizeof (EFI_PROCESSOR_INFORMATION) * mMaxNumberOfCpus);\r
819 ASSERT (gSmmCpuPrivate->ProcessorInfo != NULL);\r
820\r
821 gSmmCpuPrivate->Operation = (SMM_CPU_OPERATION *)AllocatePool (sizeof (SMM_CPU_OPERATION) * mMaxNumberOfCpus);\r
822 ASSERT (gSmmCpuPrivate->Operation != NULL);\r
823\r
824 gSmmCpuPrivate->CpuSaveStateSize = (UINTN *)AllocatePool (sizeof (UINTN) * mMaxNumberOfCpus);\r
825 ASSERT (gSmmCpuPrivate->CpuSaveStateSize != NULL);\r
826\r
827 gSmmCpuPrivate->CpuSaveState = (VOID **)AllocatePool (sizeof (VOID *) * mMaxNumberOfCpus);\r
828 ASSERT (gSmmCpuPrivate->CpuSaveState != NULL);\r
829\r
830 mSmmCpuPrivateData.SmmCoreEntryContext.CpuSaveStateSize = gSmmCpuPrivate->CpuSaveStateSize;\r
831 mSmmCpuPrivateData.SmmCoreEntryContext.CpuSaveState = gSmmCpuPrivate->CpuSaveState;\r
832\r
833 //\r
834 // Allocate buffer for pointers to array in CPU_HOT_PLUG_DATA.\r
835 //\r
836 mCpuHotPlugData.ApicId = (UINT64 *)AllocatePool (sizeof (UINT64) * mMaxNumberOfCpus);\r
837 ASSERT (mCpuHotPlugData.ApicId != NULL);\r
838 mCpuHotPlugData.SmBase = (UINTN *)AllocatePool (sizeof (UINTN) * mMaxNumberOfCpus);\r
839 ASSERT (mCpuHotPlugData.SmBase != NULL);\r
840 mCpuHotPlugData.ArrayLength = (UINT32)mMaxNumberOfCpus;\r
841\r
842 //\r
843 // Retrieve APIC ID of each enabled processor from the MP Services protocol.\r
844 // Also compute the SMBASE address, CPU Save State address, and CPU Save state\r
845 // size for each CPU in the platform\r
846 //\r
847 for (Index = 0; Index < mMaxNumberOfCpus; Index++) {\r
848 mCpuHotPlugData.SmBase[Index] = (UINTN)Buffer + Index * TileSize - SMM_HANDLER_OFFSET;\r
849 gSmmCpuPrivate->CpuSaveStateSize[Index] = sizeof (SMRAM_SAVE_STATE_MAP);\r
850 gSmmCpuPrivate->CpuSaveState[Index] = (VOID *)(mCpuHotPlugData.SmBase[Index] + SMRAM_SAVE_STATE_MAP_OFFSET);\r
851 gSmmCpuPrivate->Operation[Index] = SmmCpuNone;\r
852\r
853 if (Index < mNumberOfCpus) {\r
854 Status = MpServices->GetProcessorInfo (MpServices, Index, &gSmmCpuPrivate->ProcessorInfo[Index]);\r
855 ASSERT_EFI_ERROR (Status);\r
856 mCpuHotPlugData.ApicId[Index] = gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId;\r
857\r
858 DEBUG ((\r
859 DEBUG_INFO,\r
860 "CPU[%03x] APIC ID=%04x SMBASE=%08x SaveState=%08x Size=%08x\n",\r
861 Index,\r
862 (UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId,\r
863 mCpuHotPlugData.SmBase[Index],\r
864 gSmmCpuPrivate->CpuSaveState[Index],\r
865 gSmmCpuPrivate->CpuSaveStateSize[Index]\r
866 ));\r
867 } else {\r
868 gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId = INVALID_APIC_ID;\r
869 mCpuHotPlugData.ApicId[Index] = INVALID_APIC_ID;\r
870 }\r
871 }\r
872\r
873 //\r
874 // Allocate SMI stacks for all processors.\r
875 //\r
876 mSmmStackSize = EFI_PAGES_TO_SIZE (EFI_SIZE_TO_PAGES (PcdGet32 (PcdCpuSmmStackSize)));\r
877 if (FeaturePcdGet (PcdCpuSmmStackGuard)) {\r
878 //\r
879 // SMM Stack Guard Enabled\r
880 // 2 more pages is allocated for each processor, one is guard page and the other is known good stack.\r
881 //\r
882 // +--------------------------------------------------+-----+--------------------------------------------------+\r
883 // | Known Good Stack | Guard Page | SMM Stack | ... | Known Good Stack | Guard Page | SMM Stack |\r
884 // +--------------------------------------------------+-----+--------------------------------------------------+\r
885 // | 4K | 4K PcdCpuSmmStackSize| | 4K | 4K PcdCpuSmmStackSize|\r
886 // |<---------------- mSmmStackSize ----------------->| |<---------------- mSmmStackSize ----------------->|\r
887 // | | | |\r
888 // |<------------------ Processor 0 ----------------->| |<------------------ Processor n ----------------->|\r
889 //\r
890 mSmmStackSize += EFI_PAGES_TO_SIZE (2);\r
891 }\r
892\r
893 mSmmShadowStackSize = 0;\r
894 if ((PcdGet32 (PcdControlFlowEnforcementPropertyMask) != 0) && mCetSupported) {\r
895 mSmmShadowStackSize = EFI_PAGES_TO_SIZE (EFI_SIZE_TO_PAGES (PcdGet32 (PcdCpuSmmShadowStackSize)));\r
896\r
897 if (FeaturePcdGet (PcdCpuSmmStackGuard)) {\r
898 //\r
899 // SMM Stack Guard Enabled\r
900 // Append Shadow Stack after normal stack\r
901 // 2 more pages is allocated for each processor, one is guard page and the other is known good shadow stack.\r
902 //\r
903 // |= Stacks\r
904 // +--------------------------------------------------+---------------------------------------------------------------+\r
905 // | Known Good Stack | Guard Page | SMM Stack | Known Good Shadow Stack | Guard Page | SMM Shadow Stack |\r
906 // +--------------------------------------------------+---------------------------------------------------------------+\r
907 // | 4K | 4K |PcdCpuSmmStackSize| 4K | 4K |PcdCpuSmmShadowStackSize|\r
908 // |<---------------- mSmmStackSize ----------------->|<--------------------- mSmmShadowStackSize ------------------->|\r
909 // | |\r
910 // |<-------------------------------------------- Processor N ------------------------------------------------------->|\r
911 //\r
912 mSmmShadowStackSize += EFI_PAGES_TO_SIZE (2);\r
913 } else {\r
914 //\r
915 // SMM Stack Guard Disabled (Known Good Stack is still required for potential stack switch.)\r
916 // Append Shadow Stack after normal stack with 1 more page as known good shadow stack.\r
917 // 1 more pages is allocated for each processor, it is known good stack.\r
918 //\r
919 //\r
920 // |= Stacks\r
921 // +-------------------------------------+--------------------------------------------------+\r
922 // | Known Good Stack | SMM Stack | Known Good Shadow Stack | SMM Shadow Stack |\r
923 // +-------------------------------------+--------------------------------------------------+\r
924 // | 4K |PcdCpuSmmStackSize| 4K |PcdCpuSmmShadowStackSize|\r
925 // |<---------- mSmmStackSize ---------->|<--------------- mSmmShadowStackSize ------------>|\r
926 // | |\r
927 // |<-------------------------------- Processor N ----------------------------------------->|\r
928 //\r
929 mSmmShadowStackSize += EFI_PAGES_TO_SIZE (1);\r
930 mSmmStackSize += EFI_PAGES_TO_SIZE (1);\r
931 }\r
932 }\r
933\r
934 Stacks = (UINT8 *)AllocatePages (gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus * (EFI_SIZE_TO_PAGES (mSmmStackSize + mSmmShadowStackSize)));\r
935 ASSERT (Stacks != NULL);\r
936 mSmmStackArrayBase = (UINTN)Stacks;\r
937 mSmmStackArrayEnd = mSmmStackArrayBase + gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus * (mSmmStackSize + mSmmShadowStackSize) - 1;\r
938\r
939 DEBUG ((DEBUG_INFO, "Stacks - 0x%x\n", Stacks));\r
940 DEBUG ((DEBUG_INFO, "mSmmStackSize - 0x%x\n", mSmmStackSize));\r
941 DEBUG ((DEBUG_INFO, "PcdCpuSmmStackGuard - 0x%x\n", FeaturePcdGet (PcdCpuSmmStackGuard)));\r
942 if ((PcdGet32 (PcdControlFlowEnforcementPropertyMask) != 0) && mCetSupported) {\r
943 DEBUG ((DEBUG_INFO, "mSmmShadowStackSize - 0x%x\n", mSmmShadowStackSize));\r
944 }\r
945\r
946 //\r
947 // Set SMI stack for SMM base relocation\r
948 //\r
949 PatchInstructionX86 (\r
950 gPatchSmmInitStack,\r
951 (UINTN)(Stacks + mSmmStackSize - sizeof (UINTN)),\r
952 sizeof (UINTN)\r
953 );\r
954\r
955 //\r
956 // Initialize IDT\r
957 //\r
958 InitializeSmmIdt ();\r
959\r
960 //\r
961 // Relocate SMM Base addresses to the ones allocated from SMRAM\r
962 //\r
963 mRebased = (BOOLEAN *)AllocateZeroPool (sizeof (BOOLEAN) * mMaxNumberOfCpus);\r
964 ASSERT (mRebased != NULL);\r
965 SmmRelocateBases ();\r
966\r
967 //\r
968 // Call hook for BSP to perform extra actions in normal mode after all\r
969 // SMM base addresses have been relocated on all CPUs\r
970 //\r
971 SmmCpuFeaturesSmmRelocationComplete ();\r
972\r
973 DEBUG ((DEBUG_INFO, "mXdSupported - 0x%x\n", mXdSupported));\r
974\r
975 //\r
976 // SMM Time initialization\r
977 //\r
978 InitializeSmmTimer ();\r
979\r
980 //\r
981 // Initialize MP globals\r
982 //\r
983 Cr3 = InitializeMpServiceData (Stacks, mSmmStackSize, mSmmShadowStackSize);\r
984\r
985 if ((PcdGet32 (PcdControlFlowEnforcementPropertyMask) != 0) && mCetSupported) {\r
986 for (Index = 0; Index < gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus; Index++) {\r
987 SetShadowStack (\r
988 Cr3,\r
989 (EFI_PHYSICAL_ADDRESS)(UINTN)Stacks + mSmmStackSize + (mSmmStackSize + mSmmShadowStackSize) * Index,\r
990 mSmmShadowStackSize\r
991 );\r
992 if (FeaturePcdGet (PcdCpuSmmStackGuard)) {\r
993 SetNotPresentPage (\r
994 Cr3,\r
995 (EFI_PHYSICAL_ADDRESS)(UINTN)Stacks + mSmmStackSize + EFI_PAGES_TO_SIZE (1) + (mSmmStackSize + mSmmShadowStackSize) * Index,\r
996 EFI_PAGES_TO_SIZE (1)\r
997 );\r
998 }\r
999 }\r
1000 }\r
1001\r
1002 //\r
1003 // Fill in SMM Reserved Regions\r
1004 //\r
1005 gSmmCpuPrivate->SmmReservedSmramRegion[0].SmramReservedStart = 0;\r
1006 gSmmCpuPrivate->SmmReservedSmramRegion[0].SmramReservedSize = 0;\r
1007\r
1008 //\r
1009 // Install the SMM Configuration Protocol onto a new handle on the handle database.\r
1010 // The entire SMM Configuration Protocol is allocated from SMRAM, so only a pointer\r
1011 // to an SMRAM address will be present in the handle database\r
1012 //\r
1013 Status = SystemTable->BootServices->InstallMultipleProtocolInterfaces (\r
1014 &gSmmCpuPrivate->SmmCpuHandle,\r
1015 &gEfiSmmConfigurationProtocolGuid,\r
1016 &gSmmCpuPrivate->SmmConfiguration,\r
1017 NULL\r
1018 );\r
1019 ASSERT_EFI_ERROR (Status);\r
1020\r
1021 //\r
1022 // Install the SMM CPU Protocol into SMM protocol database\r
1023 //\r
1024 Status = gSmst->SmmInstallProtocolInterface (\r
1025 &mSmmCpuHandle,\r
1026 &gEfiSmmCpuProtocolGuid,\r
1027 EFI_NATIVE_INTERFACE,\r
1028 &mSmmCpu\r
1029 );\r
1030 ASSERT_EFI_ERROR (Status);\r
1031\r
1032 //\r
1033 // Install the SMM Memory Attribute Protocol into SMM protocol database\r
1034 //\r
1035 Status = gSmst->SmmInstallProtocolInterface (\r
1036 &mSmmCpuHandle,\r
1037 &gEdkiiSmmMemoryAttributeProtocolGuid,\r
1038 EFI_NATIVE_INTERFACE,\r
1039 &mSmmMemoryAttribute\r
1040 );\r
1041 ASSERT_EFI_ERROR (Status);\r
1042\r
1043 //\r
1044 // Initialize global buffer for MM MP.\r
1045 //\r
1046 InitializeDataForMmMp ();\r
1047\r
1048 //\r
1049 // Install the SMM Mp Protocol into SMM protocol database\r
1050 //\r
1051 Status = gSmst->SmmInstallProtocolInterface (\r
1052 &mSmmCpuHandle,\r
1053 &gEfiMmMpProtocolGuid,\r
1054 EFI_NATIVE_INTERFACE,\r
1055 &mSmmMp\r
1056 );\r
1057 ASSERT_EFI_ERROR (Status);\r
1058\r
1059 //\r
1060 // Expose address of CPU Hot Plug Data structure if CPU hot plug is supported.\r
1061 //\r
1062 if (FeaturePcdGet (PcdCpuHotPlugSupport)) {\r
1063 Status = PcdSet64S (PcdCpuHotPlugDataAddress, (UINT64)(UINTN)&mCpuHotPlugData);\r
1064 ASSERT_EFI_ERROR (Status);\r
1065 }\r
1066\r
1067 //\r
1068 // Initialize SMM CPU Services Support\r
1069 //\r
1070 Status = InitializeSmmCpuServices (mSmmCpuHandle);\r
1071 ASSERT_EFI_ERROR (Status);\r
1072\r
1073 //\r
1074 // register SMM Ready To Lock Protocol notification\r
1075 //\r
1076 Status = gSmst->SmmRegisterProtocolNotify (\r
1077 &gEfiSmmReadyToLockProtocolGuid,\r
1078 SmmReadyToLockEventNotify,\r
1079 &Registration\r
1080 );\r
1081 ASSERT_EFI_ERROR (Status);\r
1082\r
1083 //\r
1084 // Initialize SMM Profile feature\r
1085 //\r
1086 InitSmmProfile (Cr3);\r
1087\r
1088 GetAcpiS3EnableFlag ();\r
1089 InitSmmS3ResumeState (Cr3);\r
1090\r
1091 DEBUG ((DEBUG_INFO, "SMM CPU Module exit from SMRAM with EFI_SUCCESS\n"));\r
1092\r
1093 return EFI_SUCCESS;\r
1094}\r
1095\r
1096/**\r
1097\r
1098 Find out SMRAM information including SMRR base and SMRR size.\r
1099\r
1100 @param SmrrBase SMRR base\r
1101 @param SmrrSize SMRR size\r
1102\r
1103**/\r
1104VOID\r
1105FindSmramInfo (\r
1106 OUT UINT32 *SmrrBase,\r
1107 OUT UINT32 *SmrrSize\r
1108 )\r
1109{\r
1110 EFI_STATUS Status;\r
1111 UINTN Size;\r
1112 EFI_SMM_ACCESS2_PROTOCOL *SmmAccess;\r
1113 EFI_SMRAM_DESCRIPTOR *CurrentSmramRange;\r
1114 UINTN Index;\r
1115 UINT64 MaxSize;\r
1116 BOOLEAN Found;\r
1117\r
1118 //\r
1119 // Get SMM Access Protocol\r
1120 //\r
1121 Status = gBS->LocateProtocol (&gEfiSmmAccess2ProtocolGuid, NULL, (VOID **)&SmmAccess);\r
1122 ASSERT_EFI_ERROR (Status);\r
1123\r
1124 //\r
1125 // Get SMRAM information\r
1126 //\r
1127 Size = 0;\r
1128 Status = SmmAccess->GetCapabilities (SmmAccess, &Size, NULL);\r
1129 ASSERT (Status == EFI_BUFFER_TOO_SMALL);\r
1130\r
1131 mSmmCpuSmramRanges = (EFI_SMRAM_DESCRIPTOR *)AllocatePool (Size);\r
1132 ASSERT (mSmmCpuSmramRanges != NULL);\r
1133\r
1134 Status = SmmAccess->GetCapabilities (SmmAccess, &Size, mSmmCpuSmramRanges);\r
1135 ASSERT_EFI_ERROR (Status);\r
1136\r
1137 mSmmCpuSmramRangeCount = Size / sizeof (EFI_SMRAM_DESCRIPTOR);\r
1138\r
1139 //\r
1140 // Find the largest SMRAM range between 1MB and 4GB that is at least 256K - 4K in size\r
1141 //\r
1142 CurrentSmramRange = NULL;\r
1143 for (Index = 0, MaxSize = SIZE_256KB - EFI_PAGE_SIZE; Index < mSmmCpuSmramRangeCount; Index++) {\r
1144 //\r
1145 // Skip any SMRAM region that is already allocated, needs testing, or needs ECC initialization\r
1146 //\r
1147 if ((mSmmCpuSmramRanges[Index].RegionState & (EFI_ALLOCATED | EFI_NEEDS_TESTING | EFI_NEEDS_ECC_INITIALIZATION)) != 0) {\r
1148 continue;\r
1149 }\r
1150\r
1151 if (mSmmCpuSmramRanges[Index].CpuStart >= BASE_1MB) {\r
1152 if ((mSmmCpuSmramRanges[Index].CpuStart + mSmmCpuSmramRanges[Index].PhysicalSize) <= SMRR_MAX_ADDRESS) {\r
1153 if (mSmmCpuSmramRanges[Index].PhysicalSize >= MaxSize) {\r
1154 MaxSize = mSmmCpuSmramRanges[Index].PhysicalSize;\r
1155 CurrentSmramRange = &mSmmCpuSmramRanges[Index];\r
1156 }\r
1157 }\r
1158 }\r
1159 }\r
1160\r
1161 ASSERT (CurrentSmramRange != NULL);\r
1162\r
1163 *SmrrBase = (UINT32)CurrentSmramRange->CpuStart;\r
1164 *SmrrSize = (UINT32)CurrentSmramRange->PhysicalSize;\r
1165\r
1166 do {\r
1167 Found = FALSE;\r
1168 for (Index = 0; Index < mSmmCpuSmramRangeCount; Index++) {\r
1169 if ((mSmmCpuSmramRanges[Index].CpuStart < *SmrrBase) &&\r
1170 (*SmrrBase == (mSmmCpuSmramRanges[Index].CpuStart + mSmmCpuSmramRanges[Index].PhysicalSize)))\r
1171 {\r
1172 *SmrrBase = (UINT32)mSmmCpuSmramRanges[Index].CpuStart;\r
1173 *SmrrSize = (UINT32)(*SmrrSize + mSmmCpuSmramRanges[Index].PhysicalSize);\r
1174 Found = TRUE;\r
1175 } else if (((*SmrrBase + *SmrrSize) == mSmmCpuSmramRanges[Index].CpuStart) && (mSmmCpuSmramRanges[Index].PhysicalSize > 0)) {\r
1176 *SmrrSize = (UINT32)(*SmrrSize + mSmmCpuSmramRanges[Index].PhysicalSize);\r
1177 Found = TRUE;\r
1178 }\r
1179 }\r
1180 } while (Found);\r
1181\r
1182 DEBUG ((DEBUG_INFO, "SMRR Base: 0x%x, SMRR Size: 0x%x\n", *SmrrBase, *SmrrSize));\r
1183}\r
1184\r
1185/**\r
1186Configure SMM Code Access Check feature on an AP.\r
1187SMM Feature Control MSR will be locked after configuration.\r
1188\r
1189@param[in,out] Buffer Pointer to private data buffer.\r
1190**/\r
1191VOID\r
1192EFIAPI\r
1193ConfigSmmCodeAccessCheckOnCurrentProcessor (\r
1194 IN OUT VOID *Buffer\r
1195 )\r
1196{\r
1197 UINTN CpuIndex;\r
1198 UINT64 SmmFeatureControlMsr;\r
1199 UINT64 NewSmmFeatureControlMsr;\r
1200\r
1201 //\r
1202 // Retrieve the CPU Index from the context passed in\r
1203 //\r
1204 CpuIndex = *(UINTN *)Buffer;\r
1205\r
1206 //\r
1207 // Get the current SMM Feature Control MSR value\r
1208 //\r
1209 SmmFeatureControlMsr = SmmCpuFeaturesGetSmmRegister (CpuIndex, SmmRegFeatureControl);\r
1210\r
1211 //\r
1212 // Compute the new SMM Feature Control MSR value\r
1213 //\r
1214 NewSmmFeatureControlMsr = SmmFeatureControlMsr;\r
1215 if (mSmmCodeAccessCheckEnable) {\r
1216 NewSmmFeatureControlMsr |= SMM_CODE_CHK_EN_BIT;\r
1217 if (FeaturePcdGet (PcdCpuSmmFeatureControlMsrLock)) {\r
1218 NewSmmFeatureControlMsr |= SMM_FEATURE_CONTROL_LOCK_BIT;\r
1219 }\r
1220 }\r
1221\r
1222 //\r
1223 // Only set the SMM Feature Control MSR value if the new value is different than the current value\r
1224 //\r
1225 if (NewSmmFeatureControlMsr != SmmFeatureControlMsr) {\r
1226 SmmCpuFeaturesSetSmmRegister (CpuIndex, SmmRegFeatureControl, NewSmmFeatureControlMsr);\r
1227 }\r
1228\r
1229 //\r
1230 // Release the spin lock user to serialize the updates to the SMM Feature Control MSR\r
1231 //\r
1232 ReleaseSpinLock (mConfigSmmCodeAccessCheckLock);\r
1233}\r
1234\r
1235/**\r
1236Configure SMM Code Access Check feature for all processors.\r
1237SMM Feature Control MSR will be locked after configuration.\r
1238**/\r
1239VOID\r
1240ConfigSmmCodeAccessCheck (\r
1241 VOID\r
1242 )\r
1243{\r
1244 UINTN Index;\r
1245 EFI_STATUS Status;\r
1246\r
1247 //\r
1248 // Check to see if the Feature Control MSR is supported on this CPU\r
1249 //\r
1250 Index = gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu;\r
1251 if (!SmmCpuFeaturesIsSmmRegisterSupported (Index, SmmRegFeatureControl)) {\r
1252 mSmmCodeAccessCheckEnable = FALSE;\r
1253 return;\r
1254 }\r
1255\r
1256 //\r
1257 // Check to see if the CPU supports the SMM Code Access Check feature\r
1258 // Do not access this MSR unless the CPU supports the SmmRegFeatureControl\r
1259 //\r
1260 if ((AsmReadMsr64 (EFI_MSR_SMM_MCA_CAP) & SMM_CODE_ACCESS_CHK_BIT) == 0) {\r
1261 mSmmCodeAccessCheckEnable = FALSE;\r
1262 return;\r
1263 }\r
1264\r
1265 //\r
1266 // Initialize the lock used to serialize the MSR programming in BSP and all APs\r
1267 //\r
1268 InitializeSpinLock (mConfigSmmCodeAccessCheckLock);\r
1269\r
1270 //\r
1271 // Acquire Config SMM Code Access Check spin lock. The BSP will release the\r
1272 // spin lock when it is done executing ConfigSmmCodeAccessCheckOnCurrentProcessor().\r
1273 //\r
1274 AcquireSpinLock (mConfigSmmCodeAccessCheckLock);\r
1275\r
1276 //\r
1277 // Enable SMM Code Access Check feature on the BSP.\r
1278 //\r
1279 ConfigSmmCodeAccessCheckOnCurrentProcessor (&Index);\r
1280\r
1281 //\r
1282 // Enable SMM Code Access Check feature for the APs.\r
1283 //\r
1284 for (Index = 0; Index < gSmst->NumberOfCpus; Index++) {\r
1285 if (Index != gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu) {\r
1286 if (gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId == INVALID_APIC_ID) {\r
1287 //\r
1288 // If this processor does not exist\r
1289 //\r
1290 continue;\r
1291 }\r
1292\r
1293 //\r
1294 // Acquire Config SMM Code Access Check spin lock. The AP will release the\r
1295 // spin lock when it is done executing ConfigSmmCodeAccessCheckOnCurrentProcessor().\r
1296 //\r
1297 AcquireSpinLock (mConfigSmmCodeAccessCheckLock);\r
1298\r
1299 //\r
1300 // Call SmmStartupThisAp() to enable SMM Code Access Check on an AP.\r
1301 //\r
1302 Status = gSmst->SmmStartupThisAp (ConfigSmmCodeAccessCheckOnCurrentProcessor, Index, &Index);\r
1303 ASSERT_EFI_ERROR (Status);\r
1304\r
1305 //\r
1306 // Wait for the AP to release the Config SMM Code Access Check spin lock.\r
1307 //\r
1308 while (!AcquireSpinLockOrFail (mConfigSmmCodeAccessCheckLock)) {\r
1309 CpuPause ();\r
1310 }\r
1311\r
1312 //\r
1313 // Release the Config SMM Code Access Check spin lock.\r
1314 //\r
1315 ReleaseSpinLock (mConfigSmmCodeAccessCheckLock);\r
1316 }\r
1317 }\r
1318}\r
1319\r
1320/**\r
1321 This API provides a way to allocate memory for page table.\r
1322\r
1323 This API can be called more once to allocate memory for page tables.\r
1324\r
1325 Allocates the number of 4KB pages of type EfiRuntimeServicesData and returns a pointer to the\r
1326 allocated buffer. The buffer returned is aligned on a 4KB boundary. If Pages is 0, then NULL\r
1327 is returned. If there is not enough memory remaining to satisfy the request, then NULL is\r
1328 returned.\r
1329\r
1330 @param Pages The number of 4 KB pages to allocate.\r
1331\r
1332 @return A pointer to the allocated buffer or NULL if allocation fails.\r
1333\r
1334**/\r
1335VOID *\r
1336AllocatePageTableMemory (\r
1337 IN UINTN Pages\r
1338 )\r
1339{\r
1340 VOID *Buffer;\r
1341\r
1342 Buffer = SmmCpuFeaturesAllocatePageTableMemory (Pages);\r
1343 if (Buffer != NULL) {\r
1344 return Buffer;\r
1345 }\r
1346\r
1347 return AllocatePages (Pages);\r
1348}\r
1349\r
1350/**\r
1351 Allocate pages for code.\r
1352\r
1353 @param[in] Pages Number of pages to be allocated.\r
1354\r
1355 @return Allocated memory.\r
1356**/\r
1357VOID *\r
1358AllocateCodePages (\r
1359 IN UINTN Pages\r
1360 )\r
1361{\r
1362 EFI_STATUS Status;\r
1363 EFI_PHYSICAL_ADDRESS Memory;\r
1364\r
1365 if (Pages == 0) {\r
1366 return NULL;\r
1367 }\r
1368\r
1369 Status = gSmst->SmmAllocatePages (AllocateAnyPages, EfiRuntimeServicesCode, Pages, &Memory);\r
1370 if (EFI_ERROR (Status)) {\r
1371 return NULL;\r
1372 }\r
1373\r
1374 return (VOID *)(UINTN)Memory;\r
1375}\r
1376\r
1377/**\r
1378 Allocate aligned pages for code.\r
1379\r
1380 @param[in] Pages Number of pages to be allocated.\r
1381 @param[in] Alignment The requested alignment of the allocation.\r
1382 Must be a power of two.\r
1383 If Alignment is zero, then byte alignment is used.\r
1384\r
1385 @return Allocated memory.\r
1386**/\r
1387VOID *\r
1388AllocateAlignedCodePages (\r
1389 IN UINTN Pages,\r
1390 IN UINTN Alignment\r
1391 )\r
1392{\r
1393 EFI_STATUS Status;\r
1394 EFI_PHYSICAL_ADDRESS Memory;\r
1395 UINTN AlignedMemory;\r
1396 UINTN AlignmentMask;\r
1397 UINTN UnalignedPages;\r
1398 UINTN RealPages;\r
1399\r
1400 //\r
1401 // Alignment must be a power of two or zero.\r
1402 //\r
1403 ASSERT ((Alignment & (Alignment - 1)) == 0);\r
1404\r
1405 if (Pages == 0) {\r
1406 return NULL;\r
1407 }\r
1408\r
1409 if (Alignment > EFI_PAGE_SIZE) {\r
1410 //\r
1411 // Calculate the total number of pages since alignment is larger than page size.\r
1412 //\r
1413 AlignmentMask = Alignment - 1;\r
1414 RealPages = Pages + EFI_SIZE_TO_PAGES (Alignment);\r
1415 //\r
1416 // Make sure that Pages plus EFI_SIZE_TO_PAGES (Alignment) does not overflow.\r
1417 //\r
1418 ASSERT (RealPages > Pages);\r
1419\r
1420 Status = gSmst->SmmAllocatePages (AllocateAnyPages, EfiRuntimeServicesCode, RealPages, &Memory);\r
1421 if (EFI_ERROR (Status)) {\r
1422 return NULL;\r
1423 }\r
1424\r
1425 AlignedMemory = ((UINTN)Memory + AlignmentMask) & ~AlignmentMask;\r
1426 UnalignedPages = EFI_SIZE_TO_PAGES (AlignedMemory - (UINTN)Memory);\r
1427 if (UnalignedPages > 0) {\r
1428 //\r
1429 // Free first unaligned page(s).\r
1430 //\r
1431 Status = gSmst->SmmFreePages (Memory, UnalignedPages);\r
1432 ASSERT_EFI_ERROR (Status);\r
1433 }\r
1434\r
1435 Memory = AlignedMemory + EFI_PAGES_TO_SIZE (Pages);\r
1436 UnalignedPages = RealPages - Pages - UnalignedPages;\r
1437 if (UnalignedPages > 0) {\r
1438 //\r
1439 // Free last unaligned page(s).\r
1440 //\r
1441 Status = gSmst->SmmFreePages (Memory, UnalignedPages);\r
1442 ASSERT_EFI_ERROR (Status);\r
1443 }\r
1444 } else {\r
1445 //\r
1446 // Do not over-allocate pages in this case.\r
1447 //\r
1448 Status = gSmst->SmmAllocatePages (AllocateAnyPages, EfiRuntimeServicesCode, Pages, &Memory);\r
1449 if (EFI_ERROR (Status)) {\r
1450 return NULL;\r
1451 }\r
1452\r
1453 AlignedMemory = (UINTN)Memory;\r
1454 }\r
1455\r
1456 return (VOID *)AlignedMemory;\r
1457}\r
1458\r
1459/**\r
1460 Perform the remaining tasks.\r
1461\r
1462**/\r
1463VOID\r
1464PerformRemainingTasks (\r
1465 VOID\r
1466 )\r
1467{\r
1468 if (mSmmReadyToLock) {\r
1469 //\r
1470 // Start SMM Profile feature\r
1471 //\r
1472 if (FeaturePcdGet (PcdCpuSmmProfileEnable)) {\r
1473 SmmProfileStart ();\r
1474 }\r
1475\r
1476 //\r
1477 // Create a mix of 2MB and 4KB page table. Update some memory ranges absent and execute-disable.\r
1478 //\r
1479 InitPaging ();\r
1480\r
1481 //\r
1482 // Mark critical region to be read-only in page table\r
1483 //\r
1484 SetMemMapAttributes ();\r
1485\r
1486 if (IsRestrictedMemoryAccess ()) {\r
1487 //\r
1488 // For outside SMRAM, we only map SMM communication buffer or MMIO.\r
1489 //\r
1490 SetUefiMemMapAttributes ();\r
1491\r
1492 //\r
1493 // Set page table itself to be read-only\r
1494 //\r
1495 SetPageTableAttributes ();\r
1496 }\r
1497\r
1498 //\r
1499 // Configure SMM Code Access Check feature if available.\r
1500 //\r
1501 ConfigSmmCodeAccessCheck ();\r
1502\r
1503 SmmCpuFeaturesCompleteSmmReadyToLock ();\r
1504\r
1505 //\r
1506 // Clean SMM ready to lock flag\r
1507 //\r
1508 mSmmReadyToLock = FALSE;\r
1509 }\r
1510}\r
1511\r
1512/**\r
1513 Perform the pre tasks.\r
1514\r
1515**/\r
1516VOID\r
1517PerformPreTasks (\r
1518 VOID\r
1519 )\r
1520{\r
1521 RestoreSmmConfigurationInS3 ();\r
1522}\r