]> git.proxmox.com Git - mirror_edk2.git/blame_incremental - UefiCpuPkg/PiSmmCpuDxeSmm/PiSmmCpuDxeSmm.c
Revert "UefiCpuPkg/PiSmmCpu: Allow SMM access-out when static paging is OFF"
[mirror_edk2.git] / UefiCpuPkg / PiSmmCpuDxeSmm / PiSmmCpuDxeSmm.c
... / ...
CommitLineData
1/** @file\r
2Agent Module to load other modules to deploy SMM Entry Vector for X86 CPU.\r
3\r
4Copyright (c) 2009 - 2019, Intel Corporation. All rights reserved.<BR>\r
5Copyright (c) 2017, AMD Incorporated. All rights reserved.<BR>\r
6\r
7SPDX-License-Identifier: BSD-2-Clause-Patent\r
8\r
9**/\r
10\r
11#include "PiSmmCpuDxeSmm.h"\r
12\r
13//\r
14// SMM CPU Private Data structure that contains SMM Configuration Protocol\r
15// along its supporting fields.\r
16//\r
17SMM_CPU_PRIVATE_DATA mSmmCpuPrivateData = {\r
18 SMM_CPU_PRIVATE_DATA_SIGNATURE, // Signature\r
19 NULL, // SmmCpuHandle\r
20 NULL, // Pointer to ProcessorInfo array\r
21 NULL, // Pointer to Operation array\r
22 NULL, // Pointer to CpuSaveStateSize array\r
23 NULL, // Pointer to CpuSaveState array\r
24 { {0} }, // SmmReservedSmramRegion\r
25 {\r
26 SmmStartupThisAp, // SmmCoreEntryContext.SmmStartupThisAp\r
27 0, // SmmCoreEntryContext.CurrentlyExecutingCpu\r
28 0, // SmmCoreEntryContext.NumberOfCpus\r
29 NULL, // SmmCoreEntryContext.CpuSaveStateSize\r
30 NULL // SmmCoreEntryContext.CpuSaveState\r
31 },\r
32 NULL, // SmmCoreEntry\r
33 {\r
34 mSmmCpuPrivateData.SmmReservedSmramRegion, // SmmConfiguration.SmramReservedRegions\r
35 RegisterSmmEntry // SmmConfiguration.RegisterSmmEntry\r
36 },\r
37 NULL, // pointer to Ap Wrapper Func array\r
38 {NULL, NULL}, // List_Entry for Tokens.\r
39};\r
40\r
41CPU_HOT_PLUG_DATA mCpuHotPlugData = {\r
42 CPU_HOT_PLUG_DATA_REVISION_1, // Revision\r
43 0, // Array Length of SmBase and APIC ID\r
44 NULL, // Pointer to APIC ID array\r
45 NULL, // Pointer to SMBASE array\r
46 0, // Reserved\r
47 0, // SmrrBase\r
48 0 // SmrrSize\r
49};\r
50\r
51//\r
52// Global pointer used to access mSmmCpuPrivateData from outside and inside SMM\r
53//\r
54SMM_CPU_PRIVATE_DATA *gSmmCpuPrivate = &mSmmCpuPrivateData;\r
55\r
56//\r
57// SMM Relocation variables\r
58//\r
59volatile BOOLEAN *mRebased;\r
60volatile BOOLEAN mIsBsp;\r
61\r
62///\r
63/// Handle for the SMM CPU Protocol\r
64///\r
65EFI_HANDLE mSmmCpuHandle = NULL;\r
66\r
67///\r
68/// SMM CPU Protocol instance\r
69///\r
70EFI_SMM_CPU_PROTOCOL mSmmCpu = {\r
71 SmmReadSaveState,\r
72 SmmWriteSaveState\r
73};\r
74\r
75///\r
76/// SMM Memory Attribute Protocol instance\r
77///\r
78EDKII_SMM_MEMORY_ATTRIBUTE_PROTOCOL mSmmMemoryAttribute = {\r
79 EdkiiSmmGetMemoryAttributes,\r
80 EdkiiSmmSetMemoryAttributes,\r
81 EdkiiSmmClearMemoryAttributes\r
82};\r
83\r
84EFI_CPU_INTERRUPT_HANDLER mExternalVectorTable[EXCEPTION_VECTOR_NUMBER];\r
85\r
86//\r
87// SMM stack information\r
88//\r
89UINTN mSmmStackArrayBase;\r
90UINTN mSmmStackArrayEnd;\r
91UINTN mSmmStackSize;\r
92\r
93UINTN mSmmShadowStackSize;\r
94BOOLEAN mCetSupported = TRUE;\r
95\r
96UINTN mMaxNumberOfCpus = 1;\r
97UINTN mNumberOfCpus = 1;\r
98\r
99//\r
100// SMM ready to lock flag\r
101//\r
102BOOLEAN mSmmReadyToLock = FALSE;\r
103\r
104//\r
105// Global used to cache PCD for SMM Code Access Check enable\r
106//\r
107BOOLEAN mSmmCodeAccessCheckEnable = FALSE;\r
108\r
109//\r
110// Global copy of the PcdPteMemoryEncryptionAddressOrMask\r
111//\r
112UINT64 mAddressEncMask = 0;\r
113\r
114//\r
115// Spin lock used to serialize setting of SMM Code Access Check feature\r
116//\r
117SPIN_LOCK *mConfigSmmCodeAccessCheckLock = NULL;\r
118\r
119//\r
120// Saved SMM ranges information\r
121//\r
122EFI_SMRAM_DESCRIPTOR *mSmmCpuSmramRanges;\r
123UINTN mSmmCpuSmramRangeCount;\r
124\r
125UINT8 mPhysicalAddressBits;\r
126\r
127//\r
128// Control register contents saved for SMM S3 resume state initialization.\r
129//\r
130UINT32 mSmmCr0;\r
131UINT32 mSmmCr4;\r
132\r
133/**\r
134 Initialize IDT to setup exception handlers for SMM.\r
135\r
136**/\r
137VOID\r
138InitializeSmmIdt (\r
139 VOID\r
140 )\r
141{\r
142 EFI_STATUS Status;\r
143 BOOLEAN InterruptState;\r
144 IA32_DESCRIPTOR DxeIdtr;\r
145\r
146 //\r
147 // There are 32 (not 255) entries in it since only processor\r
148 // generated exceptions will be handled.\r
149 //\r
150 gcSmiIdtr.Limit = (sizeof(IA32_IDT_GATE_DESCRIPTOR) * 32) - 1;\r
151 //\r
152 // Allocate page aligned IDT, because it might be set as read only.\r
153 //\r
154 gcSmiIdtr.Base = (UINTN)AllocateCodePages (EFI_SIZE_TO_PAGES(gcSmiIdtr.Limit + 1));\r
155 ASSERT (gcSmiIdtr.Base != 0);\r
156 ZeroMem ((VOID *)gcSmiIdtr.Base, gcSmiIdtr.Limit + 1);\r
157\r
158 //\r
159 // Disable Interrupt and save DXE IDT table\r
160 //\r
161 InterruptState = SaveAndDisableInterrupts ();\r
162 AsmReadIdtr (&DxeIdtr);\r
163 //\r
164 // Load SMM temporary IDT table\r
165 //\r
166 AsmWriteIdtr (&gcSmiIdtr);\r
167 //\r
168 // Setup SMM default exception handlers, SMM IDT table\r
169 // will be updated and saved in gcSmiIdtr\r
170 //\r
171 Status = InitializeCpuExceptionHandlers (NULL);\r
172 ASSERT_EFI_ERROR (Status);\r
173 //\r
174 // Restore DXE IDT table and CPU interrupt\r
175 //\r
176 AsmWriteIdtr ((IA32_DESCRIPTOR *) &DxeIdtr);\r
177 SetInterruptState (InterruptState);\r
178}\r
179\r
180/**\r
181 Search module name by input IP address and output it.\r
182\r
183 @param CallerIpAddress Caller instruction pointer.\r
184\r
185**/\r
186VOID\r
187DumpModuleInfoByIp (\r
188 IN UINTN CallerIpAddress\r
189 )\r
190{\r
191 UINTN Pe32Data;\r
192 VOID *PdbPointer;\r
193\r
194 //\r
195 // Find Image Base\r
196 //\r
197 Pe32Data = PeCoffSearchImageBase (CallerIpAddress);\r
198 if (Pe32Data != 0) {\r
199 DEBUG ((DEBUG_ERROR, "It is invoked from the instruction before IP(0x%p)", (VOID *) CallerIpAddress));\r
200 PdbPointer = PeCoffLoaderGetPdbPointer ((VOID *) Pe32Data);\r
201 if (PdbPointer != NULL) {\r
202 DEBUG ((DEBUG_ERROR, " in module (%a)\n", PdbPointer));\r
203 }\r
204 }\r
205}\r
206\r
207/**\r
208 Read information from the CPU save state.\r
209\r
210 @param This EFI_SMM_CPU_PROTOCOL instance\r
211 @param Width The number of bytes to read from the CPU save state.\r
212 @param Register Specifies the CPU register to read form the save state.\r
213 @param CpuIndex Specifies the zero-based index of the CPU save state.\r
214 @param Buffer Upon return, this holds the CPU register value read from the save state.\r
215\r
216 @retval EFI_SUCCESS The register was read from Save State\r
217 @retval EFI_NOT_FOUND The register is not defined for the Save State of Processor\r
218 @retval EFI_INVALID_PARAMTER This or Buffer is NULL.\r
219\r
220**/\r
221EFI_STATUS\r
222EFIAPI\r
223SmmReadSaveState (\r
224 IN CONST EFI_SMM_CPU_PROTOCOL *This,\r
225 IN UINTN Width,\r
226 IN EFI_SMM_SAVE_STATE_REGISTER Register,\r
227 IN UINTN CpuIndex,\r
228 OUT VOID *Buffer\r
229 )\r
230{\r
231 EFI_STATUS Status;\r
232\r
233 //\r
234 // Retrieve pointer to the specified CPU's SMM Save State buffer\r
235 //\r
236 if ((CpuIndex >= gSmst->NumberOfCpus) || (Buffer == NULL)) {\r
237 return EFI_INVALID_PARAMETER;\r
238 }\r
239 //\r
240 // The SpeculationBarrier() call here is to ensure the above check for the\r
241 // CpuIndex has been completed before the execution of subsequent codes.\r
242 //\r
243 SpeculationBarrier ();\r
244\r
245 //\r
246 // Check for special EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID\r
247 //\r
248 if (Register == EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID) {\r
249 //\r
250 // The pseudo-register only supports the 64-bit size specified by Width.\r
251 //\r
252 if (Width != sizeof (UINT64)) {\r
253 return EFI_INVALID_PARAMETER;\r
254 }\r
255 //\r
256 // If the processor is in SMM at the time the SMI occurred,\r
257 // the pseudo register value for EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID is returned in Buffer.\r
258 // Otherwise, EFI_NOT_FOUND is returned.\r
259 //\r
260 if (*(mSmmMpSyncData->CpuData[CpuIndex].Present)) {\r
261 *(UINT64 *)Buffer = gSmmCpuPrivate->ProcessorInfo[CpuIndex].ProcessorId;\r
262 return EFI_SUCCESS;\r
263 } else {\r
264 return EFI_NOT_FOUND;\r
265 }\r
266 }\r
267\r
268 if (!(*(mSmmMpSyncData->CpuData[CpuIndex].Present))) {\r
269 return EFI_INVALID_PARAMETER;\r
270 }\r
271\r
272 Status = SmmCpuFeaturesReadSaveStateRegister (CpuIndex, Register, Width, Buffer);\r
273 if (Status == EFI_UNSUPPORTED) {\r
274 Status = ReadSaveStateRegister (CpuIndex, Register, Width, Buffer);\r
275 }\r
276 return Status;\r
277}\r
278\r
279/**\r
280 Write data to the CPU save state.\r
281\r
282 @param This EFI_SMM_CPU_PROTOCOL instance\r
283 @param Width The number of bytes to read from the CPU save state.\r
284 @param Register Specifies the CPU register to write to the save state.\r
285 @param CpuIndex Specifies the zero-based index of the CPU save state\r
286 @param Buffer Upon entry, this holds the new CPU register value.\r
287\r
288 @retval EFI_SUCCESS The register was written from Save State\r
289 @retval EFI_NOT_FOUND The register is not defined for the Save State of Processor\r
290 @retval EFI_INVALID_PARAMTER ProcessorIndex or Width is not correct\r
291\r
292**/\r
293EFI_STATUS\r
294EFIAPI\r
295SmmWriteSaveState (\r
296 IN CONST EFI_SMM_CPU_PROTOCOL *This,\r
297 IN UINTN Width,\r
298 IN EFI_SMM_SAVE_STATE_REGISTER Register,\r
299 IN UINTN CpuIndex,\r
300 IN CONST VOID *Buffer\r
301 )\r
302{\r
303 EFI_STATUS Status;\r
304\r
305 //\r
306 // Retrieve pointer to the specified CPU's SMM Save State buffer\r
307 //\r
308 if ((CpuIndex >= gSmst->NumberOfCpus) || (Buffer == NULL)) {\r
309 return EFI_INVALID_PARAMETER;\r
310 }\r
311\r
312 //\r
313 // Writes to EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID are ignored\r
314 //\r
315 if (Register == EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID) {\r
316 return EFI_SUCCESS;\r
317 }\r
318\r
319 if (!mSmmMpSyncData->CpuData[CpuIndex].Present) {\r
320 return EFI_INVALID_PARAMETER;\r
321 }\r
322\r
323 Status = SmmCpuFeaturesWriteSaveStateRegister (CpuIndex, Register, Width, Buffer);\r
324 if (Status == EFI_UNSUPPORTED) {\r
325 Status = WriteSaveStateRegister (CpuIndex, Register, Width, Buffer);\r
326 }\r
327 return Status;\r
328}\r
329\r
330\r
331/**\r
332 C function for SMI handler. To change all processor's SMMBase Register.\r
333\r
334**/\r
335VOID\r
336EFIAPI\r
337SmmInitHandler (\r
338 VOID\r
339 )\r
340{\r
341 UINT32 ApicId;\r
342 UINTN Index;\r
343\r
344 //\r
345 // Update SMM IDT entries' code segment and load IDT\r
346 //\r
347 AsmWriteIdtr (&gcSmiIdtr);\r
348 ApicId = GetApicId ();\r
349\r
350 ASSERT (mNumberOfCpus <= mMaxNumberOfCpus);\r
351\r
352 for (Index = 0; Index < mNumberOfCpus; Index++) {\r
353 if (ApicId == (UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId) {\r
354 //\r
355 // Initialize SMM specific features on the currently executing CPU\r
356 //\r
357 SmmCpuFeaturesInitializeProcessor (\r
358 Index,\r
359 mIsBsp,\r
360 gSmmCpuPrivate->ProcessorInfo,\r
361 &mCpuHotPlugData\r
362 );\r
363\r
364 if (!mSmmS3Flag) {\r
365 //\r
366 // Check XD and BTS features on each processor on normal boot\r
367 //\r
368 CheckFeatureSupported ();\r
369 }\r
370\r
371 if (mIsBsp) {\r
372 //\r
373 // BSP rebase is already done above.\r
374 // Initialize private data during S3 resume\r
375 //\r
376 InitializeMpSyncData ();\r
377 }\r
378\r
379 //\r
380 // Hook return after RSM to set SMM re-based flag\r
381 //\r
382 SemaphoreHook (Index, &mRebased[Index]);\r
383\r
384 return;\r
385 }\r
386 }\r
387 ASSERT (FALSE);\r
388}\r
389\r
390/**\r
391 Relocate SmmBases for each processor.\r
392\r
393 Execute on first boot and all S3 resumes\r
394\r
395**/\r
396VOID\r
397EFIAPI\r
398SmmRelocateBases (\r
399 VOID\r
400 )\r
401{\r
402 UINT8 BakBuf[BACK_BUF_SIZE];\r
403 SMRAM_SAVE_STATE_MAP BakBuf2;\r
404 SMRAM_SAVE_STATE_MAP *CpuStatePtr;\r
405 UINT8 *U8Ptr;\r
406 UINT32 ApicId;\r
407 UINTN Index;\r
408 UINTN BspIndex;\r
409\r
410 //\r
411 // Make sure the reserved size is large enough for procedure SmmInitTemplate.\r
412 //\r
413 ASSERT (sizeof (BakBuf) >= gcSmmInitSize);\r
414\r
415 //\r
416 // Patch ASM code template with current CR0, CR3, and CR4 values\r
417 //\r
418 mSmmCr0 = (UINT32)AsmReadCr0 ();\r
419 PatchInstructionX86 (gPatchSmmCr0, mSmmCr0, 4);\r
420 PatchInstructionX86 (gPatchSmmCr3, AsmReadCr3 (), 4);\r
421 mSmmCr4 = (UINT32)AsmReadCr4 ();\r
422 PatchInstructionX86 (gPatchSmmCr4, mSmmCr4 & (~CR4_CET_ENABLE), 4);\r
423\r
424 //\r
425 // Patch GDTR for SMM base relocation\r
426 //\r
427 gcSmiInitGdtr.Base = gcSmiGdtr.Base;\r
428 gcSmiInitGdtr.Limit = gcSmiGdtr.Limit;\r
429\r
430 U8Ptr = (UINT8*)(UINTN)(SMM_DEFAULT_SMBASE + SMM_HANDLER_OFFSET);\r
431 CpuStatePtr = (SMRAM_SAVE_STATE_MAP *)(UINTN)(SMM_DEFAULT_SMBASE + SMRAM_SAVE_STATE_MAP_OFFSET);\r
432\r
433 //\r
434 // Backup original contents at address 0x38000\r
435 //\r
436 CopyMem (BakBuf, U8Ptr, sizeof (BakBuf));\r
437 CopyMem (&BakBuf2, CpuStatePtr, sizeof (BakBuf2));\r
438\r
439 //\r
440 // Load image for relocation\r
441 //\r
442 CopyMem (U8Ptr, gcSmmInitTemplate, gcSmmInitSize);\r
443\r
444 //\r
445 // Retrieve the local APIC ID of current processor\r
446 //\r
447 ApicId = GetApicId ();\r
448\r
449 //\r
450 // Relocate SM bases for all APs\r
451 // This is APs' 1st SMI - rebase will be done here, and APs' default SMI handler will be overridden by gcSmmInitTemplate\r
452 //\r
453 mIsBsp = FALSE;\r
454 BspIndex = (UINTN)-1;\r
455 for (Index = 0; Index < mNumberOfCpus; Index++) {\r
456 mRebased[Index] = FALSE;\r
457 if (ApicId != (UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId) {\r
458 SendSmiIpi ((UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId);\r
459 //\r
460 // Wait for this AP to finish its 1st SMI\r
461 //\r
462 while (!mRebased[Index]);\r
463 } else {\r
464 //\r
465 // BSP will be Relocated later\r
466 //\r
467 BspIndex = Index;\r
468 }\r
469 }\r
470\r
471 //\r
472 // Relocate BSP's SMM base\r
473 //\r
474 ASSERT (BspIndex != (UINTN)-1);\r
475 mIsBsp = TRUE;\r
476 SendSmiIpi (ApicId);\r
477 //\r
478 // Wait for the BSP to finish its 1st SMI\r
479 //\r
480 while (!mRebased[BspIndex]);\r
481\r
482 //\r
483 // Restore contents at address 0x38000\r
484 //\r
485 CopyMem (CpuStatePtr, &BakBuf2, sizeof (BakBuf2));\r
486 CopyMem (U8Ptr, BakBuf, sizeof (BakBuf));\r
487}\r
488\r
489/**\r
490 SMM Ready To Lock event notification handler.\r
491\r
492 The CPU S3 data is copied to SMRAM for security and mSmmReadyToLock is set to\r
493 perform additional lock actions that must be performed from SMM on the next SMI.\r
494\r
495 @param[in] Protocol Points to the protocol's unique identifier.\r
496 @param[in] Interface Points to the interface instance.\r
497 @param[in] Handle The handle on which the interface was installed.\r
498\r
499 @retval EFI_SUCCESS Notification handler runs successfully.\r
500 **/\r
501EFI_STATUS\r
502EFIAPI\r
503SmmReadyToLockEventNotify (\r
504 IN CONST EFI_GUID *Protocol,\r
505 IN VOID *Interface,\r
506 IN EFI_HANDLE Handle\r
507 )\r
508{\r
509 GetAcpiCpuData ();\r
510\r
511 //\r
512 // Cache a copy of UEFI memory map before we start profiling feature.\r
513 //\r
514 GetUefiMemoryMap ();\r
515\r
516 //\r
517 // Set SMM ready to lock flag and return\r
518 //\r
519 mSmmReadyToLock = TRUE;\r
520 return EFI_SUCCESS;\r
521}\r
522\r
523/**\r
524 The module Entry Point of the CPU SMM driver.\r
525\r
526 @param ImageHandle The firmware allocated handle for the EFI image.\r
527 @param SystemTable A pointer to the EFI System Table.\r
528\r
529 @retval EFI_SUCCESS The entry point is executed successfully.\r
530 @retval Other Some error occurs when executing this entry point.\r
531\r
532**/\r
533EFI_STATUS\r
534EFIAPI\r
535PiCpuSmmEntry (\r
536 IN EFI_HANDLE ImageHandle,\r
537 IN EFI_SYSTEM_TABLE *SystemTable\r
538 )\r
539{\r
540 EFI_STATUS Status;\r
541 EFI_MP_SERVICES_PROTOCOL *MpServices;\r
542 UINTN NumberOfEnabledProcessors;\r
543 UINTN Index;\r
544 VOID *Buffer;\r
545 UINTN BufferPages;\r
546 UINTN TileCodeSize;\r
547 UINTN TileDataSize;\r
548 UINTN TileSize;\r
549 UINT8 *Stacks;\r
550 VOID *Registration;\r
551 UINT32 RegEax;\r
552 UINT32 RegEbx;\r
553 UINT32 RegEcx;\r
554 UINT32 RegEdx;\r
555 UINTN FamilyId;\r
556 UINTN ModelId;\r
557 UINT32 Cr3;\r
558\r
559 //\r
560 // Initialize address fixup\r
561 //\r
562 PiSmmCpuSmmInitFixupAddress ();\r
563 PiSmmCpuSmiEntryFixupAddress ();\r
564\r
565 //\r
566 // Initialize Debug Agent to support source level debug in SMM code\r
567 //\r
568 InitializeDebugAgent (DEBUG_AGENT_INIT_SMM, NULL, NULL);\r
569\r
570 //\r
571 // Report the start of CPU SMM initialization.\r
572 //\r
573 REPORT_STATUS_CODE (\r
574 EFI_PROGRESS_CODE,\r
575 EFI_COMPUTING_UNIT_HOST_PROCESSOR | EFI_CU_HP_PC_SMM_INIT\r
576 );\r
577\r
578 //\r
579 // Find out SMRR Base and SMRR Size\r
580 //\r
581 FindSmramInfo (&mCpuHotPlugData.SmrrBase, &mCpuHotPlugData.SmrrSize);\r
582\r
583 //\r
584 // Get MP Services Protocol\r
585 //\r
586 Status = SystemTable->BootServices->LocateProtocol (&gEfiMpServiceProtocolGuid, NULL, (VOID **)&MpServices);\r
587 ASSERT_EFI_ERROR (Status);\r
588\r
589 //\r
590 // Use MP Services Protocol to retrieve the number of processors and number of enabled processors\r
591 //\r
592 Status = MpServices->GetNumberOfProcessors (MpServices, &mNumberOfCpus, &NumberOfEnabledProcessors);\r
593 ASSERT_EFI_ERROR (Status);\r
594 ASSERT (mNumberOfCpus <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));\r
595\r
596 //\r
597 // If support CPU hot plug, PcdCpuSmmEnableBspElection should be set to TRUE.\r
598 // A constant BSP index makes no sense because it may be hot removed.\r
599 //\r
600 DEBUG_CODE (\r
601 if (FeaturePcdGet (PcdCpuHotPlugSupport)) {\r
602\r
603 ASSERT (FeaturePcdGet (PcdCpuSmmEnableBspElection));\r
604 }\r
605 );\r
606\r
607 //\r
608 // Save the PcdCpuSmmCodeAccessCheckEnable value into a global variable.\r
609 //\r
610 mSmmCodeAccessCheckEnable = PcdGetBool (PcdCpuSmmCodeAccessCheckEnable);\r
611 DEBUG ((EFI_D_INFO, "PcdCpuSmmCodeAccessCheckEnable = %d\n", mSmmCodeAccessCheckEnable));\r
612\r
613 //\r
614 // Save the PcdPteMemoryEncryptionAddressOrMask value into a global variable.\r
615 // Make sure AddressEncMask is contained to smallest supported address field.\r
616 //\r
617 mAddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) & PAGING_1G_ADDRESS_MASK_64;\r
618 DEBUG ((EFI_D_INFO, "mAddressEncMask = 0x%lx\n", mAddressEncMask));\r
619\r
620 //\r
621 // If support CPU hot plug, we need to allocate resources for possibly hot-added processors\r
622 //\r
623 if (FeaturePcdGet (PcdCpuHotPlugSupport)) {\r
624 mMaxNumberOfCpus = PcdGet32 (PcdCpuMaxLogicalProcessorNumber);\r
625 } else {\r
626 mMaxNumberOfCpus = mNumberOfCpus;\r
627 }\r
628 gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus = mMaxNumberOfCpus;\r
629\r
630 //\r
631 // The CPU save state and code for the SMI entry point are tiled within an SMRAM\r
632 // allocated buffer. The minimum size of this buffer for a uniprocessor system\r
633 // is 32 KB, because the entry point is SMBASE + 32KB, and CPU save state area\r
634 // just below SMBASE + 64KB. If more than one CPU is present in the platform,\r
635 // then the SMI entry point and the CPU save state areas can be tiles to minimize\r
636 // the total amount SMRAM required for all the CPUs. The tile size can be computed\r
637 // by adding the // CPU save state size, any extra CPU specific context, and\r
638 // the size of code that must be placed at the SMI entry point to transfer\r
639 // control to a C function in the native SMM execution mode. This size is\r
640 // rounded up to the nearest power of 2 to give the tile size for a each CPU.\r
641 // The total amount of memory required is the maximum number of CPUs that\r
642 // platform supports times the tile size. The picture below shows the tiling,\r
643 // where m is the number of tiles that fit in 32KB.\r
644 //\r
645 // +-----------------------------+ <-- 2^n offset from Base of allocated buffer\r
646 // | CPU m+1 Save State |\r
647 // +-----------------------------+\r
648 // | CPU m+1 Extra Data |\r
649 // +-----------------------------+\r
650 // | Padding |\r
651 // +-----------------------------+\r
652 // | CPU 2m SMI Entry |\r
653 // +#############################+ <-- Base of allocated buffer + 64 KB\r
654 // | CPU m-1 Save State |\r
655 // +-----------------------------+\r
656 // | CPU m-1 Extra Data |\r
657 // +-----------------------------+\r
658 // | Padding |\r
659 // +-----------------------------+\r
660 // | CPU 2m-1 SMI Entry |\r
661 // +=============================+ <-- 2^n offset from Base of allocated buffer\r
662 // | . . . . . . . . . . . . |\r
663 // +=============================+ <-- 2^n offset from Base of allocated buffer\r
664 // | CPU 2 Save State |\r
665 // +-----------------------------+\r
666 // | CPU 2 Extra Data |\r
667 // +-----------------------------+\r
668 // | Padding |\r
669 // +-----------------------------+\r
670 // | CPU m+1 SMI Entry |\r
671 // +=============================+ <-- Base of allocated buffer + 32 KB\r
672 // | CPU 1 Save State |\r
673 // +-----------------------------+\r
674 // | CPU 1 Extra Data |\r
675 // +-----------------------------+\r
676 // | Padding |\r
677 // +-----------------------------+\r
678 // | CPU m SMI Entry |\r
679 // +#############################+ <-- Base of allocated buffer + 32 KB == CPU 0 SMBASE + 64 KB\r
680 // | CPU 0 Save State |\r
681 // +-----------------------------+\r
682 // | CPU 0 Extra Data |\r
683 // +-----------------------------+\r
684 // | Padding |\r
685 // +-----------------------------+\r
686 // | CPU m-1 SMI Entry |\r
687 // +=============================+ <-- 2^n offset from Base of allocated buffer\r
688 // | . . . . . . . . . . . . |\r
689 // +=============================+ <-- 2^n offset from Base of allocated buffer\r
690 // | Padding |\r
691 // +-----------------------------+\r
692 // | CPU 1 SMI Entry |\r
693 // +=============================+ <-- 2^n offset from Base of allocated buffer\r
694 // | Padding |\r
695 // +-----------------------------+\r
696 // | CPU 0 SMI Entry |\r
697 // +#############################+ <-- Base of allocated buffer == CPU 0 SMBASE + 32 KB\r
698 //\r
699\r
700 //\r
701 // Retrieve CPU Family\r
702 //\r
703 AsmCpuid (CPUID_VERSION_INFO, &RegEax, NULL, NULL, NULL);\r
704 FamilyId = (RegEax >> 8) & 0xf;\r
705 ModelId = (RegEax >> 4) & 0xf;\r
706 if (FamilyId == 0x06 || FamilyId == 0x0f) {\r
707 ModelId = ModelId | ((RegEax >> 12) & 0xf0);\r
708 }\r
709\r
710 RegEdx = 0;\r
711 AsmCpuid (CPUID_EXTENDED_FUNCTION, &RegEax, NULL, NULL, NULL);\r
712 if (RegEax >= CPUID_EXTENDED_CPU_SIG) {\r
713 AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &RegEdx);\r
714 }\r
715 //\r
716 // Determine the mode of the CPU at the time an SMI occurs\r
717 // Intel(R) 64 and IA-32 Architectures Software Developer's Manual\r
718 // Volume 3C, Section 34.4.1.1\r
719 //\r
720 mSmmSaveStateRegisterLma = EFI_SMM_SAVE_STATE_REGISTER_LMA_32BIT;\r
721 if ((RegEdx & BIT29) != 0) {\r
722 mSmmSaveStateRegisterLma = EFI_SMM_SAVE_STATE_REGISTER_LMA_64BIT;\r
723 }\r
724 if (FamilyId == 0x06) {\r
725 if (ModelId == 0x17 || ModelId == 0x0f || ModelId == 0x1c) {\r
726 mSmmSaveStateRegisterLma = EFI_SMM_SAVE_STATE_REGISTER_LMA_64BIT;\r
727 }\r
728 }\r
729\r
730 DEBUG ((DEBUG_INFO, "PcdControlFlowEnforcementPropertyMask = %d\n", PcdGet32 (PcdControlFlowEnforcementPropertyMask)));\r
731 if (PcdGet32 (PcdControlFlowEnforcementPropertyMask) != 0) {\r
732 AsmCpuid (CPUID_EXTENDED_FUNCTION, &RegEax, NULL, NULL, NULL);\r
733 if (RegEax > CPUID_EXTENDED_FUNCTION) {\r
734 AsmCpuidEx (CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS, CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_SUB_LEAF_INFO, NULL, NULL, &RegEcx, &RegEdx);\r
735 DEBUG ((DEBUG_INFO, "CPUID[7/0] ECX - 0x%08x\n", RegEcx));\r
736 DEBUG ((DEBUG_INFO, " CET_SS - 0x%08x\n", RegEcx & CPUID_CET_SS));\r
737 DEBUG ((DEBUG_INFO, " CET_IBT - 0x%08x\n", RegEdx & CPUID_CET_IBT));\r
738 if ((RegEcx & CPUID_CET_SS) == 0) {\r
739 mCetSupported = FALSE;\r
740 PatchInstructionX86 (mPatchCetSupported, mCetSupported, 1);\r
741 }\r
742 if (mCetSupported) {\r
743 AsmCpuidEx (CPUID_EXTENDED_STATE, CPUID_EXTENDED_STATE_SUB_LEAF, NULL, &RegEbx, &RegEcx, NULL);\r
744 DEBUG ((DEBUG_INFO, "CPUID[D/1] EBX - 0x%08x, ECX - 0x%08x\n", RegEbx, RegEcx));\r
745 AsmCpuidEx (CPUID_EXTENDED_STATE, 11, &RegEax, NULL, &RegEcx, NULL);\r
746 DEBUG ((DEBUG_INFO, "CPUID[D/11] EAX - 0x%08x, ECX - 0x%08x\n", RegEax, RegEcx));\r
747 AsmCpuidEx(CPUID_EXTENDED_STATE, 12, &RegEax, NULL, &RegEcx, NULL);\r
748 DEBUG ((DEBUG_INFO, "CPUID[D/12] EAX - 0x%08x, ECX - 0x%08x\n", RegEax, RegEcx));\r
749 }\r
750 }\r
751 } else {\r
752 mCetSupported = FALSE;\r
753 PatchInstructionX86 (mPatchCetSupported, mCetSupported, 1);\r
754 }\r
755\r
756 //\r
757 // Compute tile size of buffer required to hold the CPU SMRAM Save State Map, extra CPU\r
758 // specific context start starts at SMBASE + SMM_PSD_OFFSET, and the SMI entry point.\r
759 // This size is rounded up to nearest power of 2.\r
760 //\r
761 TileCodeSize = GetSmiHandlerSize ();\r
762 TileCodeSize = ALIGN_VALUE(TileCodeSize, SIZE_4KB);\r
763 TileDataSize = (SMRAM_SAVE_STATE_MAP_OFFSET - SMM_PSD_OFFSET) + sizeof (SMRAM_SAVE_STATE_MAP);\r
764 TileDataSize = ALIGN_VALUE(TileDataSize, SIZE_4KB);\r
765 TileSize = TileDataSize + TileCodeSize - 1;\r
766 TileSize = 2 * GetPowerOfTwo32 ((UINT32)TileSize);\r
767 DEBUG ((EFI_D_INFO, "SMRAM TileSize = 0x%08x (0x%08x, 0x%08x)\n", TileSize, TileCodeSize, TileDataSize));\r
768\r
769 //\r
770 // If the TileSize is larger than space available for the SMI Handler of\r
771 // CPU[i], the extra CPU specific context of CPU[i+1], and the SMRAM Save\r
772 // State Map of CPU[i+1], then ASSERT(). If this ASSERT() is triggered, then\r
773 // the SMI Handler size must be reduced or the size of the extra CPU specific\r
774 // context must be reduced.\r
775 //\r
776 ASSERT (TileSize <= (SMRAM_SAVE_STATE_MAP_OFFSET + sizeof (SMRAM_SAVE_STATE_MAP) - SMM_HANDLER_OFFSET));\r
777\r
778 //\r
779 // Allocate buffer for all of the tiles.\r
780 //\r
781 // Intel(R) 64 and IA-32 Architectures Software Developer's Manual\r
782 // Volume 3C, Section 34.11 SMBASE Relocation\r
783 // For Pentium and Intel486 processors, the SMBASE values must be\r
784 // aligned on a 32-KByte boundary or the processor will enter shutdown\r
785 // state during the execution of a RSM instruction.\r
786 //\r
787 // Intel486 processors: FamilyId is 4\r
788 // Pentium processors : FamilyId is 5\r
789 //\r
790 BufferPages = EFI_SIZE_TO_PAGES (SIZE_32KB + TileSize * (mMaxNumberOfCpus - 1));\r
791 if ((FamilyId == 4) || (FamilyId == 5)) {\r
792 Buffer = AllocateAlignedCodePages (BufferPages, SIZE_32KB);\r
793 } else {\r
794 Buffer = AllocateAlignedCodePages (BufferPages, SIZE_4KB);\r
795 }\r
796 ASSERT (Buffer != NULL);\r
797 DEBUG ((EFI_D_INFO, "SMRAM SaveState Buffer (0x%08x, 0x%08x)\n", Buffer, EFI_PAGES_TO_SIZE(BufferPages)));\r
798\r
799 //\r
800 // Allocate buffer for pointers to array in SMM_CPU_PRIVATE_DATA.\r
801 //\r
802 gSmmCpuPrivate->ProcessorInfo = (EFI_PROCESSOR_INFORMATION *)AllocatePool (sizeof (EFI_PROCESSOR_INFORMATION) * mMaxNumberOfCpus);\r
803 ASSERT (gSmmCpuPrivate->ProcessorInfo != NULL);\r
804\r
805 gSmmCpuPrivate->Operation = (SMM_CPU_OPERATION *)AllocatePool (sizeof (SMM_CPU_OPERATION) * mMaxNumberOfCpus);\r
806 ASSERT (gSmmCpuPrivate->Operation != NULL);\r
807\r
808 gSmmCpuPrivate->CpuSaveStateSize = (UINTN *)AllocatePool (sizeof (UINTN) * mMaxNumberOfCpus);\r
809 ASSERT (gSmmCpuPrivate->CpuSaveStateSize != NULL);\r
810\r
811 gSmmCpuPrivate->CpuSaveState = (VOID **)AllocatePool (sizeof (VOID *) * mMaxNumberOfCpus);\r
812 ASSERT (gSmmCpuPrivate->CpuSaveState != NULL);\r
813\r
814 mSmmCpuPrivateData.SmmCoreEntryContext.CpuSaveStateSize = gSmmCpuPrivate->CpuSaveStateSize;\r
815 mSmmCpuPrivateData.SmmCoreEntryContext.CpuSaveState = gSmmCpuPrivate->CpuSaveState;\r
816\r
817 //\r
818 // Allocate buffer for pointers to array in CPU_HOT_PLUG_DATA.\r
819 //\r
820 mCpuHotPlugData.ApicId = (UINT64 *)AllocatePool (sizeof (UINT64) * mMaxNumberOfCpus);\r
821 ASSERT (mCpuHotPlugData.ApicId != NULL);\r
822 mCpuHotPlugData.SmBase = (UINTN *)AllocatePool (sizeof (UINTN) * mMaxNumberOfCpus);\r
823 ASSERT (mCpuHotPlugData.SmBase != NULL);\r
824 mCpuHotPlugData.ArrayLength = (UINT32)mMaxNumberOfCpus;\r
825\r
826 //\r
827 // Retrieve APIC ID of each enabled processor from the MP Services protocol.\r
828 // Also compute the SMBASE address, CPU Save State address, and CPU Save state\r
829 // size for each CPU in the platform\r
830 //\r
831 for (Index = 0; Index < mMaxNumberOfCpus; Index++) {\r
832 mCpuHotPlugData.SmBase[Index] = (UINTN)Buffer + Index * TileSize - SMM_HANDLER_OFFSET;\r
833 gSmmCpuPrivate->CpuSaveStateSize[Index] = sizeof(SMRAM_SAVE_STATE_MAP);\r
834 gSmmCpuPrivate->CpuSaveState[Index] = (VOID *)(mCpuHotPlugData.SmBase[Index] + SMRAM_SAVE_STATE_MAP_OFFSET);\r
835 gSmmCpuPrivate->Operation[Index] = SmmCpuNone;\r
836\r
837 if (Index < mNumberOfCpus) {\r
838 Status = MpServices->GetProcessorInfo (MpServices, Index, &gSmmCpuPrivate->ProcessorInfo[Index]);\r
839 ASSERT_EFI_ERROR (Status);\r
840 mCpuHotPlugData.ApicId[Index] = gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId;\r
841\r
842 DEBUG ((EFI_D_INFO, "CPU[%03x] APIC ID=%04x SMBASE=%08x SaveState=%08x Size=%08x\n",\r
843 Index,\r
844 (UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId,\r
845 mCpuHotPlugData.SmBase[Index],\r
846 gSmmCpuPrivate->CpuSaveState[Index],\r
847 gSmmCpuPrivate->CpuSaveStateSize[Index]\r
848 ));\r
849 } else {\r
850 gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId = INVALID_APIC_ID;\r
851 mCpuHotPlugData.ApicId[Index] = INVALID_APIC_ID;\r
852 }\r
853 }\r
854\r
855 //\r
856 // Allocate SMI stacks for all processors.\r
857 //\r
858 mSmmStackSize = EFI_PAGES_TO_SIZE (EFI_SIZE_TO_PAGES (PcdGet32 (PcdCpuSmmStackSize)));\r
859 if (FeaturePcdGet (PcdCpuSmmStackGuard)) {\r
860 //\r
861 // 2 more pages is allocated for each processor.\r
862 // one is guard page and the other is known good stack.\r
863 //\r
864 // +-------------------------------------------+-----+-------------------------------------------+\r
865 // | Known Good Stack | Guard Page | SMM Stack | ... | Known Good Stack | Guard Page | SMM Stack |\r
866 // +-------------------------------------------+-----+-------------------------------------------+\r
867 // | | | |\r
868 // |<-------------- Processor 0 -------------->| |<-------------- Processor n -------------->|\r
869 //\r
870 mSmmStackSize += EFI_PAGES_TO_SIZE (2);\r
871 }\r
872\r
873 mSmmShadowStackSize = 0;\r
874 if ((PcdGet32 (PcdControlFlowEnforcementPropertyMask) != 0) && mCetSupported) {\r
875 //\r
876 // Append Shadow Stack after normal stack\r
877 //\r
878 // |= Stacks\r
879 // +--------------------------------------------------+---------------------------------------------------------------+\r
880 // | Known Good Stack | Guard Page | SMM Stack | Known Good Shadow Stack | Guard Page | SMM Shadow Stack |\r
881 // +--------------------------------------------------+---------------------------------------------------------------+\r
882 // | |PcdCpuSmmStackSize| |PcdCpuSmmShadowStackSize|\r
883 // |<---------------- mSmmStackSize ----------------->|<--------------------- mSmmShadowStackSize ------------------->|\r
884 // | |\r
885 // |<-------------------------------------------- Processor N ------------------------------------------------------->|\r
886 //\r
887 mSmmShadowStackSize = EFI_PAGES_TO_SIZE (EFI_SIZE_TO_PAGES (PcdGet32 (PcdCpuSmmShadowStackSize)));\r
888 if (FeaturePcdGet (PcdCpuSmmStackGuard)) {\r
889 mSmmShadowStackSize += EFI_PAGES_TO_SIZE (2);\r
890 }\r
891 }\r
892\r
893 Stacks = (UINT8 *) AllocatePages (gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus * (EFI_SIZE_TO_PAGES (mSmmStackSize + mSmmShadowStackSize)));\r
894 ASSERT (Stacks != NULL);\r
895 mSmmStackArrayBase = (UINTN)Stacks;\r
896 mSmmStackArrayEnd = mSmmStackArrayBase + gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus * (mSmmStackSize + mSmmShadowStackSize) - 1;\r
897\r
898 DEBUG ((DEBUG_INFO, "Stacks - 0x%x\n", Stacks));\r
899 DEBUG ((DEBUG_INFO, "mSmmStackSize - 0x%x\n", mSmmStackSize));\r
900 DEBUG ((DEBUG_INFO, "PcdCpuSmmStackGuard - 0x%x\n", FeaturePcdGet (PcdCpuSmmStackGuard)));\r
901 if ((PcdGet32 (PcdControlFlowEnforcementPropertyMask) != 0) && mCetSupported) {\r
902 DEBUG ((DEBUG_INFO, "mSmmShadowStackSize - 0x%x\n", mSmmShadowStackSize));\r
903 }\r
904\r
905 //\r
906 // Set SMI stack for SMM base relocation\r
907 //\r
908 PatchInstructionX86 (\r
909 gPatchSmmInitStack,\r
910 (UINTN) (Stacks + mSmmStackSize - sizeof (UINTN)),\r
911 sizeof (UINTN)\r
912 );\r
913\r
914 //\r
915 // Initialize IDT\r
916 //\r
917 InitializeSmmIdt ();\r
918\r
919 //\r
920 // Relocate SMM Base addresses to the ones allocated from SMRAM\r
921 //\r
922 mRebased = (BOOLEAN *)AllocateZeroPool (sizeof (BOOLEAN) * mMaxNumberOfCpus);\r
923 ASSERT (mRebased != NULL);\r
924 SmmRelocateBases ();\r
925\r
926 //\r
927 // Call hook for BSP to perform extra actions in normal mode after all\r
928 // SMM base addresses have been relocated on all CPUs\r
929 //\r
930 SmmCpuFeaturesSmmRelocationComplete ();\r
931\r
932 DEBUG ((DEBUG_INFO, "mXdSupported - 0x%x\n", mXdSupported));\r
933\r
934 //\r
935 // SMM Time initialization\r
936 //\r
937 InitializeSmmTimer ();\r
938\r
939 //\r
940 // Initialize MP globals\r
941 //\r
942 Cr3 = InitializeMpServiceData (Stacks, mSmmStackSize, mSmmShadowStackSize);\r
943\r
944 if ((PcdGet32 (PcdControlFlowEnforcementPropertyMask) != 0) && mCetSupported) {\r
945 for (Index = 0; Index < gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus; Index++) {\r
946 SetShadowStack (\r
947 Cr3,\r
948 (EFI_PHYSICAL_ADDRESS)(UINTN)Stacks + mSmmStackSize + (mSmmStackSize + mSmmShadowStackSize) * Index,\r
949 mSmmShadowStackSize\r
950 );\r
951 if (FeaturePcdGet (PcdCpuSmmStackGuard)) {\r
952 SetNotPresentPage (\r
953 Cr3,\r
954 (EFI_PHYSICAL_ADDRESS)(UINTN)Stacks + mSmmStackSize + EFI_PAGES_TO_SIZE(1) + (mSmmStackSize + mSmmShadowStackSize) * Index,\r
955 EFI_PAGES_TO_SIZE(1)\r
956 );\r
957 }\r
958 }\r
959 }\r
960\r
961 //\r
962 // Fill in SMM Reserved Regions\r
963 //\r
964 gSmmCpuPrivate->SmmReservedSmramRegion[0].SmramReservedStart = 0;\r
965 gSmmCpuPrivate->SmmReservedSmramRegion[0].SmramReservedSize = 0;\r
966\r
967 //\r
968 // Install the SMM Configuration Protocol onto a new handle on the handle database.\r
969 // The entire SMM Configuration Protocol is allocated from SMRAM, so only a pointer\r
970 // to an SMRAM address will be present in the handle database\r
971 //\r
972 Status = SystemTable->BootServices->InstallMultipleProtocolInterfaces (\r
973 &gSmmCpuPrivate->SmmCpuHandle,\r
974 &gEfiSmmConfigurationProtocolGuid, &gSmmCpuPrivate->SmmConfiguration,\r
975 NULL\r
976 );\r
977 ASSERT_EFI_ERROR (Status);\r
978\r
979 //\r
980 // Install the SMM CPU Protocol into SMM protocol database\r
981 //\r
982 Status = gSmst->SmmInstallProtocolInterface (\r
983 &mSmmCpuHandle,\r
984 &gEfiSmmCpuProtocolGuid,\r
985 EFI_NATIVE_INTERFACE,\r
986 &mSmmCpu\r
987 );\r
988 ASSERT_EFI_ERROR (Status);\r
989\r
990 //\r
991 // Install the SMM Memory Attribute Protocol into SMM protocol database\r
992 //\r
993 Status = gSmst->SmmInstallProtocolInterface (\r
994 &mSmmCpuHandle,\r
995 &gEdkiiSmmMemoryAttributeProtocolGuid,\r
996 EFI_NATIVE_INTERFACE,\r
997 &mSmmMemoryAttribute\r
998 );\r
999 ASSERT_EFI_ERROR (Status);\r
1000\r
1001 //\r
1002 // Initialize global buffer for MM MP.\r
1003 //\r
1004 InitializeDataForMmMp ();\r
1005\r
1006 //\r
1007 // Install the SMM Mp Protocol into SMM protocol database\r
1008 //\r
1009 Status = gSmst->SmmInstallProtocolInterface (\r
1010 &mSmmCpuHandle,\r
1011 &gEfiMmMpProtocolGuid,\r
1012 EFI_NATIVE_INTERFACE,\r
1013 &mSmmMp\r
1014 );\r
1015 ASSERT_EFI_ERROR (Status);\r
1016\r
1017 //\r
1018 // Expose address of CPU Hot Plug Data structure if CPU hot plug is supported.\r
1019 //\r
1020 if (FeaturePcdGet (PcdCpuHotPlugSupport)) {\r
1021 Status = PcdSet64S (PcdCpuHotPlugDataAddress, (UINT64)(UINTN)&mCpuHotPlugData);\r
1022 ASSERT_EFI_ERROR (Status);\r
1023 }\r
1024\r
1025 //\r
1026 // Initialize SMM CPU Services Support\r
1027 //\r
1028 Status = InitializeSmmCpuServices (mSmmCpuHandle);\r
1029 ASSERT_EFI_ERROR (Status);\r
1030\r
1031 //\r
1032 // register SMM Ready To Lock Protocol notification\r
1033 //\r
1034 Status = gSmst->SmmRegisterProtocolNotify (\r
1035 &gEfiSmmReadyToLockProtocolGuid,\r
1036 SmmReadyToLockEventNotify,\r
1037 &Registration\r
1038 );\r
1039 ASSERT_EFI_ERROR (Status);\r
1040\r
1041 //\r
1042 // Initialize SMM Profile feature\r
1043 //\r
1044 InitSmmProfile (Cr3);\r
1045\r
1046 GetAcpiS3EnableFlag ();\r
1047 InitSmmS3ResumeState (Cr3);\r
1048\r
1049 DEBUG ((EFI_D_INFO, "SMM CPU Module exit from SMRAM with EFI_SUCCESS\n"));\r
1050\r
1051 return EFI_SUCCESS;\r
1052}\r
1053\r
1054/**\r
1055\r
1056 Find out SMRAM information including SMRR base and SMRR size.\r
1057\r
1058 @param SmrrBase SMRR base\r
1059 @param SmrrSize SMRR size\r
1060\r
1061**/\r
1062VOID\r
1063FindSmramInfo (\r
1064 OUT UINT32 *SmrrBase,\r
1065 OUT UINT32 *SmrrSize\r
1066 )\r
1067{\r
1068 EFI_STATUS Status;\r
1069 UINTN Size;\r
1070 EFI_SMM_ACCESS2_PROTOCOL *SmmAccess;\r
1071 EFI_SMRAM_DESCRIPTOR *CurrentSmramRange;\r
1072 UINTN Index;\r
1073 UINT64 MaxSize;\r
1074 BOOLEAN Found;\r
1075\r
1076 //\r
1077 // Get SMM Access Protocol\r
1078 //\r
1079 Status = gBS->LocateProtocol (&gEfiSmmAccess2ProtocolGuid, NULL, (VOID **)&SmmAccess);\r
1080 ASSERT_EFI_ERROR (Status);\r
1081\r
1082 //\r
1083 // Get SMRAM information\r
1084 //\r
1085 Size = 0;\r
1086 Status = SmmAccess->GetCapabilities (SmmAccess, &Size, NULL);\r
1087 ASSERT (Status == EFI_BUFFER_TOO_SMALL);\r
1088\r
1089 mSmmCpuSmramRanges = (EFI_SMRAM_DESCRIPTOR *)AllocatePool (Size);\r
1090 ASSERT (mSmmCpuSmramRanges != NULL);\r
1091\r
1092 Status = SmmAccess->GetCapabilities (SmmAccess, &Size, mSmmCpuSmramRanges);\r
1093 ASSERT_EFI_ERROR (Status);\r
1094\r
1095 mSmmCpuSmramRangeCount = Size / sizeof (EFI_SMRAM_DESCRIPTOR);\r
1096\r
1097 //\r
1098 // Find the largest SMRAM range between 1MB and 4GB that is at least 256K - 4K in size\r
1099 //\r
1100 CurrentSmramRange = NULL;\r
1101 for (Index = 0, MaxSize = SIZE_256KB - EFI_PAGE_SIZE; Index < mSmmCpuSmramRangeCount; Index++) {\r
1102 //\r
1103 // Skip any SMRAM region that is already allocated, needs testing, or needs ECC initialization\r
1104 //\r
1105 if ((mSmmCpuSmramRanges[Index].RegionState & (EFI_ALLOCATED | EFI_NEEDS_TESTING | EFI_NEEDS_ECC_INITIALIZATION)) != 0) {\r
1106 continue;\r
1107 }\r
1108\r
1109 if (mSmmCpuSmramRanges[Index].CpuStart >= BASE_1MB) {\r
1110 if ((mSmmCpuSmramRanges[Index].CpuStart + mSmmCpuSmramRanges[Index].PhysicalSize) <= SMRR_MAX_ADDRESS) {\r
1111 if (mSmmCpuSmramRanges[Index].PhysicalSize >= MaxSize) {\r
1112 MaxSize = mSmmCpuSmramRanges[Index].PhysicalSize;\r
1113 CurrentSmramRange = &mSmmCpuSmramRanges[Index];\r
1114 }\r
1115 }\r
1116 }\r
1117 }\r
1118\r
1119 ASSERT (CurrentSmramRange != NULL);\r
1120\r
1121 *SmrrBase = (UINT32)CurrentSmramRange->CpuStart;\r
1122 *SmrrSize = (UINT32)CurrentSmramRange->PhysicalSize;\r
1123\r
1124 do {\r
1125 Found = FALSE;\r
1126 for (Index = 0; Index < mSmmCpuSmramRangeCount; Index++) {\r
1127 if (mSmmCpuSmramRanges[Index].CpuStart < *SmrrBase &&\r
1128 *SmrrBase == (mSmmCpuSmramRanges[Index].CpuStart + mSmmCpuSmramRanges[Index].PhysicalSize)) {\r
1129 *SmrrBase = (UINT32)mSmmCpuSmramRanges[Index].CpuStart;\r
1130 *SmrrSize = (UINT32)(*SmrrSize + mSmmCpuSmramRanges[Index].PhysicalSize);\r
1131 Found = TRUE;\r
1132 } else if ((*SmrrBase + *SmrrSize) == mSmmCpuSmramRanges[Index].CpuStart && mSmmCpuSmramRanges[Index].PhysicalSize > 0) {\r
1133 *SmrrSize = (UINT32)(*SmrrSize + mSmmCpuSmramRanges[Index].PhysicalSize);\r
1134 Found = TRUE;\r
1135 }\r
1136 }\r
1137 } while (Found);\r
1138\r
1139 DEBUG ((EFI_D_INFO, "SMRR Base: 0x%x, SMRR Size: 0x%x\n", *SmrrBase, *SmrrSize));\r
1140}\r
1141\r
1142/**\r
1143Configure SMM Code Access Check feature on an AP.\r
1144SMM Feature Control MSR will be locked after configuration.\r
1145\r
1146@param[in,out] Buffer Pointer to private data buffer.\r
1147**/\r
1148VOID\r
1149EFIAPI\r
1150ConfigSmmCodeAccessCheckOnCurrentProcessor (\r
1151 IN OUT VOID *Buffer\r
1152 )\r
1153{\r
1154 UINTN CpuIndex;\r
1155 UINT64 SmmFeatureControlMsr;\r
1156 UINT64 NewSmmFeatureControlMsr;\r
1157\r
1158 //\r
1159 // Retrieve the CPU Index from the context passed in\r
1160 //\r
1161 CpuIndex = *(UINTN *)Buffer;\r
1162\r
1163 //\r
1164 // Get the current SMM Feature Control MSR value\r
1165 //\r
1166 SmmFeatureControlMsr = SmmCpuFeaturesGetSmmRegister (CpuIndex, SmmRegFeatureControl);\r
1167\r
1168 //\r
1169 // Compute the new SMM Feature Control MSR value\r
1170 //\r
1171 NewSmmFeatureControlMsr = SmmFeatureControlMsr;\r
1172 if (mSmmCodeAccessCheckEnable) {\r
1173 NewSmmFeatureControlMsr |= SMM_CODE_CHK_EN_BIT;\r
1174 if (FeaturePcdGet (PcdCpuSmmFeatureControlMsrLock)) {\r
1175 NewSmmFeatureControlMsr |= SMM_FEATURE_CONTROL_LOCK_BIT;\r
1176 }\r
1177 }\r
1178\r
1179 //\r
1180 // Only set the SMM Feature Control MSR value if the new value is different than the current value\r
1181 //\r
1182 if (NewSmmFeatureControlMsr != SmmFeatureControlMsr) {\r
1183 SmmCpuFeaturesSetSmmRegister (CpuIndex, SmmRegFeatureControl, NewSmmFeatureControlMsr);\r
1184 }\r
1185\r
1186 //\r
1187 // Release the spin lock user to serialize the updates to the SMM Feature Control MSR\r
1188 //\r
1189 ReleaseSpinLock (mConfigSmmCodeAccessCheckLock);\r
1190}\r
1191\r
1192/**\r
1193Configure SMM Code Access Check feature for all processors.\r
1194SMM Feature Control MSR will be locked after configuration.\r
1195**/\r
1196VOID\r
1197ConfigSmmCodeAccessCheck (\r
1198 VOID\r
1199 )\r
1200{\r
1201 UINTN Index;\r
1202 EFI_STATUS Status;\r
1203\r
1204 //\r
1205 // Check to see if the Feature Control MSR is supported on this CPU\r
1206 //\r
1207 Index = gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu;\r
1208 if (!SmmCpuFeaturesIsSmmRegisterSupported (Index, SmmRegFeatureControl)) {\r
1209 mSmmCodeAccessCheckEnable = FALSE;\r
1210 return;\r
1211 }\r
1212\r
1213 //\r
1214 // Check to see if the CPU supports the SMM Code Access Check feature\r
1215 // Do not access this MSR unless the CPU supports the SmmRegFeatureControl\r
1216 //\r
1217 if ((AsmReadMsr64 (EFI_MSR_SMM_MCA_CAP) & SMM_CODE_ACCESS_CHK_BIT) == 0) {\r
1218 mSmmCodeAccessCheckEnable = FALSE;\r
1219 return;\r
1220 }\r
1221\r
1222 //\r
1223 // Initialize the lock used to serialize the MSR programming in BSP and all APs\r
1224 //\r
1225 InitializeSpinLock (mConfigSmmCodeAccessCheckLock);\r
1226\r
1227 //\r
1228 // Acquire Config SMM Code Access Check spin lock. The BSP will release the\r
1229 // spin lock when it is done executing ConfigSmmCodeAccessCheckOnCurrentProcessor().\r
1230 //\r
1231 AcquireSpinLock (mConfigSmmCodeAccessCheckLock);\r
1232\r
1233 //\r
1234 // Enable SMM Code Access Check feature on the BSP.\r
1235 //\r
1236 ConfigSmmCodeAccessCheckOnCurrentProcessor (&Index);\r
1237\r
1238 //\r
1239 // Enable SMM Code Access Check feature for the APs.\r
1240 //\r
1241 for (Index = 0; Index < gSmst->NumberOfCpus; Index++) {\r
1242 if (Index != gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu) {\r
1243 if (gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId == INVALID_APIC_ID) {\r
1244 //\r
1245 // If this processor does not exist\r
1246 //\r
1247 continue;\r
1248 }\r
1249 //\r
1250 // Acquire Config SMM Code Access Check spin lock. The AP will release the\r
1251 // spin lock when it is done executing ConfigSmmCodeAccessCheckOnCurrentProcessor().\r
1252 //\r
1253 AcquireSpinLock (mConfigSmmCodeAccessCheckLock);\r
1254\r
1255 //\r
1256 // Call SmmStartupThisAp() to enable SMM Code Access Check on an AP.\r
1257 //\r
1258 Status = gSmst->SmmStartupThisAp (ConfigSmmCodeAccessCheckOnCurrentProcessor, Index, &Index);\r
1259 ASSERT_EFI_ERROR (Status);\r
1260\r
1261 //\r
1262 // Wait for the AP to release the Config SMM Code Access Check spin lock.\r
1263 //\r
1264 while (!AcquireSpinLockOrFail (mConfigSmmCodeAccessCheckLock)) {\r
1265 CpuPause ();\r
1266 }\r
1267\r
1268 //\r
1269 // Release the Config SMM Code Access Check spin lock.\r
1270 //\r
1271 ReleaseSpinLock (mConfigSmmCodeAccessCheckLock);\r
1272 }\r
1273 }\r
1274}\r
1275\r
1276/**\r
1277 This API provides a way to allocate memory for page table.\r
1278\r
1279 This API can be called more once to allocate memory for page tables.\r
1280\r
1281 Allocates the number of 4KB pages of type EfiRuntimeServicesData and returns a pointer to the\r
1282 allocated buffer. The buffer returned is aligned on a 4KB boundary. If Pages is 0, then NULL\r
1283 is returned. If there is not enough memory remaining to satisfy the request, then NULL is\r
1284 returned.\r
1285\r
1286 @param Pages The number of 4 KB pages to allocate.\r
1287\r
1288 @return A pointer to the allocated buffer or NULL if allocation fails.\r
1289\r
1290**/\r
1291VOID *\r
1292AllocatePageTableMemory (\r
1293 IN UINTN Pages\r
1294 )\r
1295{\r
1296 VOID *Buffer;\r
1297\r
1298 Buffer = SmmCpuFeaturesAllocatePageTableMemory (Pages);\r
1299 if (Buffer != NULL) {\r
1300 return Buffer;\r
1301 }\r
1302 return AllocatePages (Pages);\r
1303}\r
1304\r
1305/**\r
1306 Allocate pages for code.\r
1307\r
1308 @param[in] Pages Number of pages to be allocated.\r
1309\r
1310 @return Allocated memory.\r
1311**/\r
1312VOID *\r
1313AllocateCodePages (\r
1314 IN UINTN Pages\r
1315 )\r
1316{\r
1317 EFI_STATUS Status;\r
1318 EFI_PHYSICAL_ADDRESS Memory;\r
1319\r
1320 if (Pages == 0) {\r
1321 return NULL;\r
1322 }\r
1323\r
1324 Status = gSmst->SmmAllocatePages (AllocateAnyPages, EfiRuntimeServicesCode, Pages, &Memory);\r
1325 if (EFI_ERROR (Status)) {\r
1326 return NULL;\r
1327 }\r
1328 return (VOID *) (UINTN) Memory;\r
1329}\r
1330\r
1331/**\r
1332 Allocate aligned pages for code.\r
1333\r
1334 @param[in] Pages Number of pages to be allocated.\r
1335 @param[in] Alignment The requested alignment of the allocation.\r
1336 Must be a power of two.\r
1337 If Alignment is zero, then byte alignment is used.\r
1338\r
1339 @return Allocated memory.\r
1340**/\r
1341VOID *\r
1342AllocateAlignedCodePages (\r
1343 IN UINTN Pages,\r
1344 IN UINTN Alignment\r
1345 )\r
1346{\r
1347 EFI_STATUS Status;\r
1348 EFI_PHYSICAL_ADDRESS Memory;\r
1349 UINTN AlignedMemory;\r
1350 UINTN AlignmentMask;\r
1351 UINTN UnalignedPages;\r
1352 UINTN RealPages;\r
1353\r
1354 //\r
1355 // Alignment must be a power of two or zero.\r
1356 //\r
1357 ASSERT ((Alignment & (Alignment - 1)) == 0);\r
1358\r
1359 if (Pages == 0) {\r
1360 return NULL;\r
1361 }\r
1362 if (Alignment > EFI_PAGE_SIZE) {\r
1363 //\r
1364 // Calculate the total number of pages since alignment is larger than page size.\r
1365 //\r
1366 AlignmentMask = Alignment - 1;\r
1367 RealPages = Pages + EFI_SIZE_TO_PAGES (Alignment);\r
1368 //\r
1369 // Make sure that Pages plus EFI_SIZE_TO_PAGES (Alignment) does not overflow.\r
1370 //\r
1371 ASSERT (RealPages > Pages);\r
1372\r
1373 Status = gSmst->SmmAllocatePages (AllocateAnyPages, EfiRuntimeServicesCode, RealPages, &Memory);\r
1374 if (EFI_ERROR (Status)) {\r
1375 return NULL;\r
1376 }\r
1377 AlignedMemory = ((UINTN) Memory + AlignmentMask) & ~AlignmentMask;\r
1378 UnalignedPages = EFI_SIZE_TO_PAGES (AlignedMemory - (UINTN) Memory);\r
1379 if (UnalignedPages > 0) {\r
1380 //\r
1381 // Free first unaligned page(s).\r
1382 //\r
1383 Status = gSmst->SmmFreePages (Memory, UnalignedPages);\r
1384 ASSERT_EFI_ERROR (Status);\r
1385 }\r
1386 Memory = AlignedMemory + EFI_PAGES_TO_SIZE (Pages);\r
1387 UnalignedPages = RealPages - Pages - UnalignedPages;\r
1388 if (UnalignedPages > 0) {\r
1389 //\r
1390 // Free last unaligned page(s).\r
1391 //\r
1392 Status = gSmst->SmmFreePages (Memory, UnalignedPages);\r
1393 ASSERT_EFI_ERROR (Status);\r
1394 }\r
1395 } else {\r
1396 //\r
1397 // Do not over-allocate pages in this case.\r
1398 //\r
1399 Status = gSmst->SmmAllocatePages (AllocateAnyPages, EfiRuntimeServicesCode, Pages, &Memory);\r
1400 if (EFI_ERROR (Status)) {\r
1401 return NULL;\r
1402 }\r
1403 AlignedMemory = (UINTN) Memory;\r
1404 }\r
1405 return (VOID *) AlignedMemory;\r
1406}\r
1407\r
1408/**\r
1409 Perform the remaining tasks.\r
1410\r
1411**/\r
1412VOID\r
1413PerformRemainingTasks (\r
1414 VOID\r
1415 )\r
1416{\r
1417 if (mSmmReadyToLock) {\r
1418 //\r
1419 // Start SMM Profile feature\r
1420 //\r
1421 if (FeaturePcdGet (PcdCpuSmmProfileEnable)) {\r
1422 SmmProfileStart ();\r
1423 }\r
1424 //\r
1425 // Create a mix of 2MB and 4KB page table. Update some memory ranges absent and execute-disable.\r
1426 //\r
1427 InitPaging ();\r
1428\r
1429 //\r
1430 // Mark critical region to be read-only in page table\r
1431 //\r
1432 SetMemMapAttributes ();\r
1433\r
1434 //\r
1435 // For outside SMRAM, we only map SMM communication buffer or MMIO.\r
1436 //\r
1437 SetUefiMemMapAttributes ();\r
1438\r
1439 //\r
1440 // Set page table itself to be read-only\r
1441 //\r
1442 SetPageTableAttributes ();\r
1443\r
1444 //\r
1445 // Configure SMM Code Access Check feature if available.\r
1446 //\r
1447 ConfigSmmCodeAccessCheck ();\r
1448\r
1449 SmmCpuFeaturesCompleteSmmReadyToLock ();\r
1450\r
1451 //\r
1452 // Clean SMM ready to lock flag\r
1453 //\r
1454 mSmmReadyToLock = FALSE;\r
1455 }\r
1456}\r
1457\r
1458/**\r
1459 Perform the pre tasks.\r
1460\r
1461**/\r
1462VOID\r
1463PerformPreTasks (\r
1464 VOID\r
1465 )\r
1466{\r
1467 RestoreSmmConfigurationInS3 ();\r
1468}\r