]> git.proxmox.com Git - mirror_edk2.git/blobdiff - AppPkg/Applications/Python/Python-2.7.2/Lib/test/test_complex.py
edk2: Remove AppPkg, StdLib, StdLibPrivateInternalFiles
[mirror_edk2.git] / AppPkg / Applications / Python / Python-2.7.2 / Lib / test / test_complex.py
diff --git a/AppPkg/Applications/Python/Python-2.7.2/Lib/test/test_complex.py b/AppPkg/Applications/Python/Python-2.7.2/Lib/test/test_complex.py
deleted file mode 100644 (file)
index 8863cd3..0000000
+++ /dev/null
@@ -1,651 +0,0 @@
-import unittest\r
-from test import test_support\r
-\r
-from random import random\r
-from math import atan2, isnan, copysign\r
-\r
-INF = float("inf")\r
-NAN = float("nan")\r
-# These tests ensure that complex math does the right thing\r
-\r
-class ComplexTest(unittest.TestCase):\r
-\r
-    def assertAlmostEqual(self, a, b):\r
-        if isinstance(a, complex):\r
-            if isinstance(b, complex):\r
-                unittest.TestCase.assertAlmostEqual(self, a.real, b.real)\r
-                unittest.TestCase.assertAlmostEqual(self, a.imag, b.imag)\r
-            else:\r
-                unittest.TestCase.assertAlmostEqual(self, a.real, b)\r
-                unittest.TestCase.assertAlmostEqual(self, a.imag, 0.)\r
-        else:\r
-            if isinstance(b, complex):\r
-                unittest.TestCase.assertAlmostEqual(self, a, b.real)\r
-                unittest.TestCase.assertAlmostEqual(self, 0., b.imag)\r
-            else:\r
-                unittest.TestCase.assertAlmostEqual(self, a, b)\r
-\r
-    def assertCloseAbs(self, x, y, eps=1e-9):\r
-        """Return true iff floats x and y "are close\""""\r
-        # put the one with larger magnitude second\r
-        if abs(x) > abs(y):\r
-            x, y = y, x\r
-        if y == 0:\r
-            return abs(x) < eps\r
-        if x == 0:\r
-            return abs(y) < eps\r
-        # check that relative difference < eps\r
-        self.assertTrue(abs((x-y)/y) < eps)\r
-\r
-    def assertFloatsAreIdentical(self, x, y):\r
-        """assert that floats x and y are identical, in the sense that:\r
-        (1) both x and y are nans, or\r
-        (2) both x and y are infinities, with the same sign, or\r
-        (3) both x and y are zeros, with the same sign, or\r
-        (4) x and y are both finite and nonzero, and x == y\r
-\r
-        """\r
-        msg = 'floats {!r} and {!r} are not identical'\r
-\r
-        if isnan(x) or isnan(y):\r
-            if isnan(x) and isnan(y):\r
-                return\r
-        elif x == y:\r
-            if x != 0.0:\r
-                return\r
-            # both zero; check that signs match\r
-            elif copysign(1.0, x) == copysign(1.0, y):\r
-                return\r
-            else:\r
-                msg += ': zeros have different signs'\r
-        self.fail(msg.format(x, y))\r
-\r
-    def assertClose(self, x, y, eps=1e-9):\r
-        """Return true iff complexes x and y "are close\""""\r
-        self.assertCloseAbs(x.real, y.real, eps)\r
-        self.assertCloseAbs(x.imag, y.imag, eps)\r
-\r
-    def check_div(self, x, y):\r
-        """Compute complex z=x*y, and check that z/x==y and z/y==x."""\r
-        z = x * y\r
-        if x != 0:\r
-            q = z / x\r
-            self.assertClose(q, y)\r
-            q = z.__div__(x)\r
-            self.assertClose(q, y)\r
-            q = z.__truediv__(x)\r
-            self.assertClose(q, y)\r
-        if y != 0:\r
-            q = z / y\r
-            self.assertClose(q, x)\r
-            q = z.__div__(y)\r
-            self.assertClose(q, x)\r
-            q = z.__truediv__(y)\r
-            self.assertClose(q, x)\r
-\r
-    def test_div(self):\r
-        simple_real = [float(i) for i in xrange(-5, 6)]\r
-        simple_complex = [complex(x, y) for x in simple_real for y in simple_real]\r
-        for x in simple_complex:\r
-            for y in simple_complex:\r
-                self.check_div(x, y)\r
-\r
-        # A naive complex division algorithm (such as in 2.0) is very prone to\r
-        # nonsense errors for these (overflows and underflows).\r
-        self.check_div(complex(1e200, 1e200), 1+0j)\r
-        self.check_div(complex(1e-200, 1e-200), 1+0j)\r
-\r
-        # Just for fun.\r
-        for i in xrange(100):\r
-            self.check_div(complex(random(), random()),\r
-                           complex(random(), random()))\r
-\r
-        self.assertRaises(ZeroDivisionError, complex.__div__, 1+1j, 0+0j)\r
-        # FIXME: The following currently crashes on Alpha\r
-        # self.assertRaises(OverflowError, pow, 1e200+1j, 1e200+1j)\r
-\r
-    def test_truediv(self):\r
-        self.assertAlmostEqual(complex.__truediv__(2+0j, 1+1j), 1-1j)\r
-        self.assertRaises(ZeroDivisionError, complex.__truediv__, 1+1j, 0+0j)\r
-\r
-    def test_floordiv(self):\r
-        self.assertAlmostEqual(complex.__floordiv__(3+0j, 1.5+0j), 2)\r
-        self.assertRaises(ZeroDivisionError, complex.__floordiv__, 3+0j, 0+0j)\r
-\r
-    def test_coerce(self):\r
-        self.assertRaises(OverflowError, complex.__coerce__, 1+1j, 1L<<10000)\r
-\r
-    def test_no_implicit_coerce(self):\r
-        # Python 2.7 removed implicit coercion from the complex type\r
-        class A(object):\r
-            def __coerce__(self, other):\r
-                raise RuntimeError\r
-            __hash__ = None\r
-            def __cmp__(self, other):\r
-                return -1\r
-\r
-        a = A()\r
-        self.assertRaises(TypeError, lambda: a + 2.0j)\r
-        self.assertTrue(a < 2.0j)\r
-\r
-    def test_richcompare(self):\r
-        self.assertEqual(complex.__eq__(1+1j, 1L<<10000), False)\r
-        self.assertEqual(complex.__lt__(1+1j, None), NotImplemented)\r
-        self.assertIs(complex.__eq__(1+1j, 1+1j), True)\r
-        self.assertIs(complex.__eq__(1+1j, 2+2j), False)\r
-        self.assertIs(complex.__ne__(1+1j, 1+1j), False)\r
-        self.assertIs(complex.__ne__(1+1j, 2+2j), True)\r
-        self.assertRaises(TypeError, complex.__lt__, 1+1j, 2+2j)\r
-        self.assertRaises(TypeError, complex.__le__, 1+1j, 2+2j)\r
-        self.assertRaises(TypeError, complex.__gt__, 1+1j, 2+2j)\r
-        self.assertRaises(TypeError, complex.__ge__, 1+1j, 2+2j)\r
-\r
-    def test_richcompare_boundaries(self):\r
-        def check(n, deltas, is_equal, imag = 0.0):\r
-            for delta in deltas:\r
-                i = n + delta\r
-                z = complex(i, imag)\r
-                self.assertIs(complex.__eq__(z, i), is_equal(delta))\r
-                self.assertIs(complex.__ne__(z, i), not is_equal(delta))\r
-        # For IEEE-754 doubles the following should hold:\r
-        #    x in [2 ** (52 + i), 2 ** (53 + i + 1)] -> x mod 2 ** i == 0\r
-        # where the interval is representable, of course.\r
-        for i in range(1, 10):\r
-            pow = 52 + i\r
-            mult = 2 ** i\r
-            check(2 ** pow, range(1, 101), lambda delta: delta % mult == 0)\r
-            check(2 ** pow, range(1, 101), lambda delta: False, float(i))\r
-        check(2 ** 53, range(-100, 0), lambda delta: True)\r
-\r
-    def test_mod(self):\r
-        self.assertRaises(ZeroDivisionError, (1+1j).__mod__, 0+0j)\r
-\r
-        a = 3.33+4.43j\r
-        try:\r
-            a % 0\r
-        except ZeroDivisionError:\r
-            pass\r
-        else:\r
-            self.fail("modulo parama can't be 0")\r
-\r
-    def test_divmod(self):\r
-        self.assertRaises(ZeroDivisionError, divmod, 1+1j, 0+0j)\r
-\r
-    def test_pow(self):\r
-        self.assertAlmostEqual(pow(1+1j, 0+0j), 1.0)\r
-        self.assertAlmostEqual(pow(0+0j, 2+0j), 0.0)\r
-        self.assertRaises(ZeroDivisionError, pow, 0+0j, 1j)\r
-        self.assertAlmostEqual(pow(1j, -1), 1/1j)\r
-        self.assertAlmostEqual(pow(1j, 200), 1)\r
-        self.assertRaises(ValueError, pow, 1+1j, 1+1j, 1+1j)\r
-\r
-        a = 3.33+4.43j\r
-        self.assertEqual(a ** 0j, 1)\r
-        self.assertEqual(a ** 0.+0.j, 1)\r
-\r
-        self.assertEqual(3j ** 0j, 1)\r
-        self.assertEqual(3j ** 0, 1)\r
-\r
-        try:\r
-            0j ** a\r
-        except ZeroDivisionError:\r
-            pass\r
-        else:\r
-            self.fail("should fail 0.0 to negative or complex power")\r
-\r
-        try:\r
-            0j ** (3-2j)\r
-        except ZeroDivisionError:\r
-            pass\r
-        else:\r
-            self.fail("should fail 0.0 to negative or complex power")\r
-\r
-        # The following is used to exercise certain code paths\r
-        self.assertEqual(a ** 105, a ** 105)\r
-        self.assertEqual(a ** -105, a ** -105)\r
-        self.assertEqual(a ** -30, a ** -30)\r
-\r
-        self.assertEqual(0.0j ** 0, 1)\r
-\r
-        b = 5.1+2.3j\r
-        self.assertRaises(ValueError, pow, a, b, 0)\r
-\r
-    def test_boolcontext(self):\r
-        for i in xrange(100):\r
-            self.assertTrue(complex(random() + 1e-6, random() + 1e-6))\r
-        self.assertTrue(not complex(0.0, 0.0))\r
-\r
-    def test_conjugate(self):\r
-        self.assertClose(complex(5.3, 9.8).conjugate(), 5.3-9.8j)\r
-\r
-    def test_constructor(self):\r
-        class OS:\r
-            def __init__(self, value): self.value = value\r
-            def __complex__(self): return self.value\r
-        class NS(object):\r
-            def __init__(self, value): self.value = value\r
-            def __complex__(self): return self.value\r
-        self.assertEqual(complex(OS(1+10j)), 1+10j)\r
-        self.assertEqual(complex(NS(1+10j)), 1+10j)\r
-        self.assertRaises(TypeError, complex, OS(None))\r
-        self.assertRaises(TypeError, complex, NS(None))\r
-\r
-        self.assertAlmostEqual(complex("1+10j"), 1+10j)\r
-        self.assertAlmostEqual(complex(10), 10+0j)\r
-        self.assertAlmostEqual(complex(10.0), 10+0j)\r
-        self.assertAlmostEqual(complex(10L), 10+0j)\r
-        self.assertAlmostEqual(complex(10+0j), 10+0j)\r
-        self.assertAlmostEqual(complex(1,10), 1+10j)\r
-        self.assertAlmostEqual(complex(1,10L), 1+10j)\r
-        self.assertAlmostEqual(complex(1,10.0), 1+10j)\r
-        self.assertAlmostEqual(complex(1L,10), 1+10j)\r
-        self.assertAlmostEqual(complex(1L,10L), 1+10j)\r
-        self.assertAlmostEqual(complex(1L,10.0), 1+10j)\r
-        self.assertAlmostEqual(complex(1.0,10), 1+10j)\r
-        self.assertAlmostEqual(complex(1.0,10L), 1+10j)\r
-        self.assertAlmostEqual(complex(1.0,10.0), 1+10j)\r
-        self.assertAlmostEqual(complex(3.14+0j), 3.14+0j)\r
-        self.assertAlmostEqual(complex(3.14), 3.14+0j)\r
-        self.assertAlmostEqual(complex(314), 314.0+0j)\r
-        self.assertAlmostEqual(complex(314L), 314.0+0j)\r
-        self.assertAlmostEqual(complex(3.14+0j, 0j), 3.14+0j)\r
-        self.assertAlmostEqual(complex(3.14, 0.0), 3.14+0j)\r
-        self.assertAlmostEqual(complex(314, 0), 314.0+0j)\r
-        self.assertAlmostEqual(complex(314L, 0L), 314.0+0j)\r
-        self.assertAlmostEqual(complex(0j, 3.14j), -3.14+0j)\r
-        self.assertAlmostEqual(complex(0.0, 3.14j), -3.14+0j)\r
-        self.assertAlmostEqual(complex(0j, 3.14), 3.14j)\r
-        self.assertAlmostEqual(complex(0.0, 3.14), 3.14j)\r
-        self.assertAlmostEqual(complex("1"), 1+0j)\r
-        self.assertAlmostEqual(complex("1j"), 1j)\r
-        self.assertAlmostEqual(complex(),  0)\r
-        self.assertAlmostEqual(complex("-1"), -1)\r
-        self.assertAlmostEqual(complex("+1"), +1)\r
-        self.assertAlmostEqual(complex("(1+2j)"), 1+2j)\r
-        self.assertAlmostEqual(complex("(1.3+2.2j)"), 1.3+2.2j)\r
-        self.assertAlmostEqual(complex("3.14+1J"), 3.14+1j)\r
-        self.assertAlmostEqual(complex(" ( +3.14-6J )"), 3.14-6j)\r
-        self.assertAlmostEqual(complex(" ( +3.14-J )"), 3.14-1j)\r
-        self.assertAlmostEqual(complex(" ( +3.14+j )"), 3.14+1j)\r
-        self.assertAlmostEqual(complex("J"), 1j)\r
-        self.assertAlmostEqual(complex("( j )"), 1j)\r
-        self.assertAlmostEqual(complex("+J"), 1j)\r
-        self.assertAlmostEqual(complex("( -j)"), -1j)\r
-        self.assertAlmostEqual(complex('1e-500'), 0.0 + 0.0j)\r
-        self.assertAlmostEqual(complex('-1e-500j'), 0.0 - 0.0j)\r
-        self.assertAlmostEqual(complex('-1e-500+1e-500j'), -0.0 + 0.0j)\r
-\r
-        class complex2(complex): pass\r
-        self.assertAlmostEqual(complex(complex2(1+1j)), 1+1j)\r
-        self.assertAlmostEqual(complex(real=17, imag=23), 17+23j)\r
-        self.assertAlmostEqual(complex(real=17+23j), 17+23j)\r
-        self.assertAlmostEqual(complex(real=17+23j, imag=23), 17+46j)\r
-        self.assertAlmostEqual(complex(real=1+2j, imag=3+4j), -3+5j)\r
-\r
-        # check that the sign of a zero in the real or imaginary part\r
-        # is preserved when constructing from two floats.  (These checks\r
-        # are harmless on systems without support for signed zeros.)\r
-        def split_zeros(x):\r
-            """Function that produces different results for 0. and -0."""\r
-            return atan2(x, -1.)\r
-\r
-        self.assertEqual(split_zeros(complex(1., 0.).imag), split_zeros(0.))\r
-        self.assertEqual(split_zeros(complex(1., -0.).imag), split_zeros(-0.))\r
-        self.assertEqual(split_zeros(complex(0., 1.).real), split_zeros(0.))\r
-        self.assertEqual(split_zeros(complex(-0., 1.).real), split_zeros(-0.))\r
-\r
-        c = 3.14 + 1j\r
-        self.assertTrue(complex(c) is c)\r
-        del c\r
-\r
-        self.assertRaises(TypeError, complex, "1", "1")\r
-        self.assertRaises(TypeError, complex, 1, "1")\r
-\r
-        if test_support.have_unicode:\r
-            self.assertEqual(complex(unicode("  3.14+J  ")), 3.14+1j)\r
-\r
-        # SF bug 543840:  complex(string) accepts strings with \0\r
-        # Fixed in 2.3.\r
-        self.assertRaises(ValueError, complex, '1+1j\0j')\r
-\r
-        self.assertRaises(TypeError, int, 5+3j)\r
-        self.assertRaises(TypeError, long, 5+3j)\r
-        self.assertRaises(TypeError, float, 5+3j)\r
-        self.assertRaises(ValueError, complex, "")\r
-        self.assertRaises(TypeError, complex, None)\r
-        self.assertRaises(ValueError, complex, "\0")\r
-        self.assertRaises(ValueError, complex, "3\09")\r
-        self.assertRaises(TypeError, complex, "1", "2")\r
-        self.assertRaises(TypeError, complex, "1", 42)\r
-        self.assertRaises(TypeError, complex, 1, "2")\r
-        self.assertRaises(ValueError, complex, "1+")\r
-        self.assertRaises(ValueError, complex, "1+1j+1j")\r
-        self.assertRaises(ValueError, complex, "--")\r
-        self.assertRaises(ValueError, complex, "(1+2j")\r
-        self.assertRaises(ValueError, complex, "1+2j)")\r
-        self.assertRaises(ValueError, complex, "1+(2j)")\r
-        self.assertRaises(ValueError, complex, "(1+2j)123")\r
-        if test_support.have_unicode:\r
-            self.assertRaises(ValueError, complex, unicode("x"))\r
-        self.assertRaises(ValueError, complex, "1j+2")\r
-        self.assertRaises(ValueError, complex, "1e1ej")\r
-        self.assertRaises(ValueError, complex, "1e++1ej")\r
-        self.assertRaises(ValueError, complex, ")1+2j(")\r
-        # the following three are accepted by Python 2.6\r
-        self.assertRaises(ValueError, complex, "1..1j")\r
-        self.assertRaises(ValueError, complex, "1.11.1j")\r
-        self.assertRaises(ValueError, complex, "1e1.1j")\r
-\r
-        if test_support.have_unicode:\r
-            # check that complex accepts long unicode strings\r
-            self.assertEqual(type(complex(unicode("1"*500))), complex)\r
-\r
-        class EvilExc(Exception):\r
-            pass\r
-\r
-        class evilcomplex:\r
-            def __complex__(self):\r
-                raise EvilExc\r
-\r
-        self.assertRaises(EvilExc, complex, evilcomplex())\r
-\r
-        class float2:\r
-            def __init__(self, value):\r
-                self.value = value\r
-            def __float__(self):\r
-                return self.value\r
-\r
-        self.assertAlmostEqual(complex(float2(42.)), 42)\r
-        self.assertAlmostEqual(complex(real=float2(17.), imag=float2(23.)), 17+23j)\r
-        self.assertRaises(TypeError, complex, float2(None))\r
-\r
-        class complex0(complex):\r
-            """Test usage of __complex__() when inheriting from 'complex'"""\r
-            def __complex__(self):\r
-                return 42j\r
-\r
-        class complex1(complex):\r
-            """Test usage of __complex__() with a __new__() method"""\r
-            def __new__(self, value=0j):\r
-                return complex.__new__(self, 2*value)\r
-            def __complex__(self):\r
-                return self\r
-\r
-        class complex2(complex):\r
-            """Make sure that __complex__() calls fail if anything other than a\r
-            complex is returned"""\r
-            def __complex__(self):\r
-                return None\r
-\r
-        self.assertAlmostEqual(complex(complex0(1j)), 42j)\r
-        self.assertAlmostEqual(complex(complex1(1j)), 2j)\r
-        self.assertRaises(TypeError, complex, complex2(1j))\r
-\r
-    def test_subclass(self):\r
-        class xcomplex(complex):\r
-            def __add__(self,other):\r
-                return xcomplex(complex(self) + other)\r
-            __radd__ = __add__\r
-\r
-            def __sub__(self,other):\r
-                return xcomplex(complex(self) + other)\r
-            __rsub__ = __sub__\r
-\r
-            def __mul__(self,other):\r
-                return xcomplex(complex(self) * other)\r
-            __rmul__ = __mul__\r
-\r
-            def __div__(self,other):\r
-                return xcomplex(complex(self) / other)\r
-\r
-            def __rdiv__(self,other):\r
-                return xcomplex(other / complex(self))\r
-\r
-            __truediv__ = __div__\r
-            __rtruediv__ = __rdiv__\r
-\r
-            def __floordiv__(self,other):\r
-                return xcomplex(complex(self) // other)\r
-\r
-            def __rfloordiv__(self,other):\r
-                return xcomplex(other // complex(self))\r
-\r
-            def __pow__(self,other):\r
-                return xcomplex(complex(self) ** other)\r
-\r
-            def __rpow__(self,other):\r
-                return xcomplex(other ** complex(self) )\r
-\r
-            def __mod__(self,other):\r
-                return xcomplex(complex(self) % other)\r
-\r
-            def __rmod__(self,other):\r
-                return xcomplex(other % complex(self))\r
-\r
-        infix_binops = ('+', '-', '*', '**', '%', '//', '/')\r
-        xcomplex_values = (xcomplex(1), xcomplex(123.0),\r
-                           xcomplex(-10+2j), xcomplex(3+187j),\r
-                           xcomplex(3-78j))\r
-        test_values = (1, 123.0, 10-19j, xcomplex(1+2j),\r
-                       xcomplex(1+87j), xcomplex(10+90j))\r
-\r
-        for op in infix_binops:\r
-            for x in xcomplex_values:\r
-                for y in test_values:\r
-                    a = 'x %s y' % op\r
-                    b = 'y %s x' % op\r
-                    self.assertTrue(type(eval(a)) is type(eval(b)) is xcomplex)\r
-\r
-    def test_hash(self):\r
-        for x in xrange(-30, 30):\r
-            self.assertEqual(hash(x), hash(complex(x, 0)))\r
-            x /= 3.0    # now check against floating point\r
-            self.assertEqual(hash(x), hash(complex(x, 0.)))\r
-\r
-    def test_abs(self):\r
-        nums = [complex(x/3., y/7.) for x in xrange(-9,9) for y in xrange(-9,9)]\r
-        for num in nums:\r
-            self.assertAlmostEqual((num.real**2 + num.imag**2)  ** 0.5, abs(num))\r
-\r
-    def test_repr(self):\r
-        self.assertEqual(repr(1+6j), '(1+6j)')\r
-        self.assertEqual(repr(1-6j), '(1-6j)')\r
-\r
-        self.assertNotEqual(repr(-(1+0j)), '(-1+-0j)')\r
-\r
-        self.assertEqual(1-6j,complex(repr(1-6j)))\r
-        self.assertEqual(1+6j,complex(repr(1+6j)))\r
-        self.assertEqual(-6j,complex(repr(-6j)))\r
-        self.assertEqual(6j,complex(repr(6j)))\r
-\r
-        self.assertEqual(repr(complex(1., INF)), "(1+infj)")\r
-        self.assertEqual(repr(complex(1., -INF)), "(1-infj)")\r
-        self.assertEqual(repr(complex(INF, 1)), "(inf+1j)")\r
-        self.assertEqual(repr(complex(-INF, INF)), "(-inf+infj)")\r
-        self.assertEqual(repr(complex(NAN, 1)), "(nan+1j)")\r
-        self.assertEqual(repr(complex(1, NAN)), "(1+nanj)")\r
-        self.assertEqual(repr(complex(NAN, NAN)), "(nan+nanj)")\r
-\r
-        self.assertEqual(repr(complex(0, INF)), "infj")\r
-        self.assertEqual(repr(complex(0, -INF)), "-infj")\r
-        self.assertEqual(repr(complex(0, NAN)), "nanj")\r
-\r
-    def test_neg(self):\r
-        self.assertEqual(-(1+6j), -1-6j)\r
-\r
-    def test_file(self):\r
-        a = 3.33+4.43j\r
-        b = 5.1+2.3j\r
-\r
-        fo = None\r
-        try:\r
-            fo = open(test_support.TESTFN, "wb")\r
-            print >>fo, a, b\r
-            fo.close()\r
-            fo = open(test_support.TESTFN, "rb")\r
-            self.assertEqual(fo.read(), "%s %s\n" % (a, b))\r
-        finally:\r
-            if (fo is not None) and (not fo.closed):\r
-                fo.close()\r
-            test_support.unlink(test_support.TESTFN)\r
-\r
-    def test_getnewargs(self):\r
-        self.assertEqual((1+2j).__getnewargs__(), (1.0, 2.0))\r
-        self.assertEqual((1-2j).__getnewargs__(), (1.0, -2.0))\r
-        self.assertEqual((2j).__getnewargs__(), (0.0, 2.0))\r
-        self.assertEqual((-0j).__getnewargs__(), (0.0, -0.0))\r
-        self.assertEqual(complex(0, INF).__getnewargs__(), (0.0, INF))\r
-        self.assertEqual(complex(INF, 0).__getnewargs__(), (INF, 0.0))\r
-\r
-    if float.__getformat__("double").startswith("IEEE"):\r
-        def test_plus_minus_0j(self):\r
-            # test that -0j and 0j literals are not identified\r
-            z1, z2 = 0j, -0j\r
-            self.assertEqual(atan2(z1.imag, -1.), atan2(0., -1.))\r
-            self.assertEqual(atan2(z2.imag, -1.), atan2(-0., -1.))\r
-\r
-    @unittest.skipUnless(float.__getformat__("double").startswith("IEEE"),\r
-                         "test requires IEEE 754 doubles")\r
-    def test_overflow(self):\r
-        self.assertEqual(complex("1e500"), complex(INF, 0.0))\r
-        self.assertEqual(complex("-1e500j"), complex(0.0, -INF))\r
-        self.assertEqual(complex("-1e500+1.8e308j"), complex(-INF, INF))\r
-\r
-    @unittest.skipUnless(float.__getformat__("double").startswith("IEEE"),\r
-                         "test requires IEEE 754 doubles")\r
-    def test_repr_roundtrip(self):\r
-        vals = [0.0, 1e-500, 1e-315, 1e-200, 0.0123, 3.1415, 1e50, INF, NAN]\r
-        vals += [-v for v in vals]\r
-\r
-        # complex(repr(z)) should recover z exactly, even for complex\r
-        # numbers involving an infinity, nan, or negative zero\r
-        for x in vals:\r
-            for y in vals:\r
-                z = complex(x, y)\r
-                roundtrip = complex(repr(z))\r
-                self.assertFloatsAreIdentical(z.real, roundtrip.real)\r
-                self.assertFloatsAreIdentical(z.imag, roundtrip.imag)\r
-\r
-        # if we predefine some constants, then eval(repr(z)) should\r
-        # also work, except that it might change the sign of zeros\r
-        inf, nan = float('inf'), float('nan')\r
-        infj, nanj = complex(0.0, inf), complex(0.0, nan)\r
-        for x in vals:\r
-            for y in vals:\r
-                z = complex(x, y)\r
-                roundtrip = eval(repr(z))\r
-                # adding 0.0 has no effect beside changing -0.0 to 0.0\r
-                self.assertFloatsAreIdentical(0.0 + z.real,\r
-                                              0.0 + roundtrip.real)\r
-                self.assertFloatsAreIdentical(0.0 + z.imag,\r
-                                              0.0 + roundtrip.imag)\r
-\r
-    def test_format(self):\r
-        # empty format string is same as str()\r
-        self.assertEqual(format(1+3j, ''), str(1+3j))\r
-        self.assertEqual(format(1.5+3.5j, ''), str(1.5+3.5j))\r
-        self.assertEqual(format(3j, ''), str(3j))\r
-        self.assertEqual(format(3.2j, ''), str(3.2j))\r
-        self.assertEqual(format(3+0j, ''), str(3+0j))\r
-        self.assertEqual(format(3.2+0j, ''), str(3.2+0j))\r
-\r
-        # empty presentation type should still be analogous to str,\r
-        # even when format string is nonempty (issue #5920).\r
-        self.assertEqual(format(3.2+0j, '-'), str(3.2+0j))\r
-        self.assertEqual(format(3.2+0j, '<'), str(3.2+0j))\r
-        z = 4/7. - 100j/7.\r
-        self.assertEqual(format(z, ''), str(z))\r
-        self.assertEqual(format(z, '-'), str(z))\r
-        self.assertEqual(format(z, '<'), str(z))\r
-        self.assertEqual(format(z, '10'), str(z))\r
-        z = complex(0.0, 3.0)\r
-        self.assertEqual(format(z, ''), str(z))\r
-        self.assertEqual(format(z, '-'), str(z))\r
-        self.assertEqual(format(z, '<'), str(z))\r
-        self.assertEqual(format(z, '2'), str(z))\r
-        z = complex(-0.0, 2.0)\r
-        self.assertEqual(format(z, ''), str(z))\r
-        self.assertEqual(format(z, '-'), str(z))\r
-        self.assertEqual(format(z, '<'), str(z))\r
-        self.assertEqual(format(z, '3'), str(z))\r
-\r
-        self.assertEqual(format(1+3j, 'g'), '1+3j')\r
-        self.assertEqual(format(3j, 'g'), '0+3j')\r
-        self.assertEqual(format(1.5+3.5j, 'g'), '1.5+3.5j')\r
-\r
-        self.assertEqual(format(1.5+3.5j, '+g'), '+1.5+3.5j')\r
-        self.assertEqual(format(1.5-3.5j, '+g'), '+1.5-3.5j')\r
-        self.assertEqual(format(1.5-3.5j, '-g'), '1.5-3.5j')\r
-        self.assertEqual(format(1.5+3.5j, ' g'), ' 1.5+3.5j')\r
-        self.assertEqual(format(1.5-3.5j, ' g'), ' 1.5-3.5j')\r
-        self.assertEqual(format(-1.5+3.5j, ' g'), '-1.5+3.5j')\r
-        self.assertEqual(format(-1.5-3.5j, ' g'), '-1.5-3.5j')\r
-\r
-        self.assertEqual(format(-1.5-3.5e-20j, 'g'), '-1.5-3.5e-20j')\r
-        self.assertEqual(format(-1.5-3.5j, 'f'), '-1.500000-3.500000j')\r
-        self.assertEqual(format(-1.5-3.5j, 'F'), '-1.500000-3.500000j')\r
-        self.assertEqual(format(-1.5-3.5j, 'e'), '-1.500000e+00-3.500000e+00j')\r
-        self.assertEqual(format(-1.5-3.5j, '.2e'), '-1.50e+00-3.50e+00j')\r
-        self.assertEqual(format(-1.5-3.5j, '.2E'), '-1.50E+00-3.50E+00j')\r
-        self.assertEqual(format(-1.5e10-3.5e5j, '.2G'), '-1.5E+10-3.5E+05j')\r
-\r
-        self.assertEqual(format(1.5+3j, '<20g'),  '1.5+3j              ')\r
-        self.assertEqual(format(1.5+3j, '*<20g'), '1.5+3j**************')\r
-        self.assertEqual(format(1.5+3j, '>20g'),  '              1.5+3j')\r
-        self.assertEqual(format(1.5+3j, '^20g'),  '       1.5+3j       ')\r
-        self.assertEqual(format(1.5+3j, '<20'),   '(1.5+3j)            ')\r
-        self.assertEqual(format(1.5+3j, '>20'),   '            (1.5+3j)')\r
-        self.assertEqual(format(1.5+3j, '^20'),   '      (1.5+3j)      ')\r
-        self.assertEqual(format(1.123-3.123j, '^20.2'), '     (1.1-3.1j)     ')\r
-\r
-        self.assertEqual(format(1.5+3j, '20.2f'), '          1.50+3.00j')\r
-        self.assertEqual(format(1.5+3j, '>20.2f'), '          1.50+3.00j')\r
-        self.assertEqual(format(1.5+3j, '<20.2f'), '1.50+3.00j          ')\r
-        self.assertEqual(format(1.5e20+3j, '<20.2f'), '150000000000000000000.00+3.00j')\r
-        self.assertEqual(format(1.5e20+3j, '>40.2f'), '          150000000000000000000.00+3.00j')\r
-        self.assertEqual(format(1.5e20+3j, '^40,.2f'), '  150,000,000,000,000,000,000.00+3.00j  ')\r
-        self.assertEqual(format(1.5e21+3j, '^40,.2f'), ' 1,500,000,000,000,000,000,000.00+3.00j ')\r
-        self.assertEqual(format(1.5e21+3000j, ',.2f'), '1,500,000,000,000,000,000,000.00+3,000.00j')\r
-\r
-        # alternate is invalid\r
-        self.assertRaises(ValueError, (1.5+0.5j).__format__, '#f')\r
-\r
-        # zero padding is invalid\r
-        self.assertRaises(ValueError, (1.5+0.5j).__format__, '010f')\r
-\r
-        # '=' alignment is invalid\r
-        self.assertRaises(ValueError, (1.5+3j).__format__, '=20')\r
-\r
-        # integer presentation types are an error\r
-        for t in 'bcdoxX':\r
-            self.assertRaises(ValueError, (1.5+0.5j).__format__, t)\r
-\r
-        # make sure everything works in ''.format()\r
-        self.assertEqual('*{0:.3f}*'.format(3.14159+2.71828j), '*3.142+2.718j*')\r
-\r
-        # issue 3382: 'f' and 'F' with inf's and nan's\r
-        self.assertEqual('{0:f}'.format(INF+0j), 'inf+0.000000j')\r
-        self.assertEqual('{0:F}'.format(INF+0j), 'INF+0.000000j')\r
-        self.assertEqual('{0:f}'.format(-INF+0j), '-inf+0.000000j')\r
-        self.assertEqual('{0:F}'.format(-INF+0j), '-INF+0.000000j')\r
-        self.assertEqual('{0:f}'.format(complex(INF, INF)), 'inf+infj')\r
-        self.assertEqual('{0:F}'.format(complex(INF, INF)), 'INF+INFj')\r
-        self.assertEqual('{0:f}'.format(complex(INF, -INF)), 'inf-infj')\r
-        self.assertEqual('{0:F}'.format(complex(INF, -INF)), 'INF-INFj')\r
-        self.assertEqual('{0:f}'.format(complex(-INF, INF)), '-inf+infj')\r
-        self.assertEqual('{0:F}'.format(complex(-INF, INF)), '-INF+INFj')\r
-        self.assertEqual('{0:f}'.format(complex(-INF, -INF)), '-inf-infj')\r
-        self.assertEqual('{0:F}'.format(complex(-INF, -INF)), '-INF-INFj')\r
-\r
-        self.assertEqual('{0:f}'.format(complex(NAN, 0)), 'nan+0.000000j')\r
-        self.assertEqual('{0:F}'.format(complex(NAN, 0)), 'NAN+0.000000j')\r
-        self.assertEqual('{0:f}'.format(complex(NAN, NAN)), 'nan+nanj')\r
-        self.assertEqual('{0:F}'.format(complex(NAN, NAN)), 'NAN+NANj')\r
-\r
-def test_main():\r
-    with test_support.check_warnings(("complex divmod.., // and % are "\r
-                                      "deprecated", DeprecationWarning)):\r
-        test_support.run_unittest(ComplexTest)\r
-\r
-if __name__ == "__main__":\r
-    test_main()\r