]> git.proxmox.com Git - mirror_edk2.git/blobdiff - MdePkg/Include/Library/BaseLib.h
Detab
[mirror_edk2.git] / MdePkg / Include / Library / BaseLib.h
index c1d1fa09006734c9adb760b3a036b2918700096a..76c8481d34966241257c312d511797038b960b5a 100644 (file)
@@ -1,36 +1,33 @@
 /** @file\r
-  Memory-only library functions with no library constructor/destructor\r
+  Provides string functions, linked list functions, math functions, synchronization\r
+  functions, and CPU architecture specific functions.\r
 \r
-  Copyright (c) 2006, Intel Corporation\r
-  All rights reserved. This program and the accompanying materials\r
-  are licensed and made available under the terms and conditions of the BSD License\r
-  which accompanies this distribution.  The full text of the license may be found at\r
-  http://opensource.org/licenses/bsd-license.php\r
+Copyright (c) 2006 - 2008, Intel Corporation\r
+All rights reserved. This program and the accompanying materials\r
+are licensed and made available under the terms and conditions of the BSD License\r
+which accompanies this distribution.  The full text of the license may be found at\r
+http://opensource.org/licenses/bsd-license.php\r
 \r
-  THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
-  WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
-\r
-  Module Name:  BaseLib.h\r
+THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
+WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
 \r
 **/\r
 \r
 #ifndef __BASE_LIB__\r
 #define __BASE_LIB__\r
 \r
-//\r
-// Definitions for architecture specific types\r
-// These include SPIN_LOCK and BASE_LIBRARY_JUMP_BUFFER\r
-//\r
+///\r
+/// Definitions for SPIN_LOCK\r
+///\r
+typedef volatile UINTN              SPIN_LOCK;\r
 \r
 //\r
-// SPIN_LOCK\r
+// Definitions for architecture specific types\r
 //\r
-typedef UINTN                       SPIN_LOCK;\r
-\r
 #if   defined (MDE_CPU_IA32)\r
-//\r
-// IA32 context buffer used by SetJump() and LongJump()\r
-//\r
+///\r
+/// IA32 context buffer used by SetJump() and LongJump()\r
+///\r
 typedef struct {\r
   UINT32                            Ebx;\r
   UINT32                            Esi;\r
@@ -40,10 +37,13 @@ typedef struct {
   UINT32                            Eip;\r
 } BASE_LIBRARY_JUMP_BUFFER;\r
 \r
+#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 4\r
+\r
 #elif defined (MDE_CPU_IPF)\r
-//\r
-// IPF context buffer used by SetJump() and LongJump()\r
-//\r
+\r
+///\r
+/// IPF context buffer used by SetJump() and LongJump()\r
+///\r
 typedef struct {\r
   UINT64                            F2[2];\r
   UINT64                            F3[2];\r
@@ -85,10 +85,12 @@ typedef struct {
   UINT64                            FPSR;\r
 } BASE_LIBRARY_JUMP_BUFFER;\r
 \r
+#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 0x10\r
+\r
 #elif defined (MDE_CPU_X64)\r
-//\r
-// X64 context buffer used by SetJump() and LongJump()\r
-//\r
+///\r
+/// X64 context buffer used by SetJump() and LongJump()\r
+///\r
 typedef struct {\r
   UINT64                            Rbx;\r
   UINT64                            Rsp;\r
@@ -102,10 +104,12 @@ typedef struct {
   UINT64                            Rip;\r
 } BASE_LIBRARY_JUMP_BUFFER;\r
 \r
+#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8\r
+\r
 #elif defined (MDE_CPU_EBC)\r
-//\r
-// EBC context buffer used by SetJump() and LongJump()\r
-//\r
+///\r
+/// EBC context buffer used by SetJump() and LongJump()\r
+///\r
 typedef struct {\r
   UINT64                            R0;\r
   UINT64                            R1;\r
@@ -114,6 +118,8 @@ typedef struct {
   UINT64                            IP;\r
 } BASE_LIBRARY_JUMP_BUFFER;\r
 \r
+#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8\r
+\r
 #else\r
 #error Unknown Processor Type\r
 #endif\r
@@ -131,7 +137,9 @@ typedef struct {
   overlap, then the results are undefined.\r
 \r
   If Destination is NULL, then ASSERT().\r
+  If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
   If Source is NULL, then ASSERT().\r
+  If Source is not aligned on a 16-bit boundary, then ASSERT().\r
   If Source and Destination overlap, then ASSERT().\r
   If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
   PcdMaximumUnicodeStringLength Unicode characters not including the\r
@@ -149,10 +157,11 @@ StrCpy (
   OUT     CHAR16                    *Destination,\r
   IN      CONST CHAR16              *Source\r
   );\r
+\r
+\r
 /**\r
-  Copies one Null-terminated Unicode string with a maximum length to another\r
-  Null-terminated Unicode string with a maximum length and returns the new\r
-  Unicode string.\r
+  Copies up to a specified length from one Null-terminated Unicode string  to \r
+  another Null-terminated Unicode string and returns the new Unicode string.\r
 \r
   This function copies the contents of the Unicode string Source to the Unicode\r
   string Destination, and returns Destination. At most, Length Unicode\r
@@ -162,8 +171,10 @@ StrCpy (
   characters. If Source and Destination overlap, then the results are\r
   undefined.\r
 \r
-  If Destination is NULL, then ASSERT().\r
-  If Source is NULL, then ASSERT().\r
+  If Length > 0 and Destination is NULL, then ASSERT().\r
+  If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().\r
+  If Length > 0 and Source is NULL, then ASSERT().\r
+  If Length > 0 and Source is not aligned on a 16-bit bounadry, then ASSERT().\r
   If Source and Destination overlap, then ASSERT().\r
   If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
   PcdMaximumUnicodeStringLength Unicode characters not including the\r
@@ -183,6 +194,8 @@ StrnCpy (
   IN      CONST CHAR16              *Source,\r
   IN      UINTN                     Length\r
   );\r
+\r
+\r
 /**\r
   Returns the length of a Null-terminated Unicode string.\r
 \r
@@ -190,6 +203,7 @@ StrnCpy (
   Unicode string specified by String.\r
 \r
   If String is NULL, then ASSERT().\r
+  If String is not aligned on a 16-bit boundary, then ASSERT().\r
   If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
   PcdMaximumUnicodeStringLength Unicode characters not including the\r
   Null-terminator, then ASSERT().\r
@@ -204,14 +218,17 @@ EFIAPI
 StrLen (\r
   IN      CONST CHAR16              *String\r
   );\r
+\r
+\r
 /**\r
   Returns the size of a Null-terminated Unicode string in bytes, including the\r
   Null terminator.\r
 \r
-  This function returns the size, in bytes, of the Null-terminated Unicode\r
-  string specified by String.\r
+  This function returns the size, in bytes, of the Null-terminated Unicode string \r
+  specified by String.\r
 \r
   If String is NULL, then ASSERT().\r
+  If String is not aligned on a 16-bit boundary, then ASSERT().\r
   If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
   PcdMaximumUnicodeStringLength Unicode characters not including the\r
   Null-terminator, then ASSERT().\r
@@ -226,6 +243,8 @@ EFIAPI
 StrSize (\r
   IN      CONST CHAR16              *String\r
   );\r
+\r
+\r
 /**\r
   Compares two Null-terminated Unicode strings, and returns the difference\r
   between the first mismatched Unicode characters.\r
@@ -237,7 +256,9 @@ StrSize (
   mismatched Unicode character in FirstString.\r
 \r
   If FirstString is NULL, then ASSERT().\r
+  If FirstString is not aligned on a 16-bit boundary, then ASSERT().\r
   If SecondString is NULL, then ASSERT().\r
+  If SecondString is not aligned on a 16-bit boundary, then ASSERT().\r
   If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more\r
   than PcdMaximumUnicodeStringLength Unicode characters not including the\r
   Null-terminator, then ASSERT().\r
@@ -248,8 +269,8 @@ StrSize (
   @param  FirstString   Pointer to a Null-terminated Unicode string.\r
   @param  SecondString  Pointer to a Null-terminated Unicode string.\r
 \r
-  @retval 0   FirstString is identical to SecondString.\r
-  @retval !=0 FirstString is not identical to SecondString.\r
+  @retval 0      FirstString is identical to SecondString.\r
+  @return others FirstString is not identical to SecondString.\r
 \r
 **/\r
 INTN\r
@@ -258,10 +279,12 @@ StrCmp (
   IN      CONST CHAR16              *FirstString,\r
   IN      CONST CHAR16              *SecondString\r
   );\r
-/**\r
-  Compares two Null-terminated Unicode strings with maximum lengths, and\r
-  returns the difference between the first mismatched Unicode characters.\r
 \r
+\r
+/**\r
+  Compares up to a specified length the contents of two Null-terminated Unicode strings,\r
+  and returns the difference between the first mismatched Unicode characters.\r
+  \r
   This function compares the Null-terminated Unicode string FirstString to the\r
   Null-terminated Unicode string SecondString. At most, Length Unicode\r
   characters will be compared. If Length is 0, then 0 is returned. If\r
@@ -269,8 +292,10 @@ StrCmp (
   value returned is the first mismatched Unicode character in SecondString\r
   subtracted from the first mismatched Unicode character in FirstString.\r
 \r
-  If FirstString is NULL, then ASSERT().\r
-  If SecondString is NULL, then ASSERT().\r
+  If Length > 0 and FirstString is NULL, then ASSERT().\r
+  If Length > 0 and FirstString is not aligned on a 16-bit bounadary, then ASSERT().\r
+  If Length > 0 and SecondString is NULL, then ASSERT().\r
+  If Length > 0 and SecondString is not aligned on a 16-bit bounadary, then ASSERT().\r
   If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more\r
   than PcdMaximumUnicodeStringLength Unicode characters not including the\r
   Null-terminator, then ASSERT().\r
@@ -282,8 +307,8 @@ StrCmp (
   @param  SecondString  Pointer to a Null-terminated Unicode string.\r
   @param  Length        Maximum number of Unicode characters to compare.\r
 \r
-  @retval 0   FirstString is identical to SecondString.\r
-  @retval !=0 FirstString is not identical to SecondString.\r
+  @retval 0      FirstString is identical to SecondString.\r
+  @return others FirstString is not identical to SecondString.\r
 \r
 **/\r
 INTN\r
@@ -293,6 +318,8 @@ StrnCmp (
   IN      CONST CHAR16              *SecondString,\r
   IN      UINTN                     Length\r
   );\r
+\r
+\r
 /**\r
   Concatenates one Null-terminated Unicode string to another Null-terminated\r
   Unicode string, and returns the concatenated Unicode string.\r
@@ -304,7 +331,9 @@ StrnCmp (
   results are undefined.\r
 \r
   If Destination is NULL, then ASSERT().\r
+  If Destination is not aligned on a 16-bit bounadary, then ASSERT().\r
   If Source is NULL, then ASSERT().\r
+  If Source is not aligned on a 16-bit bounadary, then ASSERT().\r
   If Source and Destination overlap, then ASSERT().\r
   If PcdMaximumUnicodeStringLength is not zero, and Destination contains more\r
   than PcdMaximumUnicodeStringLength Unicode characters not including the\r
@@ -329,9 +358,11 @@ StrCat (
   IN OUT  CHAR16                    *Destination,\r
   IN      CONST CHAR16              *Source\r
   );\r
+\r
+\r
 /**\r
-  Concatenates one Null-terminated Unicode string with a maximum length to the\r
-  end of another Null-terminated Unicode string, and returns the concatenated\r
+  Concatenates up to a specified length one Null-terminated Unicode to the end \r
+  of another Null-terminated Unicode string, and returns the concatenated \r
   Unicode string.\r
 \r
   This function concatenates two Null-terminated Unicode strings. The contents\r
@@ -343,7 +374,9 @@ StrCat (
   the results are undefined.\r
 \r
   If Destination is NULL, then ASSERT().\r
-  If Source is NULL, then ASSERT().\r
+  If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().\r
+  If Length > 0 and Source is NULL, then ASSERT().\r
+  If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT().\r
   If Source and Destination overlap, then ASSERT().\r
   If PcdMaximumUnicodeStringLength is not zero, and Destination contains more\r
   than PcdMaximumUnicodeStringLength Unicode characters not including the\r
@@ -371,6 +404,371 @@ StrnCat (
   IN      CONST CHAR16              *Source,\r
   IN      UINTN                     Length\r
   );\r
+\r
+/**\r
+  Returns the first occurance of a Null-terminated Unicode sub-string\r
+  in a Null-terminated Unicode string.\r
+\r
+  This function scans the contents of the Null-terminated Unicode string\r
+  specified by String and returns the first occurrence of SearchString.\r
+  If SearchString is not found in String, then NULL is returned.  If\r
+  the length of SearchString is zero, then String is\r
+  returned.\r
+\r
+  If String is NULL, then ASSERT().\r
+  If String is not aligned on a 16-bit boundary, then ASSERT().\r
+  If SearchString is NULL, then ASSERT().\r
+  If SearchString is not aligned on a 16-bit boundary, then ASSERT().\r
+\r
+  If PcdMaximumUnicodeStringLength is not zero, and SearchString\r
+  or String contains more than PcdMaximumUnicodeStringLength Unicode\r
+  characters not including the Null-terminator, then ASSERT().\r
+\r
+  @param  String          Pointer to a Null-terminated Unicode string.\r
+  @param  SearchString    Pointer to a Null-terminated Unicode string to search for.\r
+\r
+  @retval NULL            If the SearchString does not appear in String.\r
+  @return others          If there is a match.\r
+\r
+**/\r
+CHAR16 *\r
+EFIAPI\r
+StrStr (\r
+  IN      CONST CHAR16              *String,\r
+  IN      CONST CHAR16              *SearchString\r
+  );\r
+\r
+/**\r
+  Convert a Null-terminated Unicode decimal string to a value of\r
+  type UINTN.\r
+\r
+  This function returns a value of type UINTN by interpreting the contents\r
+  of the Unicode string specified by String as a decimal number. The format\r
+  of the input Unicode string String is:\r
+\r
+                  [spaces] [decimal digits].\r
+\r
+  The valid decimal digit character is in the range [0-9]. The\r
+  function will ignore the pad space, which includes spaces or\r
+  tab characters, before [decimal digits]. The running zero in the\r
+  beginning of [decimal digits] will be ignored. Then, the function\r
+  stops at the first character that is a not a valid decimal character\r
+  or a Null-terminator, whichever one comes first.\r
+\r
+  If String is NULL, then ASSERT().\r
+  If String is not aligned in a 16-bit boundary, then ASSERT().\r
+  If String has only pad spaces, then 0 is returned.\r
+  If String has no pad spaces or valid decimal digits,\r
+  then 0 is returned.\r
+  If the number represented by String overflows according\r
+  to the range defined by UINTN, then ASSERT().\r
+\r
+  If PcdMaximumUnicodeStringLength is not zero, and String contains\r
+  more than PcdMaximumUnicodeStringLength Unicode characters not including\r
+  the Null-terminator, then ASSERT().\r
+\r
+  @param  String      Pointer to a Null-terminated Unicode string.\r
+\r
+  @retval Value translated from String.\r
+\r
+**/\r
+UINTN\r
+EFIAPI\r
+StrDecimalToUintn (\r
+  IN      CONST CHAR16              *String\r
+  );\r
+\r
+/**\r
+  Convert a Null-terminated Unicode decimal string to a value of\r
+  type UINT64.\r
+\r
+  This function returns a value of type UINT64 by interpreting the contents\r
+  of the Unicode string specified by String as a decimal number. The format\r
+  of the input Unicode string String is:\r
+\r
+                  [spaces] [decimal digits].\r
+\r
+  The valid decimal digit character is in the range [0-9]. The\r
+  function will ignore the pad space, which includes spaces or\r
+  tab characters, before [decimal digits]. The running zero in the\r
+  beginning of [decimal digits] will be ignored. Then, the function\r
+  stops at the first character that is a not a valid decimal character\r
+  or a Null-terminator, whichever one comes first.\r
+\r
+  If String is NULL, then ASSERT().\r
+  If String is not aligned in a 16-bit boundary, then ASSERT().\r
+  If String has only pad spaces, then 0 is returned.\r
+  If String has no pad spaces or valid decimal digits,\r
+  then 0 is returned.\r
+  If the number represented by String overflows according\r
+  to the range defined by UINT64, then ASSERT().\r
+\r
+  If PcdMaximumUnicodeStringLength is not zero, and String contains\r
+  more than PcdMaximumUnicodeStringLength Unicode characters not including\r
+  the Null-terminator, then ASSERT().\r
+\r
+  @param  String          Pointer to a Null-terminated Unicode string.\r
+\r
+  @retval Value translated from String.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+StrDecimalToUint64 (\r
+  IN      CONST CHAR16              *String\r
+  );\r
\r
+\r
+/**\r
+  Convert a Null-terminated Unicode hexadecimal string to a value of type UINTN.\r
+\r
+  This function returns a value of type UINTN by interpreting the contents\r
+  of the Unicode string specified by String as a hexadecimal number.\r
+  The format of the input Unicode string String is:\r
+\r
+                  [spaces][zeros][x][hexadecimal digits].\r
+\r
+  The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
+  The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.\r
+  If "x" appears in the input string, it must be prefixed with at least one 0.\r
+  The function will ignore the pad space, which includes spaces or tab characters,\r
+  before [zeros], [x] or [hexadecimal digit]. The running zero before [x] or\r
+  [hexadecimal digit] will be ignored. Then, the decoding starts after [x] or the\r
+  first valid hexadecimal digit. Then, the function stops at the first character that is\r
+  a not a valid hexadecimal character or NULL, whichever one comes first.\r
+\r
+  If String is NULL, then ASSERT().\r
+  If String is not aligned in a 16-bit boundary, then ASSERT().\r
+  If String has only pad spaces, then zero is returned.\r
+  If String has no leading pad spaces, leading zeros or valid hexadecimal digits,\r
+  then zero is returned.\r
+  If the number represented by String overflows according to the range defined by\r
+  UINTN, then ASSERT().\r
+\r
+  If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
+  PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator,\r
+  then ASSERT().\r
+\r
+  @param  String          Pointer to a Null-terminated Unicode string.\r
+\r
+  @retval Value translated from String.\r
+\r
+**/\r
+UINTN\r
+EFIAPI\r
+StrHexToUintn (\r
+  IN      CONST CHAR16              *String\r
+  );\r
+\r
+\r
+/**\r
+  Convert a Null-terminated Unicode hexadecimal string to a value of type UINT64.\r
+\r
+  This function returns a value of type UINT64 by interpreting the contents\r
+  of the Unicode string specified by String as a hexadecimal number.\r
+  The format of the input Unicode string String is\r
+\r
+                  [spaces][zeros][x][hexadecimal digits].\r
+\r
+  The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
+  The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.\r
+  If "x" appears in the input string, it must be prefixed with at least one 0.\r
+  The function will ignore the pad space, which includes spaces or tab characters,\r
+  before [zeros], [x] or [hexadecimal digit]. The running zero before [x] or\r
+  [hexadecimal digit] will be ignored. Then, the decoding starts after [x] or the\r
+  first valid hexadecimal digit. Then, the function stops at the first character that is\r
+  a not a valid hexadecimal character or NULL, whichever one comes first.\r
+\r
+  If String is NULL, then ASSERT().\r
+  If String is not aligned in a 16-bit boundary, then ASSERT().\r
+  If String has only pad spaces, then zero is returned.\r
+  If String has no leading pad spaces, leading zeros or valid hexadecimal digits,\r
+  then zero is returned.\r
+  If the number represented by String overflows according to the range defined by\r
+  UINT64, then ASSERT().\r
+\r
+  If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
+  PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator,\r
+  then ASSERT().\r
+\r
+  @param  String          Pointer to a Null-terminated Unicode string.\r
+\r
+  @retval Value translated from String.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+StrHexToUint64 (\r
+  IN      CONST CHAR16             *String\r
+  );\r
+\r
+/**\r
+  Convert a nibble in the low 4 bits of a byte to a Unicode hexadecimal character.\r
+\r
+  This function converts a nibble in the low 4 bits of a byte to a Unicode hexadecimal \r
+  character  For example, the nibble  0x01 and 0x0A will converted to L'1' and L'A' \r
+  respectively.\r
+\r
+  The upper nibble in the input byte will be masked off.\r
+\r
+  @param Nibble     The nibble which is in the low 4 bits of the input byte.\r
+\r
+  @retval  CHAR16   The Unicode hexadecimal character.\r
+  \r
+**/\r
+CHAR16\r
+EFIAPI\r
+NibbleToHexChar (\r
+  IN UINT8      Nibble\r
+  );\r
+\r
+/** \r
+  Convert binary buffer to a Unicode String in a specified sequence. \r
+\r
+  This function converts bytes in the memory block pointed by Buffer to a Unicode String Str. \r
+  Each byte will be represented by two Unicode characters. For example, byte 0xA1 will \r
+  be converted into two Unicode character L'A' and L'1'. In the output String, the Unicode Character \r
+  for the Most Significant Nibble will be put before the Unicode Character for the Least Significant\r
+  Nibble. The output string for the buffer containing a single byte 0xA1 will be L"A1". \r
+  For a buffer with multiple bytes, the Unicode character produced by the first byte will be put into the \r
+  the last character in the output string. The one next to first byte will be put into the\r
+  character before the last character. This rules applies to the rest of the bytes. The Unicode\r
+  character by the last byte will be put into the first character in the output string. For example,\r
+  the input buffer for a 64-bits unsigned integrer 0x12345678abcdef1234 will be converted to\r
+  a Unicode string equal to L"12345678abcdef1234".\r
+\r
+  @param String                        On input, String is pointed to the buffer allocated for the convertion.\r
+  @param StringLen                     The Length of String buffer to hold the output String. The length must include the tailing '\0' character.\r
+                                       The StringLen required to convert a N bytes Buffer will be a least equal to or greater \r
+                                       than 2*N + 1.\r
+  @param Buffer                        The pointer to a input buffer.\r
+  @param BufferSizeInBytes             Lenth in bytes of the input buffer.\r
+  \r
+\r
+  @retval  EFI_SUCCESS                 The convertion is successfull. All bytes in Buffer has been convert to the corresponding\r
+                                       Unicode character and placed into the right place in String.\r
+  @retval  EFI_BUFFER_TOO_SMALL        StringSizeInBytes is smaller than 2 * N + 1the number of bytes required to\r
+                                       complete the convertion. \r
+**/\r
+RETURN_STATUS\r
+EFIAPI\r
+BufToHexString (\r
+  IN OUT       CHAR16               *String,\r
+  IN OUT       UINTN                *StringLen,\r
+  IN     CONST UINT8                *Buffer,\r
+  IN           UINTN                BufferSizeInBytes\r
+  );\r
+\r
+\r
+/**\r
+  Convert a Unicode string consisting of hexadecimal characters to a output byte buffer.\r
+\r
+  This function converts a Unicode string consisting of characters in the range of Hexadecimal\r
+  character (L'0' to L'9', L'A' to L'F' and L'a' to L'f') to a output byte buffer. The function will stop\r
+  at the first non-hexadecimal character or the NULL character. The convertion process can be\r
+  simply viewed as the reverse operations defined by BufToHexString. Two Unicode characters will be \r
+  converted into one byte. The first Unicode character represents the Most Significant Nibble and the\r
+  second Unicode character represents the Least Significant Nibble in the output byte. \r
+  The first pair of Unicode characters represents the last byte in the output buffer. The second pair of Unicode \r
+  characters represent the  the byte preceding the last byte. This rule applies to the rest pairs of bytes. \r
+  The last pair represent the first byte in the output buffer. \r
+\r
+  For example, a Unciode String L"12345678" will be converted into a buffer wil the following bytes \r
+  (first byte is the byte in the lowest memory address): "0x78, 0x56, 0x34, 0x12".\r
+\r
+  If String has N valid hexadecimal characters for conversion,  the caller must make sure Buffer is at least \r
+  N/2 (if N is even) or (N+1)/2 (if N if odd) bytes. \r
+\r
+  @param Buffer                      The output buffer allocated by the caller.\r
+  @param BufferSizeInBytes           On input, the size in bytes of Buffer. On output, it is updated to \r
+                                     contain the size of the Buffer which is actually used for the converstion.\r
+                                     For Unicode string with 2*N hexadecimal characters (not including the \r
+                                     tailing NULL character), N bytes of Buffer will be used for the output.\r
+  @param String                      The input hexadecimal string.\r
+  @param ConvertedStrLen             The number of hexadecimal characters used to produce content in output\r
+                                     buffer Buffer.\r
+\r
+  @retval  RETURN_BUFFER_TOO_SMALL   The input BufferSizeInBytes is too small to hold the output. BufferSizeInBytes\r
+                                     will be updated to the size required for the converstion.\r
+  @retval  RETURN_SUCCESS            The convertion is successful or the first Unicode character from String\r
+                                     is hexadecimal. If ConvertedStrLen is not NULL, it is updated\r
+                                     to the number of hexadecimal character used for the converstion.\r
+**/\r
+RETURN_STATUS\r
+EFIAPI\r
+HexStringToBuf (\r
+  OUT          UINT8                    *Buffer,   \r
+  IN OUT       UINTN                    *BufferSizeInBytes,\r
+  IN     CONST CHAR16                   *String,\r
+  OUT          UINTN                    *ConvertedStrLen  OPTIONAL\r
+  );\r
+\r
+\r
+/**\r
+  Test if  a Unicode character is a hexadecimal digit. If true, the input\r
+  Unicode character is converted to a byte. \r
+\r
+  This function tests if a Unicode character is a hexadecimal digit. If true, the input\r
+  Unicode character is converted to a byte. For example, Unicode character\r
+  L'A' will be converted to 0x0A. \r
+\r
+  If Digit is NULL, then ASSERT.\r
+\r
+  @param  Digit       The output hexadecimal digit.\r
+\r
+  @param  Char        The input Unicode character.\r
+\r
+  @retval TRUE        Char is in the range of Hexadecimal number. Digit is updated\r
+                      to the byte value of the number.\r
+  @retval FALSE       Char is not in the range of Hexadecimal number. Digit is keep\r
+                      intact.\r
+  \r
+**/\r
+BOOLEAN\r
+EFIAPI\r
+IsHexDigit (\r
+  OUT UINT8      *Digit,\r
+  IN  CHAR16      Char\r
+  );\r
+\r
+/**\r
+  Convert a Null-terminated Unicode string to a Null-terminated\r
+  ASCII string and returns the ASCII string.\r
+\r
+  This function converts the content of the Unicode string Source\r
+  to the ASCII string Destination by copying the lower 8 bits of\r
+  each Unicode character. It returns Destination.\r
+\r
+  If any Unicode characters in Source contain non-zero value in\r
+  the upper 8 bits, then ASSERT().\r
+\r
+  If Destination is NULL, then ASSERT().\r
+  If Source is NULL, then ASSERT().\r
+  If Source is not aligned on a 16-bit boundary, then ASSERT().\r
+  If Source and Destination overlap, then ASSERT().\r
+\r
+  If PcdMaximumUnicodeStringLength is not zero, and Source contains\r
+  more than PcdMaximumUnicodeStringLength Unicode characters not including\r
+  the Null-terminator, then ASSERT().\r
+\r
+  If PcdMaximumAsciiStringLength is not zero, and Source contains more\r
+  than PcdMaximumAsciiStringLength Unicode characters not including the\r
+  Null-terminator, then ASSERT().\r
+\r
+  @param  Source        Pointer to a Null-terminated Unicode string.\r
+  @param  Destination   Pointer to a Null-terminated ASCII string.\r
+\r
+  @return Destination\r
+\r
+**/\r
+CHAR8 *\r
+EFIAPI\r
+UnicodeStrToAsciiStr (\r
+  IN      CONST CHAR16              *Source,\r
+  OUT     CHAR8                     *Destination\r
+  );\r
+\r
+\r
 /**\r
   Copies one Null-terminated ASCII string to another Null-terminated ASCII\r
   string and returns the new ASCII string.\r
@@ -398,10 +796,11 @@ AsciiStrCpy (
   OUT     CHAR8                     *Destination,\r
   IN      CONST CHAR8               *Source\r
   );\r
+\r
+\r
 /**\r
-  Copies one Null-terminated ASCII string with a maximum length to another\r
-  Null-terminated ASCII string with a maximum length and returns the new ASCII\r
-  string.\r
+  Copies up to a specified length one Null-terminated ASCII string to another \r
+  Null-terminated ASCII string and returns the new ASCII string.\r
 \r
   This function copies the contents of the ASCII string Source to the ASCII\r
   string Destination, and returns Destination. At most, Length ASCII characters\r
@@ -431,13 +830,16 @@ AsciiStrnCpy (
   IN      CONST CHAR8               *Source,\r
   IN      UINTN                     Length\r
   );\r
+\r
+\r
 /**\r
   Returns the length of a Null-terminated ASCII string.\r
 \r
   This function returns the number of ASCII characters in the Null-terminated\r
   ASCII string specified by String.\r
 \r
-  If String is NULL, then ASSERT().\r
+  If Length > 0 and Destination is NULL, then ASSERT().\r
+  If Length > 0 and Source is NULL, then ASSERT().\r
   If PcdMaximumAsciiStringLength is not zero and String contains more than\r
   PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
   then ASSERT().\r
@@ -452,6 +854,8 @@ EFIAPI
 AsciiStrLen (\r
   IN      CONST CHAR8               *String\r
   );\r
+\r
+\r
 /**\r
   Returns the size of a Null-terminated ASCII string in bytes, including the\r
   Null terminator.\r
@@ -474,6 +878,8 @@ EFIAPI
 AsciiStrSize (\r
   IN      CONST CHAR8               *String\r
   );\r
+\r
+\r
 /**\r
   Compares two Null-terminated ASCII strings, and returns the difference\r
   between the first mismatched ASCII characters.\r
@@ -496,8 +902,8 @@ AsciiStrSize (
   @param  FirstString   Pointer to a Null-terminated ASCII string.\r
   @param  SecondString  Pointer to a Null-terminated ASCII string.\r
 \r
-  @retval 0   FirstString is identical to SecondString.\r
-  @retval !=0 FirstString is not identical to SecondString.\r
+  @retval ==0      FirstString is identical to SecondString.\r
+  @retval !=0      FirstString is not identical to SecondString.\r
 \r
 **/\r
 INTN\r
@@ -506,6 +912,8 @@ AsciiStrCmp (
   IN      CONST CHAR8               *FirstString,\r
   IN      CONST CHAR8               *SecondString\r
   );\r
+\r
+\r
 /**\r
   Performs a case insensitive comparison of two Null-terminated ASCII strings,\r
   and returns the difference between the first mismatched ASCII characters.\r
@@ -529,10 +937,10 @@ AsciiStrCmp (
   @param  FirstString   Pointer to a Null-terminated ASCII string.\r
   @param  SecondString  Pointer to a Null-terminated ASCII string.\r
 \r
-  @retval 0   FirstString is identical to SecondString using case insensitive\r
-              comparisons.\r
-  @retval !=0 FirstString is not identical to SecondString using case\r
-              insensitive comparisons.\r
+  @retval ==0    FirstString is identical to SecondString using case insensitive\r
+                 comparisons.\r
+  @retval !=0    FirstString is not identical to SecondString using case\r
+                 insensitive comparisons.\r
 \r
 **/\r
 INTN\r
@@ -541,6 +949,8 @@ AsciiStriCmp (
   IN      CONST CHAR8               *FirstString,\r
   IN      CONST CHAR8               *SecondString\r
   );\r
+\r
+\r
 /**\r
   Compares two Null-terminated ASCII strings with maximum lengths, and returns\r
   the difference between the first mismatched ASCII characters.\r
@@ -552,8 +962,8 @@ AsciiStriCmp (
   is the first mismatched ASCII character in SecondString subtracted from the\r
   first mismatched ASCII character in FirstString.\r
 \r
-  If FirstString is NULL, then ASSERT().\r
-  If SecondString is NULL, then ASSERT().\r
+  If Length > 0 and FirstString is NULL, then ASSERT().\r
+  If Length > 0 and SecondString is NULL, then ASSERT().\r
   If PcdMaximumAsciiStringLength is not zero and FirstString contains more than\r
   PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
   then ASSERT().\r
@@ -563,9 +973,10 @@ AsciiStriCmp (
 \r
   @param  FirstString   Pointer to a Null-terminated ASCII string.\r
   @param  SecondString  Pointer to a Null-terminated ASCII string.\r
-\r
-  @retval 0   FirstString is identical to SecondString.\r
-  @retval !=0 FirstString is not identical to SecondString.\r
+  @param  Length        Maximum number of ASCII characters for compare.\r
+  \r
+  @retval ==0       FirstString is identical to SecondString.\r
+  @retval !=0       FirstString is not identical to SecondString.\r
 \r
 **/\r
 INTN\r
@@ -575,6 +986,8 @@ AsciiStrnCmp (
   IN      CONST CHAR8               *SecondString,\r
   IN      UINTN                     Length\r
   );\r
+\r
+\r
 /**\r
   Concatenates one Null-terminated ASCII string to another Null-terminated\r
   ASCII string, and returns the concatenated ASCII string.\r
@@ -608,10 +1021,12 @@ AsciiStrCat (
   IN OUT CHAR8    *Destination,\r
   IN CONST CHAR8  *Source\r
   );\r
+\r
+\r
 /**\r
-  Concatenates one Null-terminated ASCII string with a maximum length to the\r
-  end of another Null-terminated ASCII string, and returns the concatenated\r
-  ASCII string.\r
+  Concatenates up to a specified length one Null-terminated ASCII string to \r
+  the end of another Null-terminated ASCII string, and returns the \r
+  concatenated ASCII string.\r
 \r
   This function concatenates two Null-terminated ASCII strings. The contents\r
   of Null-terminated ASCII string Source are concatenated to the end of Null-\r
@@ -621,8 +1036,8 @@ AsciiStrCat (
   Destination is returned unmodified. If Source and Destination overlap, then\r
   the results are undefined.\r
 \r
-  If Destination is NULL, then ASSERT().\r
-  If Source is NULL, then ASSERT().\r
+  If Length > 0 and Destination is NULL, then ASSERT().\r
+  If Length > 0 and Source is NULL, then ASSERT().\r
   If Source and Destination overlap, then ASSERT().\r
   If PcdMaximumAsciiStringLength is not zero, and Destination contains more than\r
   PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
@@ -649,76 +1064,294 @@ AsciiStrnCat (
   IN      CONST CHAR8               *Source,\r
   IN      UINTN                     Length\r
   );\r
+\r
+\r
 /**\r
-  Converts an 8-bit value to an 8-bit BCD value.\r
+  Returns the first occurance of a Null-terminated ASCII sub-string\r
+  in a Null-terminated ASCII string.\r
 \r
-  Converts the 8-bit value specified by Value to BCD. The BCD value is\r
-  returned.\r
+  This function scans the contents of the ASCII string specified by String\r
+  and returns the first occurrence of SearchString. If SearchString is not\r
+  found in String, then NULL is returned. If the length of SearchString is zero,\r
+  then String is returned.\r
 \r
-  If Value >= 100, then ASSERT().\r
+  If String is NULL, then ASSERT().\r
+  If SearchString is NULL, then ASSERT().\r
 \r
-  @param  Value The 8-bit value to convert to BCD. Range 0..99.\r
+  If PcdMaximumAsciiStringLength is not zero, and SearchString or\r
+  String contains more than PcdMaximumAsciiStringLength Unicode characters\r
+  not including the Null-terminator, then ASSERT().\r
 \r
-  @return The BCD value\r
+  @param  String          Pointer to a Null-terminated ASCII string.\r
+  @param  SearchString    Pointer to a Null-terminated ASCII string to search for.\r
+\r
+  @retval NULL            If the SearchString does not appear in String.\r
+  @retval others          If there is a match return the first occurrence of SearchingString.\r
+                          If the lenth of SearchString is zero,return String.\r
 \r
 **/\r
-UINT8\r
+CHAR8 *\r
 EFIAPI\r
-DecimalToBcd8 (\r
-  IN      UINT8                     Value\r
+AsciiStrStr (\r
+  IN      CONST CHAR8               *String,\r
+  IN      CONST CHAR8               *SearchString\r
   );\r
 \r
+\r
 /**\r
-  Converts an 8-bit BCD value to an 8-bit value.\r
+  Convert a Null-terminated ASCII decimal string to a value of type\r
+  UINTN.\r
 \r
-  Converts the 8-bit BCD value specified by Value to an 8-bit value. The 8-bit\r
-  value is returned.\r
+  This function returns a value of type UINTN by interpreting the contents\r
+  of the ASCII string String as a decimal number. The format of the input\r
+  ASCII string String is:\r
 \r
-  If Value >= 0xA0, then ASSERT().\r
-  If (Value & 0x0F) >= 0x0A, then ASSERT().\r
+                    [spaces] [decimal digits].\r
 \r
-  @param  Value The 8-bit BCD value to convert to an 8-bit value.\r
+  The valid decimal digit character is in the range [0-9]. The function will\r
+  ignore the pad space, which includes spaces or tab characters, before the digits.\r
+  The running zero in the beginning of [decimal digits] will be ignored. Then, the\r
+  function stops at the first character that is a not a valid decimal character or\r
+  Null-terminator, whichever on comes first.\r
 \r
-  @return The 8-bit value is returned.\r
+  If String has only pad spaces, then 0 is returned.\r
+  If String has no pad spaces or valid decimal digits, then 0 is returned.\r
+  If the number represented by String overflows according to the range defined by\r
+  UINTN, then ASSERT().\r
+  If String is NULL, then ASSERT().\r
+  If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
+  PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
+  then ASSERT().\r
+\r
+  @param  String          Pointer to a Null-terminated ASCII string.\r
+\r
+  @retval Value translated from String.\r
 \r
 **/\r
-UINT8\r
+UINTN\r
 EFIAPI\r
-BcdToDecimal8 (\r
-  IN      UINT8                     Value\r
+AsciiStrDecimalToUintn (\r
+  IN      CONST CHAR8               *String\r
   );\r
 \r
-//\r
-// LIST_ENTRY definition\r
-//\r
-typedef struct _LIST_ENTRY LIST_ENTRY;\r
-\r
-struct _LIST_ENTRY {\r
-  LIST_ENTRY  *ForwardLink;\r
-  LIST_ENTRY  *BackLink;\r
-};\r
-\r
-//\r
-// Linked List Functions and Macros\r
-//\r
 \r
 /**\r
-  Initializes the head node of a doubly linked list that is declared as a\r
-  global variable in a module.\r
+  Convert a Null-terminated ASCII decimal string to a value of type\r
+  UINT64.\r
 \r
-  Initializes the forward and backward links of a new linked list. After\r
-  initializing a linked list with this macro, the other linked list functions\r
-  may be used to add and remove nodes from the linked list. This macro results\r
-  in smaller executables by initializing the linked list in the data section,\r
-  instead if calling the InitializeListHead() function to perform the\r
-  equivalent operation.\r
+  This function returns a value of type UINT64 by interpreting the contents\r
+  of the ASCII string String as a decimal number. The format of the input\r
+  ASCII string String is:\r
 \r
-  @param  ListHead  The head note of a list to initiailize.\r
+                    [spaces] [decimal digits].\r
 \r
-**/\r
-#define INITIALIZE_LIST_HEAD_VARIABLE(ListHead)  {&ListHead, &ListHead}\r
+  The valid decimal digit character is in the range [0-9]. The function will\r
+  ignore the pad space, which includes spaces or tab characters, before the digits.\r
+  The running zero in the beginning of [decimal digits] will be ignored. Then, the\r
+  function stops at the first character that is a not a valid decimal character or\r
+  Null-terminator, whichever on comes first.\r
 \r
-/**\r
+  If String has only pad spaces, then 0 is returned.\r
+  If String has no pad spaces or valid decimal digits, then 0 is returned.\r
+  If the number represented by String overflows according to the range defined by\r
+  UINT64, then ASSERT().\r
+  If String is NULL, then ASSERT().\r
+  If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
+  PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
+  then ASSERT().\r
+\r
+  @param  String          Pointer to a Null-terminated ASCII string.\r
+\r
+  @retval Value translated from String.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsciiStrDecimalToUint64 (\r
+  IN      CONST CHAR8               *String\r
+  );\r
+\r
+\r
+/**\r
+  Convert a Null-terminated ASCII hexadecimal string to a value of type UINTN.\r
+\r
+  This function returns a value of type UINTN by interpreting the contents of\r
+  the ASCII string String as a hexadecimal number. The format of the input ASCII\r
+  string String is:\r
+\r
+                  [spaces][zeros][x][hexadecimal digits].\r
+\r
+  The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
+  The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x"\r
+  appears in the input string, it must be prefixed with at least one 0. The function\r
+  will ignore the pad space, which includes spaces or tab characters, before [zeros],\r
+  [x] or [hexadecimal digits]. The running zero before [x] or [hexadecimal digits]\r
+  will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal\r
+  digit. Then, the function stops at the first character that is a not a valid\r
+  hexadecimal character or Null-terminator, whichever on comes first.\r
+\r
+  If String has only pad spaces, then 0 is returned.\r
+  If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then\r
+  0 is returned.\r
+\r
+  If the number represented by String overflows according to the range defined by UINTN,\r
+  then ASSERT().\r
+  If String is NULL, then ASSERT().\r
+  If PcdMaximumAsciiStringLength is not zero,\r
+  and String contains more than PcdMaximumAsciiStringLength ASCII characters not including\r
+  the Null-terminator, then ASSERT().\r
+\r
+  @param  String          Pointer to a Null-terminated ASCII string.\r
+\r
+  @retval Value translated from String.\r
+\r
+**/\r
+UINTN\r
+EFIAPI\r
+AsciiStrHexToUintn (\r
+  IN      CONST CHAR8               *String\r
+  );\r
+\r
+\r
+/**\r
+  Convert a Null-terminated ASCII hexadecimal string to a value of type UINT64.\r
+\r
+  This function returns a value of type UINT64 by interpreting the contents of\r
+  the ASCII string String as a hexadecimal number. The format of the input ASCII\r
+  string String is:\r
+\r
+                  [spaces][zeros][x][hexadecimal digits].\r
+\r
+  The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
+  The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x"\r
+  appears in the input string, it must be prefixed with at least one 0. The function\r
+  will ignore the pad space, which includes spaces or tab characters, before [zeros],\r
+  [x] or [hexadecimal digits]. The running zero before [x] or [hexadecimal digits]\r
+  will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal\r
+  digit. Then, the function stops at the first character that is a not a valid\r
+  hexadecimal character or Null-terminator, whichever on comes first.\r
+\r
+  If String has only pad spaces, then 0 is returned.\r
+  If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then\r
+  0 is returned.\r
+\r
+  If the number represented by String overflows according to the range defined by UINT64,\r
+  then ASSERT().\r
+  If String is NULL, then ASSERT().\r
+  If PcdMaximumAsciiStringLength is not zero,\r
+  and String contains more than PcdMaximumAsciiStringLength ASCII characters not including\r
+  the Null-terminator, then ASSERT().\r
+\r
+  @param  String          Pointer to a Null-terminated ASCII string.\r
+\r
+  @retval Value translated from String.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsciiStrHexToUint64 (\r
+  IN      CONST CHAR8                *String\r
+  );\r
+\r
+\r
+/**\r
+  Convert one Null-terminated ASCII string to a Null-terminated\r
+  Unicode string and returns the Unicode string.\r
+\r
+  This function converts the contents of the ASCII string Source to the Unicode\r
+  string Destination, and returns Destination.  The function terminates the\r
+  Unicode string Destination by appending a Null-terminator character at the end.\r
+  The caller is responsible to make sure Destination points to a buffer with size\r
+  equal or greater than ((AsciiStrLen (Source) + 1) * sizeof (CHAR16)) in bytes.\r
+\r
+  If Destination is NULL, then ASSERT().\r
+  If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
+  If Source is NULL, then ASSERT().\r
+  If Source and Destination overlap, then ASSERT().\r
+  If PcdMaximumAsciiStringLength is not zero, and Source contains more than\r
+  PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
+  then ASSERT().\r
+  If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
+  PcdMaximumUnicodeStringLength ASCII characters not including the\r
+  Null-terminator, then ASSERT().\r
+\r
+  @param  Source        Pointer to a Null-terminated ASCII string.\r
+  @param  Destination   Pointer to a Null-terminated Unicode string.\r
+\r
+  @return Destination\r
+\r
+**/\r
+CHAR16 *\r
+EFIAPI\r
+AsciiStrToUnicodeStr (\r
+  IN      CONST CHAR8               *Source,\r
+  OUT     CHAR16                    *Destination\r
+  );\r
+\r
+\r
+/**\r
+  Converts an 8-bit value to an 8-bit BCD value.\r
+\r
+  Converts the 8-bit value specified by Value to BCD. The BCD value is\r
+  returned.\r
+\r
+  If Value >= 100, then ASSERT().\r
+\r
+  @param  Value The 8-bit value to convert to BCD. Range 0..99.\r
+\r
+  @return The BCD value\r
+\r
+**/\r
+UINT8\r
+EFIAPI\r
+DecimalToBcd8 (\r
+  IN      UINT8                     Value\r
+  );\r
+\r
+\r
+/**\r
+  Converts an 8-bit BCD value to an 8-bit value.\r
+\r
+  Converts the 8-bit BCD value specified by Value to an 8-bit value. The 8-bit\r
+  value is returned.\r
+\r
+  If Value >= 0xA0, then ASSERT().\r
+  If (Value & 0x0F) >= 0x0A, then ASSERT().\r
+\r
+  @param  Value The 8-bit BCD value to convert to an 8-bit value.\r
+\r
+  @return The 8-bit value is returned.\r
+\r
+**/\r
+UINT8\r
+EFIAPI\r
+BcdToDecimal8 (\r
+  IN      UINT8                     Value\r
+  );\r
+\r
+\r
+//\r
+// Linked List Functions and Macros\r
+//\r
+\r
+/**\r
+  Initializes the head node of a doubly linked list that is declared as a\r
+  global variable in a module.\r
+\r
+  Initializes the forward and backward links of a new linked list. After\r
+  initializing a linked list with this macro, the other linked list functions\r
+  may be used to add and remove nodes from the linked list. This macro results\r
+  in smaller executables by initializing the linked list in the data section,\r
+  instead if calling the InitializeListHead() function to perform the\r
+  equivalent operation.\r
+\r
+  @param  ListHead  The head note of a list to initiailize.\r
+\r
+**/\r
+#define INITIALIZE_LIST_HEAD_VARIABLE(ListHead)  {&(ListHead), &(ListHead)}\r
+\r
+\r
+/**\r
   Initializes the head node of a doubly linked list, and returns the pointer to\r
   the head node of the doubly linked list.\r
 \r
@@ -737,9 +1370,10 @@ struct _LIST_ENTRY {
 LIST_ENTRY *\r
 EFIAPI\r
 InitializeListHead (\r
-  IN      LIST_ENTRY                *ListHead\r
+  IN OUT  LIST_ENTRY                *ListHead\r
   );\r
 \r
+\r
 /**\r
   Adds a node to the beginning of a doubly linked list, and returns the pointer\r
   to the head node of the doubly linked list.\r
@@ -749,7 +1383,8 @@ InitializeListHead (
 \r
   If ListHead is NULL, then ASSERT().\r
   If Entry is NULL, then ASSERT().\r
-  If ListHead was not initialized with InitializeListHead(), then ASSERT().\r
+  If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or\r
+  InitializeListHead(), then ASSERT().\r
   If PcdMaximumLinkedListLenth is not zero, and prior to insertion the number\r
   of nodes in ListHead, including the ListHead node, is greater than or\r
   equal to PcdMaximumLinkedListLength, then ASSERT().\r
@@ -764,10 +1399,11 @@ InitializeListHead (
 LIST_ENTRY *\r
 EFIAPI\r
 InsertHeadList (\r
-  IN      LIST_ENTRY                *ListHead,\r
-  IN      LIST_ENTRY                *Entry\r
+  IN OUT  LIST_ENTRY                *ListHead,\r
+  IN OUT  LIST_ENTRY                *Entry\r
   );\r
 \r
+\r
 /**\r
   Adds a node to the end of a doubly linked list, and returns the pointer to\r
   the head node of the doubly linked list.\r
@@ -777,7 +1413,8 @@ InsertHeadList (
 \r
   If ListHead is NULL, then ASSERT().\r
   If Entry is NULL, then ASSERT().\r
-  If ListHead was not initialized with InitializeListHead(), then ASSERT().\r
+  If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
+  InitializeListHead(), then ASSERT().\r
   If PcdMaximumLinkedListLenth is not zero, and prior to insertion the number\r
   of nodes in ListHead, including the ListHead node, is greater than or\r
   equal to PcdMaximumLinkedListLength, then ASSERT().\r
@@ -792,19 +1429,21 @@ InsertHeadList (
 LIST_ENTRY *\r
 EFIAPI\r
 InsertTailList (\r
-  IN      LIST_ENTRY                *ListHead,\r
-  IN      LIST_ENTRY                *Entry\r
+  IN OUT  LIST_ENTRY                *ListHead,\r
+  IN OUT  LIST_ENTRY                *Entry\r
   );\r
 \r
+\r
 /**\r
   Retrieves the first node of a doubly linked list.\r
 \r
-  Returns the first node of a doubly linked list. List must have been\r
-  initialized with InitializeListHead(). If List is empty, then NULL is\r
-  returned.\r
+  Returns the first node of a doubly linked list.  List must have been \r
+  initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().\r
+  If List is empty, then List is returned.\r
 \r
   If List is NULL, then ASSERT().\r
-  If List was not initialized with InitializeListHead(), then ASSERT().\r
+  If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
+  InitializeListHead(), then ASSERT().\r
   If PcdMaximumLinkedListLenth is not zero, and the number of nodes\r
   in List, including the List node, is greater than or equal to\r
   PcdMaximumLinkedListLength, then ASSERT().\r
@@ -821,16 +1460,18 @@ GetFirstNode (
   IN      CONST LIST_ENTRY          *List\r
   );\r
 \r
+\r
 /**\r
   Retrieves the next node of a doubly linked list.\r
 \r
-  Returns the node of a doubly linked list that follows Node. List must have\r
-  been initialized with InitializeListHead(). If List is empty, then List is\r
-  returned.\r
+  Returns the node of a doubly linked list that follows Node.  \r
+  List must have been initialized with INTIALIZE_LIST_HEAD_VARIABLE()\r
+  or InitializeListHead().  If List is empty, then List is returned.\r
 \r
   If List is NULL, then ASSERT().\r
   If Node is NULL, then ASSERT().\r
-  If List was not initialized with InitializeListHead(), then ASSERT().\r
+  If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
+  InitializeListHead(), then ASSERT().\r
   If PcdMaximumLinkedListLenth is not zero, and List contains more than\r
   PcdMaximumLinkedListLenth nodes, then ASSERT().\r
   If Node is not a node in List, then ASSERT().\r
@@ -849,6 +1490,7 @@ GetNextNode (
   IN      CONST LIST_ENTRY          *Node\r
   );\r
 \r
+\r
 /**\r
   Checks to see if a doubly linked list is empty or not.\r
 \r
@@ -856,7 +1498,8 @@ GetNextNode (
   zero nodes, this function returns TRUE. Otherwise, it returns FALSE.\r
 \r
   If ListHead is NULL, then ASSERT().\r
-  If ListHead was not initialized with InitializeListHead(), then ASSERT().\r
+  If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
+  InitializeListHead(), then ASSERT().\r
   If PcdMaximumLinkedListLenth is not zero, and the number of nodes\r
   in List, including the List node, is greater than or equal to\r
   PcdMaximumLinkedListLength, then ASSERT().\r
@@ -873,16 +1516,20 @@ IsListEmpty (
   IN      CONST LIST_ENTRY          *ListHead\r
   );\r
 \r
+\r
 /**\r
-  Determines if a node in a doubly linked list is null.\r
+  Determines if a node in a doubly linked list is the head node of a the same\r
+  doubly linked list.  This function is typically used to terminate a loop that\r
+  traverses all the nodes in a doubly linked list starting with the head node.\r
 \r
-  Returns FALSE if Node is one of the nodes in the doubly linked list specified\r
-  by List. Otherwise, TRUE is returned. List must have been initialized with\r
-  InitializeListHead().\r
+  Returns TRUE if Node is equal to List.  Returns FALSE if Node is one of the\r
+  nodes in the doubly linked list specified by List.  List must have been\r
+  initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().\r
 \r
   If List is NULL, then ASSERT().\r
   If Node is NULL, then ASSERT().\r
-  If List was not initialized with InitializeListHead(), then ASSERT().\r
+  If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(), \r
+  then ASSERT().\r
   If PcdMaximumLinkedListLenth is not zero, and the number of nodes\r
   in List, including the List node, is greater than or equal to\r
   PcdMaximumLinkedListLength, then ASSERT().\r
@@ -902,16 +1549,18 @@ IsNull (
   IN      CONST LIST_ENTRY          *Node\r
   );\r
 \r
+\r
 /**\r
   Determines if a node the last node in a doubly linked list.\r
 \r
   Returns TRUE if Node is the last node in the doubly linked list specified by\r
   List. Otherwise, FALSE is returned. List must have been initialized with\r
-  InitializeListHead().\r
+  INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().\r
 \r
   If List is NULL, then ASSERT().\r
   If Node is NULL, then ASSERT().\r
-  If List was not initialized with InitializeListHead(), then ASSERT().\r
+  If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or\r
+  InitializeListHead(), then ASSERT().\r
   If PcdMaximumLinkedListLenth is not zero, and the number of nodes\r
   in List, including the List node, is greater than or equal to\r
   PcdMaximumLinkedListLength, then ASSERT().\r
@@ -931,6 +1580,7 @@ IsNodeAtEnd (
   IN      CONST LIST_ENTRY          *Node\r
   );\r
 \r
+\r
 /**\r
   Swaps the location of two nodes in a doubly linked list, and returns the\r
   first node after the swap.\r
@@ -939,8 +1589,8 @@ IsNodeAtEnd (
   Otherwise, the location of the FirstEntry node is swapped with the location\r
   of the SecondEntry node in a doubly linked list. SecondEntry must be in the\r
   same double linked list as FirstEntry and that double linked list must have\r
-  been initialized with InitializeListHead(). SecondEntry is returned after the\r
-  nodes are swapped.\r
+  been initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(). \r
+  SecondEntry is returned after the nodes are swapped.\r
 \r
   If FirstEntry is NULL, then ASSERT().\r
   If SecondEntry is NULL, then ASSERT().\r
@@ -952,15 +1602,18 @@ IsNodeAtEnd (
 \r
   @param  FirstEntry  A pointer to a node in a linked list.\r
   @param  SecondEntry A pointer to another node in the same linked list.\r
+  \r
+  @return SecondEntry\r
 \r
 **/\r
 LIST_ENTRY *\r
 EFIAPI\r
 SwapListEntries (\r
-  IN      LIST_ENTRY                *FirstEntry,\r
-  IN      LIST_ENTRY                *SecondEntry\r
+  IN OUT  LIST_ENTRY                *FirstEntry,\r
+  IN OUT  LIST_ENTRY                *SecondEntry\r
   );\r
 \r
+\r
 /**\r
   Removes a node from a doubly linked list, and returns the node that follows\r
   the removed node.\r
@@ -1014,6 +1667,7 @@ LShiftU64 (
   IN      UINTN                     Count\r
   );\r
 \r
+\r
 /**\r
   Shifts a 64-bit integer right between 0 and 63 bits. This high bits are\r
   filled with zeros. The shifted value is returned.\r
@@ -1036,6 +1690,7 @@ RShiftU64 (
   IN      UINTN                     Count\r
   );\r
 \r
+\r
 /**\r
   Shifts a 64-bit integer right between 0 and 63 bits. The high bits are filled\r
   with original integer's bit 63. The shifted value is returned.\r
@@ -1058,6 +1713,7 @@ ARShiftU64 (
   IN      UINTN                     Count\r
   );\r
 \r
+\r
 /**\r
   Rotates a 32-bit integer left between 0 and 31 bits, filling the low bits\r
   with the high bits that were rotated.\r
@@ -1071,7 +1727,7 @@ ARShiftU64 (
   @param  Operand The 32-bit operand to rotate left.\r
   @param  Count   The number of bits to rotate left.\r
 \r
-  @return Operand <<< Count\r
+  @return Operand << Count\r
 \r
 **/\r
 UINT32\r
@@ -1081,6 +1737,7 @@ LRotU32 (
   IN      UINTN                     Count\r
   );\r
 \r
+\r
 /**\r
   Rotates a 32-bit integer right between 0 and 31 bits, filling the high bits\r
   with the low bits that were rotated.\r
@@ -1104,6 +1761,7 @@ RRotU32 (
   IN      UINTN                     Count\r
   );\r
 \r
+\r
 /**\r
   Rotates a 64-bit integer left between 0 and 63 bits, filling the low bits\r
   with the high bits that were rotated.\r
@@ -1117,7 +1775,7 @@ RRotU32 (
   @param  Operand The 64-bit operand to rotate left.\r
   @param  Count   The number of bits to rotate left.\r
 \r
-  @return Operand <<< Count\r
+  @return Operand << Count\r
 \r
 **/\r
 UINT64\r
@@ -1127,6 +1785,7 @@ LRotU64 (
   IN      UINTN                     Count\r
   );\r
 \r
+\r
 /**\r
   Rotates a 64-bit integer right between 0 and 63 bits, filling the high bits\r
   with the high low bits that were rotated.\r
@@ -1140,7 +1799,7 @@ LRotU64 (
   @param  Operand The 64-bit operand to rotate right.\r
   @param  Count   The number of bits to rotate right.\r
 \r
-  @return Operand >>> Count\r
+  @return Operand >> Count\r
 \r
 **/\r
 UINT64\r
@@ -1150,6 +1809,7 @@ RRotU64 (
   IN      UINTN                     Count\r
   );\r
 \r
+\r
 /**\r
   Returns the bit position of the lowest bit set in a 32-bit value.\r
 \r
@@ -1159,8 +1819,8 @@ RRotU64 (
 \r
   @param  Operand The 32-bit operand to evaluate.\r
 \r
-  @return Position of the lowest bit set in Operand if found.\r
-  @retval -1 Operand is zero.\r
+  @retval 0-31  The lowest bit set in Operand was found.\r
+  @retval -1    Operand is zero.\r
 \r
 **/\r
 INTN\r
@@ -1169,6 +1829,7 @@ LowBitSet32 (
   IN      UINT32                    Operand\r
   );\r
 \r
+\r
 /**\r
   Returns the bit position of the lowest bit set in a 64-bit value.\r
 \r
@@ -1178,8 +1839,9 @@ LowBitSet32 (
 \r
   @param  Operand The 64-bit operand to evaluate.\r
 \r
-  @return Position of the lowest bit set in Operand if found.\r
-  @retval -1  Operand is zero.\r
+  @retval 0-63  The lowest bit set in Operand was found.\r
+  @retval -1    Operand is zero.\r
+\r
 \r
 **/\r
 INTN\r
@@ -1188,6 +1850,7 @@ LowBitSet64 (
   IN      UINT64                    Operand\r
   );\r
 \r
+\r
 /**\r
   Returns the bit position of the highest bit set in a 32-bit value. Equivalent\r
   to log2(x).\r
@@ -1198,8 +1861,8 @@ LowBitSet64 (
 \r
   @param  Operand The 32-bit operand to evaluate.\r
 \r
-  @return Position of the highest bit set in Operand if found.\r
-  @retval -1  Operand is zero.\r
+  @retval 0-31  Position of the highest bit set in Operand if found.\r
+  @retval -1    Operand is zero.\r
 \r
 **/\r
 INTN\r
@@ -1208,6 +1871,7 @@ HighBitSet32 (
   IN      UINT32                    Operand\r
   );\r
 \r
+\r
 /**\r
   Returns the bit position of the highest bit set in a 64-bit value. Equivalent\r
   to log2(x).\r
@@ -1218,8 +1882,8 @@ HighBitSet32 (
 \r
   @param  Operand The 64-bit operand to evaluate.\r
 \r
-  @return Position of the highest bit set in Operand if found.\r
-  @retval -1  Operand is zero.\r
+  @retval 0-63   Position of the highest bit set in Operand if found.\r
+  @retval -1     Operand is zero.\r
 \r
 **/\r
 INTN\r
@@ -1228,9 +1892,10 @@ HighBitSet64 (
   IN      UINT64                    Operand\r
   );\r
 \r
+\r
 /**\r
   Returns the value of the highest bit set in a 32-bit value. Equivalent to\r
-  1 << HighBitSet32(x).\r
+  1 << log2(x).\r
 \r
   This function computes the value of the highest bit set in the 32-bit value\r
   specified by Operand. If Operand is zero, then zero is returned.\r
@@ -1247,9 +1912,10 @@ GetPowerOfTwo32 (
   IN      UINT32                    Operand\r
   );\r
 \r
+\r
 /**\r
   Returns the value of the highest bit set in a 64-bit value. Equivalent to\r
-  1 << HighBitSet64(x).\r
+  1 << log2(x).\r
 \r
   This function computes the value of the highest bit set in the 64-bit value\r
   specified by Operand. If Operand is zero, then zero is returned.\r
@@ -1266,6 +1932,7 @@ GetPowerOfTwo64 (
   IN      UINT64                    Operand\r
   );\r
 \r
+\r
 /**\r
   Switches the endianess of a 16-bit integer.\r
 \r
@@ -1273,9 +1940,9 @@ GetPowerOfTwo64 (
   from little endian to big endian or vice versa. The byte swapped value is\r
   returned.\r
 \r
-  @param  Operand A 16-bit unsigned value.\r
+  @param  Value Operand A 16-bit unsigned value.\r
 \r
-  @return The byte swaped Operand.\r
+  @return The byte swapped Operand.\r
 \r
 **/\r
 UINT16\r
@@ -1284,6 +1951,7 @@ SwapBytes16 (
   IN      UINT16                    Value\r
   );\r
 \r
+\r
 /**\r
   Switches the endianess of a 32-bit integer.\r
 \r
@@ -1291,9 +1959,9 @@ SwapBytes16 (
   from little endian to big endian or vice versa. The byte swapped value is\r
   returned.\r
 \r
-  @param  Operand A 32-bit unsigned value.\r
+  @param  Value Operand A 32-bit unsigned value.\r
 \r
-  @return The byte swaped Operand.\r
+  @return The byte swapped Operand.\r
 \r
 **/\r
 UINT32\r
@@ -1302,6 +1970,7 @@ SwapBytes32 (
   IN      UINT32                    Value\r
   );\r
 \r
+\r
 /**\r
   Switches the endianess of a 64-bit integer.\r
 \r
@@ -1309,9 +1978,9 @@ SwapBytes32 (
   from little endian to big endian or vice versa. The byte swapped value is\r
   returned.\r
 \r
-  @param  Operand A 64-bit unsigned value.\r
+  @param  Value Operand A 64-bit unsigned value.\r
 \r
-  @return The byte swaped Operand.\r
+  @return The byte swapped Operand.\r
 \r
 **/\r
 UINT64\r
@@ -1320,6 +1989,7 @@ SwapBytes64 (
   IN      UINT64                    Value\r
   );\r
 \r
+\r
 /**\r
   Multiples a 64-bit unsigned integer by a 32-bit unsigned integer and\r
   generates a 64-bit unsigned result.\r
@@ -1343,6 +2013,7 @@ MultU64x32 (
   IN      UINT32                    Multiplier\r
   );\r
 \r
+\r
 /**\r
   Multiples a 64-bit unsigned integer by a 64-bit unsigned integer and\r
   generates a 64-bit unsigned result.\r
@@ -1366,6 +2037,7 @@ MultU64x64 (
   IN      UINT64                    Multiplier\r
   );\r
 \r
+\r
 /**\r
   Multiples a 64-bit signed integer by a 64-bit signed integer and generates a\r
   64-bit signed result.\r
@@ -1389,6 +2061,7 @@ MultS64x64 (
   IN      INT64                     Multiplier\r
   );\r
 \r
+\r
 /**\r
   Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates\r
   a 64-bit unsigned result.\r
@@ -1412,6 +2085,7 @@ DivU64x32 (
   IN      UINT32                    Divisor\r
   );\r
 \r
+\r
 /**\r
   Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates\r
   a 32-bit unsigned remainder.\r
@@ -1435,6 +2109,7 @@ ModU64x32 (
   IN      UINT32                    Divisor\r
   );\r
 \r
+\r
 /**\r
   Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates\r
   a 64-bit unsigned result and an optional 32-bit unsigned remainder.\r
@@ -1462,6 +2137,7 @@ DivU64x32Remainder (
   OUT     UINT32                    *Remainder  OPTIONAL\r
   );\r
 \r
+\r
 /**\r
   Divides a 64-bit unsigned integer by a 64-bit unsigned integer and generates\r
   a 64-bit unsigned result and an optional 64-bit unsigned remainder.\r
@@ -1489,6 +2165,7 @@ DivU64x64Remainder (
   OUT     UINT64                    *Remainder  OPTIONAL\r
   );\r
 \r
+\r
 /**\r
   Divides a 64-bit signed integer by a 64-bit signed integer and generates a\r
   64-bit signed result and a optional 64-bit signed remainder.\r
@@ -1498,6 +2175,10 @@ DivU64x64Remainder (
   NULL, then the 64-bit signed remainder is returned in Remainder. This\r
   function returns the 64-bit signed quotient.\r
 \r
+  It is the caller¡¯s responsibility to not call this function with a Divisor of 0.\r
+  If Divisor is 0, then the quotient and remainder should be assumed to be \r
+  the largest negative integer.\r
+\r
   If Divisor is 0, then ASSERT().\r
 \r
   @param  Dividend  A 64-bit signed value.\r
@@ -1516,6 +2197,7 @@ DivS64x64Remainder (
   OUT     INT64                     *Remainder  OPTIONAL\r
   );\r
 \r
+\r
 /**\r
   Reads a 16-bit value from memory that may be unaligned.\r
 \r
@@ -1526,15 +2208,16 @@ DivS64x64Remainder (
 \r
   @param  Buffer  Pointer to a 16-bit value that may be unaligned.\r
 \r
-  @return *Uint16\r
+  @return The 16-bit value read from Buffer.\r
 \r
 **/\r
 UINT16\r
 EFIAPI\r
 ReadUnaligned16 (\r
-  IN      CONST UINT16              *Uint16\r
+  IN CONST UINT16              *Buffer\r
   );\r
 \r
+\r
 /**\r
   Writes a 16-bit value to memory that may be unaligned.\r
 \r
@@ -1547,16 +2230,17 @@ ReadUnaligned16 (
   @param  Buffer  Pointer to a 16-bit value that may be unaligned.\r
   @param  Value   16-bit value to write to Buffer.\r
 \r
-  @return Value\r
+  @return The 16-bit value to write to Buffer.\r
 \r
 **/\r
 UINT16\r
 EFIAPI\r
 WriteUnaligned16 (\r
-  OUT     UINT16                    *Uint16,\r
-  IN      UINT16                    Value\r
+  OUT UINT16                    *Buffer,\r
+  IN  UINT16                    Value\r
   );\r
 \r
+\r
 /**\r
   Reads a 24-bit value from memory that may be unaligned.\r
 \r
@@ -1567,15 +2251,16 @@ WriteUnaligned16 (
 \r
   @param  Buffer  Pointer to a 24-bit value that may be unaligned.\r
 \r
-  @return The value read.\r
+  @return The 24-bit value read from Buffer.\r
 \r
 **/\r
 UINT32\r
 EFIAPI\r
 ReadUnaligned24 (\r
-  IN      CONST UINT32              *Buffer\r
+  IN CONST UINT32              *Buffer\r
   );\r
 \r
+\r
 /**\r
   Writes a 24-bit value to memory that may be unaligned.\r
 \r
@@ -1588,16 +2273,17 @@ ReadUnaligned24 (
   @param  Buffer  Pointer to a 24-bit value that may be unaligned.\r
   @param  Value   24-bit value to write to Buffer.\r
 \r
-  @return The value written.\r
+  @return The 24-bit value to write to Buffer.\r
 \r
 **/\r
 UINT32\r
 EFIAPI\r
 WriteUnaligned24 (\r
-  OUT     UINT32                    *Buffer,\r
-  IN      UINT32                    Value\r
+  OUT UINT32                    *Buffer,\r
+  IN  UINT32                    Value\r
   );\r
 \r
+\r
 /**\r
   Reads a 32-bit value from memory that may be unaligned.\r
 \r
@@ -1608,15 +2294,16 @@ WriteUnaligned24 (
 \r
   @param  Buffer  Pointer to a 32-bit value that may be unaligned.\r
 \r
-  @return *Uint32\r
+  @return The 32-bit value read from Buffer.\r
 \r
 **/\r
 UINT32\r
 EFIAPI\r
 ReadUnaligned32 (\r
-  IN      CONST UINT32              *Uint32\r
+  IN CONST UINT32              *Buffer\r
   );\r
 \r
+\r
 /**\r
   Writes a 32-bit value to memory that may be unaligned.\r
 \r
@@ -1629,16 +2316,17 @@ ReadUnaligned32 (
   @param  Buffer  Pointer to a 32-bit value that may be unaligned.\r
   @param  Value   32-bit value to write to Buffer.\r
 \r
-  @return Value\r
+  @return The 32-bit value to write to Buffer.\r
 \r
 **/\r
 UINT32\r
 EFIAPI\r
 WriteUnaligned32 (\r
-  OUT     UINT32                    *Uint32,\r
-  IN      UINT32                    Value\r
+  OUT UINT32                    *Buffer,\r
+  IN  UINT32                    Value\r
   );\r
 \r
+\r
 /**\r
   Reads a 64-bit value from memory that may be unaligned.\r
 \r
@@ -1649,15 +2337,16 @@ WriteUnaligned32 (
 \r
   @param  Buffer  Pointer to a 64-bit value that may be unaligned.\r
 \r
-  @return *Uint64\r
+  @return The 64-bit value read from Buffer.\r
 \r
 **/\r
 UINT64\r
 EFIAPI\r
 ReadUnaligned64 (\r
-  IN      CONST UINT64              *Uint64\r
+  IN CONST UINT64              *Buffer\r
   );\r
 \r
+\r
 /**\r
   Writes a 64-bit value to memory that may be unaligned.\r
 \r
@@ -1670,16 +2359,17 @@ ReadUnaligned64 (
   @param  Buffer  Pointer to a 64-bit value that may be unaligned.\r
   @param  Value   64-bit value to write to Buffer.\r
 \r
-  @return Value\r
+  @return The 64-bit value to write to Buffer.\r
 \r
 **/\r
 UINT64\r
 EFIAPI\r
 WriteUnaligned64 (\r
-  OUT     UINT64                    *Uint64,\r
-  IN      UINT64                    Value\r
+  OUT UINT64                    *Buffer,\r
+  IN  UINT64                    Value\r
   );\r
 \r
+\r
 //\r
 // Bit Field Functions\r
 //\r
@@ -1711,6 +2401,7 @@ BitFieldRead8 (
   IN      UINTN                     EndBit\r
   );\r
 \r
+\r
 /**\r
   Writes a bit field to an 8-bit value, and returns the result.\r
 \r
@@ -1742,6 +2433,7 @@ BitFieldWrite8 (
   IN      UINT8                     Value\r
   );\r
 \r
+\r
 /**\r
   Reads a bit field from an 8-bit value, performs a bitwise OR, and returns the\r
   result.\r
@@ -1774,6 +2466,7 @@ BitFieldOr8 (
   IN      UINT8                     OrData\r
   );\r
 \r
+\r
 /**\r
   Reads a bit field from an 8-bit value, performs a bitwise AND, and returns\r
   the result.\r
@@ -1806,6 +2499,7 @@ BitFieldAnd8 (
   IN      UINT8                     AndData\r
   );\r
 \r
+\r
 /**\r
   Reads a bit field from an 8-bit value, performs a bitwise AND followed by a\r
   bitwise OR, and returns the result.\r
@@ -1841,6 +2535,7 @@ BitFieldAndThenOr8 (
   IN      UINT8                     OrData\r
   );\r
 \r
+\r
 /**\r
   Returns a bit field from a 16-bit value.\r
 \r
@@ -1868,6 +2563,7 @@ BitFieldRead16 (
   IN      UINTN                     EndBit\r
   );\r
 \r
+\r
 /**\r
   Writes a bit field to a 16-bit value, and returns the result.\r
 \r
@@ -1899,6 +2595,7 @@ BitFieldWrite16 (
   IN      UINT16                    Value\r
   );\r
 \r
+\r
 /**\r
   Reads a bit field from a 16-bit value, performs a bitwise OR, and returns the\r
   result.\r
@@ -1931,6 +2628,7 @@ BitFieldOr16 (
   IN      UINT16                    OrData\r
   );\r
 \r
+\r
 /**\r
   Reads a bit field from a 16-bit value, performs a bitwise AND, and returns\r
   the result.\r
@@ -1963,6 +2661,7 @@ BitFieldAnd16 (
   IN      UINT16                    AndData\r
   );\r
 \r
+\r
 /**\r
   Reads a bit field from a 16-bit value, performs a bitwise AND followed by a\r
   bitwise OR, and returns the result.\r
@@ -1998,6 +2697,7 @@ BitFieldAndThenOr16 (
   IN      UINT16                    OrData\r
   );\r
 \r
+\r
 /**\r
   Returns a bit field from a 32-bit value.\r
 \r
@@ -2025,6 +2725,7 @@ BitFieldRead32 (
   IN      UINTN                     EndBit\r
   );\r
 \r
+\r
 /**\r
   Writes a bit field to a 32-bit value, and returns the result.\r
 \r
@@ -2056,6 +2757,7 @@ BitFieldWrite32 (
   IN      UINT32                    Value\r
   );\r
 \r
+\r
 /**\r
   Reads a bit field from a 32-bit value, performs a bitwise OR, and returns the\r
   result.\r
@@ -2088,6 +2790,7 @@ BitFieldOr32 (
   IN      UINT32                    OrData\r
   );\r
 \r
+\r
 /**\r
   Reads a bit field from a 32-bit value, performs a bitwise AND, and returns\r
   the result.\r
@@ -2120,6 +2823,7 @@ BitFieldAnd32 (
   IN      UINT32                    AndData\r
   );\r
 \r
+\r
 /**\r
   Reads a bit field from a 32-bit value, performs a bitwise AND followed by a\r
   bitwise OR, and returns the result.\r
@@ -2155,6 +2859,7 @@ BitFieldAndThenOr32 (
   IN      UINT32                    OrData\r
   );\r
 \r
+\r
 /**\r
   Returns a bit field from a 64-bit value.\r
 \r
@@ -2182,6 +2887,7 @@ BitFieldRead64 (
   IN      UINTN                     EndBit\r
   );\r
 \r
+\r
 /**\r
   Writes a bit field to a 64-bit value, and returns the result.\r
 \r
@@ -2213,6 +2919,7 @@ BitFieldWrite64 (
   IN      UINT64                    Value\r
   );\r
 \r
+\r
 /**\r
   Reads a bit field from a 64-bit value, performs a bitwise OR, and returns the\r
   result.\r
@@ -2245,6 +2952,7 @@ BitFieldOr64 (
   IN      UINT64                    OrData\r
   );\r
 \r
+\r
 /**\r
   Reads a bit field from a 64-bit value, performs a bitwise AND, and returns\r
   the result.\r
@@ -2277,6 +2985,7 @@ BitFieldAnd64 (
   IN      UINT64                    AndData\r
   );\r
 \r
+\r
 /**\r
   Reads a bit field from a 64-bit value, performs a bitwise AND followed by a\r
   bitwise OR, and returns the result.\r
@@ -2312,6 +3021,7 @@ BitFieldAndThenOr64 (
   IN      UINT64                    OrData\r
   );\r
 \r
+\r
 //\r
 // Base Library Synchronization Functions\r
 //\r
@@ -2338,6 +3048,7 @@ GetSpinLockProperties (
   VOID\r
   );\r
 \r
+\r
 /**\r
   Initializes a spin lock to the released state and returns the spin lock.\r
 \r
@@ -2351,15 +3062,16 @@ GetSpinLockProperties (
   @param  SpinLock  A pointer to the spin lock to initialize to the released\r
                     state.\r
 \r
-  @return SpinLock\r
+  @return SpinLock in release state.\r
 \r
 **/\r
 SPIN_LOCK *\r
 EFIAPI\r
 InitializeSpinLock (\r
-  IN      SPIN_LOCK                 *SpinLock\r
+  OUT      SPIN_LOCK                 *SpinLock\r
   );\r
 \r
+\r
 /**\r
   Waits until a spin lock can be placed in the acquired state.\r
 \r
@@ -2377,15 +3089,16 @@ InitializeSpinLock (
 \r
   @param  SpinLock  A pointer to the spin lock to place in the acquired state.\r
 \r
-  @return SpinLock\r
+  @return SpinLock accquired lock.\r
 \r
 **/\r
 SPIN_LOCK *\r
 EFIAPI\r
 AcquireSpinLock (\r
-  IN      SPIN_LOCK                 *SpinLock\r
+  IN OUT  SPIN_LOCK                 *SpinLock\r
   );\r
 \r
+\r
 /**\r
   Attempts to place a spin lock in the acquired state.\r
 \r
@@ -2406,9 +3119,10 @@ AcquireSpinLock (
 BOOLEAN\r
 EFIAPI\r
 AcquireSpinLockOrFail (\r
-  IN      SPIN_LOCK                 *SpinLock\r
+  IN OUT  SPIN_LOCK                 *SpinLock\r
   );\r
 \r
+\r
 /**\r
   Releases a spin lock.\r
 \r
@@ -2420,15 +3134,16 @@ AcquireSpinLockOrFail (
 \r
   @param  SpinLock  A pointer to the spin lock to release.\r
 \r
-  @return SpinLock\r
+  @return SpinLock released lock.\r
 \r
 **/\r
 SPIN_LOCK *\r
 EFIAPI\r
 ReleaseSpinLock (\r
-  IN      SPIN_LOCK                 *SpinLock\r
+  IN OUT  SPIN_LOCK                 *SpinLock\r
   );\r
 \r
+\r
 /**\r
   Performs an atomic increment of an 32-bit unsigned integer.\r
 \r
@@ -2450,6 +3165,7 @@ InterlockedIncrement (
   IN      UINT32                    *Value\r
   );\r
 \r
+\r
 /**\r
   Performs an atomic decrement of an 32-bit unsigned integer.\r
 \r
@@ -2471,6 +3187,7 @@ InterlockedDecrement (
   IN      UINT32                    *Value\r
   );\r
 \r
+\r
 /**\r
   Performs an atomic compare exchange operation on a 32-bit unsigned integer.\r
 \r
@@ -2498,6 +3215,7 @@ InterlockedCompareExchange32 (
   IN      UINT32                    ExchangeValue\r
   );\r
 \r
+\r
 /**\r
   Performs an atomic compare exchange operation on a 64-bit unsigned integer.\r
 \r
@@ -2524,6 +3242,7 @@ InterlockedCompareExchange64 (
   IN      UINT64                    ExchangeValue\r
   );\r
 \r
+\r
 /**\r
   Performs an atomic compare exchange operation on a pointer value.\r
 \r
@@ -2540,6 +3259,7 @@ InterlockedCompareExchange64 (
   @param  CompareValue  Pointer value used in compare operation.\r
   @param  ExchangeValue Pointer value used in exchange operation.\r
 \r
+  @return The original *Value before exchange.\r
 **/\r
 VOID *\r
 EFIAPI\r
@@ -2549,53 +3269,283 @@ InterlockedCompareExchangePointer (
   IN      VOID                      *ExchangeValue\r
   );\r
 \r
+\r
 //\r
-// Base Library CPU Functions\r
+// Base Library Checksum Functions\r
 //\r
-typedef\r
-VOID\r
-(EFIAPI *SWITCH_STACK_ENTRY_POINT) (\r
-  IN      VOID                      *Context1,  OPTIONAL\r
-  IN      VOID                      *Context2   OPTIONAL\r
-  );\r
 \r
 /**\r
-  Used to serialize load and store operations.\r
+  Returns the sum of all elements in a buffer in unit of UINT8.\r
+  During calculation, the carry bits are dropped.\r
 \r
-  All loads and stores that proceed calls to this function are guaranteed to be\r
-  globally visible when this function returns.\r
+  This function calculates the sum of all elements in a buffer\r
+  in unit of UINT8. The carry bits in result of addition are dropped.\r
+  The result is returned as UINT8. If Length is Zero, then Zero is\r
+  returned.\r
+\r
+  If Buffer is NULL, then ASSERT().\r
+  If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
+\r
+  @param  Buffer      Pointer to the buffer to carry out the sum operation.\r
+  @param  Length      The size, in bytes, of Buffer.\r
+\r
+  @return Sum         The sum of Buffer with carry bits dropped during additions.\r
 \r
 **/\r
-VOID\r
+UINT8\r
 EFIAPI\r
-MemoryFence (\r
-  VOID\r
+CalculateSum8 (\r
+  IN      CONST UINT8              *Buffer,\r
+  IN      UINTN                     Length\r
   );\r
 \r
+\r
 /**\r
-  Saves the current CPU context that can be restored with a call to LongJump()\r
-  and returns 0.\r
+  Returns the two's complement checksum of all elements in a buffer\r
+  of 8-bit values.\r
 \r
-  Saves the current CPU context in the buffer specified by JumpBuffer and\r
-  returns 0. The initial call to SetJump() must always return 0. Subsequent\r
-  calls to LongJump() cause a non-zero value to be returned by SetJump().\r
+  This function first calculates the sum of the 8-bit values in the\r
+  buffer specified by Buffer and Length.  The carry bits in the result\r
+  of addition are dropped. Then, the two's complement of the sum is\r
+  returned.  If Length is 0, then 0 is returned.\r
 \r
-  If JumpBuffer is NULL, then ASSERT().\r
-  For IPF CPUs, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().\r
+  If Buffer is NULL, then ASSERT().\r
+  If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
 \r
-  @param  JumpBuffer  A pointer to CPU context buffer.\r
+  @param  Buffer      Pointer to the buffer to carry out the checksum operation.\r
+  @param  Length      The size, in bytes, of Buffer.\r
 \r
-  @retval 0 Indicates a return from SetJump().\r
+  @return Checksum    The 2's complement checksum of Buffer.\r
 \r
 **/\r
-UINTN\r
+UINT8\r
 EFIAPI\r
-SetJump (\r
-  OUT     BASE_LIBRARY_JUMP_BUFFER  *JumpBuffer\r
+CalculateCheckSum8 (\r
+  IN      CONST UINT8              *Buffer,\r
+  IN      UINTN                     Length\r
   );\r
 \r
+\r
 /**\r
-  Restores the CPU context that was saved with SetJump().\r
+  Returns the sum of all elements in a buffer of 16-bit values.  During\r
+  calculation, the carry bits are dropped.\r
+\r
+  This function calculates the sum of the 16-bit values in the buffer\r
+  specified by Buffer and Length. The carry bits in result of addition are dropped.\r
+  The 16-bit result is returned.  If Length is 0, then 0 is returned.\r
+\r
+  If Buffer is NULL, then ASSERT().\r
+  If Buffer is not aligned on a 16-bit boundary, then ASSERT().\r
+  If Length is not aligned on a 16-bit boundary, then ASSERT().\r
+  If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
+\r
+  @param  Buffer      Pointer to the buffer to carry out the sum operation.\r
+  @param  Length      The size, in bytes, of Buffer.\r
+\r
+  @return Sum         The sum of Buffer with carry bits dropped during additions.\r
+\r
+**/\r
+UINT16\r
+EFIAPI\r
+CalculateSum16 (\r
+  IN      CONST UINT16             *Buffer,\r
+  IN      UINTN                     Length\r
+  );\r
+\r
+\r
+/**\r
+  Returns the two's complement checksum of all elements in a buffer of\r
+  16-bit values.\r
+\r
+  This function first calculates the sum of the 16-bit values in the buffer\r
+  specified by Buffer and Length.  The carry bits in the result of addition\r
+  are dropped. Then, the two's complement of the sum is returned.  If Length\r
+  is 0, then 0 is returned.\r
+\r
+  If Buffer is NULL, then ASSERT().\r
+  If Buffer is not aligned on a 16-bit boundary, then ASSERT().\r
+  If Length is not aligned on a 16-bit boundary, then ASSERT().\r
+  If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
+\r
+  @param  Buffer      Pointer to the buffer to carry out the checksum operation.\r
+  @param  Length      The size, in bytes, of Buffer.\r
+\r
+  @return Checksum    The 2's complement checksum of Buffer.\r
+\r
+**/\r
+UINT16\r
+EFIAPI\r
+CalculateCheckSum16 (\r
+  IN      CONST UINT16             *Buffer,\r
+  IN      UINTN                     Length\r
+  );\r
+\r
+\r
+/**\r
+  Returns the sum of all elements in a buffer of 32-bit values. During\r
+  calculation, the carry bits are dropped.\r
+\r
+  This function calculates the sum of the 32-bit values in the buffer\r
+  specified by Buffer and Length. The carry bits in result of addition are dropped.\r
+  The 32-bit result is returned. If Length is 0, then 0 is returned.\r
+\r
+  If Buffer is NULL, then ASSERT().\r
+  If Buffer is not aligned on a 32-bit boundary, then ASSERT().\r
+  If Length is not aligned on a 32-bit boundary, then ASSERT().\r
+  If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
+\r
+  @param  Buffer      Pointer to the buffer to carry out the sum operation.\r
+  @param  Length      The size, in bytes, of Buffer.\r
+\r
+  @return Sum         The sum of Buffer with carry bits dropped during additions.\r
+\r
+**/\r
+UINT32\r
+EFIAPI\r
+CalculateSum32 (\r
+  IN      CONST UINT32             *Buffer,\r
+  IN      UINTN                     Length\r
+  );\r
+\r
+\r
+/**\r
+  Returns the two's complement checksum of all elements in a buffer of\r
+  32-bit values.\r
+\r
+  This function first calculates the sum of the 32-bit values in the buffer\r
+  specified by Buffer and Length.  The carry bits in the result of addition\r
+  are dropped. Then, the two's complement of the sum is returned.  If Length\r
+  is 0, then 0 is returned.\r
+\r
+  If Buffer is NULL, then ASSERT().\r
+  If Buffer is not aligned on a 32-bit boundary, then ASSERT().\r
+  If Length is not aligned on a 32-bit boundary, then ASSERT().\r
+  If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
+\r
+  @param  Buffer      Pointer to the buffer to carry out the checksum operation.\r
+  @param  Length      The size, in bytes, of Buffer.\r
+\r
+  @return Checksum    The 2's complement checksum of Buffer.\r
+\r
+**/\r
+UINT32\r
+EFIAPI\r
+CalculateCheckSum32 (\r
+  IN      CONST UINT32             *Buffer,\r
+  IN      UINTN                     Length\r
+  );\r
+\r
+\r
+/**\r
+  Returns the sum of all elements in a buffer of 64-bit values.  During\r
+  calculation, the carry bits are dropped.\r
+\r
+  This function calculates the sum of the 64-bit values in the buffer\r
+  specified by Buffer and Length. The carry bits in result of addition are dropped.\r
+  The 64-bit result is returned.  If Length is 0, then 0 is returned.\r
+\r
+  If Buffer is NULL, then ASSERT().\r
+  If Buffer is not aligned on a 64-bit boundary, then ASSERT().\r
+  If Length is not aligned on a 64-bit boundary, then ASSERT().\r
+  If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
+\r
+  @param  Buffer      Pointer to the buffer to carry out the sum operation.\r
+  @param  Length      The size, in bytes, of Buffer.\r
+\r
+  @return Sum         The sum of Buffer with carry bits dropped during additions.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+CalculateSum64 (\r
+  IN      CONST UINT64             *Buffer,\r
+  IN      UINTN                     Length\r
+  );\r
+\r
+\r
+/**\r
+  Returns the two's complement checksum of all elements in a buffer of\r
+  64-bit values.\r
+\r
+  This function first calculates the sum of the 64-bit values in the buffer\r
+  specified by Buffer and Length.  The carry bits in the result of addition\r
+  are dropped. Then, the two's complement of the sum is returned.  If Length\r
+  is 0, then 0 is returned.\r
+\r
+  If Buffer is NULL, then ASSERT().\r
+  If Buffer is not aligned on a 64-bit boundary, then ASSERT().\r
+  If Length is not aligned on a 64-bit boundary, then ASSERT().\r
+  If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
+\r
+  @param  Buffer      Pointer to the buffer to carry out the checksum operation.\r
+  @param  Length      The size, in bytes, of Buffer.\r
+\r
+  @return Checksum    The 2's complement checksum of Buffer.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+CalculateCheckSum64 (\r
+  IN      CONST UINT64             *Buffer,\r
+  IN      UINTN                     Length\r
+  );\r
+\r
+\r
+///\r
+/// Base Library CPU Functions\r
+///\r
+typedef\r
+VOID\r
+(EFIAPI *SWITCH_STACK_ENTRY_POINT)(\r
+  IN      VOID                      *Context1,  OPTIONAL\r
+  IN      VOID                      *Context2   OPTIONAL\r
+  );\r
+\r
+\r
+/**\r
+  Used to serialize load and store operations.\r
+\r
+  All loads and stores that proceed calls to this function are guaranteed to be\r
+  globally visible when this function returns.\r
+\r
+**/\r
+VOID\r
+EFIAPI\r
+MemoryFence (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Saves the current CPU context that can be restored with a call to LongJump()\r
+  and returns 0.\r
+\r
+  Saves the current CPU context in the buffer specified by JumpBuffer and\r
+  returns 0. The initial call to SetJump() must always return 0. Subsequent\r
+  calls to LongJump() cause a non-zero value to be returned by SetJump().\r
+\r
+  If JumpBuffer is NULL, then ASSERT().\r
+  For IPF CPUs, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().\r
+  \r
+  NOTE: The structure BASE_LIBRARY_JUMP_BUFFER is CPU architecture specific.\r
+  The same structure must never be used for more than one CPU architecture context.\r
+  For example, a BASE_LIBRARY_JUMP_BUFFER allocated by an IA-32 module must never be used from an x64 module. \r
+  SetJump()/LongJump() is not currently supported for the EBC processor type.   \r
+\r
+  @param  JumpBuffer  A pointer to CPU context buffer.\r
+\r
+  @retval 0 Indicates a return from SetJump().\r
+\r
+**/\r
+UINTN\r
+EFIAPI\r
+SetJump (\r
+  OUT     BASE_LIBRARY_JUMP_BUFFER  *JumpBuffer\r
+  );\r
+\r
+\r
+/**\r
+  Restores the CPU context that was saved with SetJump().\r
 \r
   Restores the CPU context from the buffer specified by JumpBuffer. This\r
   function never returns to the caller. Instead is resumes execution based on\r
@@ -2617,9 +3567,8 @@ LongJump (
   IN      UINTN                     Value\r
   );\r
 \r
-/**\r
-  Enables CPU interrupts.\r
 \r
+/**\r
   Enables CPU interrupts.\r
 \r
 **/\r
@@ -2629,124 +3578,1337 @@ EnableInterrupts (
   VOID\r
   );\r
 \r
+\r
 /**\r
   Disables CPU interrupts.\r
 \r
-  Disables CPU interrupts.\r
+**/\r
+VOID\r
+EFIAPI\r
+DisableInterrupts (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Disables CPU interrupts and returns the interrupt state prior to the disable\r
+  operation.\r
+\r
+  @retval TRUE  CPU interrupts were enabled on entry to this call.\r
+  @retval FALSE CPU interrupts were disabled on entry to this call.\r
+\r
+**/\r
+BOOLEAN\r
+EFIAPI\r
+SaveAndDisableInterrupts (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Enables CPU interrupts for the smallest window required to capture any\r
+  pending interrupts.\r
+\r
+**/\r
+VOID\r
+EFIAPI\r
+EnableDisableInterrupts (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Retrieves the current CPU interrupt state.\r
+\r
+  Returns TRUE is interrupts are currently enabled. Otherwise\r
+  returns FALSE.\r
+\r
+  @retval TRUE  CPU interrupts are enabled.\r
+  @retval FALSE CPU interrupts are disabled.\r
+\r
+**/\r
+BOOLEAN\r
+EFIAPI\r
+GetInterruptState (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Set the current CPU interrupt state.\r
+\r
+  Sets the current CPU interrupt state to the state specified by\r
+  InterruptState. If InterruptState is TRUE, then interrupts are enabled. If\r
+  InterruptState is FALSE, then interrupts are disabled. InterruptState is\r
+  returned.\r
+\r
+  @param  InterruptState  TRUE if interrupts should enabled. FALSE if\r
+                          interrupts should be disabled.\r
+\r
+  @return InterruptState\r
+\r
+**/\r
+BOOLEAN\r
+EFIAPI\r
+SetInterruptState (\r
+  IN      BOOLEAN                   InterruptState\r
+  );\r
+\r
+\r
+/**\r
+  Requests CPU to pause for a short period of time.\r
+\r
+  Requests CPU to pause for a short period of time. Typically used in MP\r
+  systems to prevent memory starvation while waiting for a spin lock.\r
+\r
+**/\r
+VOID\r
+EFIAPI\r
+CpuPause (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Transfers control to a function starting with a new stack.\r
+\r
+  Transfers control to the function specified by EntryPoint using the\r
+  new stack specified by NewStack and passing in the parameters specified\r
+  by Context1 and Context2.  Context1 and Context2 are optional and may\r
+  be NULL.  The function EntryPoint must never return.  This function\r
+  supports a variable number of arguments following the NewStack parameter.\r
+  These additional arguments are ignored on IA-32, x64, and EBC.\r
+  IPF CPUs expect one additional parameter of type VOID * that specifies\r
+  the new backing store pointer.\r
+\r
+  If EntryPoint is NULL, then ASSERT().\r
+  If NewStack is NULL, then ASSERT().\r
+\r
+  @param  EntryPoint  A pointer to function to call with the new stack.\r
+  @param  Context1    A pointer to the context to pass into the EntryPoint\r
+                      function.\r
+  @param  Context2    A pointer to the context to pass into the EntryPoint\r
+                      function.\r
+  @param  NewStack    A pointer to the new stack to use for the EntryPoint\r
+                      function.\r
+  @param  ...         This variable argument list is ignored for IA32, x64, and EBC.  \r
+                      For IPF, this variable argument list is expected to contain \r
+                      a single parameter of type VOID * that specifies the new backing \r
+                      store pointer.\r
+\r
+\r
+**/\r
+VOID\r
+EFIAPI\r
+SwitchStack (\r
+  IN      SWITCH_STACK_ENTRY_POINT  EntryPoint,\r
+  IN      VOID                      *Context1,  OPTIONAL\r
+  IN      VOID                      *Context2,  OPTIONAL\r
+  IN      VOID                      *NewStack,\r
+  ...\r
+  );\r
+\r
+\r
+/**\r
+  Generates a breakpoint on the CPU.\r
+\r
+  Generates a breakpoint on the CPU. The breakpoint must be implemented such\r
+  that code can resume normal execution after the breakpoint.\r
 \r
 **/\r
 VOID\r
 EFIAPI\r
-DisableInterrupts (\r
-  VOID\r
+CpuBreakpoint (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Executes an infinite loop.\r
+\r
+  Forces the CPU to execute an infinite loop. A debugger may be used to skip\r
+  past the loop and the code that follows the loop must execute properly. This\r
+  implies that the infinite loop must not cause the code that follow it to be\r
+  optimized away.\r
+\r
+**/\r
+VOID\r
+EFIAPI\r
+CpuDeadLoop (\r
+  VOID\r
+  );\r
+\r
+#if defined (MDE_CPU_IPF)\r
+\r
+/**\r
+  Flush a range of  cache lines in the cache coherency domain of the calling\r
+  CPU.\r
+\r
+  Invalidates the  cache lines specified by Address and Length. If Address is\r
+  not aligned on a cache line boundary, then entire cache line containing\r
+  Address is invalidated. If Address + Length is not aligned on a cache line\r
+  boundary, then the entire instruction cache line containing Address + Length\r
+  -1 is invalidated. This function may choose to invalidate the entire\r
+  instruction cache if that is more efficient than invalidating the specified\r
+  range. If Length is 0, the no instruction cache lines are invalidated.\r
+  Address is returned.\r
+\r
+  If Length is greater than (MAX_ADDRESS - Address + 1), then ASSERT().\r
+\r
+  @param  Address The base address of the instruction lines to invalidate. If\r
+                  the CPU is in a physical addressing mode, then Address is a\r
+                  physical address. If the CPU is in a virtual addressing mode,\r
+                  then Address is a virtual address.\r
+\r
+  @param  Length  The number of bytes to invalidate from the instruction cache.\r
+\r
+  @return Address\r
+\r
+**/\r
+VOID *\r
+EFIAPI\r
+IpfFlushCacheRange (\r
+  IN      VOID                      *Address,\r
+  IN      UINTN                     Length\r
+  );\r
+\r
+\r
+/**\r
+  Executes a FC instruction\r
+  Executes a FC instruction on the cache line specified by Address.\r
+  The cache line size affected is at least 32-bytes (aligned on a 32-byte boundary).\r
+  An implementation may flush a larger region.  This function is only available on IPF.\r
+\r
+  @param Address    The Address of cache line to be flushed.\r
+\r
+  @return The address of FC instruction executed.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmFc (\r
+  IN  UINT64  Address\r
+  );\r
+\r
+\r
+/**\r
+  Executes a FC.I instruction.\r
+  Executes a FC.I instruction on the cache line specified by Address.\r
+  The cache line size affected is at least 32-bytes (aligned on a 32-byte boundary).\r
+  An implementation may flush a larger region.  This function is only available on IPF.\r
+\r
+  @param Address    The Address of cache line to be flushed.\r
+\r
+  @return The address of FC.I instruction executed.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmFci (\r
+  IN  UINT64  Address\r
+  );\r
+\r
+\r
+/**\r
+  Reads the current value of a Processor Identifier Register (CPUID).\r
+  \r
+  Reads and returns the current value of Processor Identifier Register specified by Index. \r
+  The Index of largest implemented CPUID (One less than the number of implemented CPUID\r
+  registers) is determined by CPUID [3] bits {7:0}.\r
+  No parameter checking is performed on Index.  If the Index value is beyond the\r
+  implemented CPUID register range, a Reserved Register/Field fault may occur.  The caller\r
+  must either guarantee that Index is valid, or the caller must set up fault handlers to\r
+  catch the faults.  This function is only available on IPF.\r
+\r
+  @param Index    The 8-bit Processor Identifier Register index to read.\r
+\r
+  @return The current value of Processor Identifier Register specified by Index.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmReadCpuid (\r
+  IN  UINT8   Index\r
+  );\r
+\r
+\r
+/**\r
+  Reads the current value of 64-bit Processor Status Register (PSR).\r
+  This function is only available on IPF.\r
+\r
+  @return The current value of PSR.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmReadPsr (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Writes the current value of 64-bit Processor Status Register (PSR).\r
+\r
+  No parameter checking is performed on Value.  All bits of Value corresponding to\r
+  reserved fields of PSR must be 0 or a Reserved Register/Field fault may occur.\r
+  The caller must either guarantee that Value is valid, or the caller must set up\r
+  fault handlers to catch the faults. This function is only available on IPF.\r
+\r
+  @param Value    The 64-bit value to write to PSR.\r
+\r
+  @return The 64-bit value written to the PSR.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmWritePsr (\r
+  IN UINT64  Value\r
+  );\r
+\r
+\r
+/**\r
+  Reads the current value of 64-bit Kernel Register #0 (KR0).\r
+  This function is only available on IPF.\r
+\r
+  @return The current value of KR0.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmReadKr0 (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Reads the current value of 64-bit Kernel Register #1 (KR1).\r
+  This function is only available on IPF.\r
+\r
+  @return The current value of KR1.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmReadKr1 (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Reads the current value of 64-bit Kernel Register #2 (KR2).\r
+  This function is only available on IPF.\r
+\r
+  @return The current value of KR2.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmReadKr2 (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Reads the current value of 64-bit Kernel Register #3 (KR3).\r
+  This function is only available on IPF.\r
+\r
+  @return The current value of KR3.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmReadKr3 (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Reads the current value of 64-bit Kernel Register #4 (KR4).\r
+  This function is only available on IPF.\r
+\r
+  @return The current value of KR4.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmReadKr4 (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Reads the current value of 64-bit Kernel Register #5 (KR5).\r
+  This function is only available on IPF.\r
+\r
+  @return The current value of KR5.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmReadKr5 (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Reads the current value of 64-bit Kernel Register #6 (KR6).\r
+  This function is only available on IPF.\r
+\r
+  @return The current value of KR6.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmReadKr6 (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Reads the current value of 64-bit Kernel Register #7 (KR7).\r
+  This function is only available on IPF.\r
+\r
+  @return The current value of KR7.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmReadKr7 (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Write the current value of 64-bit Kernel Register #0 (KR0).\r
+  This function is only available on IPF.\r
+\r
+  @param  Value   The 64-bit value to write to KR0.\r
+\r
+  @return The 64-bit value written to the KR0.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmWriteKr0 (\r
+  IN UINT64  Value\r
+  );\r
+\r
+\r
+/**\r
+  Write the current value of 64-bit Kernel Register #1 (KR1).\r
+  This function is only available on IPF.\r
+\r
+  @param  Value   The 64-bit value to write to KR1.\r
+\r
+  @return The 64-bit value written to the KR1.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmWriteKr1 (\r
+  IN UINT64  Value\r
+  );\r
+\r
+\r
+/**\r
+  Write the current value of 64-bit Kernel Register #2 (KR2).\r
+  This function is only available on IPF.\r
+\r
+  @param  Value   The 64-bit value to write to KR2.\r
+\r
+  @return The 64-bit value written to the KR2.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmWriteKr2 (\r
+  IN UINT64  Value\r
+  );\r
+\r
+\r
+/**\r
+  Write the current value of 64-bit Kernel Register #3 (KR3).\r
+  This function is only available on IPF.\r
+\r
+  @param  Value   The 64-bit value to write to KR3.\r
+\r
+  @return The 64-bit value written to the KR3.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmWriteKr3 (\r
+  IN UINT64  Value\r
+  );\r
+\r
+\r
+/**\r
+  Write the current value of 64-bit Kernel Register #4 (KR4).\r
+  This function is only available on IPF.\r
+\r
+  @param  Value   The 64-bit value to write to KR4.\r
+\r
+  @return The 64-bit value written to the KR4.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmWriteKr4 (\r
+  IN UINT64  Value\r
+  );\r
+\r
+\r
+/**\r
+  Write the current value of 64-bit Kernel Register #5 (KR5).\r
+  This function is only available on IPF.\r
+\r
+  @param  Value   The 64-bit value to write to KR5.\r
+\r
+  @return The 64-bit value written to the KR5.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmWriteKr5 (\r
+  IN UINT64  Value\r
+  );\r
+\r
+\r
+/**\r
+  Write the current value of 64-bit Kernel Register #6 (KR6).\r
+  This function is only available on IPF.\r
+\r
+  @param  Value   The 64-bit value to write to KR6.\r
+\r
+  @return The 64-bit value written to the KR6.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmWriteKr6 (\r
+  IN UINT64  Value\r
+  );\r
+\r
+\r
+/**\r
+  Write the current value of 64-bit Kernel Register #7 (KR7).\r
+  This function is only available on IPF.\r
+\r
+  @param  Value   The 64-bit value to write to KR7.\r
+\r
+  @return The 64-bit value written to the KR7.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmWriteKr7 (\r
+  IN UINT64  Value\r
+  );\r
+\r
+\r
+/**\r
+  Reads the current value of Interval Timer Counter Register (ITC).\r
+  This function is only available on IPF.\r
+\r
+  @return The current value of ITC.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmReadItc (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Reads the current value of Interval Timer Vector Register (ITV).\r
+  This function is only available on IPF.\r
+\r
+  @return The current value of ITV.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmReadItv (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Reads the current value of Interval Timer Match Register (ITM).\r
+  This function is only available on IPF.\r
+\r
+  @return The current value of ITM.\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmReadItm (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Writes the current value of 64-bit Interval Timer Counter Register (ITC).\r
+  This function is only available on IPF.\r
+\r
+  @param Value    The 64-bit value to write to ITC.\r
+\r
+  @return The 64-bit value written to the ITC.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmWriteItc (\r
+  IN UINT64  Value\r
+  );\r
+\r
+\r
+/**\r
+  Writes the current value of 64-bit Interval Timer Match Register (ITM).\r
+  This function is only available on IPF.\r
+\r
+  @param Value    The 64-bit value to write to ITM.\r
+\r
+  @return The 64-bit value written to the ITM.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmWriteItm (\r
+  IN UINT64  Value\r
+  );\r
+\r
+\r
+/**\r
+  Writes the current value of 64-bit Interval Timer Vector Register (ITV).\r
+  No parameter checking is performed on Value.  All bits of Value corresponding to\r
+  reserved fields of ITV must be 0 or a Reserved Register/Field fault may occur.\r
+  The caller must either guarantee that Value is valid, or the caller must set up\r
+  fault handlers to catch the faults.\r
+  This function is only available on IPF.\r
+\r
+  @param Value    The 64-bit value to write to ITV.\r
+\r
+  @return The 64-bit value written to the ITV.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmWriteItv (\r
+  IN UINT64  Value\r
+  );\r
+\r
+\r
+/**\r
+  Reads the current value of Default Control Register (DCR).\r
+  This function is only available on IPF.\r
+\r
+  @return The current value of DCR.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmReadDcr (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Reads the current value of Interruption Vector Address Register (IVA).\r
+  This function is only available on IPF.\r
+\r
+  @return The current value of IVA.\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmReadIva (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Reads the current value of Page Table Address Register (PTA).\r
+  This function is only available on IPF.\r
+\r
+  @return The current value of PTA.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmReadPta (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Writes the current value of 64-bit Default Control Register (DCR).\r
+  No parameter checking is performed on Value.  All bits of Value corresponding to\r
+  reserved fields of DCR must be 0 or a Reserved Register/Field fault may occur.\r
+  The caller must either guarantee that Value is valid, or the caller must set up\r
+  fault handlers to catch the faults.\r
+  This function is only available on IPF.\r
+\r
+  @param Value    The 64-bit value to write to DCR.\r
+\r
+  @return The 64-bit value written to the DCR.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmWriteDcr (\r
+  IN UINT64  Value\r
+  );\r
+\r
+\r
+/**\r
+  Writes the current value of 64-bit Interruption Vector Address Register (IVA).\r
+  The size of vector table is 32 K bytes and is 32 K bytes aligned\r
+  the low 15 bits of Value is ignored when written.\r
+  This function is only available on IPF.\r
+\r
+  @param Value    The 64-bit value to write to IVA.\r
+\r
+  @return The 64-bit value written to the IVA.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmWriteIva (\r
+  IN UINT64  Value\r
+  );\r
+\r
+\r
+/**\r
+  Writes the current value of 64-bit Page Table Address Register (PTA).\r
+  No parameter checking is performed on Value.  All bits of Value corresponding to\r
+  reserved fields of DCR must be 0 or a Reserved Register/Field fault may occur.\r
+  The caller must either guarantee that Value is valid, or the caller must set up\r
+  fault handlers to catch the faults.\r
+  This function is only available on IPF.\r
+\r
+  @param Value    The 64-bit value to write to PTA.\r
+\r
+  @return The 64-bit value written to the PTA.\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmWritePta (\r
+  IN UINT64  Value\r
+  );\r
+\r
+\r
+/**\r
+  Reads the current value of Local Interrupt ID Register (LID).\r
+  This function is only available on IPF.\r
+\r
+  @return The current value of LID.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmReadLid (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Reads the current value of External Interrupt Vector Register (IVR).\r
+  This function is only available on IPF.\r
+\r
+  @return The current value of IVR.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmReadIvr (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Reads the current value of Task Priority Register (TPR).\r
+  This function is only available on IPF.\r
+\r
+  @return The current value of TPR.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmReadTpr (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Reads the current value of External Interrupt Request Register #0 (IRR0).\r
+  This function is only available on IPF.\r
+\r
+  @return The current value of IRR0.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmReadIrr0 (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Reads the current value of External Interrupt Request Register #1 (IRR1).\r
+  This function is only available on IPF.\r
+\r
+  @return The current value of IRR1.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmReadIrr1 (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Reads the current value of External Interrupt Request Register #2 (IRR2).\r
+  This function is only available on IPF.\r
+\r
+  @return The current value of IRR2.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmReadIrr2 (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Reads the current value of External Interrupt Request Register #3 (IRR3).\r
+  This function is only available on IPF.\r
+\r
+  @return The current value of IRR3.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmReadIrr3 (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Reads the current value of Performance Monitor Vector Register (PMV).\r
+  This function is only available on IPF.\r
+\r
+  @return The current value of PMV.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmReadPmv (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Reads the current value of Corrected Machine Check Vector Register (CMCV).\r
+  This function is only available on IPF.\r
+\r
+  @return The current value of CMCV.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmReadCmcv (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Reads the current value of Local Redirection Register #0 (LRR0).\r
+  This function is only available on IPF.\r
+\r
+  @return The current value of LRR0.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmReadLrr0 (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Reads the current value of Local Redirection Register #1 (LRR1).\r
+  This function is only available on IPF.\r
+\r
+  @return The current value of LRR1.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmReadLrr1 (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Writes the current value of 64-bit Page Local Interrupt ID Register (LID).\r
+  No parameter checking is performed on Value.  All bits of Value corresponding to\r
+  reserved fields of LID must be 0 or a Reserved Register/Field fault may occur.\r
+  The caller must either guarantee that Value is valid, or the caller must set up\r
+  fault handlers to catch the faults.\r
+  This function is only available on IPF.\r
+\r
+  @param Value    The 64-bit value to write to LID.\r
+\r
+  @return The 64-bit value written to the LID.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmWriteLid (\r
+  IN UINT64  Value\r
+  );\r
+\r
+\r
+/**\r
+  Writes the current value of 64-bit Task Priority Register (TPR).\r
+  No parameter checking is performed on Value.  All bits of Value corresponding to\r
+  reserved fields of TPR must be 0 or a Reserved Register/Field fault may occur.\r
+  The caller must either guarantee that Value is valid, or the caller must set up\r
+  fault handlers to catch the faults.\r
+  This function is only available on IPF.\r
+\r
+  @param Value    The 64-bit value to write to TPR.\r
+\r
+  @return The 64-bit value written to the TPR.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmWriteTpr (\r
+  IN UINT64  Value\r
+  );\r
+\r
+\r
+/**\r
+  Performs a write operation on End OF External Interrupt Register (EOI).\r
+  Writes a value of 0 to the EOI Register.  This function is only available on IPF.\r
+\r
+**/\r
+VOID\r
+EFIAPI\r
+AsmWriteEoi (\r
+  VOID\r
+  );\r
+\r
+\r
+/**\r
+  Writes the current value of 64-bit Performance Monitor Vector Register (PMV).\r
+  No parameter checking is performed on Value.  All bits of Value corresponding\r
+  to reserved fields of PMV must be 0 or a Reserved Register/Field fault may occur.\r
+  The caller must either guarantee that Value is valid, or the caller must set up\r
+  fault handlers to catch the faults.\r
+  This function is only available on IPF.\r
+\r
+  @param Value    The 64-bit value to write to PMV.\r
+\r
+  @return The 64-bit value written to the PMV.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmWritePmv (\r
+  IN UINT64  Value\r
+  );\r
+\r
+\r
+/**\r
+  Writes the current value of 64-bit Corrected Machine Check Vector Register (CMCV).\r
+  No parameter checking is performed on Value.  All bits of Value corresponding\r
+  to reserved fields of CMCV must be 0 or a Reserved Register/Field fault may occur.\r
+  The caller must either guarantee that Value is valid, or the caller must set up\r
+  fault handlers to catch the faults.\r
+  This function is only available on IPF.\r
+\r
+  @param Value    The 64-bit value to write to CMCV.\r
+\r
+  @return The 64-bit value written to the CMCV.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmWriteCmcv (\r
+  IN UINT64  Value\r
+  );\r
+\r
+\r
+/**\r
+  Writes the current value of 64-bit Local Redirection Register #0 (LRR0).\r
+  No parameter checking is performed on Value.  All bits of Value corresponding\r
+  to reserved fields of LRR0 must be 0 or a Reserved Register/Field fault may occur.\r
+  The caller must either guarantee that Value is valid, or the caller must set up\r
+  fault handlers to catch the faults.\r
+  This function is only available on IPF.\r
+\r
+  @param Value    The 64-bit value to write to LRR0.\r
+\r
+  @return The 64-bit value written to the LRR0.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmWriteLrr0 (\r
+  IN UINT64  Value\r
+  );\r
+\r
+\r
+/**\r
+  Writes the current value of 64-bit Local Redirection Register #1 (LRR1).\r
+  No parameter checking is performed on Value.  All bits of Value corresponding\r
+  to reserved fields of LRR1 must be 0 or a Reserved Register/Field fault may occur.\r
+  The caller must either guarantee that Value is valid, or the caller must\r
+  set up fault handlers to catch the faults.\r
+  This function is only available on IPF.\r
+\r
+  @param Value    The 64-bit value to write to LRR1.\r
+\r
+  @return The 64-bit value written to the LRR1.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmWriteLrr1 (\r
+  IN UINT64  Value\r
+  );\r
+\r
+\r
+/**\r
+  Reads the current value of Instruction Breakpoint Register (IBR).\r
+  \r
+  The Instruction Breakpoint Registers are used in pairs.  The even numbered\r
+  registers contain breakpoint addresses, and the odd numbered registers contain\r
+  breakpoint mask conditions.  At least 4 instruction registers pairs are implemented\r
+  on all processor models.   Implemented registers are contiguous starting with\r
+  register 0.  No parameter checking is performed on Index, and if the Index value\r
+  is beyond the implemented IBR register range, a Reserved Register/Field fault may\r
+  occur.  The caller must either guarantee that Index is valid, or the caller must\r
+  set up fault handlers to catch the faults.\r
+  This function is only available on IPF.\r
+\r
+  @param Index    The 8-bit Instruction Breakpoint Register index to read.\r
+\r
+  @return The current value of Instruction Breakpoint Register specified by Index.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmReadIbr (\r
+  IN  UINT8   Index\r
+  );\r
+\r
+\r
+/**\r
+  Reads the current value of Data Breakpoint Register (DBR).\r
+\r
+  The Data Breakpoint Registers are used in pairs.  The even numbered registers\r
+  contain breakpoint addresses, and odd numbered registers contain breakpoint\r
+  mask conditions.  At least 4 data registers pairs are implemented on all processor\r
+  models.  Implemented registers are contiguous starting with register 0.\r
+  No parameter checking is performed on Index.  If the Index value is beyond\r
+  the implemented DBR register range, a Reserved Register/Field fault may occur.\r
+  The caller must either guarantee that Index is valid, or the caller must set up\r
+  fault handlers to catch the faults.\r
+  This function is only available on IPF.\r
+\r
+  @param Index    The 8-bit Data Breakpoint Register index to read.\r
+\r
+  @return The current value of Data Breakpoint Register specified by Index.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmReadDbr (\r
+  IN  UINT8   Index\r
+  );\r
+\r
+\r
+/**\r
+  Reads the current value of Performance Monitor Configuration Register (PMC).\r
+\r
+  All processor implementations provide at least 4 performance counters\r
+  (PMC/PMD [4]...PMC/PMD [7] pairs), and 4 performance monitor counter overflow\r
+  status registers (PMC [0]... PMC [3]).  Processor implementations may provide\r
+  additional implementation-dependent PMC and PMD to increase the number of\r
+  'generic' performance counters (PMC/PMD pairs).  The remainder of PMC and PMD\r
+  register set is implementation dependent.  No parameter checking is performed\r
+  on Index.  If the Index value is beyond the implemented PMC register range,\r
+  zero value will be returned.\r
+  This function is only available on IPF.\r
+\r
+  @param Index    The 8-bit Performance Monitor Configuration Register index to read.\r
+\r
+  @return The current value of Performance Monitor Configuration Register\r
+  specified by Index.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmReadPmc (\r
+  IN  UINT8   Index\r
+  );\r
+\r
+\r
+/**\r
+  Reads the current value of Performance Monitor Data Register (PMD).\r
+\r
+  All processor implementations provide at least 4 performance counters\r
+  (PMC/PMD [4]...PMC/PMD [7] pairs), and 4 performance monitor counter\r
+  overflow status registers (PMC [0]... PMC [3]).  Processor implementations may\r
+  provide additional implementation-dependent PMC and PMD to increase the number\r
+  of 'generic' performance counters (PMC/PMD pairs).  The remainder of PMC and PMD\r
+  register set is implementation dependent.  No parameter checking is performed\r
+  on Index.  If the Index value is beyond the implemented PMD register range,\r
+  zero value will be returned.\r
+  This function is only available on IPF.\r
+\r
+  @param Index    The 8-bit Performance Monitor Data Register index to read.\r
+\r
+  @return The current value of Performance Monitor Data Register specified by Index.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmReadPmd (\r
+  IN  UINT8   Index\r
+  );\r
+\r
+\r
+/**\r
+  Writes the current value of 64-bit Instruction Breakpoint Register (IBR).\r
+\r
+  Writes current value of Instruction Breakpoint Register specified by Index.\r
+  The Instruction Breakpoint Registers are used in pairs.  The even numbered\r
+  registers contain breakpoint addresses, and odd numbered registers contain\r
+  breakpoint mask conditions.  At least 4 instruction registers pairs are implemented\r
+  on all processor models.  Implemented registers are contiguous starting with\r
+  register 0.  No parameter checking is performed on Index.  If the Index value\r
+  is beyond the implemented IBR register range, a Reserved Register/Field fault may\r
+  occur.  The caller must either guarantee that Index is valid, or the caller must\r
+  set up fault handlers to catch the faults.\r
+  This function is only available on IPF.\r
+\r
+  @param Index    The 8-bit Instruction Breakpoint Register index to write.\r
+  @param Value    The 64-bit value to write to IBR.\r
+\r
+  @return The 64-bit value written to the IBR.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmWriteIbr (\r
+  IN UINT8   Index,\r
+  IN UINT64  Value\r
+  );\r
+\r
+\r
+/**\r
+  Writes the current value of 64-bit Data Breakpoint Register (DBR).\r
+\r
+  Writes current value of Data Breakpoint Register specified by Index.\r
+  The Data Breakpoint Registers are used in pairs.  The even numbered registers\r
+  contain breakpoint addresses, and odd numbered registers contain breakpoint\r
+  mask conditions.  At least 4 data registers pairs are implemented on all processor\r
+  models.  Implemented registers are contiguous starting with register 0.  No parameter\r
+  checking is performed on Index.  If the Index value is beyond the implemented\r
+  DBR register range, a Reserved Register/Field fault may occur.  The caller must\r
+  either guarantee that Index is valid, or the caller must set up fault handlers to\r
+  catch the faults.\r
+  This function is only available on IPF.\r
+\r
+  @param Index    The 8-bit Data Breakpoint Register index to write.\r
+  @param Value    The 64-bit value to write to DBR.\r
+\r
+  @return The 64-bit value written to the DBR.\r
+\r
+**/\r
+UINT64\r
+EFIAPI\r
+AsmWriteDbr (\r
+  IN UINT8   Index,\r
+  IN UINT64  Value\r
   );\r
 \r
+\r
 /**\r
-  Disables CPU interrupts and returns the interrupt state prior to the disable\r
-  operation.\r
+  Writes the current value of 64-bit Performance Monitor Configuration Register (PMC).\r
 \r
-  Disables CPU interrupts and returns the interrupt state prior to the disable\r
-  operation.\r
+  Writes current value of Performance Monitor Configuration Register specified by Index.\r
+  All processor implementations provide at least 4 performance counters\r
+  (PMC/PMD [4]...PMC/PMD [7] pairs), and 4 performance monitor counter overflow status\r
+  registers (PMC [0]... PMC [3]).  Processor implementations may provide additional\r
+  implementation-dependent PMC and PMD to increase the number of 'generic' performance\r
+  counters (PMC/PMD pairs).  The remainder of PMC and PMD register set is implementation\r
+  dependent.  No parameter checking is performed on Index.  If the Index value is\r
+  beyond the implemented PMC register range, the write is ignored.\r
+  This function is only available on IPF.\r
 \r
-  @retval TRUE  CPU interrupts were enabled on entry to this call.\r
-  @retval FALSE CPU interrupts were disabled on entry to this call.\r
+  @param Index    The 8-bit Performance Monitor Configuration Register index to write.\r
+  @param Value    The 64-bit value to write to PMC.\r
+\r
+  @return The 64-bit value written to the PMC.\r
 \r
 **/\r
-BOOLEAN\r
+UINT64\r
 EFIAPI\r
-SaveAndDisableInterrupts (\r
-  VOID\r
+AsmWritePmc (\r
+  IN UINT8   Index,\r
+  IN UINT64  Value\r
   );\r
 \r
+\r
 /**\r
-  Enables CPU interrupts for the smallest window required to capture any\r
-  pending interrupts.\r
+  Writes the current value of 64-bit Performance Monitor Data Register (PMD).\r
 \r
-  Enables CPU interrupts for the smallest window required to capture any\r
-  pending interrupts.\r
+  Writes current value of Performance Monitor Data Register specified by Index.\r
+  All processor implementations provide at least 4 performance counters\r
+  (PMC/PMD [4]...PMC/PMD [7] pairs), and 4 performance monitor counter overflow\r
+  status registers (PMC [0]... PMC [3]).  Processor implementations may provide\r
+  additional implementation-dependent PMC and PMD to increase the number of 'generic'\r
+  performance counters (PMC/PMD pairs).  The remainder of PMC and PMD register set\r
+  is implementation dependent.  No parameter checking is performed on Index.  If the\r
+  Index value is beyond the implemented PMD register range, the write is ignored.\r
+  This function is only available on IPF.\r
+\r
+  @param Index    The 8-bit Performance Monitor Data Register index to write.\r
+  @param Value    The 64-bit value to write to PMD.\r
+\r
+  @return The 64-bit value written to the PMD.\r
 \r
 **/\r
-VOID\r
+UINT64\r
 EFIAPI\r
-EnableDisableInterrupts (\r
-  VOID\r
+AsmWritePmd (\r
+  IN UINT8   Index,\r
+  IN UINT64  Value\r
   );\r
 \r
+\r
 /**\r
-  Retrieves the current CPU interrupt state.\r
+  Reads the current value of 64-bit Global Pointer (GP).\r
 \r
-  Retrieves the current CPU interrupt state. Returns TRUE is interrupts are\r
-  currently enabled. Otherwise returns FALSE.\r
+  Reads and returns the current value of GP.\r
+  This function is only available on IPF.\r
 \r
-  @retval TRUE  CPU interrupts are enabled.\r
-  @retval FALSE CPU interrupts are disabled.\r
+  @return The current value of GP.\r
 \r
 **/\r
-BOOLEAN\r
+UINT64\r
 EFIAPI\r
-GetInterruptState (\r
+AsmReadGp (\r
   VOID\r
   );\r
 \r
+\r
 /**\r
-  Set the current CPU interrupt state.\r
+  Write the current value of 64-bit Global Pointer (GP).\r
 \r
-  Sets the current CPU interrupt state to the state specified by\r
-  InterruptState. If InterruptState is TRUE, then interrupts are enabled. If\r
-  InterruptState is FALSE, then interrupts are disabled. InterruptState is\r
-  returned.\r
+  Writes the current value of GP. The 64-bit value written to the GP is returned.\r
+  No parameter checking is performed on Value.\r
+  This function is only available on IPF.\r
 \r
-  @param  InterruptState  TRUE if interrupts should enabled. FALSE if\r
-                          interrupts should be disabled.\r
+  @param Value  The 64-bit value to write to GP.\r
 \r
-  @return InterruptState\r
+  @return The 64-bit value written to the GP.\r
 \r
 **/\r
-BOOLEAN\r
+UINT64\r
 EFIAPI\r
-SetInterruptState (\r
-  IN      BOOLEAN                   InterruptState\r
+AsmWriteGp (\r
+  IN UINT64  Value\r
   );\r
 \r
+\r
 /**\r
-  Places the CPU in a sleep state until an interrupt is received.\r
+  Reads the current value of 64-bit Stack Pointer (SP).\r
+\r
+  Reads and returns the current value of SP.\r
+  This function is only available on IPF.\r
 \r
-  Places the CPU in a sleep state until an interrupt is received. If interrupts\r
-  are disabled prior to calling this function, then the CPU will be placed in a\r
-  sleep state indefinitely.\r
+  @return The current value of SP.\r
 \r
 **/\r
-VOID\r
+UINT64\r
 EFIAPI\r
-CpuSleep (\r
+AsmReadSp (\r
   VOID\r
   );\r
 \r
+\r
 /**\r
-  Requests CPU to pause for a short period of time.\r
+  Determines if the CPU is currently executing in virtual, physical, or mixed mode.\r
 \r
-  Requests CPU to pause for a short period of time. Typically used in MP\r
-  systems to prevent memory starvation while waiting for a spin lock.\r
+  Determines the current execution mode of the CPU.\r
+  If the CPU is in virtual mode(PSR.RT=1, PSR.DT=1, PSR.IT=1), then 1 is returned.\r
+  If the CPU is in physical mode(PSR.RT=0, PSR.DT=0, PSR.IT=0), then 0 is returned.\r
+  If the CPU is not in physical mode or virtual mode, then it is in mixed mode,\r
+  and -1 is returned.\r
+  This function is only available on IPF.\r
+\r
+  @retval  1  The CPU is in virtual mode.\r
+  @retval  0  The CPU is in physical mode.\r
+  @retval -1  The CPU is in mixed mode.\r
 \r
 **/\r
-VOID\r
+INT64\r
 EFIAPI\r
-CpuPause (\r
+AsmCpuVirtual (\r
   VOID\r
   );\r
 \r
+\r
 /**\r
-  Flushes all the Translation Lookaside Buffers(TLB) entries in a CPU.\r
+  Makes a PAL procedure call.\r
+\r
+  This is a wrapper function to make a PAL procedure call.  Based on the Index\r
+  value this API will make static or stacked PAL call.  The following table\r
+  describes the usage of PAL Procedure Index Assignment. Architected procedures\r
+  may be designated as required or optional.  If a PAL procedure is specified\r
+  as optional, a unique return code of 0xFFFFFFFFFFFFFFFF is returned in the\r
+  Status field of the PAL_CALL_RETURN structure.\r
+  This indicates that the procedure is not present in this PAL implementation.\r
+  It is the caller's responsibility to check for this return code after calling\r
+  any optional PAL procedure.\r
+  No parameter checking is performed on the 5 input parameters, but there are\r
+  some common rules that the caller should follow when making a PAL call.  Any\r
+  address passed to PAL as buffers for return parameters must be 8-byte aligned.\r
+  Unaligned addresses may cause undefined results.  For those parameters defined\r
+  as reserved or some fields defined as reserved must be zero filled or the invalid\r
+  argument return value may be returned or undefined result may occur during the\r
+  execution of the procedure.  If the PalEntryPoint  does not point to a valid\r
+  PAL entry point then the system behavior is undefined.  This function is only\r
+  available on IPF.\r
 \r
-  Flushes all the Translation Lookaside Buffers(TLB) entries in a CPU.\r
+  @param PalEntryPoint  The PAL procedure calls entry point.\r
+  @param Index          The PAL procedure Index number.\r
+  @param Arg2           The 2nd parameter for PAL procedure calls.\r
+  @param Arg3           The 3rd parameter for PAL procedure calls.\r
+  @param Arg4           The 4th parameter for PAL procedure calls.\r
+\r
+  @return structure returned from the PAL Call procedure, including the status and return value.\r
 \r
 **/\r
-VOID\r
+PAL_CALL_RETURN\r
 EFIAPI\r
-CpuFlushTlb (\r
-  VOID\r
+AsmPalCall (\r
+  IN UINT64  PalEntryPoint,\r
+  IN UINT64  Index,\r
+  IN UINT64  Arg2,\r
+  IN UINT64  Arg3,\r
+  IN UINT64  Arg4\r
   );\r
 \r
+\r
 /**\r
   Transfers control to a function starting with a new stack.\r
 \r
@@ -2765,163 +4927,166 @@ CpuFlushTlb (
                       function.\r
   @param  NewStack    A pointer to the new stack to use for the EntryPoint\r
                       function.\r
+  @param  NewBsp      A pointer to the new memory location for RSE backing\r
+                      store.\r
 \r
 **/\r
 VOID\r
 EFIAPI\r
-SwitchStack (\r
+AsmSwitchStackAndBackingStore (\r
   IN      SWITCH_STACK_ENTRY_POINT  EntryPoint,\r
   IN      VOID                      *Context1,  OPTIONAL\r
   IN      VOID                      *Context2,  OPTIONAL\r
-  IN      VOID                      *NewStack\r
+  IN      VOID                      *NewStack,\r
+  IN      VOID                      *NewBsp\r
   );\r
 \r
 /**\r
-  Generates a breakpoint on the CPU.\r
+  @todo   This call should be removed after the PalCall\r
+          Instance issue has been fixed.\r
 \r
-  Generates a breakpoint on the CPU. The breakpoint must be implemented such\r
-  that code can resume normal execution after the breakpoint.\r
+  Performs a PAL call using static calling convention.\r
 \r
-**/\r
-VOID\r
-EFIAPI\r
-CpuBreakpoint (\r
-  VOID\r
-  );\r
+  An internal function to perform a PAL call using static calling convention.\r
 \r
-/**\r
-  Executes an infinite loop.\r
+  @param  PalEntryPoint The entry point address of PAL. The address in ar.kr5\r
+                        would be used if this parameter were NULL on input.\r
+  @param  Arg1          The first argument of a PAL call.\r
+  @param  Arg2          The second argument of a PAL call.\r
+  @param  Arg3          The third argument of a PAL call.\r
+  @param  Arg4          The fourth argument of a PAL call.\r
 \r
-  Forces the CPU to execute an infinite loop. A debugger may be used to skip\r
-  past the loop and the code that follows the loop must execute properly. This\r
-  implies that the infinite loop must not cause the code that follow it to be\r
-  optimized away.\r
+  @return The values returned in r8, r9, r10 and r11.\r
 \r
 **/\r
-VOID\r
-EFIAPI\r
-CpuDeadLoop (\r
-  VOID\r
+PAL_CALL_RETURN\r
+PalCallStatic (\r
+  IN      CONST VOID                *PalEntryPoint,\r
+  IN      UINT64                    Arg1,\r
+  IN      UINT64                    Arg2,\r
+  IN      UINT64                    Arg3,\r
+  IN      UINT64                    Arg4\r
   );\r
 \r
-//\r
-// IA32 and X64 Specific Functions\r
-//\r
-//\r
-// Byte packed structure for 16-bit Real Mode EFLAGS\r
-//\r
+\r
+\r
+#elif defined (MDE_CPU_IA32) || defined (MDE_CPU_X64)\r
+///\r
+/// IA32 and X64 Specific Functions\r
+/// Byte packed structure for 16-bit Real Mode EFLAGS\r
+///\r
 typedef union {\r
   struct {\r
-    UINT32  CF:1;           // Carry Flag\r
-    UINT32  Reserved_0:1;   // Reserved\r
-    UINT32  PF:1;           // Parity Flag\r
-    UINT32  Reserved_1:1;   // Reserved\r
-    UINT32  AF:1;           // Auxiliary Carry Flag\r
-    UINT32  Reserved_2:1;   // Reserved\r
-    UINT32  ZF:1;           // Zero Flag\r
-    UINT32  SF:1;           // Sign Flag\r
-    UINT32  TF:1;           // Trap Flag\r
-    UINT32  IF:1;           // Interrupt Enable Flag\r
-    UINT32  DF:1;           // Direction Flag\r
-    UINT32  OF:1;           // Overflow Flag\r
-    UINT32  IOPL:2;         // I/O Privilege Level\r
-    UINT32  NT:1;           // Nested Task\r
-    UINT32  Reserved_3:1;   // Reserved\r
+    UINT32  CF:1;           /// Carry Flag\r
+    UINT32  Reserved_0:1;   /// Reserved\r
+    UINT32  PF:1;           /// Parity Flag\r
+    UINT32  Reserved_1:1;   /// Reserved\r
+    UINT32  AF:1;           /// Auxiliary Carry Flag\r
+    UINT32  Reserved_2:1;   /// Reserved\r
+    UINT32  ZF:1;           /// Zero Flag\r
+    UINT32  SF:1;           /// Sign Flag\r
+    UINT32  TF:1;           /// Trap Flag\r
+    UINT32  IF:1;           /// Interrupt Enable Flag\r
+    UINT32  DF:1;           /// Direction Flag\r
+    UINT32  OF:1;           /// Overflow Flag\r
+    UINT32  IOPL:2;         /// I/O Privilege Level\r
+    UINT32  NT:1;           /// Nested Task\r
+    UINT32  Reserved_3:1;   /// Reserved\r
   } Bits;\r
   UINT16    Uint16;\r
 } IA32_FLAGS16;\r
 \r
-//\r
-// Byte packed structure for EFLAGS/RFLAGS\r
-// 32-bits on IA-32\r
-// 64-bits on X64.  The upper 32-bits on X64 are reserved\r
-//\r
+///\r
+/// Byte packed structure for EFLAGS/RFLAGS\r
+/// 32-bits on IA-32\r
+/// 64-bits on X64.  The upper 32-bits on X64 are reserved\r
+///\r
 typedef union {\r
   struct {\r
-    UINT32  CF:1;           // Carry Flag\r
-    UINT32  Reserved_0:1;   // Reserved\r
-    UINT32  PF:1;           // Parity Flag\r
-    UINT32  Reserved_1:1;   // Reserved\r
-    UINT32  AF:1;           // Auxiliary Carry Flag\r
-    UINT32  Reserved_2:1;   // Reserved\r
-    UINT32  ZF:1;           // Zero Flag\r
-    UINT32  SF:1;           // Sign Flag\r
-    UINT32  TF:1;           // Trap Flag\r
-    UINT32  IF:1;           // Interrupt Enable Flag\r
-    UINT32  DF:1;           // Direction Flag\r
-    UINT32  OF:1;           // Overflow Flag\r
-    UINT32  IOPL:2;         // I/O Privilege Level\r
-    UINT32  NT:1;           // Nested Task\r
-    UINT32  Reserved_3:1;   // Reserved\r
-    UINT32  RF:1;           // Resume Flag\r
-    UINT32  VM:1;           // Virtual 8086 Mode\r
-    UINT32  AC:1;           // Alignment Check\r
-    UINT32  VIF:1;          // Virtual Interrupt Flag\r
-    UINT32  VIP:1;          // Virtual Interrupt Pending\r
-    UINT32  ID:1;           // ID Flag\r
-    UINT32  Reserved_4:10;  // Reserved\r
+    UINT32  CF:1;           /// Carry Flag\r
+    UINT32  Reserved_0:1;   /// Reserved\r
+    UINT32  PF:1;           /// Parity Flag\r
+    UINT32  Reserved_1:1;   /// Reserved\r
+    UINT32  AF:1;           /// Auxiliary Carry Flag\r
+    UINT32  Reserved_2:1;   /// Reserved\r
+    UINT32  ZF:1;           /// Zero Flag\r
+    UINT32  SF:1;           /// Sign Flag\r
+    UINT32  TF:1;           /// Trap Flag\r
+    UINT32  IF:1;           /// Interrupt Enable Flag\r
+    UINT32  DF:1;           /// Direction Flag\r
+    UINT32  OF:1;           /// Overflow Flag\r
+    UINT32  IOPL:2;         /// I/O Privilege Level\r
+    UINT32  NT:1;           /// Nested Task\r
+    UINT32  Reserved_3:1;   /// Reserved\r
+    UINT32  RF:1;           /// Resume Flag\r
+    UINT32  VM:1;           /// Virtual 8086 Mode\r
+    UINT32  AC:1;           /// Alignment Check\r
+    UINT32  VIF:1;          /// Virtual Interrupt Flag\r
+    UINT32  VIP:1;          /// Virtual Interrupt Pending\r
+    UINT32  ID:1;           /// ID Flag\r
+    UINT32  Reserved_4:10;  /// Reserved\r
   } Bits;\r
   UINTN     UintN;\r
 } IA32_EFLAGS32;\r
 \r
-//\r
-// Byte packed structure for Control Register 0 (CR0)\r
-// 32-bits on IA-32\r
-// 64-bits on X64.  The upper 32-bits on X64 are reserved\r
-//\r
+///\r
+/// Byte packed structure for Control Register 0 (CR0)\r
+/// 32-bits on IA-32\r
+/// 64-bits on X64.  The upper 32-bits on X64 are reserved\r
+///\r
 typedef union {\r
   struct {\r
-    UINT32  PE:1;           // Protection Enable\r
-    UINT32  MP:1;           // Monitor Coprocessor\r
-    UINT32  EM:1;           // Emulation\r
-    UINT32  TS:1;           // Task Switched\r
-    UINT32  ET:1;           // Extension Type\r
-    UINT32  NE:1;           // Numeric Error\r
-    UINT32  Reserved_0:10;  // Reserved\r
-    UINT32  WP:1;           // Write Protect\r
-    UINT32  Reserved_1:1;   // Reserved\r
-    UINT32  AM:1;           // Alignment Mask\r
-    UINT32  Reserved_2:10;  // Reserved\r
-    UINT32  NW:1;           // Mot Write-through\r
-    UINT32  CD:1;           // Cache Disable\r
-    UINT32  PG:1;           // Paging\r
+    UINT32  PE:1;           /// Protection Enable\r
+    UINT32  MP:1;           /// Monitor Coprocessor\r
+    UINT32  EM:1;           /// Emulation\r
+    UINT32  TS:1;           /// Task Switched\r
+    UINT32  ET:1;           /// Extension Type\r
+    UINT32  NE:1;           /// Numeric Error\r
+    UINT32  Reserved_0:10;  /// Reserved\r
+    UINT32  WP:1;           /// Write Protect\r
+    UINT32  Reserved_1:1;   /// Reserved\r
+    UINT32  AM:1;           /// Alignment Mask\r
+    UINT32  Reserved_2:10;  /// Reserved\r
+    UINT32  NW:1;           /// Mot Write-through\r
+    UINT32  CD:1;           /// Cache Disable\r
+    UINT32  PG:1;           /// Paging\r
   } Bits;\r
   UINTN     UintN;\r
 } IA32_CR0;\r
 \r
-//\r
-// Byte packed structure for Control Register 4 (CR4)\r
-// 32-bits on IA-32\r
-// 64-bits on X64.  The upper 32-bits on X64 are reserved\r
-//\r
+///\r
+/// Byte packed structure for Control Register 4 (CR4)\r
+/// 32-bits on IA-32\r
+/// 64-bits on X64.  The upper 32-bits on X64 are reserved\r
+///\r
 typedef union {\r
   struct {\r
-    UINT32  VME:1;          // Virtual-8086 Mode Extensions\r
-    UINT32  PVI:1;          // Protected-Mode Virtual Interrupts\r
-    UINT32  TSD:1;          // Time Stamp Disable\r
-    UINT32  DE:1;           // Debugging Extensions\r
-    UINT32  PSE:1;          // Page Size Extensions\r
-    UINT32  PAE:1;          // Physical Address Extension\r
-    UINT32  MCE:1;          // Machine Check Enable\r
-    UINT32  PGE:1;          // Page Global Enable\r
-    UINT32  PCE:1;          // Performance Monitoring Counter\r
-                            // Enable\r
-    UINT32  OSFXSR:1;       // Operating System Support for\r
-                            // FXSAVE and FXRSTOR instructions\r
-    UINT32  OSXMMEXCPT:1;   // Operating System Support for\r
-                            // Unmasked SIMD Floating Point\r
-                            // Exceptions\r
-    UINT32  Reserved_0:2;   // Reserved\r
-    UINT32  VMXE:1;         // VMX Enable\r
-    UINT32  Reserved_1:18;  // Reseved\r
+    UINT32  VME:1;          /// Virtual-8086 Mode Extensions\r
+    UINT32  PVI:1;          /// Protected-Mode Virtual Interrupts\r
+    UINT32  TSD:1;          /// Time Stamp Disable\r
+    UINT32  DE:1;           /// Debugging Extensions\r
+    UINT32  PSE:1;          /// Page Size Extensions\r
+    UINT32  PAE:1;          /// Physical Address Extension\r
+    UINT32  MCE:1;          /// Machine Check Enable\r
+    UINT32  PGE:1;          /// Page Global Enable\r
+    UINT32  PCE:1;          /// Performance Monitoring Counter\r
+                            /// Enable\r
+    UINT32  OSFXSR:1;       /// Operating System Support for\r
+                            /// FXSAVE and FXRSTOR instructions\r
+    UINT32  OSXMMEXCPT:1;   /// Operating System Support for\r
+                            /// Unmasked SIMD Floating Point\r
+                            /// Exceptions\r
+    UINT32  Reserved_0:2;   /// Reserved\r
+    UINT32  VMXE:1;         /// VMX Enable\r
+    UINT32  Reserved_1:18;  /// Reseved\r
   } Bits;\r
   UINTN     UintN;\r
 } IA32_CR4;\r
 \r
-//\r
-// Byte packed structure for an IDTR, GDTR, LDTR descriptor\r
-/// @bug  How to make this structure byte-packed in a compiler independent way?\r
-//\r
+///\r
+/// Byte packed structure for an IDTR, GDTR, LDTR descriptor\r
+/// @todo  How to make this structure byte-packed in a compiler independent way?\r
+///\r
 #pragma pack (1)\r
 typedef struct {\r
   UINT16  Limit;\r
@@ -2935,9 +5100,11 @@ typedef struct {
 #define IA32_IDT_GATE_TYPE_INTERRUPT_32  0x8E\r
 #define IA32_IDT_GATE_TYPE_TRAP_32       0x8F\r
 \r
-//\r
-// Byte packed structure for an Interrupt Gate Descriptor\r
-//\r
+///\r
+/// Byte packed structure for an Interrupt Gate Descriptor\r
+///\r
+#if defined (MDE_CPU_IA32)\r
+\r
 typedef union {\r
   struct {\r
     UINT32  OffsetLow:16;   // Offset bits 15..0\r
@@ -2949,16 +5116,36 @@ typedef union {
   UINT64  Uint64;\r
 } IA32_IDT_GATE_DESCRIPTOR;\r
 \r
-//\r
-// Byte packed structure for an FP/SSE/SSE2 context\r
-//\r
+#endif\r
+\r
+#if defined (MDE_CPU_X64)\r
+\r
+typedef union {\r
+  struct {\r
+    UINT32  OffsetLow:16;   // Offset bits 15..0\r
+    UINT32  Selector:16;    // Selector\r
+    UINT32  Reserved_0:8;   // Reserved\r
+    UINT32  GateType:8;     // Gate Type.  See #defines above\r
+    UINT32  OffsetHigh:16;  // Offset bits 31..16\r
+    UINT32  OffsetUpper:32; // Offset bits 63..32\r
+    UINT32  Reserved_1:32;  // Reserved\r
+  } Bits;\r
+  UINT64  Uint64;\r
+  UINT64  Uint64_1;\r
+} IA32_IDT_GATE_DESCRIPTOR;\r
+\r
+#endif\r
+\r
+///\r
+/// Byte packed structure for an FP/SSE/SSE2 context\r
+///\r
 typedef struct {\r
   UINT8  Buffer[512];\r
 } IA32_FX_BUFFER;\r
 \r
-//\r
-// Structures for the 16-bit real mode thunks\r
-//\r
+///\r
+/// Structures for the 16-bit real mode thunks\r
+///\r
 typedef struct {\r
   UINT32                            Reserved1;\r
   UINT32                            Reserved2;\r
@@ -3022,9 +5209,9 @@ typedef union {
   IA32_BYTE_REGS                    H;\r
 } IA32_REGISTER_SET;\r
 \r
-//\r
-// Byte packed structure for an 16-bit real mode thunks\r
-//\r
+///\r
+/// Byte packed structure for an 16-bit real mode thunks\r
+///\r
 typedef struct {\r
   IA32_REGISTER_SET                 *RealModeState;\r
   VOID                              *RealModeBuffer;\r
@@ -3071,6 +5258,7 @@ AsmCpuid (
   OUT     UINT32                    *Edx   OPTIONAL\r
   );\r
 \r
+\r
 /**\r
   Retrieves CPUID information using an extended leaf identifier.\r
 \r
@@ -3114,6 +5302,7 @@ AsmCpuidEx (
   OUT     UINT32                    *Edx   OPTIONAL\r
   );\r
 \r
+\r
 /**\r
   Returns the lower 32-bits of a Machine Specific Register(MSR).\r
 \r
@@ -3134,8 +5323,10 @@ AsmReadMsr32 (
   IN      UINT32                    Index\r
   );\r
 \r
+\r
 /**\r
-  Zero-extend a 32-bit value and writes it to a Machine Specific Register(MSR).\r
+  Writes a 32-bit value to a Machine Specific Register(MSR), and returns the value.\r
+  The upper 32-bits of the MSR are set to zero.\r
 \r
   Writes the 32-bit value specified by Value to the MSR specified by Index. The\r
   upper 32-bits of the MSR write are set to zero. The 32-bit value written to\r
@@ -3157,6 +5348,7 @@ AsmWriteMsr32 (
   IN      UINT32                    Value\r
   );\r
 \r
+\r
 /**\r
   Reads a 64-bit MSR, performs a bitwise inclusive OR on the lower 32-bits, and\r
   writes the result back to the 64-bit MSR.\r
@@ -3183,6 +5375,7 @@ AsmMsrOr32 (
   IN      UINT32                    OrData\r
   );\r
 \r
+\r
 /**\r
   Reads a 64-bit MSR, performs a bitwise AND on the lower 32-bits, and writes\r
   the result back to the 64-bit MSR.\r
@@ -3209,6 +5402,7 @@ AsmMsrAnd32 (
   IN      UINT32                    AndData\r
   );\r
 \r
+\r
 /**\r
   Reads a 64-bit MSR, performs a bitwise AND followed by a bitwise inclusive OR\r
   on the lower 32-bits, and writes the result back to the 64-bit MSR.\r
@@ -3239,6 +5433,7 @@ AsmMsrAndThenOr32 (
   IN      UINT32                    OrData\r
   );\r
 \r
+\r
 /**\r
   Reads a bit field of an MSR.\r
 \r
@@ -3269,6 +5464,7 @@ AsmMsrBitFieldRead32 (
   IN      UINTN                     EndBit\r
   );\r
 \r
+\r
 /**\r
   Writes a bit field to an MSR.\r
 \r
@@ -3303,6 +5499,7 @@ AsmMsrBitFieldWrite32 (
   IN      UINT32                    Value\r
   );\r
 \r
+\r
 /**\r
   Reads a bit field in a 64-bit MSR, performs a bitwise OR, and writes the\r
   result back to the bit field in the 64-bit MSR.\r
@@ -3338,6 +5535,7 @@ AsmMsrBitFieldOr32 (
   IN      UINT32                    OrData\r
   );\r
 \r
+\r
 /**\r
   Reads a bit field in a 64-bit MSR, performs a bitwise AND, and writes the\r
   result back to the bit field in the 64-bit MSR.\r
@@ -3373,6 +5571,7 @@ AsmMsrBitFieldAnd32 (
   IN      UINT32                    AndData\r
   );\r
 \r
+\r
 /**\r
   Reads a bit field in a 64-bit MSR, performs a bitwise AND followed by a\r
   bitwise inclusive OR, and writes the result back to the bit field in the\r
@@ -3412,6 +5611,7 @@ AsmMsrBitFieldAndThenOr32 (
   IN      UINT32                    OrData\r
   );\r
 \r
+\r
 /**\r
   Returns a 64-bit Machine Specific Register(MSR).\r
 \r
@@ -3432,6 +5632,7 @@ AsmReadMsr64 (
   IN      UINT32                    Index\r
   );\r
 \r
+\r
 /**\r
   Writes a 64-bit value to a Machine Specific Register(MSR), and returns the\r
   value.\r
@@ -3456,6 +5657,7 @@ AsmWriteMsr64 (
   IN      UINT64                    Value\r
   );\r
 \r
+\r
 /**\r
   Reads a 64-bit MSR, performs a bitwise inclusive OR, and writes the result\r
   back to the 64-bit MSR.\r
@@ -3481,6 +5683,7 @@ AsmMsrOr64 (
   IN      UINT64                    OrData\r
   );\r
 \r
+\r
 /**\r
   Reads a 64-bit MSR, performs a bitwise AND, and writes the result back to the\r
   64-bit MSR.\r
@@ -3506,6 +5709,7 @@ AsmMsrAnd64 (
   IN      UINT64                    AndData\r
   );\r
 \r
+\r
 /**\r
   Reads a 64-bit MSR, performs a bitwise AND followed by a bitwise inclusive\r
   OR, and writes the result back to the 64-bit MSR.\r
@@ -3535,6 +5739,7 @@ AsmMsrAndThenOr64 (
   IN      UINT64                    OrData\r
   );\r
 \r
+\r
 /**\r
   Reads a bit field of an MSR.\r
 \r
@@ -3565,6 +5770,7 @@ AsmMsrBitFieldRead64 (
   IN      UINTN                     EndBit\r
   );\r
 \r
+\r
 /**\r
   Writes a bit field to an MSR.\r
 \r
@@ -3598,6 +5804,7 @@ AsmMsrBitFieldWrite64 (
   IN      UINT64                    Value\r
   );\r
 \r
+\r
 /**\r
   Reads a bit field in a 64-bit MSR, performs a bitwise inclusive OR, and\r
   writes the result back to the bit field in the 64-bit MSR.\r
@@ -3633,6 +5840,7 @@ AsmMsrBitFieldOr64 (
   IN      UINT64                    OrData\r
   );\r
 \r
+\r
 /**\r
   Reads a bit field in a 64-bit MSR, performs a bitwise AND, and writes the\r
   result back to the bit field in the 64-bit MSR.\r
@@ -3668,6 +5876,7 @@ AsmMsrBitFieldAnd64 (
   IN      UINT64                    AndData\r
   );\r
 \r
+\r
 /**\r
   Reads a bit field in a 64-bit MSR, performs a bitwise AND followed by a\r
   bitwise inclusive OR, and writes the result back to the bit field in the\r
@@ -3706,6 +5915,7 @@ AsmMsrBitFieldAndThenOr64 (
   IN      UINT64                    OrData\r
   );\r
 \r
+\r
 /**\r
   Reads the current value of the EFLAGS register.\r
 \r
@@ -3722,6 +5932,7 @@ AsmReadEflags (
   VOID\r
   );\r
 \r
+\r
 /**\r
   Reads the current value of the Control Register 0 (CR0).\r
 \r
@@ -3738,6 +5949,7 @@ AsmReadCr0 (
   VOID\r
   );\r
 \r
+\r
 /**\r
   Reads the current value of the Control Register 2 (CR2).\r
 \r
@@ -3754,6 +5966,7 @@ AsmReadCr2 (
   VOID\r
   );\r
 \r
+\r
 /**\r
   Reads the current value of the Control Register 3 (CR3).\r
 \r
@@ -3770,6 +5983,7 @@ AsmReadCr3 (
   VOID\r
   );\r
 \r
+\r
 /**\r
   Reads the current value of the Control Register 4 (CR4).\r
 \r
@@ -3786,6 +6000,7 @@ AsmReadCr4 (
   VOID\r
   );\r
 \r
+\r
 /**\r
   Writes a value to Control Register 0 (CR0).\r
 \r
@@ -3803,6 +6018,7 @@ AsmWriteCr0 (
   UINTN  Cr0\r
   );\r
 \r
+\r
 /**\r
   Writes a value to Control Register 2 (CR2).\r
 \r
@@ -3820,6 +6036,7 @@ AsmWriteCr2 (
   UINTN  Cr2\r
   );\r
 \r
+\r
 /**\r
   Writes a value to Control Register 3 (CR3).\r
 \r
@@ -3837,6 +6054,7 @@ AsmWriteCr3 (
   UINTN  Cr3\r
   );\r
 \r
+\r
 /**\r
   Writes a value to Control Register 4 (CR4).\r
 \r
@@ -3854,6 +6072,7 @@ AsmWriteCr4 (
   UINTN  Cr4\r
   );\r
 \r
+\r
 /**\r
   Reads the current value of Debug Register 0 (DR0).\r
 \r
@@ -3870,6 +6089,7 @@ AsmReadDr0 (
   VOID\r
   );\r
 \r
+\r
 /**\r
   Reads the current value of Debug Register 1 (DR1).\r
 \r
@@ -3886,6 +6106,7 @@ AsmReadDr1 (
   VOID\r
   );\r
 \r
+\r
 /**\r
   Reads the current value of Debug Register 2 (DR2).\r
 \r
@@ -3902,6 +6123,7 @@ AsmReadDr2 (
   VOID\r
   );\r
 \r
+\r
 /**\r
   Reads the current value of Debug Register 3 (DR3).\r
 \r
@@ -3918,6 +6140,7 @@ AsmReadDr3 (
   VOID\r
   );\r
 \r
+\r
 /**\r
   Reads the current value of Debug Register 4 (DR4).\r
 \r
@@ -3934,6 +6157,7 @@ AsmReadDr4 (
   VOID\r
   );\r
 \r
+\r
 /**\r
   Reads the current value of Debug Register 5 (DR5).\r
 \r
@@ -3950,6 +6174,7 @@ AsmReadDr5 (
   VOID\r
   );\r
 \r
+\r
 /**\r
   Reads the current value of Debug Register 6 (DR6).\r
 \r
@@ -3966,6 +6191,7 @@ AsmReadDr6 (
   VOID\r
   );\r
 \r
+\r
 /**\r
   Reads the current value of Debug Register 7 (DR7).\r
 \r
@@ -3982,6 +6208,7 @@ AsmReadDr7 (
   VOID\r
   );\r
 \r
+\r
 /**\r
   Writes a value to Debug Register 0 (DR0).\r
 \r
@@ -3999,6 +6226,7 @@ AsmWriteDr0 (
   UINTN  Dr0\r
   );\r
 \r
+\r
 /**\r
   Writes a value to Debug Register 1 (DR1).\r
 \r
@@ -4016,6 +6244,7 @@ AsmWriteDr1 (
   UINTN  Dr1\r
   );\r
 \r
+\r
 /**\r
   Writes a value to Debug Register 2 (DR2).\r
 \r
@@ -4033,6 +6262,7 @@ AsmWriteDr2 (
   UINTN  Dr2\r
   );\r
 \r
+\r
 /**\r
   Writes a value to Debug Register 3 (DR3).\r
 \r
@@ -4050,6 +6280,7 @@ AsmWriteDr3 (
   UINTN  Dr3\r
   );\r
 \r
+\r
 /**\r
   Writes a value to Debug Register 4 (DR4).\r
 \r
@@ -4067,6 +6298,7 @@ AsmWriteDr4 (
   UINTN  Dr4\r
   );\r
 \r
+\r
 /**\r
   Writes a value to Debug Register 5 (DR5).\r
 \r
@@ -4084,6 +6316,7 @@ AsmWriteDr5 (
   UINTN  Dr5\r
   );\r
 \r
+\r
 /**\r
   Writes a value to Debug Register 6 (DR6).\r
 \r
@@ -4101,6 +6334,7 @@ AsmWriteDr6 (
   UINTN  Dr6\r
   );\r
 \r
+\r
 /**\r
   Writes a value to Debug Register 7 (DR7).\r
 \r
@@ -4118,6 +6352,7 @@ AsmWriteDr7 (
   UINTN  Dr7\r
   );\r
 \r
+\r
 /**\r
   Reads the current value of Code Segment Register (CS).\r
 \r
@@ -4133,6 +6368,7 @@ AsmReadCs (
   VOID\r
   );\r
 \r
+\r
 /**\r
   Reads the current value of Data Segment Register (DS).\r
 \r
@@ -4148,6 +6384,7 @@ AsmReadDs (
   VOID\r
   );\r
 \r
+\r
 /**\r
   Reads the current value of Extra Segment Register (ES).\r
 \r
@@ -4163,6 +6400,7 @@ AsmReadEs (
   VOID\r
   );\r
 \r
+\r
 /**\r
   Reads the current value of FS Data Segment Register (FS).\r
 \r
@@ -4178,6 +6416,7 @@ AsmReadFs (
   VOID\r
   );\r
 \r
+\r
 /**\r
   Reads the current value of GS Data Segment Register (GS).\r
 \r
@@ -4193,6 +6432,7 @@ AsmReadGs (
   VOID\r
   );\r
 \r
+\r
 /**\r
   Reads the current value of Stack Segment Register (SS).\r
 \r
@@ -4208,6 +6448,7 @@ AsmReadSs (
   VOID\r
   );\r
 \r
+\r
 /**\r
   Reads the current value of Task Register (TR).\r
 \r
@@ -4223,6 +6464,7 @@ AsmReadTr (
   VOID\r
   );\r
 \r
+\r
 /**\r
   Reads the current Global Descriptor Table Register(GDTR) descriptor.\r
 \r
@@ -4240,6 +6482,7 @@ AsmReadGdtr (
   OUT     IA32_DESCRIPTOR           *Gdtr\r
   );\r
 \r
+\r
 /**\r
   Writes the current Global Descriptor Table Register (GDTR) descriptor.\r
 \r
@@ -4257,8 +6500,9 @@ AsmWriteGdtr (
   IN      CONST IA32_DESCRIPTOR     *Gdtr\r
   );\r
 \r
+\r
 /**\r
-  Reads the current Interrupt Descriptor Table Register(GDTR) descriptor.\r
+  Reads the current Interrupt Descriptor Table Register(IDTR) descriptor.\r
 \r
   Reads and returns the current IDTR descriptor and returns it in Idtr. This\r
   function is only available on IA-32 and X64.\r
@@ -4274,8 +6518,9 @@ AsmReadIdtr (
   OUT     IA32_DESCRIPTOR           *Idtr\r
   );\r
 \r
+\r
 /**\r
-  Writes the current Interrupt Descriptor Table Register(GDTR) descriptor.\r
+  Writes the current Interrupt Descriptor Table Register(IDTR) descriptor.\r
 \r
   Writes the current IDTR descriptor and returns it in Idtr. This function is\r
   only available on IA-32 and X64.\r
@@ -4291,6 +6536,7 @@ AsmWriteIdtr (
   IN      CONST IA32_DESCRIPTOR     *Idtr\r
   );\r
 \r
+\r
 /**\r
   Reads the current Local Descriptor Table Register(LDTR) selector.\r
 \r
@@ -4306,8 +6552,9 @@ AsmReadLdtr (
   VOID\r
   );\r
 \r
+\r
 /**\r
-  Writes the current Local Descriptor Table Register (GDTR) selector.\r
+  Writes the current Local Descriptor Table Register (LDTR) selector.\r
 \r
   Writes and the current LDTR descriptor specified by Ldtr. This function is\r
   only available on IA-32 and X64.\r
@@ -4321,6 +6568,7 @@ AsmWriteLdtr (
   IN      UINT16                    Ldtr\r
   );\r
 \r
+\r
 /**\r
   Save the current floating point/SSE/SSE2 context to a buffer.\r
 \r
@@ -4340,6 +6588,7 @@ AsmFxSave (
   OUT     IA32_FX_BUFFER            *Buffer\r
   );\r
 \r
+\r
 /**\r
   Restores the current floating point/SSE/SSE2 context from a buffer.\r
 \r
@@ -4360,6 +6609,7 @@ AsmFxRestore (
   IN      CONST IA32_FX_BUFFER      *Buffer\r
   );\r
 \r
+\r
 /**\r
   Reads the current value of 64-bit MMX Register #0 (MM0).\r
 \r
@@ -4375,6 +6625,7 @@ AsmReadMm0 (
   VOID\r
   );\r
 \r
+\r
 /**\r
   Reads the current value of 64-bit MMX Register #1 (MM1).\r
 \r
@@ -4390,6 +6641,7 @@ AsmReadMm1 (
   VOID\r
   );\r
 \r
+\r
 /**\r
   Reads the current value of 64-bit MMX Register #2 (MM2).\r
 \r
@@ -4405,6 +6657,7 @@ AsmReadMm2 (
   VOID\r
   );\r
 \r
+\r
 /**\r
   Reads the current value of 64-bit MMX Register #3 (MM3).\r
 \r
@@ -4420,6 +6673,7 @@ AsmReadMm3 (
   VOID\r
   );\r
 \r
+\r
 /**\r
   Reads the current value of 64-bit MMX Register #4 (MM4).\r
 \r
@@ -4435,6 +6689,7 @@ AsmReadMm4 (
   VOID\r
   );\r
 \r
+\r
 /**\r
   Reads the current value of 64-bit MMX Register #5 (MM5).\r
 \r
@@ -4450,6 +6705,7 @@ AsmReadMm5 (
   VOID\r
   );\r
 \r
+\r
 /**\r
   Reads the current value of 64-bit MMX Register #6 (MM6).\r
 \r
@@ -4465,6 +6721,7 @@ AsmReadMm6 (
   VOID\r
   );\r
 \r
+\r
 /**\r
   Reads the current value of 64-bit MMX Register #7 (MM7).\r
 \r
@@ -4480,6 +6737,7 @@ AsmReadMm7 (
   VOID\r
   );\r
 \r
+\r
 /**\r
   Writes the current value of 64-bit MMX Register #0 (MM0).\r
 \r
@@ -4495,6 +6753,7 @@ AsmWriteMm0 (
   IN      UINT64                    Value\r
   );\r
 \r
+\r
 /**\r
   Writes the current value of 64-bit MMX Register #1 (MM1).\r
 \r
@@ -4510,6 +6769,7 @@ AsmWriteMm1 (
   IN      UINT64                    Value\r
   );\r
 \r
+\r
 /**\r
   Writes the current value of 64-bit MMX Register #2 (MM2).\r
 \r
@@ -4525,6 +6785,7 @@ AsmWriteMm2 (
   IN      UINT64                    Value\r
   );\r
 \r
+\r
 /**\r
   Writes the current value of 64-bit MMX Register #3 (MM3).\r
 \r
@@ -4540,6 +6801,7 @@ AsmWriteMm3 (
   IN      UINT64                    Value\r
   );\r
 \r
+\r
 /**\r
   Writes the current value of 64-bit MMX Register #4 (MM4).\r
 \r
@@ -4555,6 +6817,7 @@ AsmWriteMm4 (
   IN      UINT64                    Value\r
   );\r
 \r
+\r
 /**\r
   Writes the current value of 64-bit MMX Register #5 (MM5).\r
 \r
@@ -4570,6 +6833,7 @@ AsmWriteMm5 (
   IN      UINT64                    Value\r
   );\r
 \r
+\r
 /**\r
   Writes the current value of 64-bit MMX Register #6 (MM6).\r
 \r
@@ -4585,6 +6849,7 @@ AsmWriteMm6 (
   IN      UINT64                    Value\r
   );\r
 \r
+\r
 /**\r
   Writes the current value of 64-bit MMX Register #7 (MM7).\r
 \r
@@ -4600,6 +6865,7 @@ AsmWriteMm7 (
   IN      UINT64                    Value\r
   );\r
 \r
+\r
 /**\r
   Reads the current value of Time Stamp Counter (TSC).\r
 \r
@@ -4615,6 +6881,7 @@ AsmReadTsc (
   VOID\r
   );\r
 \r
+\r
 /**\r
   Reads the current value of a Performance Counter (PMC).\r
 \r
@@ -4632,6 +6899,7 @@ AsmReadPmc (
   IN      UINT32                    Index\r
   );\r
 \r
+\r
 /**\r
   Sets up a monitor buffer that is used by AsmMwait().\r
 \r
@@ -4656,6 +6924,7 @@ AsmMonitor (
   IN      UINTN                     Edx\r
   );\r
 \r
+\r
 /**\r
   Executes an MWAIT instruction.\r
 \r
@@ -4677,6 +6946,7 @@ AsmMwait (
   IN      UINTN                     Ecx\r
   );\r
 \r
+\r
 /**\r
   Executes a WBINVD instruction.\r
 \r
@@ -4690,6 +6960,7 @@ AsmWbinvd (
   VOID\r
   );\r
 \r
+\r
 /**\r
   Executes a INVD instruction.\r
 \r
@@ -4703,6 +6974,7 @@ AsmInvd (
   VOID\r
   );\r
 \r
+\r
 /**\r
   Flushes a cache line from all the instruction and data caches within the\r
   coherency domain of the CPU.\r
@@ -4724,6 +6996,7 @@ AsmFlushCacheLine (
   IN      VOID                      *LinearAddress\r
   );\r
 \r
+\r
 /**\r
   Enables the 32-bit paging mode on the CPU.\r
 \r
@@ -4770,6 +7043,7 @@ AsmEnablePaging32 (
   IN      VOID                      *NewStack\r
   );\r
 \r
+\r
 /**\r
   Disables the 32-bit paging mode on the CPU.\r
 \r
@@ -4813,6 +7087,7 @@ AsmDisablePaging32 (
   IN      VOID                      *NewStack\r
   );\r
 \r
+\r
 /**\r
   Enables the 64-bit paging mode on the CPU.\r
 \r
@@ -4848,13 +7123,14 @@ AsmDisablePaging32 (
 VOID\r
 EFIAPI\r
 AsmEnablePaging64 (\r
-  IN      UINT16                    CodeSelector,\r
+  IN      UINT16                    Cs,\r
   IN      UINT64                    EntryPoint,\r
   IN      UINT64                    Context1,  OPTIONAL\r
   IN      UINT64                    Context2,  OPTIONAL\r
   IN      UINT64                    NewStack\r
   );\r
 \r
+\r
 /**\r
   Disables the 64-bit paging mode on the CPU.\r
 \r
@@ -4888,13 +7164,14 @@ AsmEnablePaging64 (
 VOID\r
 EFIAPI\r
 AsmDisablePaging64 (\r
-  IN      UINT16                    CodeSelector,\r
+  IN      UINT16                    Cs,\r
   IN      UINT32                    EntryPoint,\r
   IN      UINT32                    Context1,  OPTIONAL\r
   IN      UINT32                    Context2,  OPTIONAL\r
   IN      UINT32                    NewStack\r
   );\r
 \r
+\r
 //\r
 // 16-bit thunking services\r
 //\r
@@ -4927,6 +7204,7 @@ AsmGetThunk16Properties (
   OUT     UINT32                    *ExtraStackSize\r
   );\r
 \r
+\r
 /**\r
   Prepares all structures a code required to use AsmThunk16().\r
 \r
@@ -4944,15 +7222,52 @@ AsmPrepareThunk16 (
   OUT     THUNK_CONTEXT             *ThunkContext\r
   );\r
 \r
+\r
 /**\r
   Transfers control to a 16-bit real mode entry point and returns the results.\r
 \r
   Transfers control to a 16-bit real mode entry point and returns the results.\r
-  AsmPrepareThunk16() must be called with ThunkContext before this function is\r
-  used.\r
-\r
+  AsmPrepareThunk16() must be called with ThunkContext before this function is used.\r
+  This function must be called with interrupts disabled.\r
+\r
+  The register state from the RealModeState field of ThunkContext is restored just prior \r
+  to calling the 16-bit real mode entry point.  This includes the EFLAGS field of RealModeState, \r
+  which is used to set the interrupt state when a 16-bit real mode entry point is called.\r
+  Control is transferred to the 16-bit real mode entry point specified by the CS and Eip fields of RealModeState.\r
+  The stack is initialized to the SS and ESP fields of RealModeState.  Any parameters passed to \r
+  the 16-bit real mode code must be populated by the caller at SS:ESP prior to calling this function.  \r
+  The 16-bit real mode entry point is invoked with a 16-bit CALL FAR instruction,\r
+  so when accessing stack contents, the 16-bit real mode code must account for the 16-bit segment \r
+  and 16-bit offset of the return address that were pushed onto the stack. The 16-bit real mode entry \r
+  point must exit with a RETF instruction. The register state is captured into RealModeState immediately \r
+  after the RETF instruction is executed.\r
+  \r
+  If EFLAGS specifies interrupts enabled, or any of the 16-bit real mode code enables interrupts, \r
+  or any of the 16-bit real mode code makes a SW interrupt, then the caller is responsible for making sure \r
+  the IDT at address 0 is initialized to handle any HW or SW interrupts that may occur while in 16-bit real mode. \r
+  \r
+  If EFLAGS specifies interrupts enabled, or any of the 16-bit real mode code enables interrupts, \r
+  then the caller is responsible for making sure the 8259 PIC is in a state compatible with 16-bit real mode.  \r
+  This includes the base vectors, the interrupt masks, and the edge/level trigger mode.\r
+  \r
+  If THUNK_ATTRIBUTE_BIG_REAL_MODE is set in the ThunkAttributes field of ThunkContext, then the user code \r
+  is invoked in big real mode.  Otherwise, the user code is invoked in 16-bit real mode with 64KB segment limits.\r
+  \r
+  If neither THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 nor THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL are set in \r
+  ThunkAttributes, then it is assumed that the user code did not enable the A20 mask, and no attempt is made to \r
+  disable the A20 mask.\r
+  \r
+  If THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 is set and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL is clear in \r
+  ThunkAttributes, then attempt to use the INT 15 service to disable the A20 mask.  If this INT 15 call fails, \r
+  then attempt to disable the A20 mask by directly accessing the 8042 keyboard controller I/O ports.\r
+  \r
+  If THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 is clear and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL is set in \r
+  ThunkAttributes, then attempt to disable the A20 mask by directly accessing the 8042 keyboard controller I/O ports.\r
+    \r
   If ThunkContext is NULL, then ASSERT().\r
   If AsmPrepareThunk16() was not previously called with ThunkContext, then ASSERT().\r
+  If both THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL are set in \r
+  ThunkAttributes, then ASSERT().\r
 \r
   @param  ThunkContext  A pointer to the context structure that describes the\r
                         16-bit real mode code to call.\r
@@ -4964,6 +7279,7 @@ AsmThunk16 (
   IN OUT  THUNK_CONTEXT             *ThunkContext\r
   );\r
 \r
+\r
 /**\r
   Prepares all structures and code for a 16-bit real mode thunk, transfers\r
   control to a 16-bit real mode entry point, and returns the results.\r
@@ -4975,7 +7291,7 @@ AsmThunk16 (
   real mode thunk, then it is more efficient if AsmPrepareThunk16() is called\r
   once and AsmThunk16() can be called for each 16-bit real mode thunk.\r
 \r
-  If ThunkContext is NULL, then ASSERT().\r
+  See AsmPrepareThunk16() and AsmThunk16() for the detailed description and ASSERT() conditions.\r
 \r
   @param  ThunkContext  A pointer to the context structure that describes the\r
                         16-bit real mode code to call.\r
@@ -4987,36 +7303,7 @@ AsmPrepareAndThunk16 (
   IN OUT  THUNK_CONTEXT             *ThunkContext\r
   );\r
 \r
-/**\r
-  Transfers control to a function starting with a new stack.\r
-\r
-  Transfers control to the function specified by EntryPoint using the new stack\r
-  specified by NewStack and passing in the parameters specified by Context1 and\r
-  Context2. Context1 and Context2 are optional and may be NULL. The function\r
-  EntryPoint must never return.\r
-\r
-  If EntryPoint is NULL, then ASSERT().\r
-  If NewStack is NULL, then ASSERT().\r
-\r
-  @param  EntryPoint  A pointer to function to call with the new stack.\r
-  @param  Context1    A pointer to the context to pass into the EntryPoint\r
-                      function.\r
-  @param  Context2    A pointer to the context to pass into the EntryPoint\r
-                      function.\r
-  @param  NewStack    A pointer to the new stack to use for the EntryPoint\r
-                      function.\r
-  @param  NewBsp      A pointer to the new memory location for RSE backing\r
-                      store.\r
+#endif\r
+#endif\r
 \r
-**/\r
-VOID\r
-EFIAPI\r
-AsmSwitchStackAndBackingStore (\r
-  IN      SWITCH_STACK_ENTRY_POINT  EntryPoint,\r
-  IN      VOID                      *Context1,  OPTIONAL\r
-  IN      VOID                      *Context2,  OPTIONAL\r
-  IN      VOID                      *NewStack,\r
-  IN      VOID                      *NewBsp\r
-  );\r
 \r
-#endif\r