]> git.proxmox.com Git - mirror_frr.git/blob - bgpd/bgp_keepalives.c
isisd: implement the 'id-len-mismatch' notification
[mirror_frr.git] / bgpd / bgp_keepalives.c
1 /* BGP Keepalives.
2 * Implements a producer thread to generate BGP keepalives for peers.
3 * Copyright (C) 2017 Cumulus Networks, Inc.
4 * Quentin Young
5 *
6 * This file is part of FRRouting.
7 *
8 * FRRouting is free software; you can redistribute it and/or modify it under
9 * the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2, or (at your option) any later
11 * version.
12 *
13 * FRRouting is distributed in the hope that it will be useful, but WITHOUT ANY
14 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
15 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
16 * details.
17 *
18 * You should have received a copy of the GNU General Public License along
19 * with this program; see the file COPYING; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /* clang-format off */
24 #include <zebra.h>
25 #include <pthread.h> // for pthread_mutex_lock, pthread_mutex_unlock
26
27 #include "frr_pthread.h" // for frr_pthread
28 #include "hash.h" // for hash, hash_clean, hash_create_size...
29 #include "log.h" // for zlog_debug
30 #include "memory.h" // for MTYPE_TMP, XFREE, XCALLOC, XMALLOC
31 #include "monotime.h" // for monotime, monotime_since
32
33 #include "bgpd/bgpd.h" // for peer, PEER_THREAD_KEEPALIVES_ON, peer...
34 #include "bgpd/bgp_debug.h" // for bgp_debug_neighbor_events
35 #include "bgpd/bgp_packet.h" // for bgp_keepalive_send
36 #include "bgpd/bgp_keepalives.h"
37 /* clang-format on */
38
39 /*
40 * Peer KeepAlive Timer.
41 * Associates a peer with the time of its last keepalive.
42 */
43 struct pkat {
44 /* the peer to send keepalives to */
45 struct peer *peer;
46 /* absolute time of last keepalive sent */
47 struct timeval last;
48 };
49
50 /* List of peers we are sending keepalives for, and associated mutex. */
51 static pthread_mutex_t *peerhash_mtx;
52 static pthread_cond_t *peerhash_cond;
53 static struct hash *peerhash;
54
55 static struct pkat *pkat_new(struct peer *peer)
56 {
57 struct pkat *pkat = XMALLOC(MTYPE_TMP, sizeof(struct pkat));
58 pkat->peer = peer;
59 monotime(&pkat->last);
60 return pkat;
61 }
62
63 static void pkat_del(void *pkat)
64 {
65 XFREE(MTYPE_TMP, pkat);
66 }
67
68
69 /*
70 * Callback for hash_iterate. Determines if a peer needs a keepalive and if so,
71 * generates and sends it.
72 *
73 * For any given peer, if the elapsed time since its last keepalive exceeds its
74 * configured keepalive timer, a keepalive is sent to the peer and its
75 * last-sent time is reset. Additionally, If the elapsed time does not exceed
76 * the configured keepalive timer, but the time until the next keepalive is due
77 * is within a hardcoded tolerance, a keepalive is sent as if the configured
78 * timer was exceeded. Doing this helps alleviate nanosecond sleeps between
79 * ticks by grouping together peers who are due for keepalives at roughly the
80 * same time. This tolerance value is arbitrarily chosen to be 100ms.
81 *
82 * In addition, this function calculates the maximum amount of time that the
83 * keepalive thread can sleep before another tick needs to take place. This is
84 * equivalent to shortest time until a keepalive is due for any one peer.
85 *
86 * @return maximum time to wait until next update (0 if infinity)
87 */
88 static void peer_process(struct hash_backet *hb, void *arg)
89 {
90 struct pkat *pkat = hb->data;
91
92 struct timeval *next_update = arg;
93
94 static struct timeval elapsed; // elapsed time since keepalive
95 static struct timeval ka = {0}; // peer->v_keepalive as a timeval
96 static struct timeval diff; // ka - elapsed
97
98 static struct timeval tolerance = {0, 100000};
99
100 /* calculate elapsed time since last keepalive */
101 monotime_since(&pkat->last, &elapsed);
102
103 /* calculate difference between elapsed time and configured time */
104 ka.tv_sec = pkat->peer->v_keepalive;
105 timersub(&ka, &elapsed, &diff);
106
107 int send_keepalive =
108 elapsed.tv_sec >= ka.tv_sec || timercmp(&diff, &tolerance, <);
109
110 if (send_keepalive) {
111 if (bgp_debug_neighbor_events(pkat->peer))
112 zlog_debug("%s [FSM] Timer (keepalive timer expire)",
113 pkat->peer->host);
114
115 bgp_keepalive_send(pkat->peer);
116 monotime(&pkat->last);
117 memset(&elapsed, 0x00, sizeof(struct timeval));
118 diff = ka;
119 }
120
121 /* if calculated next update for this peer < current delay, use it */
122 if (next_update->tv_sec < 0 || timercmp(&diff, next_update, <))
123 *next_update = diff;
124 }
125
126 static bool peer_hash_cmp(const void *f, const void *s)
127 {
128 const struct pkat *p1 = f;
129 const struct pkat *p2 = s;
130
131 return p1->peer == p2->peer;
132 }
133
134 static unsigned int peer_hash_key(void *arg)
135 {
136 struct pkat *pkat = arg;
137 return (uintptr_t)pkat->peer;
138 }
139
140 /* Cleanup handler / deinitializer. */
141 static void bgp_keepalives_finish(void *arg)
142 {
143 if (peerhash) {
144 hash_clean(peerhash, pkat_del);
145 hash_free(peerhash);
146 }
147
148 peerhash = NULL;
149
150 pthread_mutex_unlock(peerhash_mtx);
151 pthread_mutex_destroy(peerhash_mtx);
152 pthread_cond_destroy(peerhash_cond);
153
154 XFREE(MTYPE_TMP, peerhash_mtx);
155 XFREE(MTYPE_TMP, peerhash_cond);
156 }
157
158 /*
159 * Entry function for peer keepalive generation pthread.
160 */
161 void *bgp_keepalives_start(void *arg)
162 {
163 struct frr_pthread *fpt = arg;
164 fpt->master->owner = pthread_self();
165
166 struct timeval currtime = {0, 0};
167 struct timeval aftertime = {0, 0};
168 struct timeval next_update = {0, 0};
169 struct timespec next_update_ts = {0, 0};
170
171 peerhash_mtx = XCALLOC(MTYPE_TMP, sizeof(pthread_mutex_t));
172 peerhash_cond = XCALLOC(MTYPE_TMP, sizeof(pthread_cond_t));
173
174 /* initialize mutex */
175 pthread_mutex_init(peerhash_mtx, NULL);
176
177 /* use monotonic clock with condition variable */
178 pthread_condattr_t attrs;
179 pthread_condattr_init(&attrs);
180 pthread_condattr_setclock(&attrs, CLOCK_MONOTONIC);
181 pthread_cond_init(peerhash_cond, &attrs);
182 pthread_condattr_destroy(&attrs);
183
184 frr_pthread_set_name(fpt, NULL, "bgpd_ka");
185
186 /* initialize peer hashtable */
187 peerhash = hash_create_size(2048, peer_hash_key, peer_hash_cmp, NULL);
188 pthread_mutex_lock(peerhash_mtx);
189
190 /* register cleanup handler */
191 pthread_cleanup_push(&bgp_keepalives_finish, NULL);
192
193 /* notify anybody waiting on us that we are done starting up */
194 frr_pthread_notify_running(fpt);
195
196 while (atomic_load_explicit(&fpt->running, memory_order_relaxed)) {
197 if (peerhash->count > 0)
198 pthread_cond_timedwait(peerhash_cond, peerhash_mtx,
199 &next_update_ts);
200 else
201 while (peerhash->count == 0
202 && atomic_load_explicit(&fpt->running,
203 memory_order_relaxed))
204 pthread_cond_wait(peerhash_cond, peerhash_mtx);
205
206 monotime(&currtime);
207
208 next_update.tv_sec = -1;
209
210 hash_iterate(peerhash, peer_process, &next_update);
211 if (next_update.tv_sec == -1)
212 memset(&next_update, 0x00, sizeof(next_update));
213
214 monotime_since(&currtime, &aftertime);
215
216 timeradd(&currtime, &next_update, &next_update);
217 TIMEVAL_TO_TIMESPEC(&next_update, &next_update_ts);
218 }
219
220 /* clean up */
221 pthread_cleanup_pop(1);
222
223 return NULL;
224 }
225
226 /* --- thread external functions ------------------------------------------- */
227
228 void bgp_keepalives_on(struct peer *peer)
229 {
230 if (CHECK_FLAG(peer->thread_flags, PEER_THREAD_KEEPALIVES_ON))
231 return;
232
233 struct frr_pthread *fpt = bgp_pth_ka;
234 assert(fpt->running);
235
236 /* placeholder bucket data to use for fast key lookups */
237 static struct pkat holder = {0};
238
239 /*
240 * We need to ensure that bgp_keepalives_init was called first
241 */
242 assert(peerhash_mtx);
243
244 pthread_mutex_lock(peerhash_mtx);
245 {
246 holder.peer = peer;
247 if (!hash_lookup(peerhash, &holder)) {
248 struct pkat *pkat = pkat_new(peer);
249 hash_get(peerhash, pkat, hash_alloc_intern);
250 peer_lock(peer);
251 }
252 SET_FLAG(peer->thread_flags, PEER_THREAD_KEEPALIVES_ON);
253 }
254 pthread_mutex_unlock(peerhash_mtx);
255 bgp_keepalives_wake();
256 }
257
258 void bgp_keepalives_off(struct peer *peer)
259 {
260 if (!CHECK_FLAG(peer->thread_flags, PEER_THREAD_KEEPALIVES_ON))
261 return;
262
263 struct frr_pthread *fpt = bgp_pth_ka;
264 assert(fpt->running);
265
266 /* placeholder bucket data to use for fast key lookups */
267 static struct pkat holder = {0};
268
269 /*
270 * We need to ensure that bgp_keepalives_init was called first
271 */
272 assert(peerhash_mtx);
273
274 pthread_mutex_lock(peerhash_mtx);
275 {
276 holder.peer = peer;
277 struct pkat *res = hash_release(peerhash, &holder);
278 if (res) {
279 pkat_del(res);
280 peer_unlock(peer);
281 }
282 UNSET_FLAG(peer->thread_flags, PEER_THREAD_KEEPALIVES_ON);
283 }
284 pthread_mutex_unlock(peerhash_mtx);
285 }
286
287 void bgp_keepalives_wake()
288 {
289 pthread_mutex_lock(peerhash_mtx);
290 {
291 pthread_cond_signal(peerhash_cond);
292 }
293 pthread_mutex_unlock(peerhash_mtx);
294 }
295
296 int bgp_keepalives_stop(struct frr_pthread *fpt, void **result)
297 {
298 assert(fpt->running);
299
300 atomic_store_explicit(&fpt->running, false, memory_order_relaxed);
301 bgp_keepalives_wake();
302
303 pthread_join(fpt->thread, result);
304 return 0;
305 }