]> git.proxmox.com Git - mirror_frr.git/blob - lib/link_state.h
*: Use a `struct prefix *p` instead of a `struct prefix` in functions
[mirror_frr.git] / lib / link_state.h
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Link State Database definition - ted.h
4 *
5 * Author: Olivier Dugeon <olivier.dugeon@orange.com>
6 *
7 * Copyright (C) 2020 Orange http://www.orange.com
8 *
9 * This file is part of Free Range Routing (FRR).
10 */
11
12 #ifndef _FRR_LINK_STATE_H_
13 #define _FRR_LINK_STATE_H_
14
15 #include "admin_group.h"
16 #include "typesafe.h"
17
18 #ifdef __cplusplus
19 extern "C" {
20 #endif
21
22 /**
23 * This file defines the model used to implement a Link State Database
24 * suitable to be used by various protocol like RSVP-TE, BGP-LS, PCEP ...
25 * This database is normally fulfill by the link state routing protocol,
26 * commonly OSPF or ISIS, carrying Traffic Engineering information within
27 * Link State Attributes. See, RFC3630.(OSPF-TE) and RFC5305 (ISIS-TE).
28 *
29 * At least, 3 types of Link State structure are defined:
30 * - Link State Node that groups all information related to a node
31 * - Link State Attributes that groups all information related to a link
32 * - Link State Prefix that groups all information related to a prefix
33 *
34 * These 3 types of structures are those handled by BGP-LS (see RFC7752).
35 *
36 * Each structure, in addition to the specific parameters, embed the node
37 * identifier which advertises the Link State and a bit mask as flags to
38 * indicates which parameters are valid i.e. for which the value corresponds
39 * to a Link State information convey by the routing protocol.
40 * Node identifier is composed of the route id as IPv4 address plus the area
41 * id for OSPF and the ISO System id plus the IS-IS level for IS-IS.
42 */
43
44 /* external reference */
45 struct zapi_opaque_reg_info;
46 struct zclient;
47
48 /* Link State Common definitions */
49 #define MAX_NAME_LENGTH 256
50 #define ISO_SYS_ID_LEN 6
51
52 /* Type of Node */
53 enum ls_node_type {
54 NONE = 0, /* Unknown */
55 STANDARD, /* a P or PE node */
56 ABR, /* an Array Border Node */
57 ASBR, /* an Autonomous System Border Node */
58 RMT_ASBR, /* Remote ASBR */
59 PSEUDO /* a Pseudo Node */
60 };
61
62 /* Origin of the Link State information */
63 enum ls_origin { UNKNOWN = 0, ISIS_L1, ISIS_L2, OSPFv2, DIRECT, STATIC };
64
65 /**
66 * Link State Node Identifier as:
67 * - IPv4 address + Area ID for OSPF
68 * - ISO System ID + ISIS Level for ISIS
69 */
70 struct ls_node_id {
71 enum ls_origin origin; /* Origin of the LS information */
72 union {
73 struct {
74 struct in_addr addr; /* OSPF Router IS */
75 struct in_addr area_id; /* OSPF Area ID */
76 } ip;
77 struct {
78 uint8_t sys_id[ISO_SYS_ID_LEN]; /* ISIS System ID */
79 uint8_t level; /* ISIS Level */
80 uint8_t padding;
81 } iso;
82 } id;
83 };
84
85 /**
86 * Check if two Link State Node IDs are equal. Note that this routine has the
87 * same return value sense as '==' (which is different from a comparison).
88 *
89 * @param i1 First Link State Node Identifier
90 * @param i2 Second Link State Node Identifier
91 * @return 1 if equal, 0 otherwise
92 */
93 extern int ls_node_id_same(struct ls_node_id i1, struct ls_node_id i2);
94
95 /* Link State flags to indicate which Node parameters are valid */
96 #define LS_NODE_UNSET 0x0000
97 #define LS_NODE_NAME 0x0001
98 #define LS_NODE_ROUTER_ID 0x0002
99 #define LS_NODE_ROUTER_ID6 0x0004
100 #define LS_NODE_FLAG 0x0008
101 #define LS_NODE_TYPE 0x0010
102 #define LS_NODE_AS_NUMBER 0x0020
103 #define LS_NODE_SR 0x0040
104 #define LS_NODE_SRLB 0x0080
105 #define LS_NODE_MSD 0x0100
106
107 /* Link State Node structure */
108 struct ls_node {
109 uint16_t flags; /* Flag for parameters validity */
110 struct ls_node_id adv; /* Adv. Router of this Link State */
111 char name[MAX_NAME_LENGTH]; /* Name of the Node (IS-IS only) */
112 struct in_addr router_id; /* IPv4 Router ID */
113 struct in6_addr router_id6; /* IPv6 Router ID */
114 uint8_t node_flag; /* IS-IS or OSPF Node flag */
115 enum ls_node_type type; /* Type of Node */
116 uint32_t as_number; /* Local or neighbor AS number */
117 struct ls_srgb { /* Segment Routing Global Block */
118 uint32_t lower_bound; /* MPLS label lower bound */
119 uint32_t range_size; /* MPLS label range size */
120 uint8_t flag; /* IS-IS SRGB flags */
121 } srgb;
122 struct ls_srlb { /* Segment Routing Local Block */
123 uint32_t lower_bound; /* MPLS label lower bound */
124 uint32_t range_size; /* MPLS label range size */
125 } srlb;
126 uint8_t algo[2]; /* Segment Routing Algorithms */
127 uint8_t msd; /* Maximum Stack Depth */
128 };
129
130 /* Link State flags to indicate which Attribute parameters are valid */
131 #define LS_ATTR_UNSET 0x00000000
132 #define LS_ATTR_NAME 0x00000001
133 #define LS_ATTR_METRIC 0x00000002
134 #define LS_ATTR_TE_METRIC 0x00000004
135 #define LS_ATTR_ADM_GRP 0x00000008
136 #define LS_ATTR_LOCAL_ADDR 0x00000010
137 #define LS_ATTR_NEIGH_ADDR 0x00000020
138 #define LS_ATTR_LOCAL_ADDR6 0x00000040
139 #define LS_ATTR_NEIGH_ADDR6 0x00000080
140 #define LS_ATTR_LOCAL_ID 0x00000100
141 #define LS_ATTR_NEIGH_ID 0x00000200
142 #define LS_ATTR_MAX_BW 0x00000400
143 #define LS_ATTR_MAX_RSV_BW 0x00000800
144 #define LS_ATTR_UNRSV_BW 0x00001000
145 #define LS_ATTR_REMOTE_AS 0x00002000
146 #define LS_ATTR_REMOTE_ADDR 0x00004000
147 #define LS_ATTR_REMOTE_ADDR6 0x00008000
148 #define LS_ATTR_DELAY 0x00010000
149 #define LS_ATTR_MIN_MAX_DELAY 0x00020000
150 #define LS_ATTR_JITTER 0x00040000
151 #define LS_ATTR_PACKET_LOSS 0x00080000
152 #define LS_ATTR_AVA_BW 0x00100000
153 #define LS_ATTR_RSV_BW 0x00200000
154 #define LS_ATTR_USE_BW 0x00400000
155 #define LS_ATTR_ADJ_SID 0x01000000
156 #define LS_ATTR_BCK_ADJ_SID 0x02000000
157 #define LS_ATTR_ADJ_SID6 0x04000000
158 #define LS_ATTR_BCK_ADJ_SID6 0x08000000
159 #define LS_ATTR_SRLG 0x10000000
160 #define LS_ATTR_EXT_ADM_GRP 0x20000000
161
162 /* Link State Attributes */
163 struct ls_attributes {
164 uint32_t flags; /* Flag for parameters validity */
165 struct ls_node_id adv; /* Adv. Router of this Link State */
166 char name[MAX_NAME_LENGTH]; /* Name of the Edge. Could be null */
167 uint32_t metric; /* IGP standard metric */
168 struct ls_standard { /* Standard TE metrics */
169 uint32_t te_metric; /* Traffic Engineering metric */
170 uint32_t admin_group; /* Administrative Group */
171 struct in_addr local; /* Local IPv4 address */
172 struct in_addr remote; /* Remote IPv4 address */
173 struct in6_addr local6; /* Local IPv6 address */
174 struct in6_addr remote6; /* Remote IPv6 address */
175 uint32_t local_id; /* Local Identifier */
176 uint32_t remote_id; /* Remote Identifier */
177 float max_bw; /* Maximum Link Bandwidth */
178 float max_rsv_bw; /* Maximum Reservable BW */
179 float unrsv_bw[8]; /* Unreserved BW per CT (8) */
180 uint32_t remote_as; /* Remote AS number */
181 struct in_addr remote_addr; /* Remote IPv4 address */
182 struct in6_addr remote_addr6; /* Remote IPv6 address */
183 } standard;
184 struct ls_extended { /* Extended TE Metrics */
185 uint32_t delay; /* Unidirectional average delay */
186 uint32_t min_delay; /* Unidirectional minimum delay */
187 uint32_t max_delay; /* Unidirectional maximum delay */
188 uint32_t jitter; /* Unidirectional delay variation */
189 uint32_t pkt_loss; /* Unidirectional packet loss */
190 float ava_bw; /* Available Bandwidth */
191 float rsv_bw; /* Reserved Bandwidth */
192 float used_bw; /* Utilized Bandwidth */
193 } extended;
194 struct admin_group ext_admin_group; /* Extended Admin. Group */
195 #define ADJ_PRI_IPV4 0
196 #define ADJ_BCK_IPV4 1
197 #define ADJ_PRI_IPV6 2
198 #define ADJ_BCK_IPV6 3
199 #define LS_ADJ_MAX 4
200 struct ls_adjacency { /* (LAN)-Adjacency SID for OSPF */
201 uint32_t sid; /* SID as MPLS label or index */
202 uint8_t flags; /* Flags */
203 uint8_t weight; /* Administrative weight */
204 union {
205 struct in_addr addr; /* Neighbor @IP for OSPF */
206 uint8_t sysid[ISO_SYS_ID_LEN]; /* or Sys-ID for ISIS */
207 } neighbor;
208 } adj_sid[4]; /* IPv4/IPv6 & Primary/Backup (LAN)-Adj. SID */
209 uint32_t *srlgs; /* List of Shared Risk Link Group */
210 uint8_t srlg_len; /* number of SRLG in the list */
211 };
212
213 /* Link State flags to indicate which Prefix parameters are valid */
214 #define LS_PREF_UNSET 0x00
215 #define LS_PREF_IGP_FLAG 0x01
216 #define LS_PREF_ROUTE_TAG 0x02
217 #define LS_PREF_EXTENDED_TAG 0x04
218 #define LS_PREF_METRIC 0x08
219 #define LS_PREF_SR 0x10
220
221 /* Link State Prefix */
222 struct ls_prefix {
223 uint8_t flags; /* Flag for parameters validity */
224 struct ls_node_id adv; /* Adv. Router of this Link State */
225 struct prefix pref; /* IPv4 or IPv6 prefix */
226 uint8_t igp_flag; /* IGP Flags associated to the prefix */
227 uint32_t route_tag; /* IGP Route Tag */
228 uint64_t extended_tag; /* IGP Extended Route Tag */
229 uint32_t metric; /* Route metric for this prefix */
230 struct ls_sid {
231 uint32_t sid; /* Segment Routing ID */
232 uint8_t sid_flag; /* Segment Routing Flags */
233 uint8_t algo; /* Algorithm for Segment Routing */
234 } sr;
235 };
236
237 /**
238 * Create a new Link State Node. Structure is dynamically allocated.
239 *
240 * @param adv Mandatory Link State Node ID i.e. advertise router information
241 * @param rid Router ID as IPv4 address
242 * @param rid6 Router ID as IPv6 address
243 *
244 * @return New Link State Node
245 */
246 extern struct ls_node *ls_node_new(struct ls_node_id adv, struct in_addr rid,
247 struct in6_addr rid6);
248
249 /**
250 * Remove Link State Node. Data structure is freed.
251 *
252 * @param node Pointer to a valid Link State Node structure
253 */
254 extern void ls_node_del(struct ls_node *node);
255
256 /**
257 * Check if two Link State Nodes are equal. Note that this routine has the same
258 * return value sense as '==' (which is different from a comparison).
259 *
260 * @param n1 First Link State Node to be compare
261 * @param n2 Second Link State Node to be compare
262 *
263 * @return 1 if equal, 0 otherwise
264 */
265 extern int ls_node_same(struct ls_node *n1, struct ls_node *n2);
266
267 /**
268 * Create a new Link State Attributes. Structure is dynamically allocated.
269 * At least one of parameters MUST be valid and not equal to 0.
270 *
271 * @param adv Mandatory Link State Node ID i.e. advertise router ID
272 * @param local Local IPv4 address
273 * @param local6 Local Ipv6 address
274 * @param local_id Local Identifier
275 *
276 * @return New Link State Attributes
277 */
278 extern struct ls_attributes *ls_attributes_new(struct ls_node_id adv,
279 struct in_addr local,
280 struct in6_addr local6,
281 uint32_t local_id);
282
283 /**
284 * Remove SRLGs from Link State Attributes if defined.
285 *
286 * @param attr Pointer to a valid Link State Attribute structure
287 */
288 extern void ls_attributes_srlg_del(struct ls_attributes *attr);
289
290 /**
291 * Remove Link State Attributes. Data structure is freed.
292 *
293 * @param attr Pointer to a valid Link State Attribute structure
294 */
295 extern void ls_attributes_del(struct ls_attributes *attr);
296
297 /**
298 * Check if two Link State Attributes are equal. Note that this routine has the
299 * same return value sense as '==' (which is different from a comparison).
300 *
301 * @param a1 First Link State Attributes to be compare
302 * @param a2 Second Link State Attributes to be compare
303 *
304 * @return 1 if equal, 0 otherwise
305 */
306 extern int ls_attributes_same(struct ls_attributes *a1,
307 struct ls_attributes *a2);
308
309 /**
310 * Create a new Link State Prefix. Structure is dynamically allocated.
311 *
312 * @param adv Mandatory Link State Node ID i.e. advertise router ID
313 * @param p Mandatory Prefix
314 *
315 * @return New Link State Prefix
316 */
317 extern struct ls_prefix *ls_prefix_new(struct ls_node_id adv, struct prefix *p);
318
319 /**
320 * Remove Link State Prefix. Data Structure is freed.
321 *
322 * @param pref Pointer to a valid Link State Attribute Prefix.
323 */
324 extern void ls_prefix_del(struct ls_prefix *pref);
325
326 /**
327 * Check if two Link State Prefix are equal. Note that this routine has the
328 * same return value sense as '==' (which is different from a comparison).
329 *
330 * @param p1 First Link State Prefix to be compare
331 * @param p2 Second Link State Prefix to be compare
332 *
333 * @return 1 if equal, 0 otherwise
334 */
335 extern int ls_prefix_same(struct ls_prefix *p1, struct ls_prefix *p2);
336
337 /**
338 * In addition a Graph model is defined as an overlay on top of link state
339 * database in order to ease Path Computation algorithm implementation.
340 * Denoted G(V, E), a graph is composed by a list of Vertices (V) which
341 * represents the network Node and a list of Edges (E) which represents node
342 * Link. An additional list of prefixes (P) is also added.
343 * A prefix (P) is also attached to the Vertex (V) which advertise it.
344 *
345 * Vertex (V) contains the list of outgoing Edges (E) that connect this Vertex
346 * with its direct neighbors and the list of incoming Edges (E) that connect
347 * the direct neighbors to this Vertex. Indeed, the Edge (E) is unidirectional,
348 * thus, it is necessary to add 2 Edges to model a bidirectional relation
349 * between 2 Vertices.
350 *
351 * Edge (E) contains the source and destination Vertex that this Edge
352 * is connecting.
353 *
354 * A unique Key is used to identify both Vertices and Edges within the Graph.
355 * An easy way to build this key is to used the IP address: i.e. loopback
356 * address for Vertices and link IP address for Edges.
357 *
358 * -------------- --------------------------- --------------
359 * | Connected |---->| Connected Edge Va to Vb |--->| Connected |
360 * --->| Vertex | --------------------------- | Vertex |---->
361 * | | | |
362 * | - Key (Va) | | - Key (Vb) |
363 * <---| - Vertex | --------------------------- | - Vertex |<----
364 * | |<----| Connected Edge Vb to Va |<---| |
365 * -------------- --------------------------- --------------
366 *
367 */
368
369 enum ls_status { UNSET = 0, NEW, UPDATE, DELETE, SYNC, ORPHAN };
370 enum ls_type { GENERIC = 0, VERTEX, EDGE, SUBNET };
371
372 /* Link State Vertex structure */
373 PREDECL_RBTREE_UNIQ(vertices);
374 struct ls_vertex {
375 enum ls_type type; /* Link State Type */
376 enum ls_status status; /* Status of the Vertex in the TED */
377 struct vertices_item entry; /* Entry in RB Tree */
378 uint64_t key; /* Unique Key identifier */
379 struct ls_node *node; /* Link State Node */
380 struct list *incoming_edges; /* List of incoming Link State links */
381 struct list *outgoing_edges; /* List of outgoing Link State links */
382 struct list *prefixes; /* List of advertised prefix */
383 };
384
385 /* Link State Edge structure */
386 PREDECL_RBTREE_UNIQ(edges);
387 struct ls_edge {
388 enum ls_type type; /* Link State Type */
389 enum ls_status status; /* Status of the Edge in the TED */
390 struct edges_item entry; /* Entry in RB tree */
391 uint64_t key; /* Unique Key identifier */
392 struct ls_attributes *attributes; /* Link State attributes */
393 struct ls_vertex *source; /* Pointer to the source Vertex */
394 struct ls_vertex *destination; /* Pointer to the destination Vertex */
395 };
396
397 /* Link State Subnet structure */
398 PREDECL_RBTREE_UNIQ(subnets);
399 struct ls_subnet {
400 enum ls_type type; /* Link State Type */
401 enum ls_status status; /* Status of the Subnet in the TED */
402 struct subnets_item entry; /* Entry in RB tree */
403 struct prefix key; /* Unique Key identifier */
404 struct ls_prefix *ls_pref; /* Link State Prefix */
405 struct ls_vertex *vertex; /* Back pointer to the Vertex owner */
406 };
407
408 /* Declaration of Vertices, Edges and Prefixes RB Trees */
409 macro_inline int vertex_cmp(const struct ls_vertex *node1,
410 const struct ls_vertex *node2)
411 {
412 return numcmp(node1->key, node2->key);
413 }
414 DECLARE_RBTREE_UNIQ(vertices, struct ls_vertex, entry, vertex_cmp);
415
416 macro_inline int edge_cmp(const struct ls_edge *edge1,
417 const struct ls_edge *edge2)
418 {
419 return numcmp(edge1->key, edge2->key);
420 }
421 DECLARE_RBTREE_UNIQ(edges, struct ls_edge, entry, edge_cmp);
422
423 /*
424 * Prefix comparison are done to the host part so, 10.0.0.1/24
425 * and 10.0.0.2/24 are considered come different
426 */
427 macro_inline int subnet_cmp(const struct ls_subnet *a,
428 const struct ls_subnet *b)
429 {
430 if (a->key.family != b->key.family)
431 return numcmp(a->key.family, b->key.family);
432
433 if (a->key.prefixlen != b->key.prefixlen)
434 return numcmp(a->key.prefixlen, b->key.prefixlen);
435
436 if (a->key.family == AF_INET)
437 return memcmp(&a->key.u.val, &b->key.u.val, 4);
438
439 return memcmp(&a->key.u.val, &b->key.u.val, 16);
440 }
441 DECLARE_RBTREE_UNIQ(subnets, struct ls_subnet, entry, subnet_cmp);
442
443 /* Link State TED Structure */
444 struct ls_ted {
445 uint32_t key; /* Unique identifier */
446 char name[MAX_NAME_LENGTH]; /* Name of this graph. Could be null */
447 uint32_t as_number; /* AS number of the modeled network */
448 struct ls_vertex *self; /* Vertex of the FRR instance */
449 struct vertices_head vertices; /* List of Vertices */
450 struct edges_head edges; /* List of Edges */
451 struct subnets_head subnets; /* List of Subnets */
452 };
453
454 /* Generic Link State Element */
455 struct ls_element {
456 enum ls_type type; /* Link State Element Type */
457 enum ls_status status; /* Link State Status in the TED */
458 void *data; /* Link State payload */
459 };
460
461 /**
462 * Add new vertex to the Link State DB. Vertex is created from the Link State
463 * Node. Vertex data structure is dynamically allocated.
464 *
465 * @param ted Traffic Engineering Database structure
466 * @param node Link State Node
467 *
468 * @return New Vertex or NULL in case of error
469 */
470 extern struct ls_vertex *ls_vertex_add(struct ls_ted *ted,
471 struct ls_node *node);
472
473 /**
474 * Delete Link State Vertex. This function clean internal Vertex lists (incoming
475 * and outgoing Link State Edge and Link State Subnet). Vertex Data structure
476 * is freed but not the Link State Node. Link State DB is not modified if Vertex
477 * is NULL or not found in the Data Base. Note that referenced to Link State
478 * Edges & SubNets are not removed as they could be connected to other Vertices.
479 *
480 * @param ted Traffic Engineering Database structure
481 * @param vertex Link State Vertex to be removed
482 */
483 extern void ls_vertex_del(struct ls_ted *ted, struct ls_vertex *vertex);
484
485 /**
486 * Delete Link State Vertex as ls_vertex_del() but also removed associated
487 * Link State Node.
488 *
489 * @param ted Traffic Engineering Database structure
490 * @param vertex Link State Vertex to be removed
491 */
492 extern void ls_vertex_del_all(struct ls_ted *ted, struct ls_vertex *vertex);
493
494 /**
495 * Update Vertex with the Link State Node. A new vertex is created if no one
496 * corresponds to the Link State Node.
497 *
498 * @param ted Link State Data Base
499 * @param node Link State Node to be updated
500 *
501 * @return Updated Link State Vertex or Null in case of error
502 */
503 extern struct ls_vertex *ls_vertex_update(struct ls_ted *ted,
504 struct ls_node *node);
505
506 /**
507 * Clean Vertex structure by removing all Edges and Subnets marked as ORPHAN
508 * from this vertex. Link State Update message is sent if zclient is not NULL.
509 *
510 * @param ted Link State Data Base
511 * @param vertex Link State Vertex to be cleaned
512 * @param zclient Reference to Zebra Client
513 */
514 extern void ls_vertex_clean(struct ls_ted *ted, struct ls_vertex *vertex,
515 struct zclient *zclient);
516
517 /**
518 * This function convert the ISIS ISO system ID into a 64 bits unsigned integer
519 * following the architecture dependent byte order.
520 *
521 * @param sysid The ISO system ID
522 * @return Key as 64 bits unsigned integer
523 */
524 extern uint64_t sysid_to_key(const uint8_t sysid[ISO_SYS_ID_LEN]);
525
526 /**
527 * Find Vertex in the Link State DB by its unique key.
528 *
529 * @param ted Link State Data Base
530 * @param key Vertex Key different from 0
531 *
532 * @return Vertex if found, NULL otherwise
533 */
534 extern struct ls_vertex *ls_find_vertex_by_key(struct ls_ted *ted,
535 const uint64_t key);
536
537 /**
538 * Find Vertex in the Link State DB by its Link State Node.
539 *
540 * @param ted Link State Data Base
541 * @param nid Link State Node ID
542 *
543 * @return Vertex if found, NULL otherwise
544 */
545 extern struct ls_vertex *ls_find_vertex_by_id(struct ls_ted *ted,
546 struct ls_node_id nid);
547
548 /**
549 * Check if two Vertices are equal. Note that this routine has the same return
550 * value sense as '==' (which is different from a comparison).
551 *
552 * @param v1 First vertex to compare
553 * @param v2 Second vertex to compare
554 *
555 * @return 1 if equal, 0 otherwise
556 */
557 extern int ls_vertex_same(struct ls_vertex *v1, struct ls_vertex *v2);
558
559 /**
560 * Add new Edge to the Link State DB. Edge is created from the Link State
561 * Attributes. Edge data structure is dynamically allocated.
562 *
563 * @param ted Link State Data Base
564 * @param attributes Link State attributes
565 *
566 * @return New Edge or NULL in case of error
567 */
568 extern struct ls_edge *ls_edge_add(struct ls_ted *ted,
569 struct ls_attributes *attributes);
570
571 /**
572 * Update the Link State Attributes information of an existing Edge. If there is
573 * no corresponding Edge in the Link State Data Base, a new Edge is created.
574 *
575 * @param ted Link State Data Base
576 * @param attributes Link State Attributes
577 *
578 * @return Updated Link State Edge, or NULL in case of error
579 */
580 extern struct ls_edge *ls_edge_update(struct ls_ted *ted,
581 struct ls_attributes *attributes);
582
583 /**
584 * Check if two Edges are equal. Note that this routine has the same return
585 * value sense as '==' (which is different from a comparison).
586 *
587 * @param e1 First edge to compare
588 * @param e2 Second edge to compare
589 *
590 * @return 1 if equal, 0 otherwise
591 */
592 extern int ls_edge_same(struct ls_edge *e1, struct ls_edge *e2);
593
594 /**
595 * Remove Edge from the Link State DB. Edge data structure is freed but not the
596 * Link State Attributes data structure. Link State DB is not modified if Edge
597 * is NULL or not found in the Data Base.
598 *
599 * @param ted Link State Data Base
600 * @param edge Edge to be removed
601 */
602 extern void ls_edge_del(struct ls_ted *ted, struct ls_edge *edge);
603
604 /**
605 * Remove Edge and associated Link State Attributes from the Link State DB.
606 * Link State DB is not modified if Edge is NULL or not found.
607 *
608 * @param ted Link State Data Base
609 * @param edge Edge to be removed
610 */
611 extern void ls_edge_del_all(struct ls_ted *ted, struct ls_edge *edge);
612
613 /**
614 * Find Edge in the Link State Data Base by Edge key.
615 *
616 * @param ted Link State Data Base
617 * @param key Edge key
618 *
619 * @return Edge if found, NULL otherwise
620 */
621 extern struct ls_edge *ls_find_edge_by_key(struct ls_ted *ted,
622 const uint64_t key);
623
624 /**
625 * Find Edge in the Link State Data Base by the source (local IPv4 or IPv6
626 * address or local ID) informations of the Link State Attributes
627 *
628 * @param ted Link State Data Base
629 * @param attributes Link State Attributes
630 *
631 * @return Edge if found, NULL otherwise
632 */
633 extern struct ls_edge *
634 ls_find_edge_by_source(struct ls_ted *ted, struct ls_attributes *attributes);
635
636 /**
637 * Find Edge in the Link State Data Base by the destination (remote IPv4 or IPv6
638 * address of remote ID) information of the Link State Attributes
639 *
640 * @param ted Link State Data Base
641 * @param attributes Link State Attributes
642 *
643 * @return Edge if found, NULL otherwise
644 */
645 extern struct ls_edge *
646 ls_find_edge_by_destination(struct ls_ted *ted,
647 struct ls_attributes *attributes);
648
649 /**
650 * Add new Subnet to the Link State DB. Subnet is created from the Link State
651 * prefix. Subnet data structure is dynamically allocated.
652 *
653 * @param ted Link State Data Base
654 * @param pref Link State Prefix
655 *
656 * @return New Subnet
657 */
658 extern struct ls_subnet *ls_subnet_add(struct ls_ted *ted,
659 struct ls_prefix *pref);
660
661 /**
662 * Update the Link State Prefix information of an existing Subnet. If there is
663 * no corresponding Subnet in the Link State Data Base, a new Subnet is created.
664 *
665 * @param ted Link State Data Base
666 * @param pref Link State Prefix
667 *
668 * @return Updated Link State Subnet, or NULL in case of error
669 */
670 extern struct ls_subnet *ls_subnet_update(struct ls_ted *ted,
671 struct ls_prefix *pref);
672
673 /**
674 * Check if two Subnets are equal. Note that this routine has the same return
675 * value sense as '==' (which is different from a comparison).
676 *
677 * @param s1 First subnet to compare
678 * @param s2 Second subnet to compare
679 *
680 * @return 1 if equal, 0 otherwise
681 */
682 extern int ls_subnet_same(struct ls_subnet *s1, struct ls_subnet *s2);
683
684 /**
685 * Remove Subnet from the Link State DB. Subnet data structure is freed but
686 * not the Link State prefix data structure. Link State DB is not modified
687 * if Subnet is NULL or not found in the Data Base.
688 *
689 * @param ted Link State Data Base
690 * @param subnet Subnet to be removed
691 */
692 extern void ls_subnet_del(struct ls_ted *ted, struct ls_subnet *subnet);
693
694 /**
695 * Remove Subnet and the associated Link State Prefix from the Link State DB.
696 * Link State DB is not modified if Subnet is NULL or not found.
697 *
698 * @param ted Link State Data Base
699 * @param subnet Subnet to be removed
700 */
701 extern void ls_subnet_del_all(struct ls_ted *ted, struct ls_subnet *subnet);
702
703 /**
704 * Find Subnet in the Link State Data Base by prefix.
705 *
706 * @param ted Link State Data Base
707 * @param prefix Link State Prefix
708 *
709 * @return Subnet if found, NULL otherwise
710 */
711 extern struct ls_subnet *ls_find_subnet(struct ls_ted *ted,
712 const struct prefix *prefix);
713
714 /**
715 * Create a new Link State Data Base.
716 *
717 * @param key Unique key of the data base. Must be different from 0
718 * @param name Name of the data base (may be NULL)
719 * @param asn AS Number for this data base. 0 if unknown
720 *
721 * @return New Link State Database or NULL in case of error
722 */
723 extern struct ls_ted *ls_ted_new(const uint32_t key, const char *name,
724 uint32_t asn);
725
726 /**
727 * Delete existing Link State Data Base. Vertices, Edges, and Subnets are not
728 * removed.
729 *
730 * @param ted Link State Data Base
731 */
732 extern void ls_ted_del(struct ls_ted *ted);
733
734 /**
735 * Delete all Link State Vertices, Edges and SubNets and the Link State DB.
736 *
737 * @param ted Link State Data Base
738 */
739 extern void ls_ted_del_all(struct ls_ted **ted);
740
741 /**
742 * Clean Link State Data Base by removing all Vertices, Edges and SubNets marked
743 * as ORPHAN.
744 *
745 * @param ted Link State Data Base
746 */
747 extern void ls_ted_clean(struct ls_ted *ted);
748
749 /**
750 * Connect Source and Destination Vertices by given Edge. Only non NULL source
751 * and destination vertices are connected.
752 *
753 * @param src Link State Source Vertex
754 * @param dst Link State Destination Vertex
755 * @param edge Link State Edge. Must not be NULL
756 */
757 extern void ls_connect_vertices(struct ls_vertex *src, struct ls_vertex *dst,
758 struct ls_edge *edge);
759
760 /**
761 * Connect Link State Edge to the Link State Vertex which could be a Source or
762 * a Destination Vertex.
763 *
764 * @param vertex Link State Vertex to be connected. Must not be NULL
765 * @param edge Link State Edge connection. Must not be NULL
766 * @param source True for a Source, false for a Destination Vertex
767 */
768 extern void ls_connect(struct ls_vertex *vertex, struct ls_edge *edge,
769 bool source);
770
771 /**
772 * Disconnect Link State Edge from the Link State Vertex which could be a
773 * Source or a Destination Vertex.
774 *
775 * @param vertex Link State Vertex to be connected. Must not be NULL
776 * @param edge Link State Edge connection. Must not be NULL
777 * @param source True for a Source, false for a Destination Vertex
778 */
779 extern void ls_disconnect(struct ls_vertex *vertex, struct ls_edge *edge,
780 bool source);
781
782 /**
783 * Disconnect Link State Edge from both Source and Destination Vertex.
784 *
785 * @param edge Link State Edge to be disconnected
786 */
787 extern void ls_disconnect_edge(struct ls_edge *edge);
788
789
790 /**
791 * The Link State Message is defined to convey Link State parameters from
792 * the routing protocol (OSPF or IS-IS) to other daemons e.g. BGP.
793 *
794 * The structure is composed of:
795 * - Event of the message:
796 * - Sync: Send the whole LS DB following a request
797 * - Add: Send the a new Link State element
798 * - Update: Send an update of an existing Link State element
799 * - Delete: Indicate that the given Link State element is removed
800 * - Type of Link State element: Node, Attribute or Prefix
801 * - Remote node id when known
802 * - Data: Node, Attributes or Prefix
803 *
804 * A Link State Message can carry only one Link State Element (Node, Attributes
805 * of Prefix) at once, and only one Link State Message is sent through ZAPI
806 * Opaque Link State type at once.
807 */
808
809 /* ZAPI Opaque Link State Message Event */
810 #define LS_MSG_EVENT_UNDEF 0
811 #define LS_MSG_EVENT_SYNC 1
812 #define LS_MSG_EVENT_ADD 2
813 #define LS_MSG_EVENT_UPDATE 3
814 #define LS_MSG_EVENT_DELETE 4
815
816 /* ZAPI Opaque Link State Message sub-Type */
817 #define LS_MSG_TYPE_NODE 1
818 #define LS_MSG_TYPE_ATTRIBUTES 2
819 #define LS_MSG_TYPE_PREFIX 3
820
821 /* Link State Message */
822 struct ls_message {
823 uint8_t event; /* Message Event: Sync, Add, Update, Delete */
824 uint8_t type; /* Message Data Type: Node, Attribute, Prefix */
825 struct ls_node_id remote_id; /* Remote Link State Node ID */
826 union {
827 struct ls_node *node; /* Link State Node */
828 struct ls_attributes *attr; /* Link State Attributes */
829 struct ls_prefix *prefix; /* Link State Prefix */
830 } data;
831 };
832
833 /**
834 * Register Link State daemon as a server or client for Zebra OPAQUE API.
835 *
836 * @param zclient Zebra client structure
837 * @param server Register daemon as a server (true) or as a client (false)
838 *
839 * @return 0 if success, -1 otherwise
840 */
841 extern int ls_register(struct zclient *zclient, bool server);
842
843 /**
844 * Unregister Link State daemon as a server or client for Zebra OPAQUE API.
845 *
846 * @param zclient Zebra client structure
847 * @param server Unregister daemon as a server (true) or as a client (false)
848 *
849 * @return 0 if success, -1 otherwise
850 */
851 extern int ls_unregister(struct zclient *zclient, bool server);
852
853 /**
854 * Send Link State SYNC message to request the complete Link State Database.
855 *
856 * @param zclient Zebra client
857 *
858 * @return 0 if success, -1 otherwise
859 */
860 extern int ls_request_sync(struct zclient *zclient);
861
862 /**
863 * Parse Link State Message from stream. Used this function once receiving a
864 * new ZAPI Opaque message of type Link State.
865 *
866 * @param s Stream buffer. Must not be NULL.
867 *
868 * @return New Link State Message or NULL in case of error
869 */
870 extern struct ls_message *ls_parse_msg(struct stream *s);
871
872 /**
873 * Delete existing message. Data structure is freed.
874 *
875 * @param msg Link state message to be deleted
876 */
877 extern void ls_delete_msg(struct ls_message *msg);
878
879 /**
880 * Send Link State Message as new ZAPI Opaque message of type Link State.
881 * If destination is not NULL, message is sent as Unicast otherwise it is
882 * broadcast to all registered daemon.
883 *
884 * @param zclient Zebra Client
885 * @param msg Link State Message to be sent
886 * @param dst Destination daemon for unicast message,
887 * NULL for broadcast message
888 *
889 * @return 0 on success, -1 otherwise
890 */
891 extern int ls_send_msg(struct zclient *zclient, struct ls_message *msg,
892 struct zapi_opaque_reg_info *dst);
893
894 /**
895 * Create a new Link State Message from a Link State Vertex. If Link State
896 * Message is NULL, a new data structure is dynamically allocated.
897 *
898 * @param msg Link State Message to be filled or NULL
899 * @param vertex Link State Vertex. Must not be NULL
900 *
901 * @return New Link State Message msg parameter is NULL or pointer
902 * to the provided Link State Message
903 */
904 extern struct ls_message *ls_vertex2msg(struct ls_message *msg,
905 struct ls_vertex *vertex);
906
907 /**
908 * Create a new Link State Message from a Link State Edge. If Link State
909 * Message is NULL, a new data structure is dynamically allocated.
910 *
911 * @param msg Link State Message to be filled or NULL
912 * @param edge Link State Edge. Must not be NULL
913 *
914 * @return New Link State Message msg parameter is NULL or pointer
915 * to the provided Link State Message
916 */
917 extern struct ls_message *ls_edge2msg(struct ls_message *msg,
918 struct ls_edge *edge);
919
920 /**
921 * Create a new Link State Message from a Link State Subnet. If Link State
922 * Message is NULL, a new data structure is dynamically allocated.
923 *
924 * @param msg Link State Message to be filled or NULL
925 * @param subnet Link State Subnet. Must not be NULL
926 *
927 * @return New Link State Message msg parameter is NULL or pointer
928 * to the provided Link State Message
929 */
930 extern struct ls_message *ls_subnet2msg(struct ls_message *msg,
931 struct ls_subnet *subnet);
932
933 /**
934 * Convert Link State Message into Vertex and update TED accordingly to
935 * the message event: SYNC, ADD, UPDATE or DELETE.
936 *
937 * @param ted Link State Database
938 * @param msg Link State Message
939 * @param delete True to delete the Link State Vertex from the Database,
940 * False otherwise. If true, return value is NULL in case
941 * of deletion.
942 *
943 * @return Vertex if success, NULL otherwise or if Vertex is removed
944 */
945 extern struct ls_vertex *ls_msg2vertex(struct ls_ted *ted,
946 struct ls_message *msg, bool delete);
947
948 /**
949 * Convert Link State Message into Edge and update TED accordingly to
950 * the message event: SYNC, ADD, UPDATE or DELETE.
951 *
952 * @param ted Link State Database
953 * @param msg Link State Message
954 * @param delete True to delete the Link State Edge from the Database,
955 * False otherwise. If true, return value is NULL in case
956 * of deletion.
957 *
958 * @return Edge if success, NULL otherwise or if Edge is removed
959 */
960 extern struct ls_edge *ls_msg2edge(struct ls_ted *ted, struct ls_message *msg,
961 bool delete);
962
963 /**
964 * Convert Link State Message into Subnet and update TED accordingly to
965 * the message event: SYNC, ADD, UPDATE or DELETE.
966 *
967 * @param ted Link State Database
968 * @param msg Link State Message
969 * @param delete True to delete the Link State Subnet from the Database,
970 * False otherwise. If true, return value is NULL in case
971 * of deletion.
972 *
973 * @return Subnet if success, NULL otherwise or if Subnet is removed
974 */
975 extern struct ls_subnet *ls_msg2subnet(struct ls_ted *ted,
976 struct ls_message *msg, bool delete);
977
978 /**
979 * Convert Link State Message into Link State element (Vertex, Edge or Subnet)
980 * and update TED accordingly to the message event: SYNC, ADD, UPDATE or DELETE.
981 *
982 * @param ted Link State Database
983 * @param msg Link State Message
984 * @param delete True to delete the Link State Element from the Database,
985 * False otherwise. If true, return value is NULL in case
986 * of deletion.
987 *
988 * @return Element if success, NULL otherwise or if Element is removed
989 */
990 extern struct ls_element *ls_msg2ted(struct ls_ted *ted, struct ls_message *msg,
991 bool delete);
992
993 /**
994 * Convert stream buffer into Link State element (Vertex, Edge or Subnet) and
995 * update TED accordingly to the message event: SYNC, ADD, UPDATE or DELETE.
996 *
997 * @param ted Link State Database
998 * @param s Stream buffer
999 * @param delete True to delete the Link State Element from the Database,
1000 * False otherwise. If true, return value is NULL in case
1001 * of deletion.
1002 *
1003 * @return Element if success, NULL otherwise or if Element is removed
1004 */
1005 extern struct ls_element *ls_stream2ted(struct ls_ted *ted, struct stream *s,
1006 bool delete);
1007
1008 /**
1009 * Send all the content of the Link State Data Base to the given destination.
1010 * Link State content is sent is this order: Vertices, Edges, Subnet.
1011 * This function must be used when a daemon request a Link State Data Base
1012 * Synchronization.
1013 *
1014 * @param ted Link State Data Base. Must not be NULL
1015 * @param zclient Zebra Client. Must not be NULL
1016 * @param dst Destination FRR daemon. Must not be NULL
1017 *
1018 * @return 0 on success, -1 otherwise
1019 */
1020 extern int ls_sync_ted(struct ls_ted *ted, struct zclient *zclient,
1021 struct zapi_opaque_reg_info *dst);
1022
1023 struct json_object;
1024 struct vty;
1025 /**
1026 * Show Link State Vertex information. If both vty and json are specified,
1027 * Json format output supersedes standard vty output.
1028 *
1029 * @param vertex Link State Vertex to show. Must not be NULL
1030 * @param vty Pointer to vty output, could be NULL
1031 * @param json Pointer to json output, could be NULL
1032 * @param verbose Set to true for more detail
1033 */
1034 extern void ls_show_vertex(struct ls_vertex *vertex, struct vty *vty,
1035 struct json_object *json, bool verbose);
1036
1037 /**
1038 * Show all Link State Vertices information. If both vty and json are specified,
1039 * Json format output supersedes standard vty output.
1040 *
1041 * @param ted Link State Data Base. Must not be NULL
1042 * @param vty Pointer to vty output, could be NULL
1043 * @param json Pointer to json output, could be NULL
1044 * @param verbose Set to true for more detail
1045 */
1046 extern void ls_show_vertices(struct ls_ted *ted, struct vty *vty,
1047 struct json_object *json, bool verbose);
1048
1049 /**
1050 * Show Link State Edge information. If both vty and json are specified,
1051 * Json format output supersedes standard vty output.
1052 *
1053 * @param edge Link State Edge to show. Must not be NULL
1054 * @param vty Pointer to vty output, could be NULL
1055 * @param json Pointer to json output, could be NULL
1056 * @param verbose Set to true for more detail
1057 */
1058 extern void ls_show_edge(struct ls_edge *edge, struct vty *vty,
1059 struct json_object *json, bool verbose);
1060
1061 /**
1062 * Show all Link State Edges information. If both vty and json are specified,
1063 * Json format output supersedes standard vty output.
1064 *
1065 * @param ted Link State Data Base. Must not be NULL
1066 * @param vty Pointer to vty output, could be NULL
1067 * @param json Pointer to json output, could be NULL
1068 * @param verbose Set to true for more detail
1069 */
1070 extern void ls_show_edges(struct ls_ted *ted, struct vty *vty,
1071 struct json_object *json, bool verbose);
1072
1073 /**
1074 * Show Link State Subnets information. If both vty and json are specified,
1075 * Json format output supersedes standard vty output.
1076 *
1077 * @param subnet Link State Subnet to show. Must not be NULL
1078 * @param vty Pointer to vty output, could be NULL
1079 * @param json Pointer to json output, could be NULL
1080 * @param verbose Set to true for more detail
1081 */
1082 extern void ls_show_subnet(struct ls_subnet *subnet, struct vty *vty,
1083 struct json_object *json, bool verbose);
1084
1085 /**
1086 * Show all Link State Subnet information. If both vty and json are specified,
1087 * Json format output supersedes standard vty output.
1088 *
1089 * @param ted Link State Data Base. Must not be NULL
1090 * @param vty Pointer to vty output, could be NULL
1091 * @param json Pointer to json output, could be NULL
1092 * @param verbose Set to true for more detail
1093 */
1094 extern void ls_show_subnets(struct ls_ted *ted, struct vty *vty,
1095 struct json_object *json, bool verbose);
1096
1097 /**
1098 * Show Link State Data Base information. If both vty and json are specified,
1099 * Json format output supersedes standard vty output.
1100 *
1101 * @param ted Link State Data Base to show. Must not be NULL
1102 * @param vty Pointer to vty output, could be NULL
1103 * @param json Pointer to json output, could be NULL
1104 * @param verbose Set to true for more detail
1105 */
1106 extern void ls_show_ted(struct ls_ted *ted, struct vty *vty,
1107 struct json_object *json, bool verbose);
1108
1109 /**
1110 * Dump all Link State Data Base elements for debugging purposes
1111 *
1112 * @param ted Link State Data Base. Must not be NULL
1113 *
1114 */
1115 extern void ls_dump_ted(struct ls_ted *ted);
1116
1117 #ifdef __cplusplus
1118 }
1119 #endif
1120
1121 #endif /* _FRR_LINK_STATE_H_ */