]> git.proxmox.com Git - mirror_frr.git/blob - lib/openbsd-queue.h
zebra: Refactor kernel_rtm to be a bit smarter about how it handles options
[mirror_frr.git] / lib / openbsd-queue.h
1 /* $OpenBSD: queue.h,v 1.43 2015/12/28 19:38:40 millert Exp $ */
2 /* $NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $ */
3
4 /*
5 * Copyright (c) 1991, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * @(#)queue.h 8.5 (Berkeley) 8/20/94
33 */
34
35 #ifndef _SYS_QUEUE_H_
36 #define _SYS_QUEUE_H_
37
38 /*
39 * This file defines five types of data structures: singly-linked lists,
40 * lists, simple queues, tail queues and XOR simple queues.
41 *
42 *
43 * A singly-linked list is headed by a single forward pointer. The elements
44 * are singly linked for minimum space and pointer manipulation overhead at
45 * the expense of O(n) removal for arbitrary elements. New elements can be
46 * added to the list after an existing element or at the head of the list.
47 * Elements being removed from the head of the list should use the explicit
48 * macro for this purpose for optimum efficiency. A singly-linked list may
49 * only be traversed in the forward direction. Singly-linked lists are ideal
50 * for applications with large datasets and few or no removals or for
51 * implementing a LIFO queue.
52 *
53 * A list is headed by a single forward pointer (or an array of forward
54 * pointers for a hash table header). The elements are doubly linked
55 * so that an arbitrary element can be removed without a need to
56 * traverse the list. New elements can be added to the list before
57 * or after an existing element or at the head of the list. A list
58 * may only be traversed in the forward direction.
59 *
60 * A simple queue is headed by a pair of pointers, one to the head of the
61 * list and the other to the tail of the list. The elements are singly
62 * linked to save space, so elements can only be removed from the
63 * head of the list. New elements can be added to the list before or after
64 * an existing element, at the head of the list, or at the end of the
65 * list. A simple queue may only be traversed in the forward direction.
66 *
67 * A tail queue is headed by a pair of pointers, one to the head of the
68 * list and the other to the tail of the list. The elements are doubly
69 * linked so that an arbitrary element can be removed without a need to
70 * traverse the list. New elements can be added to the list before or
71 * after an existing element, at the head of the list, or at the end of
72 * the list. A tail queue may be traversed in either direction.
73 *
74 * An XOR simple queue is used in the same way as a regular simple queue.
75 * The difference is that the head structure also includes a "cookie" that
76 * is XOR'd with the queue pointer (first, last or next) to generate the
77 * real pointer value.
78 *
79 * For details on the use of these macros, see the queue(3) manual page.
80 */
81
82 #if defined(QUEUE_MACRO_DEBUG) || (defined(_KERNEL) && defined(DIAGNOSTIC))
83 #define _Q_INVALIDATE(a) (a) = ((void *)-1)
84 #else
85 #define _Q_INVALIDATE(a)
86 #endif
87
88 /*
89 * Singly-linked List definitions.
90 */
91 #define SLIST_HEAD(name, type) \
92 struct name { \
93 struct type *slh_first; /* first element */ \
94 }
95
96 #define SLIST_HEAD_INITIALIZER(head) \
97 { \
98 NULL \
99 }
100
101 #define SLIST_ENTRY(type) \
102 struct { \
103 struct type *sle_next; /* next element */ \
104 }
105
106 /*
107 * Singly-linked List access methods.
108 */
109 #define SLIST_FIRST(head) ((head)->slh_first)
110 #define SLIST_END(head) NULL
111 #define SLIST_EMPTY(head) (SLIST_FIRST(head) == SLIST_END(head))
112 #define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
113
114 #define SLIST_FOREACH(var, head, field) \
115 for ((var) = SLIST_FIRST(head); (var) != SLIST_END(head); \
116 (var) = SLIST_NEXT(var, field))
117
118 #define SLIST_FOREACH_SAFE(var, head, field, tvar) \
119 for ((var) = SLIST_FIRST(head); \
120 (var) && ((tvar) = SLIST_NEXT(var, field), 1); (var) = (tvar))
121
122 /*
123 * Singly-linked List functions.
124 */
125 #define SLIST_INIT(head) \
126 { \
127 SLIST_FIRST(head) = SLIST_END(head); \
128 }
129
130 #define SLIST_INSERT_AFTER(slistelm, elm, field) \
131 do { \
132 (elm)->field.sle_next = (slistelm)->field.sle_next; \
133 (slistelm)->field.sle_next = (elm); \
134 } while (0)
135
136 #define SLIST_INSERT_HEAD(head, elm, field) \
137 do { \
138 (elm)->field.sle_next = (head)->slh_first; \
139 (head)->slh_first = (elm); \
140 } while (0)
141
142 #define SLIST_REMOVE_AFTER(elm, field) \
143 do { \
144 (elm)->field.sle_next = (elm)->field.sle_next->field.sle_next; \
145 } while (0)
146
147 #define SLIST_REMOVE_HEAD(head, field) \
148 do { \
149 (head)->slh_first = (head)->slh_first->field.sle_next; \
150 } while (0)
151
152 #define SLIST_REMOVE(head, elm, type, field) \
153 do { \
154 if ((head)->slh_first == (elm)) { \
155 SLIST_REMOVE_HEAD((head), field); \
156 } else { \
157 struct type *curelm = (head)->slh_first; \
158 \
159 while (curelm->field.sle_next != (elm)) \
160 curelm = curelm->field.sle_next; \
161 curelm->field.sle_next = \
162 curelm->field.sle_next->field.sle_next; \
163 } \
164 _Q_INVALIDATE((elm)->field.sle_next); \
165 } while (0)
166
167 /*
168 * List definitions.
169 */
170 #define LIST_HEAD(name, type) \
171 struct name { \
172 struct type *lh_first; /* first element */ \
173 }
174
175 #define LIST_HEAD_INITIALIZER(head) \
176 { \
177 NULL \
178 }
179
180 #define LIST_ENTRY(type) \
181 struct { \
182 struct type *le_next; /* next element */ \
183 struct type **le_prev; /* address of previous next element */ \
184 }
185
186 /*
187 * List access methods.
188 */
189 #define LIST_FIRST(head) ((head)->lh_first)
190 #define LIST_END(head) NULL
191 #define LIST_EMPTY(head) (LIST_FIRST(head) == LIST_END(head))
192 #define LIST_NEXT(elm, field) ((elm)->field.le_next)
193
194 #define LIST_FOREACH(var, head, field) \
195 for ((var) = LIST_FIRST(head); (var) != LIST_END(head); \
196 (var) = LIST_NEXT(var, field))
197
198 #define LIST_FOREACH_SAFE(var, head, field, tvar) \
199 for ((var) = LIST_FIRST(head); \
200 (var) && ((tvar) = LIST_NEXT(var, field), 1); (var) = (tvar))
201
202 /*
203 * List functions.
204 */
205 #define LIST_INIT(head) \
206 do { \
207 LIST_FIRST(head) = LIST_END(head); \
208 } while (0)
209
210 #define LIST_INSERT_AFTER(listelm, elm, field) \
211 do { \
212 if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
213 (listelm)->field.le_next->field.le_prev = \
214 &(elm)->field.le_next; \
215 (listelm)->field.le_next = (elm); \
216 (elm)->field.le_prev = &(listelm)->field.le_next; \
217 } while (0)
218
219 #define LIST_INSERT_BEFORE(listelm, elm, field) \
220 do { \
221 (elm)->field.le_prev = (listelm)->field.le_prev; \
222 (elm)->field.le_next = (listelm); \
223 *(listelm)->field.le_prev = (elm); \
224 (listelm)->field.le_prev = &(elm)->field.le_next; \
225 } while (0)
226
227 #define LIST_INSERT_HEAD(head, elm, field) \
228 do { \
229 if (((elm)->field.le_next = (head)->lh_first) != NULL) \
230 (head)->lh_first->field.le_prev = \
231 &(elm)->field.le_next; \
232 (head)->lh_first = (elm); \
233 (elm)->field.le_prev = &(head)->lh_first; \
234 } while (0)
235
236 #define LIST_REMOVE(elm, field) \
237 do { \
238 if ((elm)->field.le_next != NULL) \
239 (elm)->field.le_next->field.le_prev = \
240 (elm)->field.le_prev; \
241 *(elm)->field.le_prev = (elm)->field.le_next; \
242 _Q_INVALIDATE((elm)->field.le_prev); \
243 _Q_INVALIDATE((elm)->field.le_next); \
244 } while (0)
245
246 #define LIST_REPLACE(elm, elm2, field) \
247 do { \
248 if (((elm2)->field.le_next = (elm)->field.le_next) != NULL) \
249 (elm2)->field.le_next->field.le_prev = \
250 &(elm2)->field.le_next; \
251 (elm2)->field.le_prev = (elm)->field.le_prev; \
252 *(elm2)->field.le_prev = (elm2); \
253 _Q_INVALIDATE((elm)->field.le_prev); \
254 _Q_INVALIDATE((elm)->field.le_next); \
255 } while (0)
256
257 /*
258 * Simple queue definitions.
259 */
260 #define SIMPLEQ_HEAD(name, type) \
261 struct name { \
262 struct type *sqh_first; /* first element */ \
263 struct type **sqh_last; /* addr of last next element */ \
264 }
265
266 #define SIMPLEQ_HEAD_INITIALIZER(head) \
267 { \
268 NULL, &(head).sqh_first \
269 }
270
271 #define SIMPLEQ_ENTRY(type) \
272 struct { \
273 struct type *sqe_next; /* next element */ \
274 }
275
276 /*
277 * Simple queue access methods.
278 */
279 #define SIMPLEQ_FIRST(head) ((head)->sqh_first)
280 #define SIMPLEQ_END(head) NULL
281 #define SIMPLEQ_EMPTY(head) (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
282 #define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next)
283
284 #define SIMPLEQ_FOREACH(var, head, field) \
285 for ((var) = SIMPLEQ_FIRST(head); (var) != SIMPLEQ_END(head); \
286 (var) = SIMPLEQ_NEXT(var, field))
287
288 #define SIMPLEQ_FOREACH_SAFE(var, head, field, tvar) \
289 for ((var) = SIMPLEQ_FIRST(head); \
290 (var) && ((tvar) = SIMPLEQ_NEXT(var, field), 1); (var) = (tvar))
291
292 /*
293 * Simple queue functions.
294 */
295 #define SIMPLEQ_INIT(head) \
296 do { \
297 (head)->sqh_first = NULL; \
298 (head)->sqh_last = &(head)->sqh_first; \
299 } while (0)
300
301 #define SIMPLEQ_INSERT_HEAD(head, elm, field) \
302 do { \
303 if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \
304 (head)->sqh_last = &(elm)->field.sqe_next; \
305 (head)->sqh_first = (elm); \
306 } while (0)
307
308 #define SIMPLEQ_INSERT_TAIL(head, elm, field) \
309 do { \
310 (elm)->field.sqe_next = NULL; \
311 *(head)->sqh_last = (elm); \
312 (head)->sqh_last = &(elm)->field.sqe_next; \
313 } while (0)
314
315 #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) \
316 do { \
317 if (((elm)->field.sqe_next = (listelm)->field.sqe_next) \
318 == NULL) \
319 (head)->sqh_last = &(elm)->field.sqe_next; \
320 (listelm)->field.sqe_next = (elm); \
321 } while (0)
322
323 #define SIMPLEQ_REMOVE_HEAD(head, field) \
324 do { \
325 if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) \
326 == NULL) \
327 (head)->sqh_last = &(head)->sqh_first; \
328 } while (0)
329
330 #define SIMPLEQ_REMOVE_AFTER(head, elm, field) \
331 do { \
332 if (((elm)->field.sqe_next = \
333 (elm)->field.sqe_next->field.sqe_next) \
334 == NULL) \
335 (head)->sqh_last = &(elm)->field.sqe_next; \
336 } while (0)
337
338 #define SIMPLEQ_CONCAT(head1, head2) \
339 do { \
340 if (!SIMPLEQ_EMPTY((head2))) { \
341 *(head1)->sqh_last = (head2)->sqh_first; \
342 (head1)->sqh_last = (head2)->sqh_last; \
343 SIMPLEQ_INIT((head2)); \
344 } \
345 } while (0)
346
347 /*
348 * XOR Simple queue definitions.
349 */
350 #define XSIMPLEQ_HEAD(name, type) \
351 struct name { \
352 struct type *sqx_first; /* first element */ \
353 struct type **sqx_last; /* addr of last next element */ \
354 unsigned long sqx_cookie; \
355 }
356
357 #define XSIMPLEQ_ENTRY(type) \
358 struct { \
359 struct type *sqx_next; /* next element */ \
360 }
361
362 /*
363 * XOR Simple queue access methods.
364 */
365 #define XSIMPLEQ_XOR(head, ptr) \
366 ((__typeof(ptr))((head)->sqx_cookie ^ (unsigned long)(ptr)))
367 #define XSIMPLEQ_FIRST(head) XSIMPLEQ_XOR(head, ((head)->sqx_first))
368 #define XSIMPLEQ_END(head) NULL
369 #define XSIMPLEQ_EMPTY(head) (XSIMPLEQ_FIRST(head) == XSIMPLEQ_END(head))
370 #define XSIMPLEQ_NEXT(head, elm, field) XSIMPLEQ_XOR(head, ((elm)->field.sqx_next))
371
372 #define XSIMPLEQ_FOREACH(var, head, field) \
373 for ((var) = XSIMPLEQ_FIRST(head); (var) != XSIMPLEQ_END(head); \
374 (var) = XSIMPLEQ_NEXT(head, var, field))
375
376 #define XSIMPLEQ_FOREACH_SAFE(var, head, field, tvar) \
377 for ((var) = XSIMPLEQ_FIRST(head); \
378 (var) && ((tvar) = XSIMPLEQ_NEXT(head, var, field), 1); \
379 (var) = (tvar))
380
381 /*
382 * XOR Simple queue functions.
383 */
384 #define XSIMPLEQ_INIT(head) \
385 do { \
386 arc4random_buf(&(head)->sqx_cookie, \
387 sizeof((head)->sqx_cookie)); \
388 (head)->sqx_first = XSIMPLEQ_XOR(head, NULL); \
389 (head)->sqx_last = XSIMPLEQ_XOR(head, &(head)->sqx_first); \
390 } while (0)
391
392 #define XSIMPLEQ_INSERT_HEAD(head, elm, field) \
393 do { \
394 if (((elm)->field.sqx_next = (head)->sqx_first) \
395 == XSIMPLEQ_XOR(head, NULL)) \
396 (head)->sqx_last = \
397 XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
398 (head)->sqx_first = XSIMPLEQ_XOR(head, (elm)); \
399 } while (0)
400
401 #define XSIMPLEQ_INSERT_TAIL(head, elm, field) \
402 do { \
403 (elm)->field.sqx_next = XSIMPLEQ_XOR(head, NULL); \
404 *(XSIMPLEQ_XOR(head, (head)->sqx_last)) = \
405 XSIMPLEQ_XOR(head, (elm)); \
406 (head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
407 } while (0)
408
409 #define XSIMPLEQ_INSERT_AFTER(head, listelm, elm, field) \
410 do { \
411 if (((elm)->field.sqx_next = (listelm)->field.sqx_next) \
412 == XSIMPLEQ_XOR(head, NULL)) \
413 (head)->sqx_last = \
414 XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
415 (listelm)->field.sqx_next = XSIMPLEQ_XOR(head, (elm)); \
416 } while (0)
417
418 #define XSIMPLEQ_REMOVE_HEAD(head, field) \
419 do { \
420 if (((head)->sqx_first = XSIMPLEQ_XOR(head, (head)->sqx_first) \
421 ->field.sqx_next) \
422 == XSIMPLEQ_XOR(head, NULL)) \
423 (head)->sqx_last = \
424 XSIMPLEQ_XOR(head, &(head)->sqx_first); \
425 } while (0)
426
427 #define XSIMPLEQ_REMOVE_AFTER(head, elm, field) \
428 do { \
429 if (((elm)->field.sqx_next = \
430 XSIMPLEQ_XOR(head, (elm)->field.sqx_next) \
431 ->field.sqx_next) \
432 == XSIMPLEQ_XOR(head, NULL)) \
433 (head)->sqx_last = \
434 XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
435 } while (0)
436
437
438 /*
439 * Tail queue definitions.
440 */
441 #define TAILQ_HEAD(name, type) \
442 struct name { \
443 struct type *tqh_first; /* first element */ \
444 struct type **tqh_last; /* addr of last next element */ \
445 }
446
447 #define TAILQ_HEAD_INITIALIZER(head) \
448 { \
449 NULL, &(head).tqh_first \
450 }
451
452 #define TAILQ_ENTRY(type) \
453 struct { \
454 struct type *tqe_next; /* next element */ \
455 struct type **tqe_prev; /* address of previous next element */ \
456 }
457
458 /*
459 * Tail queue access methods.
460 */
461 #define TAILQ_FIRST(head) ((head)->tqh_first)
462 #define TAILQ_END(head) NULL
463 #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
464 #define TAILQ_LAST(head, headname) \
465 (*(((struct headname *)((head)->tqh_last))->tqh_last))
466 /* XXX */
467 #define TAILQ_PREV(elm, headname, field) \
468 (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
469 #define TAILQ_EMPTY(head) (TAILQ_FIRST(head) == TAILQ_END(head))
470
471 #define TAILQ_FOREACH(var, head, field) \
472 for ((var) = TAILQ_FIRST(head); (var) != TAILQ_END(head); \
473 (var) = TAILQ_NEXT(var, field))
474
475 #define TAILQ_FOREACH_SAFE(var, head, field, tvar) \
476 for ((var) = TAILQ_FIRST(head); \
477 (var) != TAILQ_END(head) && ((tvar) = TAILQ_NEXT(var, field), 1); \
478 (var) = (tvar))
479
480
481 #define TAILQ_FOREACH_REVERSE(var, head, headname, field) \
482 for ((var) = TAILQ_LAST(head, headname); (var) != TAILQ_END(head); \
483 (var) = TAILQ_PREV(var, headname, field))
484
485 #define TAILQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar) \
486 for ((var) = TAILQ_LAST(head, headname); \
487 (var) != TAILQ_END(head) \
488 && ((tvar) = TAILQ_PREV(var, headname, field), 1); \
489 (var) = (tvar))
490
491 /*
492 * Tail queue functions.
493 */
494 #define TAILQ_INIT(head) \
495 do { \
496 (head)->tqh_first = NULL; \
497 (head)->tqh_last = &(head)->tqh_first; \
498 } while (0)
499
500 #define TAILQ_INSERT_HEAD(head, elm, field) \
501 do { \
502 if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
503 (head)->tqh_first->field.tqe_prev = \
504 &(elm)->field.tqe_next; \
505 else \
506 (head)->tqh_last = &(elm)->field.tqe_next; \
507 (head)->tqh_first = (elm); \
508 (elm)->field.tqe_prev = &(head)->tqh_first; \
509 } while (0)
510
511 #define TAILQ_INSERT_TAIL(head, elm, field) \
512 do { \
513 (elm)->field.tqe_next = NULL; \
514 (elm)->field.tqe_prev = (head)->tqh_last; \
515 *(head)->tqh_last = (elm); \
516 (head)->tqh_last = &(elm)->field.tqe_next; \
517 } while (0)
518
519 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) \
520 do { \
521 if (((elm)->field.tqe_next = (listelm)->field.tqe_next) \
522 != NULL) \
523 (elm)->field.tqe_next->field.tqe_prev = \
524 &(elm)->field.tqe_next; \
525 else \
526 (head)->tqh_last = &(elm)->field.tqe_next; \
527 (listelm)->field.tqe_next = (elm); \
528 (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
529 } while (0)
530
531 #define TAILQ_INSERT_BEFORE(listelm, elm, field) \
532 do { \
533 (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
534 (elm)->field.tqe_next = (listelm); \
535 *(listelm)->field.tqe_prev = (elm); \
536 (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
537 } while (0)
538
539 #define TAILQ_REMOVE(head, elm, field) \
540 do { \
541 if (((elm)->field.tqe_next) != NULL) \
542 (elm)->field.tqe_next->field.tqe_prev = \
543 (elm)->field.tqe_prev; \
544 else \
545 (head)->tqh_last = (elm)->field.tqe_prev; \
546 *(elm)->field.tqe_prev = (elm)->field.tqe_next; \
547 _Q_INVALIDATE((elm)->field.tqe_prev); \
548 _Q_INVALIDATE((elm)->field.tqe_next); \
549 } while (0)
550
551 #define TAILQ_REPLACE(head, elm, elm2, field) \
552 do { \
553 if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL) \
554 (elm2)->field.tqe_next->field.tqe_prev = \
555 &(elm2)->field.tqe_next; \
556 else \
557 (head)->tqh_last = &(elm2)->field.tqe_next; \
558 (elm2)->field.tqe_prev = (elm)->field.tqe_prev; \
559 *(elm2)->field.tqe_prev = (elm2); \
560 _Q_INVALIDATE((elm)->field.tqe_prev); \
561 _Q_INVALIDATE((elm)->field.tqe_next); \
562 } while (0)
563
564 #define TAILQ_CONCAT(head1, head2, field) \
565 do { \
566 if (!TAILQ_EMPTY(head2)) { \
567 *(head1)->tqh_last = (head2)->tqh_first; \
568 (head2)->tqh_first->field.tqe_prev = \
569 (head1)->tqh_last; \
570 (head1)->tqh_last = (head2)->tqh_last; \
571 TAILQ_INIT((head2)); \
572 } \
573 } while (0)
574
575 #endif /* !_SYS_QUEUE_H_ */