]> git.proxmox.com Git - mirror_frr.git/blob - lib/table.c
zebra: silence harmless ioctl warning when retrieving interface speed
[mirror_frr.git] / lib / table.c
1 /*
2 * Routing Table functions.
3 * Copyright (C) 1998 Kunihiro Ishiguro
4 *
5 * This file is part of GNU Zebra.
6 *
7 * GNU Zebra is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; either version 2, or (at your option) any
10 * later version.
11 *
12 * GNU Zebra is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; see the file COPYING; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 #define FRR_COMPILING_TABLE_C
23
24 #include <zebra.h>
25
26 #include "prefix.h"
27 #include "table.h"
28 #include "memory.h"
29 #include "sockunion.h"
30
31 DEFINE_MTYPE(LIB, ROUTE_TABLE, "Route table")
32 DEFINE_MTYPE(LIB, ROUTE_NODE, "Route node")
33
34 static void route_table_free(struct route_table *);
35
36 static bool route_table_hash_cmp(const void *a, const void *b)
37 {
38 const struct prefix *pa = a, *pb = b;
39 return prefix_cmp(pa, pb) == 0;
40 }
41
42 /*
43 * route_table_init_with_delegate
44 */
45 struct route_table *
46 route_table_init_with_delegate(route_table_delegate_t *delegate)
47 {
48 struct route_table *rt;
49
50 rt = XCALLOC(MTYPE_ROUTE_TABLE, sizeof(struct route_table));
51 rt->delegate = delegate;
52 rt->hash = hash_create(prefix_hash_key, route_table_hash_cmp,
53 "route table hash");
54 return rt;
55 }
56
57 void route_table_finish(struct route_table *rt)
58 {
59 route_table_free(rt);
60 }
61
62 /* Allocate new route node. */
63 static struct route_node *route_node_new(struct route_table *table)
64 {
65 return table->delegate->create_node(table->delegate, table);
66 }
67
68 /* Allocate new route node with prefix set. */
69 static struct route_node *route_node_set(struct route_table *table,
70 const struct prefix *prefix)
71 {
72 struct route_node *node, *inserted;
73
74 node = route_node_new(table);
75
76 prefix_copy(&node->p, prefix);
77 node->table = table;
78
79 inserted = hash_get(node->table->hash, node, hash_alloc_intern);
80 assert(inserted == node);
81
82 return node;
83 }
84
85 /* Free route node. */
86 static void route_node_free(struct route_table *table, struct route_node *node)
87 {
88 if (table->cleanup)
89 table->cleanup(table, node);
90 table->delegate->destroy_node(table->delegate, table, node);
91 }
92
93 /* Free route table. */
94 static void route_table_free(struct route_table *rt)
95 {
96 struct route_node *tmp_node;
97 struct route_node *node;
98
99 if (rt == NULL)
100 return;
101
102 hash_clean(rt->hash, NULL);
103 hash_free(rt->hash);
104
105 node = rt->top;
106
107 /* Bulk deletion of nodes remaining in this table. This function is not
108 called until workers have completed their dependency on this table.
109 A final route_unlock_node() will not be called for these nodes. */
110 while (node) {
111 if (node->l_left) {
112 node = node->l_left;
113 continue;
114 }
115
116 if (node->l_right) {
117 node = node->l_right;
118 continue;
119 }
120
121 tmp_node = node;
122 node = node->parent;
123
124 tmp_node->table->count--;
125 tmp_node->lock = 0; /* to cause assert if unlocked after this */
126 route_node_free(rt, tmp_node);
127
128 if (node != NULL) {
129 if (node->l_left == tmp_node)
130 node->l_left = NULL;
131 else
132 node->l_right = NULL;
133 } else {
134 break;
135 }
136 }
137
138 assert(rt->count == 0);
139
140 XFREE(MTYPE_ROUTE_TABLE, rt);
141 return;
142 }
143
144 /* Utility mask array. */
145 static const uint8_t maskbit[] = {0x00, 0x80, 0xc0, 0xe0, 0xf0,
146 0xf8, 0xfc, 0xfe, 0xff};
147
148 /* Common prefix route genaration. */
149 static void route_common(const struct prefix *n, const struct prefix *p,
150 struct prefix *new)
151 {
152 int i;
153 uint8_t diff;
154 uint8_t mask;
155 const uint8_t *np;
156 const uint8_t *pp;
157 uint8_t *newp;
158
159 if (n->family == AF_FLOWSPEC)
160 return prefix_copy(new, p);
161 np = (const uint8_t *)&n->u.prefix;
162 pp = (const uint8_t *)&p->u.prefix;
163
164 newp = (uint8_t *)&new->u.prefix;
165
166 for (i = 0; i < p->prefixlen / 8; i++) {
167 if (np[i] == pp[i])
168 newp[i] = np[i];
169 else
170 break;
171 }
172
173 new->prefixlen = i * 8;
174
175 if (new->prefixlen != p->prefixlen) {
176 diff = np[i] ^ pp[i];
177 mask = 0x80;
178 while (new->prefixlen < p->prefixlen && !(mask & diff)) {
179 mask >>= 1;
180 new->prefixlen++;
181 }
182 newp[i] = np[i] & maskbit[new->prefixlen % 8];
183 }
184 }
185
186 static void set_link(struct route_node *node, struct route_node *new)
187 {
188 unsigned int bit = prefix_bit(&new->p.u.prefix, node->p.prefixlen);
189
190 node->link[bit] = new;
191 new->parent = node;
192 }
193
194 /* Find matched prefix. */
195 struct route_node *route_node_match(const struct route_table *table,
196 union prefixconstptr pu)
197 {
198 const struct prefix *p = pu.p;
199 struct route_node *node;
200 struct route_node *matched;
201
202 matched = NULL;
203 node = table->top;
204
205 /* Walk down tree. If there is matched route then store it to
206 matched. */
207 while (node && node->p.prefixlen <= p->prefixlen
208 && prefix_match(&node->p, p)) {
209 if (node->info)
210 matched = node;
211
212 if (node->p.prefixlen == p->prefixlen)
213 break;
214
215 node = node->link[prefix_bit(&p->u.prefix, node->p.prefixlen)];
216 }
217
218 /* If matched route found, return it. */
219 if (matched)
220 return route_lock_node(matched);
221
222 return NULL;
223 }
224
225 struct route_node *route_node_match_ipv4(const struct route_table *table,
226 const struct in_addr *addr)
227 {
228 struct prefix_ipv4 p;
229
230 memset(&p, 0, sizeof(struct prefix_ipv4));
231 p.family = AF_INET;
232 p.prefixlen = IPV4_MAX_PREFIXLEN;
233 p.prefix = *addr;
234
235 return route_node_match(table, (struct prefix *)&p);
236 }
237
238 struct route_node *route_node_match_ipv6(const struct route_table *table,
239 const struct in6_addr *addr)
240 {
241 struct prefix_ipv6 p;
242
243 memset(&p, 0, sizeof(struct prefix_ipv6));
244 p.family = AF_INET6;
245 p.prefixlen = IPV6_MAX_PREFIXLEN;
246 p.prefix = *addr;
247
248 return route_node_match(table, (struct prefix *)&p);
249 }
250
251 /* Lookup same prefix node. Return NULL when we can't find route. */
252 struct route_node *route_node_lookup(const struct route_table *table,
253 union prefixconstptr pu)
254 {
255 struct prefix p;
256 struct route_node *node;
257 prefix_copy(&p, pu.p);
258 apply_mask(&p);
259
260 node = hash_get(table->hash, (void *)&p, NULL);
261 return (node && node->info) ? route_lock_node(node) : NULL;
262 }
263
264 /* Lookup same prefix node. Return NULL when we can't find route. */
265 struct route_node *route_node_lookup_maynull(const struct route_table *table,
266 union prefixconstptr pu)
267 {
268 struct prefix p;
269 struct route_node *node;
270 prefix_copy(&p, pu.p);
271 apply_mask(&p);
272
273 node = hash_get(table->hash, (void *)&p, NULL);
274 return node ? route_lock_node(node) : NULL;
275 }
276
277 /* Add node to routing table. */
278 struct route_node *route_node_get(struct route_table *const table,
279 union prefixconstptr pu)
280 {
281 const struct prefix *p = pu.p;
282 struct route_node *new;
283 struct route_node *node;
284 struct route_node *match;
285 struct route_node *inserted;
286 uint8_t prefixlen = p->prefixlen;
287 const uint8_t *prefix = &p->u.prefix;
288
289 apply_mask((struct prefix *)p);
290 node = hash_get(table->hash, (void *)p, NULL);
291 if (node && node->info)
292 return route_lock_node(node);
293
294 match = NULL;
295 node = table->top;
296 while (node && node->p.prefixlen <= prefixlen
297 && prefix_match(&node->p, p)) {
298 if (node->p.prefixlen == prefixlen)
299 return route_lock_node(node);
300
301 match = node;
302 node = node->link[prefix_bit(prefix, node->p.prefixlen)];
303 }
304
305 if (node == NULL) {
306 new = route_node_set(table, p);
307 if (match)
308 set_link(match, new);
309 else
310 table->top = new;
311 } else {
312 new = route_node_new(table);
313 route_common(&node->p, p, &new->p);
314 new->p.family = p->family;
315 new->table = table;
316 set_link(new, node);
317 inserted = hash_get(node->table->hash, new, hash_alloc_intern);
318 assert(inserted == new);
319
320 if (match)
321 set_link(match, new);
322 else
323 table->top = new;
324
325 if (new->p.prefixlen != p->prefixlen) {
326 match = new;
327 new = route_node_set(table, p);
328 set_link(match, new);
329 table->count++;
330 }
331 }
332 table->count++;
333 route_lock_node(new);
334
335 return new;
336 }
337
338 /* Delete node from the routing table. */
339 void route_node_delete(struct route_node *node)
340 {
341 struct route_node *child;
342 struct route_node *parent;
343
344 assert(node->lock == 0);
345 assert(node->info == NULL);
346
347 if (node->l_left && node->l_right)
348 return;
349
350 if (node->l_left)
351 child = node->l_left;
352 else
353 child = node->l_right;
354
355 parent = node->parent;
356
357 if (child)
358 child->parent = parent;
359
360 if (parent) {
361 if (parent->l_left == node)
362 parent->l_left = child;
363 else
364 parent->l_right = child;
365 } else
366 node->table->top = child;
367
368 node->table->count--;
369
370 hash_release(node->table->hash, node);
371
372 /* WARNING: FRAGILE CODE!
373 * route_node_free may have the side effect of free'ing the entire
374 * table.
375 * this is permitted only if table->count got decremented to zero above,
376 * because in that case parent will also be NULL, so that we won't try
377 * to
378 * delete a now-stale parent below.
379 *
380 * cf. srcdest_srcnode_destroy() in zebra/zebra_rib.c */
381
382 route_node_free(node->table, node);
383
384 /* If parent node is stub then delete it also. */
385 if (parent && parent->lock == 0)
386 route_node_delete(parent);
387 }
388
389 /* Get fist node and lock it. This function is useful when one want
390 to lookup all the node exist in the routing table. */
391 struct route_node *route_top(struct route_table *table)
392 {
393 /* If there is no node in the routing table return NULL. */
394 if (table->top == NULL)
395 return NULL;
396
397 /* Lock the top node and return it. */
398 route_lock_node(table->top);
399 return table->top;
400 }
401
402 /* Unlock current node and lock next node then return it. */
403 struct route_node *route_next(struct route_node *node)
404 {
405 struct route_node *next;
406 struct route_node *start;
407
408 /* Node may be deleted from route_unlock_node so we have to preserve
409 next node's pointer. */
410
411 if (node->l_left) {
412 next = node->l_left;
413 route_lock_node(next);
414 route_unlock_node(node);
415 return next;
416 }
417 if (node->l_right) {
418 next = node->l_right;
419 route_lock_node(next);
420 route_unlock_node(node);
421 return next;
422 }
423
424 start = node;
425 while (node->parent) {
426 if (node->parent->l_left == node && node->parent->l_right) {
427 next = node->parent->l_right;
428 route_lock_node(next);
429 route_unlock_node(start);
430 return next;
431 }
432 node = node->parent;
433 }
434 route_unlock_node(start);
435 return NULL;
436 }
437
438 /* Unlock current node and lock next node until limit. */
439 struct route_node *route_next_until(struct route_node *node,
440 const struct route_node *limit)
441 {
442 struct route_node *next;
443 struct route_node *start;
444
445 /* Node may be deleted from route_unlock_node so we have to preserve
446 next node's pointer. */
447
448 if (node->l_left) {
449 next = node->l_left;
450 route_lock_node(next);
451 route_unlock_node(node);
452 return next;
453 }
454 if (node->l_right) {
455 next = node->l_right;
456 route_lock_node(next);
457 route_unlock_node(node);
458 return next;
459 }
460
461 start = node;
462 while (node->parent && node != limit) {
463 if (node->parent->l_left == node && node->parent->l_right) {
464 next = node->parent->l_right;
465 route_lock_node(next);
466 route_unlock_node(start);
467 return next;
468 }
469 node = node->parent;
470 }
471 route_unlock_node(start);
472 return NULL;
473 }
474
475 unsigned long route_table_count(const struct route_table *table)
476 {
477 return table->count;
478 }
479
480 /**
481 * route_node_create
482 *
483 * Default function for creating a route node.
484 */
485 struct route_node *route_node_create(route_table_delegate_t *delegate,
486 struct route_table *table)
487 {
488 struct route_node *node;
489 node = XCALLOC(MTYPE_ROUTE_NODE, sizeof(struct route_node));
490 return node;
491 }
492
493 /**
494 * route_node_destroy
495 *
496 * Default function for destroying a route node.
497 */
498 void route_node_destroy(route_table_delegate_t *delegate,
499 struct route_table *table, struct route_node *node)
500 {
501 XFREE(MTYPE_ROUTE_NODE, node);
502 }
503
504 /*
505 * Default delegate.
506 */
507 static route_table_delegate_t default_delegate = {
508 .create_node = route_node_create,
509 .destroy_node = route_node_destroy};
510
511 route_table_delegate_t *route_table_get_default_delegate(void)
512 {
513 return &default_delegate;
514 }
515
516 /*
517 * route_table_init
518 */
519 struct route_table *route_table_init(void)
520 {
521 return route_table_init_with_delegate(&default_delegate);
522 }
523
524 /**
525 * route_table_prefix_iter_cmp
526 *
527 * Compare two prefixes according to the order in which they appear in
528 * an iteration over a tree.
529 *
530 * @return -1 if p1 occurs before p2 (p1 < p2)
531 * 0 if the prefixes are identical (p1 == p2)
532 * +1 if p1 occurs after p2 (p1 > p2)
533 */
534 int route_table_prefix_iter_cmp(const struct prefix *p1,
535 const struct prefix *p2)
536 {
537 struct prefix common_space;
538 struct prefix *common = &common_space;
539
540 if (p1->prefixlen <= p2->prefixlen) {
541 if (prefix_match(p1, p2)) {
542
543 /*
544 * p1 contains p2, or is equal to it.
545 */
546 return (p1->prefixlen == p2->prefixlen) ? 0 : -1;
547 }
548 } else {
549
550 /*
551 * Check if p2 contains p1.
552 */
553 if (prefix_match(p2, p1))
554 return 1;
555 }
556
557 route_common(p1, p2, common);
558 assert(common->prefixlen < p1->prefixlen);
559 assert(common->prefixlen < p2->prefixlen);
560
561 /*
562 * Both prefixes are longer than the common prefix.
563 *
564 * We need to check the bit after the common prefixlen to determine
565 * which one comes later.
566 */
567 if (prefix_bit(&p1->u.prefix, common->prefixlen)) {
568
569 /*
570 * We branch to the right to get to p1 from the common prefix.
571 */
572 assert(!prefix_bit(&p2->u.prefix, common->prefixlen));
573 return 1;
574 }
575
576 /*
577 * We branch to the right to get to p2 from the common prefix.
578 */
579 assert(prefix_bit(&p2->u.prefix, common->prefixlen));
580 return -1;
581 }
582
583 /*
584 * route_get_subtree_next
585 *
586 * Helper function that returns the first node that follows the nodes
587 * in the sub-tree under 'node' in iteration order.
588 */
589 static struct route_node *route_get_subtree_next(struct route_node *node)
590 {
591 while (node->parent) {
592 if (node->parent->l_left == node && node->parent->l_right)
593 return node->parent->l_right;
594
595 node = node->parent;
596 }
597
598 return NULL;
599 }
600
601 /**
602 * route_table_get_next_internal
603 *
604 * Helper function to find the node that occurs after the given prefix in
605 * order of iteration.
606 *
607 * @see route_table_get_next
608 */
609 static struct route_node *
610 route_table_get_next_internal(const struct route_table *table,
611 const struct prefix *p)
612 {
613 struct route_node *node, *tmp_node;
614 int cmp;
615
616 node = table->top;
617
618 while (node) {
619 int match;
620
621 if (node->p.prefixlen < p->prefixlen)
622 match = prefix_match(&node->p, p);
623 else
624 match = prefix_match(p, &node->p);
625
626 if (match) {
627 if (node->p.prefixlen == p->prefixlen) {
628
629 /*
630 * The prefix p exists in the tree, just return
631 * the next
632 * node.
633 */
634 route_lock_node(node);
635 node = route_next(node);
636 if (node)
637 route_unlock_node(node);
638
639 return (node);
640 }
641
642 if (node->p.prefixlen > p->prefixlen) {
643
644 /*
645 * Node is in the subtree of p, and hence
646 * greater than p.
647 */
648 return node;
649 }
650
651 /*
652 * p is in the sub-tree under node.
653 */
654 tmp_node = node->link[prefix_bit(&p->u.prefix,
655 node->p.prefixlen)];
656
657 if (tmp_node) {
658 node = tmp_node;
659 continue;
660 }
661
662 /*
663 * There are no nodes in the direction where p should
664 * be. If
665 * node has a right child, then it must be greater than
666 * p.
667 */
668 if (node->l_right)
669 return node->l_right;
670
671 /*
672 * No more children to follow, go upwards looking for
673 * the next
674 * node.
675 */
676 return route_get_subtree_next(node);
677 }
678
679 /*
680 * Neither node prefix nor 'p' contains the other.
681 */
682 cmp = route_table_prefix_iter_cmp(&node->p, p);
683 if (cmp > 0) {
684
685 /*
686 * Node follows p in iteration order. Return it.
687 */
688 return node;
689 }
690
691 assert(cmp < 0);
692
693 /*
694 * Node and the subtree under it come before prefix p in
695 * iteration order. Prefix p and its sub-tree are not present in
696 * the tree. Go upwards and find the first node that follows the
697 * subtree. That node will also succeed p.
698 */
699 return route_get_subtree_next(node);
700 }
701
702 return NULL;
703 }
704
705 /**
706 * route_table_get_next
707 *
708 * Find the node that occurs after the given prefix in order of
709 * iteration.
710 */
711 struct route_node *route_table_get_next(const struct route_table *table,
712 union prefixconstptr pu)
713 {
714 const struct prefix *p = pu.p;
715 struct route_node *node;
716
717 node = route_table_get_next_internal(table, p);
718 if (node) {
719 assert(route_table_prefix_iter_cmp(&node->p, p) > 0);
720 route_lock_node(node);
721 }
722 return node;
723 }
724
725 /*
726 * route_table_iter_init
727 */
728 void route_table_iter_init(route_table_iter_t *iter, struct route_table *table)
729 {
730 memset(iter, 0, sizeof(*iter));
731 iter->state = RT_ITER_STATE_INIT;
732 iter->table = table;
733 }
734
735 /*
736 * route_table_iter_pause
737 *
738 * Pause an iteration over the table. This allows the iteration to be
739 * resumed point after arbitrary additions/deletions from the table.
740 * An iteration can be resumed by just calling route_table_iter_next()
741 * on the iterator.
742 */
743 void route_table_iter_pause(route_table_iter_t *iter)
744 {
745 switch (iter->state) {
746
747 case RT_ITER_STATE_INIT:
748 case RT_ITER_STATE_PAUSED:
749 case RT_ITER_STATE_DONE:
750 return;
751
752 case RT_ITER_STATE_ITERATING:
753
754 /*
755 * Save the prefix that we are currently at. The next call to
756 * route_table_iter_next() will return the node after this
757 * prefix
758 * in the tree.
759 */
760 prefix_copy(&iter->pause_prefix, &iter->current->p);
761 route_unlock_node(iter->current);
762 iter->current = NULL;
763 iter->state = RT_ITER_STATE_PAUSED;
764 return;
765
766 default:
767 assert(0);
768 }
769 }
770
771 /*
772 * route_table_iter_cleanup
773 *
774 * Release any resources held by the iterator.
775 */
776 void route_table_iter_cleanup(route_table_iter_t *iter)
777 {
778 if (iter->state == RT_ITER_STATE_ITERATING) {
779 route_unlock_node(iter->current);
780 iter->current = NULL;
781 }
782 assert(!iter->current);
783
784 /*
785 * Set the state to RT_ITER_STATE_DONE to make any
786 * route_table_iter_next() calls on this iterator return NULL.
787 */
788 iter->state = RT_ITER_STATE_DONE;
789 }