]> git.proxmox.com Git - mirror_frr.git/blob - zebra/zebra_rib.c
zebra: Remove rib_lookup_ipv4_route
[mirror_frr.git] / zebra / zebra_rib.c
1 /* Routing Information Base.
2 * Copyright (C) 1997, 98, 99, 2001 Kunihiro Ishiguro
3 *
4 * This file is part of GNU Zebra.
5 *
6 * GNU Zebra is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2, or (at your option) any
9 * later version.
10 *
11 * GNU Zebra is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; see the file COPYING; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 #include <zebra.h>
22
23 #include "command.h"
24 #include "if.h"
25 #include "linklist.h"
26 #include "log.h"
27 #include "log_int.h"
28 #include "memory.h"
29 #include "mpls.h"
30 #include "nexthop.h"
31 #include "prefix.h"
32 #include "prefix.h"
33 #include "routemap.h"
34 #include "sockunion.h"
35 #include "srcdest_table.h"
36 #include "table.h"
37 #include "thread.h"
38 #include "vrf.h"
39 #include "workqueue.h"
40
41 #include "zebra/zebra_router.h"
42 #include "zebra/connected.h"
43 #include "zebra/debug.h"
44 #include "zebra/interface.h"
45 #include "zebra/redistribute.h"
46 #include "zebra/rib.h"
47 #include "zebra/rt.h"
48 #include "zebra/zapi_msg.h"
49 #include "zebra/zebra_errors.h"
50 #include "zebra/zebra_memory.h"
51 #include "zebra/zebra_ns.h"
52 #include "zebra/zebra_rnh.h"
53 #include "zebra/zebra_routemap.h"
54 #include "zebra/zebra_vrf.h"
55 #include "zebra/zebra_vxlan.h"
56 #include "zebra/zapi_msg.h"
57 #include "zebra/zebra_dplane.h"
58
59 /*
60 * Event, list, and mutex for delivery of dataplane results
61 */
62 static pthread_mutex_t dplane_mutex;
63 static struct thread *t_dplane;
64 static struct dplane_ctx_q rib_dplane_q;
65
66 DEFINE_HOOK(rib_update, (struct route_node * rn, const char *reason),
67 (rn, reason))
68
69 /* Should we allow non Quagga processes to delete our routes */
70 extern int allow_delete;
71
72 /* Each route type's string and default distance value. */
73 static const struct {
74 int key;
75 int distance;
76 } route_info[ZEBRA_ROUTE_MAX] = {
77 [ZEBRA_ROUTE_SYSTEM] = {ZEBRA_ROUTE_SYSTEM, 0},
78 [ZEBRA_ROUTE_KERNEL] = {ZEBRA_ROUTE_KERNEL, 0},
79 [ZEBRA_ROUTE_CONNECT] = {ZEBRA_ROUTE_CONNECT, 0},
80 [ZEBRA_ROUTE_STATIC] = {ZEBRA_ROUTE_STATIC, 1},
81 [ZEBRA_ROUTE_RIP] = {ZEBRA_ROUTE_RIP, 120},
82 [ZEBRA_ROUTE_RIPNG] = {ZEBRA_ROUTE_RIPNG, 120},
83 [ZEBRA_ROUTE_OSPF] = {ZEBRA_ROUTE_OSPF, 110},
84 [ZEBRA_ROUTE_OSPF6] = {ZEBRA_ROUTE_OSPF6, 110},
85 [ZEBRA_ROUTE_ISIS] = {ZEBRA_ROUTE_ISIS, 115},
86 [ZEBRA_ROUTE_BGP] = {ZEBRA_ROUTE_BGP, 20 /* IBGP is 200. */},
87 [ZEBRA_ROUTE_PIM] = {ZEBRA_ROUTE_PIM, 255},
88 [ZEBRA_ROUTE_EIGRP] = {ZEBRA_ROUTE_EIGRP, 90},
89 [ZEBRA_ROUTE_NHRP] = {ZEBRA_ROUTE_NHRP, 10},
90 [ZEBRA_ROUTE_HSLS] = {ZEBRA_ROUTE_HSLS, 255},
91 [ZEBRA_ROUTE_OLSR] = {ZEBRA_ROUTE_OLSR, 255},
92 [ZEBRA_ROUTE_TABLE] = {ZEBRA_ROUTE_TABLE, 150},
93 [ZEBRA_ROUTE_LDP] = {ZEBRA_ROUTE_LDP, 150},
94 [ZEBRA_ROUTE_VNC] = {ZEBRA_ROUTE_VNC, 20},
95 [ZEBRA_ROUTE_VNC_DIRECT] = {ZEBRA_ROUTE_VNC_DIRECT, 20},
96 [ZEBRA_ROUTE_VNC_DIRECT_RH] = {ZEBRA_ROUTE_VNC_DIRECT_RH, 20},
97 [ZEBRA_ROUTE_BGP_DIRECT] = {ZEBRA_ROUTE_BGP_DIRECT, 20},
98 [ZEBRA_ROUTE_BGP_DIRECT_EXT] = {ZEBRA_ROUTE_BGP_DIRECT_EXT, 20},
99 [ZEBRA_ROUTE_BABEL] = {ZEBRA_ROUTE_BABEL, 100},
100 [ZEBRA_ROUTE_SHARP] = {ZEBRA_ROUTE_SHARP, 150},
101
102 /* no entry/default: 150 */
103 };
104
105 /* RPF lookup behaviour */
106 static enum multicast_mode ipv4_multicast_mode = MCAST_NO_CONFIG;
107
108
109 static void __attribute__((format(printf, 5, 6)))
110 _rnode_zlog(const char *_func, vrf_id_t vrf_id, struct route_node *rn,
111 int priority, const char *msgfmt, ...)
112 {
113 char buf[SRCDEST2STR_BUFFER + sizeof(" (MRIB)")];
114 char msgbuf[512];
115 va_list ap;
116
117 va_start(ap, msgfmt);
118 vsnprintf(msgbuf, sizeof(msgbuf), msgfmt, ap);
119 va_end(ap);
120
121 if (rn) {
122 rib_table_info_t *info = srcdest_rnode_table_info(rn);
123 srcdest_rnode2str(rn, buf, sizeof(buf));
124
125 if (info->safi == SAFI_MULTICAST)
126 strcat(buf, " (MRIB)");
127 } else {
128 snprintf(buf, sizeof(buf), "{(route_node *) NULL}");
129 }
130
131 zlog(priority, "%s: %d:%s: %s", _func, vrf_id, buf, msgbuf);
132 }
133
134 #define rnode_debug(node, vrf_id, ...) \
135 _rnode_zlog(__func__, vrf_id, node, LOG_DEBUG, __VA_ARGS__)
136 #define rnode_info(node, ...) \
137 _rnode_zlog(__func__, vrf_id, node, LOG_INFO, __VA_ARGS__)
138
139 uint8_t route_distance(int type)
140 {
141 uint8_t distance;
142
143 if ((unsigned)type >= array_size(route_info))
144 distance = 150;
145 else
146 distance = route_info[type].distance;
147
148 return distance;
149 }
150
151 int is_zebra_valid_kernel_table(uint32_t table_id)
152 {
153 #ifdef linux
154 if ((table_id == RT_TABLE_UNSPEC) || (table_id == RT_TABLE_LOCAL)
155 || (table_id == RT_TABLE_COMPAT))
156 return 0;
157 #endif
158
159 return 1;
160 }
161
162 int is_zebra_main_routing_table(uint32_t table_id)
163 {
164 if ((table_id == RT_TABLE_MAIN)
165 || (table_id == zebrad.rtm_table_default))
166 return 1;
167 return 0;
168 }
169
170 int zebra_check_addr(const struct prefix *p)
171 {
172 if (p->family == AF_INET) {
173 uint32_t addr;
174
175 addr = p->u.prefix4.s_addr;
176 addr = ntohl(addr);
177
178 if (IPV4_NET127(addr) || IN_CLASSD(addr)
179 || IPV4_LINKLOCAL(addr))
180 return 0;
181 }
182 if (p->family == AF_INET6) {
183 if (IN6_IS_ADDR_LOOPBACK(&p->u.prefix6))
184 return 0;
185 if (IN6_IS_ADDR_LINKLOCAL(&p->u.prefix6))
186 return 0;
187 }
188 return 1;
189 }
190
191 /* Add nexthop to the end of a rib node's nexthop list */
192 void route_entry_nexthop_add(struct route_entry *re, struct nexthop *nexthop)
193 {
194 nexthop_add(&re->ng.nexthop, nexthop);
195 re->nexthop_num++;
196 }
197
198
199 /**
200 * copy_nexthop - copy a nexthop to the rib structure.
201 */
202 void route_entry_copy_nexthops(struct route_entry *re, struct nexthop *nh)
203 {
204 assert(!re->ng.nexthop);
205 copy_nexthops(&re->ng.nexthop, nh, NULL);
206 for (struct nexthop *nexthop = nh; nexthop; nexthop = nexthop->next)
207 re->nexthop_num++;
208 }
209
210 /* Delete specified nexthop from the list. */
211 void route_entry_nexthop_delete(struct route_entry *re, struct nexthop *nexthop)
212 {
213 if (nexthop->next)
214 nexthop->next->prev = nexthop->prev;
215 if (nexthop->prev)
216 nexthop->prev->next = nexthop->next;
217 else
218 re->ng.nexthop = nexthop->next;
219 re->nexthop_num--;
220 }
221
222
223 struct nexthop *route_entry_nexthop_ifindex_add(struct route_entry *re,
224 ifindex_t ifindex,
225 vrf_id_t nh_vrf_id)
226 {
227 struct nexthop *nexthop;
228
229 nexthop = nexthop_new();
230 nexthop->type = NEXTHOP_TYPE_IFINDEX;
231 nexthop->ifindex = ifindex;
232 nexthop->vrf_id = nh_vrf_id;
233
234 route_entry_nexthop_add(re, nexthop);
235
236 return nexthop;
237 }
238
239 struct nexthop *route_entry_nexthop_ipv4_add(struct route_entry *re,
240 struct in_addr *ipv4,
241 struct in_addr *src,
242 vrf_id_t nh_vrf_id)
243 {
244 struct nexthop *nexthop;
245
246 nexthop = nexthop_new();
247 nexthop->type = NEXTHOP_TYPE_IPV4;
248 nexthop->vrf_id = nh_vrf_id;
249 nexthop->gate.ipv4 = *ipv4;
250 if (src)
251 nexthop->src.ipv4 = *src;
252
253 route_entry_nexthop_add(re, nexthop);
254
255 return nexthop;
256 }
257
258 struct nexthop *route_entry_nexthop_ipv4_ifindex_add(struct route_entry *re,
259 struct in_addr *ipv4,
260 struct in_addr *src,
261 ifindex_t ifindex,
262 vrf_id_t nh_vrf_id)
263 {
264 struct nexthop *nexthop;
265 struct interface *ifp;
266
267 nexthop = nexthop_new();
268 nexthop->vrf_id = nh_vrf_id;
269 nexthop->type = NEXTHOP_TYPE_IPV4_IFINDEX;
270 nexthop->gate.ipv4 = *ipv4;
271 if (src)
272 nexthop->src.ipv4 = *src;
273 nexthop->ifindex = ifindex;
274 ifp = if_lookup_by_index(nexthop->ifindex, nh_vrf_id);
275 /*Pending: need to think if null ifp here is ok during bootup?
276 There was a crash because ifp here was coming to be NULL */
277 if (ifp)
278 if (connected_is_unnumbered(ifp)
279 || CHECK_FLAG(re->flags, ZEBRA_FLAG_EVPN_ROUTE)
280 || CHECK_FLAG(re->flags, ZEBRA_FLAG_ONLINK)) {
281 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK);
282 }
283
284 route_entry_nexthop_add(re, nexthop);
285
286 return nexthop;
287 }
288
289 struct nexthop *route_entry_nexthop_ipv6_add(struct route_entry *re,
290 struct in6_addr *ipv6,
291 vrf_id_t nh_vrf_id)
292 {
293 struct nexthop *nexthop;
294
295 nexthop = nexthop_new();
296 nexthop->vrf_id = nh_vrf_id;
297 nexthop->type = NEXTHOP_TYPE_IPV6;
298 nexthop->gate.ipv6 = *ipv6;
299
300 route_entry_nexthop_add(re, nexthop);
301
302 return nexthop;
303 }
304
305 struct nexthop *route_entry_nexthop_ipv6_ifindex_add(struct route_entry *re,
306 struct in6_addr *ipv6,
307 ifindex_t ifindex,
308 vrf_id_t nh_vrf_id)
309 {
310 struct nexthop *nexthop;
311
312 nexthop = nexthop_new();
313 nexthop->vrf_id = nh_vrf_id;
314 nexthop->type = NEXTHOP_TYPE_IPV6_IFINDEX;
315 nexthop->gate.ipv6 = *ipv6;
316 nexthop->ifindex = ifindex;
317 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_EVPN_ROUTE)
318 || CHECK_FLAG(re->flags, ZEBRA_FLAG_ONLINK)) {
319 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK);
320 }
321
322 route_entry_nexthop_add(re, nexthop);
323
324 return nexthop;
325 }
326
327 struct nexthop *route_entry_nexthop_blackhole_add(struct route_entry *re,
328 enum blackhole_type bh_type)
329 {
330 struct nexthop *nexthop;
331
332 nexthop = nexthop_new();
333 nexthop->vrf_id = VRF_DEFAULT;
334 nexthop->type = NEXTHOP_TYPE_BLACKHOLE;
335 nexthop->bh_type = bh_type;
336
337 route_entry_nexthop_add(re, nexthop);
338
339 return nexthop;
340 }
341
342 static void nexthop_set_resolved(afi_t afi, const struct nexthop *newhop,
343 struct nexthop *nexthop)
344 {
345 struct nexthop *resolved_hop;
346
347 resolved_hop = nexthop_new();
348 SET_FLAG(resolved_hop->flags, NEXTHOP_FLAG_ACTIVE);
349
350 resolved_hop->vrf_id = nexthop->vrf_id;
351 switch (newhop->type) {
352 case NEXTHOP_TYPE_IPV4:
353 case NEXTHOP_TYPE_IPV4_IFINDEX:
354 /* If the resolving route specifies a gateway, use it */
355 resolved_hop->type = newhop->type;
356 resolved_hop->gate.ipv4 = newhop->gate.ipv4;
357
358 if (newhop->ifindex) {
359 resolved_hop->type = NEXTHOP_TYPE_IPV4_IFINDEX;
360 resolved_hop->ifindex = newhop->ifindex;
361 }
362 break;
363 case NEXTHOP_TYPE_IPV6:
364 case NEXTHOP_TYPE_IPV6_IFINDEX:
365 resolved_hop->type = newhop->type;
366 resolved_hop->gate.ipv6 = newhop->gate.ipv6;
367
368 if (newhop->ifindex) {
369 resolved_hop->type = NEXTHOP_TYPE_IPV6_IFINDEX;
370 resolved_hop->ifindex = newhop->ifindex;
371 }
372 break;
373 case NEXTHOP_TYPE_IFINDEX:
374 /* If the resolving route is an interface route,
375 * it means the gateway we are looking up is connected
376 * to that interface. (The actual network is _not_ onlink).
377 * Therefore, the resolved route should have the original
378 * gateway as nexthop as it is directly connected.
379 *
380 * On Linux, we have to set the onlink netlink flag because
381 * otherwise, the kernel won't accept the route.
382 */
383 resolved_hop->flags |= NEXTHOP_FLAG_ONLINK;
384 if (afi == AFI_IP) {
385 resolved_hop->type = NEXTHOP_TYPE_IPV4_IFINDEX;
386 resolved_hop->gate.ipv4 = nexthop->gate.ipv4;
387 } else if (afi == AFI_IP6) {
388 resolved_hop->type = NEXTHOP_TYPE_IPV6_IFINDEX;
389 resolved_hop->gate.ipv6 = nexthop->gate.ipv6;
390 }
391 resolved_hop->ifindex = newhop->ifindex;
392 break;
393 case NEXTHOP_TYPE_BLACKHOLE:
394 resolved_hop->type = NEXTHOP_TYPE_BLACKHOLE;
395 resolved_hop->bh_type = nexthop->bh_type;
396 break;
397 }
398
399 if (newhop->flags & NEXTHOP_FLAG_ONLINK)
400 resolved_hop->flags |= NEXTHOP_FLAG_ONLINK;
401
402 /* Copy labels of the resolved route */
403 if (newhop->nh_label)
404 nexthop_add_labels(resolved_hop, newhop->nh_label_type,
405 newhop->nh_label->num_labels,
406 &newhop->nh_label->label[0]);
407
408 resolved_hop->rparent = nexthop;
409 nexthop_add(&nexthop->resolved, resolved_hop);
410 }
411
412 /* If force flag is not set, do not modify falgs at all for uninstall
413 the route from FIB. */
414 static int nexthop_active(afi_t afi, struct route_entry *re,
415 struct nexthop *nexthop, int set,
416 struct route_node *top)
417 {
418 struct prefix p;
419 struct route_table *table;
420 struct route_node *rn;
421 struct route_entry *match = NULL;
422 int resolved;
423 struct nexthop *newhop;
424 struct interface *ifp;
425 rib_dest_t *dest;
426
427 if ((nexthop->type == NEXTHOP_TYPE_IPV4)
428 || nexthop->type == NEXTHOP_TYPE_IPV6)
429 nexthop->ifindex = 0;
430
431 if (set) {
432 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE);
433 nexthops_free(nexthop->resolved);
434 nexthop->resolved = NULL;
435 re->nexthop_mtu = 0;
436 }
437
438 /* Next hops (remote VTEPs) for EVPN routes are fully resolved. */
439 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_EVPN_RVTEP))
440 return 1;
441
442 /* Skip nexthops that have been filtered out due to route-map */
443 /* The nexthops are specific to this route and so the same */
444 /* nexthop for a different route may not have this flag set */
445 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FILTERED)) {
446 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
447 zlog_debug("\t%s: Nexthop Filtered",
448 __PRETTY_FUNCTION__);
449 return 0;
450 }
451
452 /*
453 * Check to see if we should trust the passed in information
454 * for UNNUMBERED interfaces as that we won't find the GW
455 * address in the routing table.
456 */
457 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK)) {
458 ifp = if_lookup_by_index(nexthop->ifindex, nexthop->vrf_id);
459 if ((ifp && connected_is_unnumbered(ifp))
460 || CHECK_FLAG(re->flags, ZEBRA_FLAG_ONLINK)) {
461 if (if_is_operative(ifp))
462 return 1;
463 else {
464 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
465 zlog_debug(
466 "\t%s: Onlink and interface %s is not operative",
467 __PRETTY_FUNCTION__, ifp->name);
468 return 0;
469 }
470 } else {
471 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
472 zlog_debug(
473 "\t%s: Interface %s is not unnumbered",
474 __PRETTY_FUNCTION__,
475 ifp ? ifp->name : "Unknown");
476 return 0;
477 }
478 }
479
480 /* Make lookup prefix. */
481 memset(&p, 0, sizeof(struct prefix));
482 switch (afi) {
483 case AFI_IP:
484 p.family = AF_INET;
485 p.prefixlen = IPV4_MAX_PREFIXLEN;
486 p.u.prefix4 = nexthop->gate.ipv4;
487 break;
488 case AFI_IP6:
489 p.family = AF_INET6;
490 p.prefixlen = IPV6_MAX_PREFIXLEN;
491 p.u.prefix6 = nexthop->gate.ipv6;
492 break;
493 default:
494 assert(afi != AFI_IP && afi != AFI_IP6);
495 break;
496 }
497 /* Lookup table. */
498 table = zebra_vrf_table(afi, SAFI_UNICAST, nexthop->vrf_id);
499 if (!table) {
500 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
501 zlog_debug("\t%s: Table not found",
502 __PRETTY_FUNCTION__);
503 return 0;
504 }
505
506 rn = route_node_match(table, (struct prefix *)&p);
507 while (rn) {
508 route_unlock_node(rn);
509
510 /* Lookup should halt if we've matched against ourselves ('top',
511 * if specified) - i.e., we cannot have a nexthop NH1 is
512 * resolved by a route NH1. The exception is if the route is a
513 * host route.
514 */
515 if (top && rn == top)
516 if (((afi == AFI_IP) && (rn->p.prefixlen != 32))
517 || ((afi == AFI_IP6) && (rn->p.prefixlen != 128))) {
518 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
519 zlog_debug(
520 "\t%s: Matched against ourself and prefix length is not max bit length",
521 __PRETTY_FUNCTION__);
522 return 0;
523 }
524
525 /* Pick up selected route. */
526 /* However, do not resolve over default route unless explicitly
527 * allowed. */
528 if (is_default_prefix(&rn->p)
529 && !rnh_resolve_via_default(p.family)) {
530 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
531 zlog_debug(
532 "\t:%s: Resolved against default route",
533 __PRETTY_FUNCTION__);
534 return 0;
535 }
536
537 dest = rib_dest_from_rnode(rn);
538 if (dest && dest->selected_fib
539 && !CHECK_FLAG(dest->selected_fib->status,
540 ROUTE_ENTRY_REMOVED)
541 && dest->selected_fib->type != ZEBRA_ROUTE_TABLE)
542 match = dest->selected_fib;
543
544 /* If there is no selected route or matched route is EGP, go up
545 tree. */
546 if (!match) {
547 do {
548 rn = rn->parent;
549 } while (rn && rn->info == NULL);
550 if (rn)
551 route_lock_node(rn);
552
553 continue;
554 }
555
556 if (match->type == ZEBRA_ROUTE_CONNECT) {
557 /* Directly point connected route. */
558 newhop = match->ng.nexthop;
559 if (newhop) {
560 if (nexthop->type == NEXTHOP_TYPE_IPV4
561 || nexthop->type == NEXTHOP_TYPE_IPV6)
562 nexthop->ifindex = newhop->ifindex;
563 }
564 return 1;
565 } else if (CHECK_FLAG(re->flags, ZEBRA_FLAG_ALLOW_RECURSION)) {
566 resolved = 0;
567 for (ALL_NEXTHOPS(match->ng, newhop)) {
568 if (!CHECK_FLAG(newhop->flags,
569 NEXTHOP_FLAG_FIB))
570 continue;
571 if (CHECK_FLAG(newhop->flags,
572 NEXTHOP_FLAG_RECURSIVE))
573 continue;
574
575 if (set) {
576 SET_FLAG(nexthop->flags,
577 NEXTHOP_FLAG_RECURSIVE);
578 SET_FLAG(re->status,
579 ROUTE_ENTRY_NEXTHOPS_CHANGED);
580 nexthop_set_resolved(afi, newhop,
581 nexthop);
582 }
583 resolved = 1;
584 }
585 if (resolved && set)
586 re->nexthop_mtu = match->mtu;
587 if (!resolved && IS_ZEBRA_DEBUG_RIB_DETAILED)
588 zlog_debug("\t%s: Recursion failed to find",
589 __PRETTY_FUNCTION__);
590 return resolved;
591 } else if (re->type == ZEBRA_ROUTE_STATIC) {
592 resolved = 0;
593 for (ALL_NEXTHOPS(match->ng, newhop)) {
594 if (!CHECK_FLAG(newhop->flags,
595 NEXTHOP_FLAG_FIB))
596 continue;
597
598 if (set) {
599 SET_FLAG(nexthop->flags,
600 NEXTHOP_FLAG_RECURSIVE);
601 nexthop_set_resolved(afi, newhop,
602 nexthop);
603 }
604 resolved = 1;
605 }
606 if (resolved && set)
607 re->nexthop_mtu = match->mtu;
608
609 if (!resolved && IS_ZEBRA_DEBUG_RIB_DETAILED)
610 zlog_debug(
611 "\t%s: Static route unable to resolve",
612 __PRETTY_FUNCTION__);
613 return resolved;
614 } else {
615 if (IS_ZEBRA_DEBUG_RIB_DETAILED) {
616 zlog_debug("\t%s: Route Type %s has not turned on recursion",
617 __PRETTY_FUNCTION__,
618 zebra_route_string(re->type));
619 if (re->type == ZEBRA_ROUTE_BGP &&
620 !CHECK_FLAG(re->flags, ZEBRA_FLAG_IBGP))
621 zlog_debug("\tEBGP: see \"disable-ebgp-connected-route-check\" or \"disable-connected-check\"");
622 }
623 return 0;
624 }
625 }
626 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
627 zlog_debug("\t%s: Nexthop did not lookup in table",
628 __PRETTY_FUNCTION__);
629 return 0;
630 }
631
632 struct route_entry *rib_match(afi_t afi, safi_t safi, vrf_id_t vrf_id,
633 union g_addr *addr, struct route_node **rn_out)
634 {
635 struct prefix p;
636 struct route_table *table;
637 struct route_node *rn;
638 struct route_entry *match = NULL;
639 struct nexthop *newhop;
640
641 /* Lookup table. */
642 table = zebra_vrf_table(afi, safi, vrf_id);
643 if (!table)
644 return 0;
645
646 memset(&p, 0, sizeof(struct prefix));
647 p.family = afi;
648 if (afi == AFI_IP) {
649 p.u.prefix4 = addr->ipv4;
650 p.prefixlen = IPV4_MAX_PREFIXLEN;
651 } else {
652 p.u.prefix6 = addr->ipv6;
653 p.prefixlen = IPV6_MAX_PREFIXLEN;
654 }
655
656 rn = route_node_match(table, (struct prefix *)&p);
657
658 while (rn) {
659 rib_dest_t *dest;
660
661 route_unlock_node(rn);
662
663 dest = rib_dest_from_rnode(rn);
664 if (dest && dest->selected_fib
665 && !CHECK_FLAG(dest->selected_fib->status,
666 ROUTE_ENTRY_REMOVED))
667 match = dest->selected_fib;
668
669 /* If there is no selected route or matched route is EGP, go up
670 tree. */
671 if (!match) {
672 do {
673 rn = rn->parent;
674 } while (rn && rn->info == NULL);
675 if (rn)
676 route_lock_node(rn);
677 } else {
678 if (match->type != ZEBRA_ROUTE_CONNECT) {
679 int found = 0;
680 for (ALL_NEXTHOPS(match->ng, newhop))
681 if (CHECK_FLAG(newhop->flags,
682 NEXTHOP_FLAG_FIB)) {
683 found = 1;
684 break;
685 }
686 if (!found)
687 return NULL;
688 }
689
690 if (rn_out)
691 *rn_out = rn;
692 return match;
693 }
694 }
695 return NULL;
696 }
697
698 struct route_entry *rib_match_ipv4_multicast(vrf_id_t vrf_id,
699 struct in_addr addr,
700 struct route_node **rn_out)
701 {
702 struct route_entry *re = NULL, *mre = NULL, *ure = NULL;
703 struct route_node *m_rn = NULL, *u_rn = NULL;
704 union g_addr gaddr = {.ipv4 = addr};
705
706 switch (ipv4_multicast_mode) {
707 case MCAST_MRIB_ONLY:
708 return rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr,
709 rn_out);
710 case MCAST_URIB_ONLY:
711 return rib_match(AFI_IP, SAFI_UNICAST, vrf_id, &gaddr, rn_out);
712 case MCAST_NO_CONFIG:
713 case MCAST_MIX_MRIB_FIRST:
714 re = mre = rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr,
715 &m_rn);
716 if (!mre)
717 re = ure = rib_match(AFI_IP, SAFI_UNICAST, vrf_id,
718 &gaddr, &u_rn);
719 break;
720 case MCAST_MIX_DISTANCE:
721 mre = rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr, &m_rn);
722 ure = rib_match(AFI_IP, SAFI_UNICAST, vrf_id, &gaddr, &u_rn);
723 if (mre && ure)
724 re = ure->distance < mre->distance ? ure : mre;
725 else if (mre)
726 re = mre;
727 else if (ure)
728 re = ure;
729 break;
730 case MCAST_MIX_PFXLEN:
731 mre = rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr, &m_rn);
732 ure = rib_match(AFI_IP, SAFI_UNICAST, vrf_id, &gaddr, &u_rn);
733 if (mre && ure)
734 re = u_rn->p.prefixlen > m_rn->p.prefixlen ? ure : mre;
735 else if (mre)
736 re = mre;
737 else if (ure)
738 re = ure;
739 break;
740 }
741
742 if (rn_out)
743 *rn_out = (re == mre) ? m_rn : u_rn;
744
745 if (IS_ZEBRA_DEBUG_RIB) {
746 char buf[BUFSIZ];
747 inet_ntop(AF_INET, &addr, buf, BUFSIZ);
748
749 zlog_debug("%s: %s: vrf: %u found %s, using %s",
750 __func__, buf, vrf_id,
751 mre ? (ure ? "MRIB+URIB" : "MRIB")
752 : ure ? "URIB" : "nothing",
753 re == ure ? "URIB" : re == mre ? "MRIB" : "none");
754 }
755 return re;
756 }
757
758 void multicast_mode_ipv4_set(enum multicast_mode mode)
759 {
760 if (IS_ZEBRA_DEBUG_RIB)
761 zlog_debug("%s: multicast lookup mode set (%d)", __func__,
762 mode);
763 ipv4_multicast_mode = mode;
764 }
765
766 enum multicast_mode multicast_mode_ipv4_get(void)
767 {
768 return ipv4_multicast_mode;
769 }
770
771 struct route_entry *rib_lookup_ipv4(struct prefix_ipv4 *p, vrf_id_t vrf_id)
772 {
773 struct route_table *table;
774 struct route_node *rn;
775 struct route_entry *match = NULL;
776 struct nexthop *nexthop;
777 rib_dest_t *dest;
778
779 /* Lookup table. */
780 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id);
781 if (!table)
782 return 0;
783
784 rn = route_node_lookup(table, (struct prefix *)p);
785
786 /* No route for this prefix. */
787 if (!rn)
788 return NULL;
789
790 /* Unlock node. */
791 route_unlock_node(rn);
792 dest = rib_dest_from_rnode(rn);
793
794 if (dest && dest->selected_fib
795 && !CHECK_FLAG(dest->selected_fib->status, ROUTE_ENTRY_REMOVED))
796 match = dest->selected_fib;
797
798 if (!match)
799 return NULL;
800
801 if (match->type == ZEBRA_ROUTE_CONNECT)
802 return match;
803
804 for (ALL_NEXTHOPS(match->ng, nexthop))
805 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB))
806 return match;
807
808 return NULL;
809 }
810
811 #define RIB_SYSTEM_ROUTE(R) \
812 ((R)->type == ZEBRA_ROUTE_KERNEL || (R)->type == ZEBRA_ROUTE_CONNECT)
813
814 #define RIB_KERNEL_ROUTE(R) \
815 ((R)->type == ZEBRA_ROUTE_KERNEL)
816
817 /* This function verifies reachability of one given nexthop, which can be
818 * numbered or unnumbered, IPv4 or IPv6. The result is unconditionally stored
819 * in nexthop->flags field. If the 4th parameter, 'set', is non-zero,
820 * nexthop->ifindex will be updated appropriately as well.
821 * An existing route map can turn (otherwise active) nexthop into inactive, but
822 * not vice versa.
823 *
824 * The return value is the final value of 'ACTIVE' flag.
825 */
826
827 static unsigned nexthop_active_check(struct route_node *rn,
828 struct route_entry *re,
829 struct nexthop *nexthop, int set)
830 {
831 struct interface *ifp;
832 route_map_result_t ret = RMAP_MATCH;
833 int family;
834 char buf[SRCDEST2STR_BUFFER];
835 const struct prefix *p, *src_p;
836 struct zebra_vrf *zvrf;
837
838 srcdest_rnode_prefixes(rn, &p, &src_p);
839
840 if (rn->p.family == AF_INET)
841 family = AFI_IP;
842 else if (rn->p.family == AF_INET6)
843 family = AFI_IP6;
844 else
845 family = 0;
846 switch (nexthop->type) {
847 case NEXTHOP_TYPE_IFINDEX:
848 ifp = if_lookup_by_index(nexthop->ifindex, nexthop->vrf_id);
849 if (ifp && if_is_operative(ifp))
850 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
851 else
852 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
853 break;
854 case NEXTHOP_TYPE_IPV4:
855 case NEXTHOP_TYPE_IPV4_IFINDEX:
856 family = AFI_IP;
857 if (nexthop_active(AFI_IP, re, nexthop, set, rn))
858 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
859 else
860 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
861 break;
862 case NEXTHOP_TYPE_IPV6:
863 family = AFI_IP6;
864 if (nexthop_active(AFI_IP6, re, nexthop, set, rn))
865 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
866 else
867 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
868 break;
869 case NEXTHOP_TYPE_IPV6_IFINDEX:
870 /* RFC 5549, v4 prefix with v6 NH */
871 if (rn->p.family != AF_INET)
872 family = AFI_IP6;
873 if (IN6_IS_ADDR_LINKLOCAL(&nexthop->gate.ipv6)) {
874 ifp = if_lookup_by_index(nexthop->ifindex,
875 nexthop->vrf_id);
876 if (ifp && if_is_operative(ifp))
877 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
878 else
879 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
880 } else {
881 if (nexthop_active(AFI_IP6, re, nexthop, set, rn))
882 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
883 else
884 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
885 }
886 break;
887 case NEXTHOP_TYPE_BLACKHOLE:
888 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
889 break;
890 default:
891 break;
892 }
893 if (!CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE)) {
894 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
895 zlog_debug("\t%s: Unable to find a active nexthop",
896 __PRETTY_FUNCTION__);
897 return 0;
898 }
899
900 /* XXX: What exactly do those checks do? Do we support
901 * e.g. IPv4 routes with IPv6 nexthops or vice versa?
902 */
903 if (RIB_SYSTEM_ROUTE(re) || (family == AFI_IP && p->family != AF_INET)
904 || (family == AFI_IP6 && p->family != AF_INET6))
905 return CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
906
907 /* The original code didn't determine the family correctly
908 * e.g. for NEXTHOP_TYPE_IFINDEX. Retrieve the correct afi
909 * from the rib_table_info in those cases.
910 * Possibly it may be better to use only the rib_table_info
911 * in every case.
912 */
913 if (!family) {
914 rib_table_info_t *info;
915
916 info = srcdest_rnode_table_info(rn);
917 family = info->afi;
918 }
919
920 memset(&nexthop->rmap_src.ipv6, 0, sizeof(union g_addr));
921
922 zvrf = zebra_vrf_lookup_by_id(nexthop->vrf_id);
923 if (!zvrf) {
924 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
925 zlog_debug("\t%s: zvrf is NULL", __PRETTY_FUNCTION__);
926 return CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
927 }
928
929 /* It'll get set if required inside */
930 ret = zebra_route_map_check(family, re->type, re->instance, p,
931 nexthop, zvrf, re->tag);
932 if (ret == RMAP_DENYMATCH) {
933 if (IS_ZEBRA_DEBUG_RIB) {
934 srcdest_rnode2str(rn, buf, sizeof(buf));
935 zlog_debug(
936 "%u:%s: Filtering out with NH out %s due to route map",
937 re->vrf_id, buf,
938 ifindex2ifname(nexthop->ifindex,
939 nexthop->vrf_id));
940 }
941 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
942 }
943 return CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
944 }
945
946 /* Iterate over all nexthops of the given RIB entry and refresh their
947 * ACTIVE flag. re->nexthop_active_num is updated accordingly. If any
948 * nexthop is found to toggle the ACTIVE flag, the whole re structure
949 * is flagged with ROUTE_ENTRY_CHANGED. The 4th 'set' argument is
950 * transparently passed to nexthop_active_check().
951 *
952 * Return value is the new number of active nexthops.
953 */
954
955 static int nexthop_active_update(struct route_node *rn, struct route_entry *re,
956 int set)
957 {
958 struct nexthop *nexthop;
959 union g_addr prev_src;
960 unsigned int prev_active, new_active, old_num_nh;
961 ifindex_t prev_index;
962
963 old_num_nh = re->nexthop_active_num;
964
965 re->nexthop_active_num = 0;
966 UNSET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
967
968 for (nexthop = re->ng.nexthop; nexthop; nexthop = nexthop->next) {
969 /* No protocol daemon provides src and so we're skipping
970 * tracking it */
971 prev_src = nexthop->rmap_src;
972 prev_active = CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
973 prev_index = nexthop->ifindex;
974 if ((new_active = nexthop_active_check(rn, re, nexthop, set)))
975 re->nexthop_active_num++;
976 /* Don't allow src setting on IPv6 addr for now */
977 if (prev_active != new_active || prev_index != nexthop->ifindex
978 || ((nexthop->type >= NEXTHOP_TYPE_IFINDEX
979 && nexthop->type < NEXTHOP_TYPE_IPV6)
980 && prev_src.ipv4.s_addr
981 != nexthop->rmap_src.ipv4.s_addr)
982 || ((nexthop->type >= NEXTHOP_TYPE_IPV6
983 && nexthop->type < NEXTHOP_TYPE_BLACKHOLE)
984 && !(IPV6_ADDR_SAME(&prev_src.ipv6,
985 &nexthop->rmap_src.ipv6)))) {
986 SET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
987 SET_FLAG(re->status, ROUTE_ENTRY_NEXTHOPS_CHANGED);
988 }
989 }
990
991 if (old_num_nh != re->nexthop_active_num)
992 SET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
993
994 if (CHECK_FLAG(re->status, ROUTE_ENTRY_CHANGED)) {
995 SET_FLAG(re->status, ROUTE_ENTRY_NEXTHOPS_CHANGED);
996 }
997
998 return re->nexthop_active_num;
999 }
1000
1001 /*
1002 * Is this RIB labeled-unicast? It must be of type BGP and all paths
1003 * (nexthops) must have a label.
1004 */
1005 int zebra_rib_labeled_unicast(struct route_entry *re)
1006 {
1007 struct nexthop *nexthop = NULL;
1008
1009 if (re->type != ZEBRA_ROUTE_BGP)
1010 return 0;
1011
1012 for (ALL_NEXTHOPS(re->ng, nexthop))
1013 if (!nexthop->nh_label || !nexthop->nh_label->num_labels)
1014 return 0;
1015
1016 return 1;
1017 }
1018
1019 /* Update flag indicates whether this is a "replace" or not. Currently, this
1020 * is only used for IPv4.
1021 */
1022 void rib_install_kernel(struct route_node *rn, struct route_entry *re,
1023 struct route_entry *old)
1024 {
1025 struct nexthop *nexthop;
1026 rib_table_info_t *info = srcdest_rnode_table_info(rn);
1027 struct zebra_vrf *zvrf = vrf_info_lookup(re->vrf_id);
1028 const struct prefix *p, *src_p;
1029 enum zebra_dplane_result ret;
1030
1031 rib_dest_t *dest = rib_dest_from_rnode(rn);
1032
1033 srcdest_rnode_prefixes(rn, &p, &src_p);
1034
1035 if (info->safi != SAFI_UNICAST) {
1036 for (ALL_NEXTHOPS(re->ng, nexthop))
1037 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1038 return;
1039 } else {
1040 struct nexthop *prev;
1041
1042 for (ALL_NEXTHOPS(re->ng, nexthop)) {
1043 UNSET_FLAG (nexthop->flags, NEXTHOP_FLAG_DUPLICATE);
1044 for (ALL_NEXTHOPS(re->ng, prev)) {
1045 if (prev == nexthop)
1046 break;
1047 if (nexthop_same_firsthop(nexthop, prev)) {
1048 SET_FLAG(nexthop->flags,
1049 NEXTHOP_FLAG_DUPLICATE);
1050 break;
1051 }
1052 }
1053 }
1054 }
1055
1056 /*
1057 * If this is a replace to a new RE let the originator of the RE
1058 * know that they've lost
1059 */
1060 if (old && (old != re) && (old->type != re->type))
1061 zsend_route_notify_owner(old, p, ZAPI_ROUTE_BETTER_ADMIN_WON);
1062
1063 /* Update fib selection */
1064 dest->selected_fib = re;
1065
1066 /*
1067 * Make sure we update the FPM any time we send new information to
1068 * the kernel.
1069 */
1070 hook_call(rib_update, rn, "installing in kernel");
1071
1072 /* Send add or update */
1073 if (old && (old != re))
1074 ret = dplane_route_update(rn, re, old);
1075 else
1076 ret = dplane_route_add(rn, re);
1077
1078 switch (ret) {
1079 case ZEBRA_DPLANE_REQUEST_QUEUED:
1080 if (zvrf)
1081 zvrf->installs_queued++;
1082 break;
1083 case ZEBRA_DPLANE_REQUEST_FAILURE:
1084 {
1085 char str[SRCDEST2STR_BUFFER];
1086
1087 srcdest_rnode2str(rn, str, sizeof(str));
1088 flog_err(EC_ZEBRA_DP_INSTALL_FAIL,
1089 "%u:%s: Failed to enqueue dataplane install",
1090 re->vrf_id, str);
1091 break;
1092 }
1093 case ZEBRA_DPLANE_REQUEST_SUCCESS:
1094 if (zvrf)
1095 zvrf->installs++;
1096 break;
1097 }
1098
1099 return;
1100 }
1101
1102 /* Uninstall the route from kernel. */
1103 void rib_uninstall_kernel(struct route_node *rn, struct route_entry *re)
1104 {
1105 struct nexthop *nexthop;
1106 rib_table_info_t *info = srcdest_rnode_table_info(rn);
1107 struct zebra_vrf *zvrf = vrf_info_lookup(re->vrf_id);
1108
1109 if (info->safi != SAFI_UNICAST) {
1110 for (ALL_NEXTHOPS(re->ng, nexthop))
1111 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1112 return;
1113 }
1114
1115 /*
1116 * Make sure we update the FPM any time we send new information to
1117 * the dataplane.
1118 */
1119 hook_call(rib_update, rn, "uninstalling from kernel");
1120
1121 switch (dplane_route_delete(rn, re)) {
1122 case ZEBRA_DPLANE_REQUEST_QUEUED:
1123 if (zvrf)
1124 zvrf->removals_queued++;
1125 break;
1126 case ZEBRA_DPLANE_REQUEST_FAILURE:
1127 {
1128 char str[SRCDEST2STR_BUFFER];
1129
1130 srcdest_rnode2str(rn, str, sizeof(str));
1131 flog_err(EC_ZEBRA_DP_INSTALL_FAIL,
1132 "%u:%s: Failed to enqueue dataplane uninstall",
1133 re->vrf_id, str);
1134 break;
1135 }
1136 case ZEBRA_DPLANE_REQUEST_SUCCESS:
1137 if (zvrf)
1138 zvrf->removals++;
1139 break;
1140 }
1141
1142 return;
1143 }
1144
1145 /* Uninstall the route from kernel. */
1146 static void rib_uninstall(struct route_node *rn, struct route_entry *re)
1147 {
1148 rib_table_info_t *info = srcdest_rnode_table_info(rn);
1149 rib_dest_t *dest = rib_dest_from_rnode(rn);
1150 struct nexthop *nexthop;
1151
1152 if (dest && dest->selected_fib == re) {
1153 if (info->safi == SAFI_UNICAST)
1154 hook_call(rib_update, rn, "rib_uninstall");
1155
1156 /* If labeled-unicast route, uninstall transit LSP. */
1157 if (zebra_rib_labeled_unicast(re))
1158 zebra_mpls_lsp_uninstall(info->zvrf, rn, re);
1159
1160 if (!RIB_SYSTEM_ROUTE(re))
1161 rib_uninstall_kernel(rn, re);
1162
1163 dest->selected_fib = NULL;
1164
1165 for (ALL_NEXTHOPS(re->ng, nexthop))
1166 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1167 }
1168
1169 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)) {
1170 const struct prefix *p, *src_p;
1171
1172 srcdest_rnode_prefixes(rn, &p, &src_p);
1173
1174 redistribute_delete(p, src_p, re);
1175 UNSET_FLAG(re->flags, ZEBRA_FLAG_SELECTED);
1176 }
1177 }
1178
1179 /*
1180 * rib_can_delete_dest
1181 *
1182 * Returns TRUE if the given dest can be deleted from the table.
1183 */
1184 static int rib_can_delete_dest(rib_dest_t *dest)
1185 {
1186 if (dest->routes) {
1187 return 0;
1188 }
1189
1190 /*
1191 * Don't delete the dest if we have to update the FPM about this
1192 * prefix.
1193 */
1194 if (CHECK_FLAG(dest->flags, RIB_DEST_UPDATE_FPM)
1195 || CHECK_FLAG(dest->flags, RIB_DEST_SENT_TO_FPM))
1196 return 0;
1197
1198 return 1;
1199 }
1200
1201 /*
1202 * rib_gc_dest
1203 *
1204 * Garbage collect the rib dest corresponding to the given route node
1205 * if appropriate.
1206 *
1207 * Returns TRUE if the dest was deleted, FALSE otherwise.
1208 */
1209 int rib_gc_dest(struct route_node *rn)
1210 {
1211 rib_dest_t *dest;
1212
1213 dest = rib_dest_from_rnode(rn);
1214 if (!dest)
1215 return 0;
1216
1217 if (!rib_can_delete_dest(dest))
1218 return 0;
1219
1220 if (IS_ZEBRA_DEBUG_RIB) {
1221 struct zebra_vrf *zvrf;
1222
1223 zvrf = rib_dest_vrf(dest);
1224 rnode_debug(rn, zvrf_id(zvrf), "removing dest from table");
1225 }
1226
1227 dest->rnode = NULL;
1228 XFREE(MTYPE_RIB_DEST, dest);
1229 rn->info = NULL;
1230
1231 /*
1232 * Release the one reference that we keep on the route node.
1233 */
1234 route_unlock_node(rn);
1235 return 1;
1236 }
1237
1238 static void rib_process_add_fib(struct zebra_vrf *zvrf, struct route_node *rn,
1239 struct route_entry *new)
1240 {
1241 rib_dest_t *dest = rib_dest_from_rnode(rn);
1242
1243 hook_call(rib_update, rn, "new route selected");
1244
1245 /* Update real nexthop. This may actually determine if nexthop is active
1246 * or not. */
1247 if (!nexthop_active_update(rn, new, 1)) {
1248 UNSET_FLAG(new->status, ROUTE_ENTRY_CHANGED);
1249 return;
1250 }
1251
1252 if (IS_ZEBRA_DEBUG_RIB) {
1253 char buf[SRCDEST2STR_BUFFER];
1254 srcdest_rnode2str(rn, buf, sizeof(buf));
1255 zlog_debug("%u:%s: Adding route rn %p, re %p (type %d)",
1256 zvrf_id(zvrf), buf, rn, new, new->type);
1257 }
1258
1259 /* If labeled-unicast route, install transit LSP. */
1260 if (zebra_rib_labeled_unicast(new))
1261 zebra_mpls_lsp_install(zvrf, rn, new);
1262
1263 if (!RIB_SYSTEM_ROUTE(new))
1264 rib_install_kernel(rn, new, NULL);
1265 else
1266 dest->selected_fib = new;
1267
1268 UNSET_FLAG(new->status, ROUTE_ENTRY_CHANGED);
1269 }
1270
1271 static void rib_process_del_fib(struct zebra_vrf *zvrf, struct route_node *rn,
1272 struct route_entry *old)
1273 {
1274 rib_dest_t *dest = rib_dest_from_rnode(rn);
1275 hook_call(rib_update, rn, "removing existing route");
1276
1277 /* Uninstall from kernel. */
1278 if (IS_ZEBRA_DEBUG_RIB) {
1279 char buf[SRCDEST2STR_BUFFER];
1280 srcdest_rnode2str(rn, buf, sizeof(buf));
1281 zlog_debug("%u:%s: Deleting route rn %p, re %p (type %d)",
1282 zvrf_id(zvrf), buf, rn, old, old->type);
1283 }
1284
1285 /* If labeled-unicast route, uninstall transit LSP. */
1286 if (zebra_rib_labeled_unicast(old))
1287 zebra_mpls_lsp_uninstall(zvrf, rn, old);
1288
1289 if (!RIB_SYSTEM_ROUTE(old))
1290 rib_uninstall_kernel(rn, old);
1291 else {
1292 /*
1293 * We are setting this to NULL here
1294 * because that is what we traditionally
1295 * have been doing. I am not positive
1296 * that this is the right thing to do
1297 * but let's leave the code alone
1298 * for the RIB_SYSTEM_ROUTE case
1299 */
1300 dest->selected_fib = NULL;
1301 }
1302
1303 /* Update nexthop for route, reset changed flag. */
1304 /* Note: this code also handles the Linux case when an interface goes
1305 * down, causing the kernel to delete routes without sending DELROUTE
1306 * notifications
1307 */
1308 if (!nexthop_active_update(rn, old, 1) &&
1309 (RIB_KERNEL_ROUTE(old)))
1310 SET_FLAG(old->status, ROUTE_ENTRY_REMOVED);
1311 else
1312 UNSET_FLAG(old->status, ROUTE_ENTRY_CHANGED);
1313 }
1314
1315 static void rib_process_update_fib(struct zebra_vrf *zvrf,
1316 struct route_node *rn,
1317 struct route_entry *old,
1318 struct route_entry *new)
1319 {
1320 struct nexthop *nexthop = NULL;
1321 int nh_active = 0;
1322 rib_dest_t *dest = rib_dest_from_rnode(rn);
1323
1324 /*
1325 * We have to install or update if a new route has been selected or
1326 * something has changed.
1327 */
1328 if (new != old || CHECK_FLAG(new->status, ROUTE_ENTRY_CHANGED)) {
1329 hook_call(rib_update, rn, "updating existing route");
1330
1331 /* Update the nexthop; we could determine here that nexthop is
1332 * inactive. */
1333 if (nexthop_active_update(rn, new, 1))
1334 nh_active = 1;
1335
1336 /* If nexthop is active, install the selected route, if
1337 * appropriate. If
1338 * the install succeeds, cleanup flags for prior route, if
1339 * different from
1340 * newly selected.
1341 */
1342 if (nh_active) {
1343 if (IS_ZEBRA_DEBUG_RIB) {
1344 char buf[SRCDEST2STR_BUFFER];
1345 srcdest_rnode2str(rn, buf, sizeof(buf));
1346 if (new != old)
1347 zlog_debug(
1348 "%u:%s: Updating route rn %p, re %p (type %d) "
1349 "old %p (type %d)",
1350 zvrf_id(zvrf), buf, rn, new,
1351 new->type, old, old->type);
1352 else
1353 zlog_debug(
1354 "%u:%s: Updating route rn %p, re %p (type %d)",
1355 zvrf_id(zvrf), buf, rn, new,
1356 new->type);
1357 }
1358
1359 /* If labeled-unicast route, uninstall transit LSP. */
1360 if (zebra_rib_labeled_unicast(old))
1361 zebra_mpls_lsp_uninstall(zvrf, rn, old);
1362
1363 /* Non-system route should be installed. */
1364 if (!RIB_SYSTEM_ROUTE(new)) {
1365 /* If labeled-unicast route, install transit
1366 * LSP. */
1367 if (zebra_rib_labeled_unicast(new))
1368 zebra_mpls_lsp_install(zvrf, rn, new);
1369
1370 rib_install_kernel(rn, new, old);
1371 } else {
1372 /*
1373 * We do not need to install the
1374 * selected route because it
1375 * is already isntalled by
1376 * the system( ie not us )
1377 * so just mark it as winning
1378 * we do need to ensure that
1379 * if we uninstall a route
1380 * from ourselves we don't
1381 * over write this pointer
1382 */
1383 dest->selected_fib = NULL;
1384 }
1385 /* If install succeeded or system route, cleanup flags
1386 * for prior route. */
1387 if (new != old) {
1388 if (RIB_SYSTEM_ROUTE(new)) {
1389 if (!RIB_SYSTEM_ROUTE(old))
1390 rib_uninstall_kernel(rn, old);
1391 } else {
1392 for (nexthop = old->ng.nexthop; nexthop;
1393 nexthop = nexthop->next)
1394 UNSET_FLAG(nexthop->flags,
1395 NEXTHOP_FLAG_FIB);
1396 }
1397 }
1398 }
1399
1400 /*
1401 * If nexthop for selected route is not active or install
1402 * failed, we
1403 * may need to uninstall and delete for redistribution.
1404 */
1405 if (!nh_active) {
1406 if (IS_ZEBRA_DEBUG_RIB) {
1407 char buf[SRCDEST2STR_BUFFER];
1408 srcdest_rnode2str(rn, buf, sizeof(buf));
1409 if (new != old)
1410 zlog_debug(
1411 "%u:%s: Deleting route rn %p, re %p (type %d) "
1412 "old %p (type %d) - nexthop inactive",
1413 zvrf_id(zvrf), buf, rn, new,
1414 new->type, old, old->type);
1415 else
1416 zlog_debug(
1417 "%u:%s: Deleting route rn %p, re %p (type %d) - nexthop inactive",
1418 zvrf_id(zvrf), buf, rn, new,
1419 new->type);
1420 }
1421
1422 /* If labeled-unicast route, uninstall transit LSP. */
1423 if (zebra_rib_labeled_unicast(old))
1424 zebra_mpls_lsp_uninstall(zvrf, rn, old);
1425
1426 if (!RIB_SYSTEM_ROUTE(old))
1427 rib_uninstall_kernel(rn, old);
1428 else
1429 dest->selected_fib = NULL;
1430 }
1431 } else {
1432 /*
1433 * Same route selected; check if in the FIB and if not,
1434 * re-install. This
1435 * is housekeeping code to deal with race conditions in kernel
1436 * with linux
1437 * netlink reporting interface up before IPv4 or IPv6 protocol
1438 * is ready
1439 * to add routes.
1440 */
1441 if (!RIB_SYSTEM_ROUTE(new)) {
1442 bool in_fib = false;
1443
1444 for (ALL_NEXTHOPS(new->ng, nexthop))
1445 if (CHECK_FLAG(nexthop->flags,
1446 NEXTHOP_FLAG_FIB)) {
1447 in_fib = true;
1448 break;
1449 }
1450 if (!in_fib)
1451 rib_install_kernel(rn, new, NULL);
1452 }
1453 }
1454
1455 /* Update prior route. */
1456 if (new != old) {
1457 /* Set real nexthop. */
1458 nexthop_active_update(rn, old, 1);
1459 UNSET_FLAG(old->status, ROUTE_ENTRY_CHANGED);
1460 }
1461
1462 /* Clear changed flag. */
1463 UNSET_FLAG(new->status, ROUTE_ENTRY_CHANGED);
1464 }
1465
1466 /* Check if 'alternate' RIB entry is better than 'current'. */
1467 static struct route_entry *rib_choose_best(struct route_entry *current,
1468 struct route_entry *alternate)
1469 {
1470 if (current == NULL)
1471 return alternate;
1472
1473 /* filter route selection in following order:
1474 * - connected beats other types
1475 * - if both connected, loopback or vrf wins
1476 * - lower distance beats higher
1477 * - lower metric beats higher for equal distance
1478 * - last, hence oldest, route wins tie break.
1479 */
1480
1481 /* Connected routes. Check to see if either are a vrf
1482 * or loopback interface. If not, pick the last connected
1483 * route of the set of lowest metric connected routes.
1484 */
1485 if (alternate->type == ZEBRA_ROUTE_CONNECT) {
1486 if (current->type != ZEBRA_ROUTE_CONNECT)
1487 return alternate;
1488
1489 /* both are connected. are either loop or vrf? */
1490 struct nexthop *nexthop = NULL;
1491
1492 for (ALL_NEXTHOPS(alternate->ng, nexthop)) {
1493 if (if_is_loopback_or_vrf(if_lookup_by_index(
1494 nexthop->ifindex, alternate->vrf_id)))
1495 return alternate;
1496 }
1497
1498 for (ALL_NEXTHOPS(current->ng, nexthop)) {
1499 if (if_is_loopback_or_vrf(if_lookup_by_index(
1500 nexthop->ifindex, current->vrf_id)))
1501 return current;
1502 }
1503
1504 /* Neither are loop or vrf so pick best metric */
1505 if (alternate->metric <= current->metric)
1506 return alternate;
1507
1508 return current;
1509 }
1510
1511 if (current->type == ZEBRA_ROUTE_CONNECT)
1512 return current;
1513
1514 /* higher distance loses */
1515 if (alternate->distance < current->distance)
1516 return alternate;
1517 if (current->distance < alternate->distance)
1518 return current;
1519
1520 /* metric tie-breaks equal distance */
1521 if (alternate->metric <= current->metric)
1522 return alternate;
1523
1524 return current;
1525 }
1526
1527 /* Core function for processing routing information base. */
1528 static void rib_process(struct route_node *rn)
1529 {
1530 struct route_entry *re;
1531 struct route_entry *next;
1532 struct route_entry *old_selected = NULL;
1533 struct route_entry *new_selected = NULL;
1534 struct route_entry *old_fib = NULL;
1535 struct route_entry *new_fib = NULL;
1536 struct route_entry *best = NULL;
1537 char buf[SRCDEST2STR_BUFFER];
1538 rib_dest_t *dest;
1539 struct zebra_vrf *zvrf = NULL;
1540 const struct prefix *p, *src_p;
1541
1542 srcdest_rnode_prefixes(rn, &p, &src_p);
1543 vrf_id_t vrf_id = VRF_UNKNOWN;
1544
1545 assert(rn);
1546
1547 dest = rib_dest_from_rnode(rn);
1548 if (dest) {
1549 zvrf = rib_dest_vrf(dest);
1550 vrf_id = zvrf_id(zvrf);
1551 }
1552
1553 if (IS_ZEBRA_DEBUG_RIB)
1554 srcdest_rnode2str(rn, buf, sizeof(buf));
1555
1556 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
1557 zlog_debug("%u:%s: Processing rn %p", vrf_id, buf, rn);
1558
1559 /*
1560 * we can have rn's that have a NULL info pointer
1561 * (dest). As such let's not let the deref happen
1562 * additionally we know RNODE_FOREACH_RE_SAFE
1563 * will not iterate so we are ok.
1564 */
1565 if (dest)
1566 old_fib = dest->selected_fib;
1567
1568 RNODE_FOREACH_RE_SAFE (rn, re, next) {
1569 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
1570 zlog_debug(
1571 "%u:%s: Examine re %p (type %d) status %x flags %x "
1572 "dist %d metric %d",
1573 vrf_id, buf, re, re->type, re->status,
1574 re->flags, re->distance, re->metric);
1575
1576 UNSET_FLAG(re->status, ROUTE_ENTRY_NEXTHOPS_CHANGED);
1577
1578 /* Currently selected re. */
1579 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)) {
1580 assert(old_selected == NULL);
1581 old_selected = re;
1582 }
1583
1584 /* Skip deleted entries from selection */
1585 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
1586 continue;
1587
1588 /* Skip unreachable nexthop. */
1589 /* This first call to nexthop_active_update is merely to
1590 * determine if
1591 * there's any change to nexthops associated with this RIB
1592 * entry. Now,
1593 * rib_process() can be invoked due to an external event such as
1594 * link
1595 * down or due to next-hop-tracking evaluation. In the latter
1596 * case,
1597 * a decision has already been made that the NHs have changed.
1598 * So, no
1599 * need to invoke a potentially expensive call again. Further,
1600 * since
1601 * the change might be in a recursive NH which is not caught in
1602 * the nexthop_active_update() code. Thus, we might miss changes
1603 * to
1604 * recursive NHs.
1605 */
1606 if (!CHECK_FLAG(re->status, ROUTE_ENTRY_CHANGED)
1607 && !nexthop_active_update(rn, re, 0)) {
1608 if (re->type == ZEBRA_ROUTE_TABLE) {
1609 /* XXX: HERE BE DRAGONS!!!!!
1610 * In all honesty, I have not yet figured out
1611 * what this part
1612 * does or why the ROUTE_ENTRY_CHANGED test
1613 * above is correct
1614 * or why we need to delete a route here, and
1615 * also not whether
1616 * this concerns both selected and fib route, or
1617 * only selected
1618 * or only fib */
1619 /* This entry was denied by the 'ip protocol
1620 * table' route-map, we
1621 * need to delete it */
1622 if (re != old_selected) {
1623 if (IS_ZEBRA_DEBUG_RIB)
1624 zlog_debug(
1625 "%s: %u:%s: imported via import-table but denied "
1626 "by the ip protocol table route-map",
1627 __func__, vrf_id, buf);
1628 rib_unlink(rn, re);
1629 } else
1630 SET_FLAG(re->status,
1631 ROUTE_ENTRY_REMOVED);
1632 }
1633
1634 continue;
1635 }
1636
1637 /* Infinite distance. */
1638 if (re->distance == DISTANCE_INFINITY) {
1639 UNSET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
1640 continue;
1641 }
1642
1643 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_FIB_OVERRIDE)) {
1644 best = rib_choose_best(new_fib, re);
1645 if (new_fib && best != new_fib)
1646 UNSET_FLAG(new_fib->status,
1647 ROUTE_ENTRY_CHANGED);
1648 new_fib = best;
1649 } else {
1650 best = rib_choose_best(new_selected, re);
1651 if (new_selected && best != new_selected)
1652 UNSET_FLAG(new_selected->status,
1653 ROUTE_ENTRY_CHANGED);
1654 new_selected = best;
1655 }
1656 if (best != re)
1657 UNSET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
1658 } /* RNODE_FOREACH_RE */
1659
1660 /* If no FIB override route, use the selected route also for FIB */
1661 if (new_fib == NULL)
1662 new_fib = new_selected;
1663
1664 /* After the cycle is finished, the following pointers will be set:
1665 * old_selected --- RE entry currently having SELECTED
1666 * new_selected --- RE entry that is newly SELECTED
1667 * old_fib --- RE entry currently in kernel FIB
1668 * new_fib --- RE entry that is newly to be in kernel FIB
1669 *
1670 * new_selected will get SELECTED flag, and is going to be redistributed
1671 * the zclients. new_fib (which can be new_selected) will be installed
1672 * in kernel.
1673 */
1674
1675 if (IS_ZEBRA_DEBUG_RIB_DETAILED) {
1676 zlog_debug(
1677 "%u:%s: After processing: old_selected %p new_selected %p old_fib %p new_fib %p",
1678 vrf_id, buf, (void *)old_selected, (void *)new_selected,
1679 (void *)old_fib, (void *)new_fib);
1680 }
1681
1682 /* Buffer ROUTE_ENTRY_CHANGED here, because it will get cleared if
1683 * fib == selected */
1684 bool selected_changed = new_selected && CHECK_FLAG(new_selected->status,
1685 ROUTE_ENTRY_CHANGED);
1686
1687 /* Update fib according to selection results */
1688 if (new_fib && old_fib)
1689 rib_process_update_fib(zvrf, rn, old_fib, new_fib);
1690 else if (new_fib)
1691 rib_process_add_fib(zvrf, rn, new_fib);
1692 else if (old_fib)
1693 rib_process_del_fib(zvrf, rn, old_fib);
1694
1695 /* Update SELECTED entry */
1696 if (old_selected != new_selected || selected_changed) {
1697
1698 if (new_selected && new_selected != new_fib) {
1699 nexthop_active_update(rn, new_selected, 1);
1700 UNSET_FLAG(new_selected->status, ROUTE_ENTRY_CHANGED);
1701 }
1702
1703 if (new_selected) {
1704 SET_FLAG(new_selected->flags, ZEBRA_FLAG_SELECTED);
1705
1706 /* Special case: new route is system route, so
1707 * dataplane update will not be done - ensure we
1708 * redistribute the route.
1709 */
1710 if (RIB_SYSTEM_ROUTE(new_selected))
1711 redistribute_update(p, src_p, new_selected,
1712 old_selected);
1713 }
1714
1715 if (old_selected) {
1716 if (!new_selected)
1717 redistribute_delete(p, src_p, old_selected);
1718 if (old_selected != new_selected)
1719 UNSET_FLAG(old_selected->flags,
1720 ZEBRA_FLAG_SELECTED);
1721 }
1722 }
1723
1724 /* Remove all RE entries queued for removal */
1725 RNODE_FOREACH_RE_SAFE (rn, re, next) {
1726 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)) {
1727 if (IS_ZEBRA_DEBUG_RIB) {
1728 rnode_debug(rn, vrf_id, "rn %p, removing re %p",
1729 (void *)rn, (void *)re);
1730 }
1731 rib_unlink(rn, re);
1732 }
1733 }
1734
1735 /*
1736 * Check if the dest can be deleted now.
1737 */
1738 rib_gc_dest(rn);
1739 }
1740
1741 /*
1742 * Utility to match route with dplane context data
1743 */
1744 static bool rib_route_match_ctx(const struct route_entry *re,
1745 const struct zebra_dplane_ctx *ctx,
1746 bool is_update)
1747 {
1748 bool result = false;
1749
1750 if (is_update) {
1751 /*
1752 * In 'update' case, we test info about the 'previous' or
1753 * 'old' route
1754 */
1755 if ((re->type == dplane_ctx_get_old_type(ctx)) &&
1756 (re->instance == dplane_ctx_get_old_instance(ctx))) {
1757 result = true;
1758
1759 /* TODO -- we're using this extra test, but it's not
1760 * exactly clear why.
1761 */
1762 if (re->type == ZEBRA_ROUTE_STATIC &&
1763 (re->distance != dplane_ctx_get_old_distance(ctx) ||
1764 re->tag != dplane_ctx_get_old_tag(ctx))) {
1765 result = false;
1766 }
1767 }
1768
1769 } else {
1770 /*
1771 * Ordinary, single-route case using primary context info
1772 */
1773 if ((dplane_ctx_get_op(ctx) != DPLANE_OP_ROUTE_DELETE) &&
1774 CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)) {
1775 /* Skip route that's been deleted */
1776 goto done;
1777 }
1778
1779 if ((re->type == dplane_ctx_get_type(ctx)) &&
1780 (re->instance == dplane_ctx_get_instance(ctx))) {
1781 result = true;
1782
1783 /* TODO -- we're using this extra test, but it's not
1784 * exactly clear why.
1785 */
1786 if (re->type == ZEBRA_ROUTE_STATIC &&
1787 (re->distance != dplane_ctx_get_distance(ctx) ||
1788 re->tag != dplane_ctx_get_tag(ctx))) {
1789 result = false;
1790 }
1791 }
1792 }
1793
1794 done:
1795
1796 return (result);
1797 }
1798
1799 /*
1800 * Route-update results processing after async dataplane update.
1801 */
1802 static void rib_process_after(struct zebra_dplane_ctx *ctx)
1803 {
1804 struct route_table *table = NULL;
1805 struct zebra_vrf *zvrf = NULL;
1806 struct route_node *rn = NULL;
1807 struct route_entry *re = NULL, *old_re = NULL, *rib;
1808 bool is_update = false;
1809 struct nexthop *nexthop, *ctx_nexthop;
1810 char dest_str[PREFIX_STRLEN] = "";
1811 enum dplane_op_e op;
1812 enum zebra_dplane_result status;
1813 const struct prefix *dest_pfx, *src_pfx;
1814
1815 /* Locate rn and re(s) from ctx */
1816
1817 table = zebra_vrf_table_with_table_id(dplane_ctx_get_afi(ctx),
1818 dplane_ctx_get_safi(ctx),
1819 dplane_ctx_get_vrf(ctx),
1820 dplane_ctx_get_table(ctx));
1821 if (table == NULL) {
1822 if (IS_ZEBRA_DEBUG_DPLANE) {
1823 zlog_debug("Failed to process dplane results: no table for afi %d, safi %d, vrf %u",
1824 dplane_ctx_get_afi(ctx),
1825 dplane_ctx_get_safi(ctx),
1826 dplane_ctx_get_vrf(ctx));
1827 }
1828 goto done;
1829 }
1830
1831 zvrf = vrf_info_lookup(dplane_ctx_get_vrf(ctx));
1832
1833 dest_pfx = dplane_ctx_get_dest(ctx);
1834
1835 /* Note well: only capturing the prefix string if debug is enabled here;
1836 * unconditional log messages will have to generate the string.
1837 */
1838 if (IS_ZEBRA_DEBUG_DPLANE)
1839 prefix2str(dest_pfx, dest_str, sizeof(dest_str));
1840
1841 src_pfx = dplane_ctx_get_src(ctx);
1842 rn = srcdest_rnode_get(table, dplane_ctx_get_dest(ctx),
1843 src_pfx ? (struct prefix_ipv6 *)src_pfx : NULL);
1844 if (rn == NULL) {
1845 if (IS_ZEBRA_DEBUG_DPLANE) {
1846 zlog_debug("Failed to process dplane results: no route for %u:%s",
1847 dplane_ctx_get_vrf(ctx), dest_str);
1848 }
1849 goto done;
1850 }
1851
1852 srcdest_rnode_prefixes(rn, &dest_pfx, &src_pfx);
1853
1854 op = dplane_ctx_get_op(ctx);
1855 status = dplane_ctx_get_status(ctx);
1856
1857 if (IS_ZEBRA_DEBUG_DPLANE_DETAIL)
1858 zlog_debug("%u:%s Processing dplane ctx %p, op %s result %s",
1859 dplane_ctx_get_vrf(ctx), dest_str, ctx,
1860 dplane_op2str(op), dplane_res2str(status));
1861
1862 if (op == DPLANE_OP_ROUTE_DELETE) {
1863 /*
1864 * In the delete case, the zebra core datastructs were
1865 * updated (or removed) at the time the delete was issued,
1866 * so we're just notifying the route owner.
1867 */
1868 if (status == ZEBRA_DPLANE_REQUEST_SUCCESS) {
1869 zsend_route_notify_owner_ctx(ctx, ZAPI_ROUTE_REMOVED);
1870
1871 if (zvrf)
1872 zvrf->removals++;
1873 } else {
1874 zsend_route_notify_owner_ctx(ctx,
1875 ZAPI_ROUTE_FAIL_INSTALL);
1876
1877 zlog_warn("%u:%s: Route Deletion failure",
1878 dplane_ctx_get_vrf(ctx),
1879 prefix2str(dest_pfx,
1880 dest_str, sizeof(dest_str)));
1881 }
1882
1883 /* Nothing more to do in delete case */
1884 goto done;
1885 }
1886
1887 /*
1888 * Update is a bit of a special case, where we may have both old and new
1889 * routes to post-process.
1890 */
1891 is_update = dplane_ctx_is_update(ctx);
1892
1893 /*
1894 * Take a pass through the routes, look for matches with the context
1895 * info.
1896 */
1897 RNODE_FOREACH_RE(rn, rib) {
1898
1899 if (re == NULL) {
1900 if (rib_route_match_ctx(rib, ctx, false))
1901 re = rib;
1902 }
1903
1904 /* Check for old route match */
1905 if (is_update && (old_re == NULL)) {
1906 if (rib_route_match_ctx(rib, ctx, true /*is_update*/))
1907 old_re = rib;
1908 }
1909
1910 /* Have we found the routes we need to work on? */
1911 if (re && ((!is_update || old_re)))
1912 break;
1913 }
1914
1915 /*
1916 * Check sequence number(s) to detect stale results before continuing
1917 */
1918 if (re && (re->dplane_sequence != dplane_ctx_get_seq(ctx))) {
1919 if (IS_ZEBRA_DEBUG_DPLANE_DETAIL) {
1920 zlog_debug("%u:%s Stale dplane result for re %p",
1921 dplane_ctx_get_vrf(ctx), dest_str, re);
1922 }
1923 re = NULL;
1924 }
1925
1926 if (old_re &&
1927 (old_re->dplane_sequence != dplane_ctx_get_old_seq(ctx))) {
1928 if (IS_ZEBRA_DEBUG_DPLANE_DETAIL) {
1929 zlog_debug("%u:%s Stale dplane result for old_re %p",
1930 dplane_ctx_get_vrf(ctx), dest_str, old_re);
1931 }
1932 old_re = NULL;
1933 }
1934
1935 /*
1936 * Here's sort of a tough one: the route update result is stale.
1937 * Is it better to use the context block info to generate
1938 * redist and owner notification, or is it better to wait
1939 * for the up-to-date result to arrive?
1940 */
1941 if (re == NULL) {
1942 /* TODO -- for now, only expose up-to-date results */
1943 goto done;
1944 }
1945
1946 if (status == ZEBRA_DPLANE_REQUEST_SUCCESS) {
1947 /* Update zebra nexthop FIB flag for each
1948 * nexthop that was installed.
1949 */
1950 for (ALL_NEXTHOPS_PTR(dplane_ctx_get_ng(ctx), ctx_nexthop)) {
1951
1952 for (ALL_NEXTHOPS(re->ng, nexthop)) {
1953 if (nexthop_same(ctx_nexthop, nexthop))
1954 break;
1955 }
1956
1957 if (nexthop == NULL)
1958 continue;
1959
1960 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE))
1961 continue;
1962
1963 if (CHECK_FLAG(ctx_nexthop->flags,
1964 NEXTHOP_FLAG_FIB))
1965 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1966 else
1967 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1968 }
1969
1970 if (zvrf) {
1971 zvrf->installs++;
1972 /* Set flag for nexthop tracking processing */
1973 zvrf->flags |= ZEBRA_VRF_RIB_SCHEDULED;
1974 }
1975
1976 /* Redistribute */
1977 /* TODO -- still calling the redist api using the route_entries,
1978 * and there's a corner-case here: if there's no client
1979 * for the 'new' route, a redist deleting the 'old' route
1980 * will be sent. But if the 'old' context info was stale,
1981 * 'old_re' will be NULL here and that delete will not be sent.
1982 */
1983 redistribute_update(dest_pfx, src_pfx, re, old_re);
1984
1985 /* Notify route owner */
1986 zsend_route_notify_owner(re,
1987 dest_pfx, ZAPI_ROUTE_INSTALLED);
1988
1989 } else {
1990 zsend_route_notify_owner(re, dest_pfx,
1991 ZAPI_ROUTE_FAIL_INSTALL);
1992
1993 zlog_warn("%u:%s: Route install failed",
1994 dplane_ctx_get_vrf(ctx),
1995 prefix2str(dest_pfx,
1996 dest_str, sizeof(dest_str)));
1997 }
1998
1999 done:
2000
2001 /* Return context to dataplane module */
2002 dplane_ctx_fini(&ctx);
2003 }
2004
2005 /* Take a list of route_node structs and return 1, if there was a record
2006 * picked from it and processed by rib_process(). Don't process more,
2007 * than one RN record; operate only in the specified sub-queue.
2008 */
2009 static unsigned int process_subq(struct list *subq, uint8_t qindex)
2010 {
2011 struct listnode *lnode = listhead(subq);
2012 struct route_node *rnode;
2013 rib_dest_t *dest;
2014 struct zebra_vrf *zvrf = NULL;
2015
2016 if (!lnode)
2017 return 0;
2018
2019 rnode = listgetdata(lnode);
2020 dest = rib_dest_from_rnode(rnode);
2021 if (dest)
2022 zvrf = rib_dest_vrf(dest);
2023
2024 rib_process(rnode);
2025
2026 if (IS_ZEBRA_DEBUG_RIB_DETAILED) {
2027 char buf[SRCDEST2STR_BUFFER];
2028 srcdest_rnode2str(rnode, buf, sizeof(buf));
2029 zlog_debug("%u:%s: rn %p dequeued from sub-queue %u",
2030 zvrf ? zvrf_id(zvrf) : 0, buf, rnode, qindex);
2031 }
2032
2033 if (rnode->info)
2034 UNSET_FLAG(rib_dest_from_rnode(rnode)->flags,
2035 RIB_ROUTE_QUEUED(qindex));
2036
2037 #if 0
2038 else
2039 {
2040 zlog_debug ("%s: called for route_node (%p, %d) with no ribs",
2041 __func__, rnode, rnode->lock);
2042 zlog_backtrace(LOG_DEBUG);
2043 }
2044 #endif
2045 route_unlock_node(rnode);
2046 list_delete_node(subq, lnode);
2047 return 1;
2048 }
2049
2050 /*
2051 * Perform next-hop tracking processing after RIB updates.
2052 */
2053 static void do_nht_processing(void)
2054 {
2055 struct vrf *vrf;
2056 struct zebra_vrf *zvrf;
2057
2058 /* Evaluate nexthops for those VRFs which underwent route processing.
2059 * This
2060 * should limit the evaluation to the necessary VRFs in most common
2061 * situations.
2062 */
2063 RB_FOREACH (vrf, vrf_id_head, &vrfs_by_id) {
2064 zvrf = vrf->info;
2065 if (zvrf == NULL || !(zvrf->flags & ZEBRA_VRF_RIB_SCHEDULED))
2066 continue;
2067
2068 if (IS_ZEBRA_DEBUG_RIB_DETAILED || IS_ZEBRA_DEBUG_NHT)
2069 zlog_debug("NHT processing check for zvrf %s",
2070 zvrf_name(zvrf));
2071
2072 zvrf->flags &= ~ZEBRA_VRF_RIB_SCHEDULED;
2073 zebra_evaluate_rnh(zvrf, AF_INET, 0, RNH_NEXTHOP_TYPE, NULL);
2074 zebra_evaluate_rnh(zvrf, AF_INET, 0, RNH_IMPORT_CHECK_TYPE,
2075 NULL);
2076 zebra_evaluate_rnh(zvrf, AF_INET6, 0, RNH_NEXTHOP_TYPE, NULL);
2077 zebra_evaluate_rnh(zvrf, AF_INET6, 0, RNH_IMPORT_CHECK_TYPE,
2078 NULL);
2079 }
2080
2081 /* Schedule LSPs for processing, if needed. */
2082 zvrf = vrf_info_lookup(VRF_DEFAULT);
2083 if (mpls_should_lsps_be_processed(zvrf)) {
2084 if (IS_ZEBRA_DEBUG_MPLS)
2085 zlog_debug(
2086 "%u: Scheduling all LSPs upon RIB completion",
2087 zvrf_id(zvrf));
2088 zebra_mpls_lsp_schedule(zvrf);
2089 mpls_unmark_lsps_for_processing(zvrf);
2090 }
2091 }
2092
2093 /*
2094 * All meta queues have been processed. Trigger next-hop evaluation.
2095 */
2096 static void meta_queue_process_complete(struct work_queue *dummy)
2097 {
2098 do_nht_processing();
2099 }
2100
2101 /* Dispatch the meta queue by picking, processing and unlocking the next RN from
2102 * a non-empty sub-queue with lowest priority. wq is equal to zebra->ribq and
2103 * data
2104 * is pointed to the meta queue structure.
2105 */
2106 static wq_item_status meta_queue_process(struct work_queue *dummy, void *data)
2107 {
2108 struct meta_queue *mq = data;
2109 unsigned i;
2110 uint32_t queue_len, queue_limit;
2111
2112 /* Ensure there's room for more dataplane updates */
2113 queue_limit = dplane_get_in_queue_limit();
2114 queue_len = dplane_get_in_queue_len();
2115 if (queue_len > queue_limit) {
2116 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2117 zlog_debug("rib queue: dplane queue len %u, limit %u, retrying",
2118 queue_len, queue_limit);
2119
2120 /* Ensure that the meta-queue is actually enqueued */
2121 if (work_queue_empty(zebrad.ribq))
2122 work_queue_add(zebrad.ribq, zebrad.mq);
2123
2124 return WQ_QUEUE_BLOCKED;
2125 }
2126
2127 for (i = 0; i < MQ_SIZE; i++)
2128 if (process_subq(mq->subq[i], i)) {
2129 mq->size--;
2130 break;
2131 }
2132 return mq->size ? WQ_REQUEUE : WQ_SUCCESS;
2133 }
2134
2135 /*
2136 * Map from rib types to queue type (priority) in meta queue
2137 */
2138 static const uint8_t meta_queue_map[ZEBRA_ROUTE_MAX] = {
2139 [ZEBRA_ROUTE_SYSTEM] = 4,
2140 [ZEBRA_ROUTE_KERNEL] = 0,
2141 [ZEBRA_ROUTE_CONNECT] = 0,
2142 [ZEBRA_ROUTE_STATIC] = 1,
2143 [ZEBRA_ROUTE_RIP] = 2,
2144 [ZEBRA_ROUTE_RIPNG] = 2,
2145 [ZEBRA_ROUTE_OSPF] = 2,
2146 [ZEBRA_ROUTE_OSPF6] = 2,
2147 [ZEBRA_ROUTE_ISIS] = 2,
2148 [ZEBRA_ROUTE_BGP] = 3,
2149 [ZEBRA_ROUTE_PIM] = 4, // Shouldn't happen but for safety
2150 [ZEBRA_ROUTE_EIGRP] = 2,
2151 [ZEBRA_ROUTE_NHRP] = 2,
2152 [ZEBRA_ROUTE_HSLS] = 4,
2153 [ZEBRA_ROUTE_OLSR] = 4,
2154 [ZEBRA_ROUTE_TABLE] = 1,
2155 [ZEBRA_ROUTE_LDP] = 4,
2156 [ZEBRA_ROUTE_VNC] = 3,
2157 [ZEBRA_ROUTE_VNC_DIRECT] = 3,
2158 [ZEBRA_ROUTE_VNC_DIRECT_RH] = 3,
2159 [ZEBRA_ROUTE_BGP_DIRECT] = 3,
2160 [ZEBRA_ROUTE_BGP_DIRECT_EXT] = 3,
2161 [ZEBRA_ROUTE_BABEL] = 2,
2162 [ZEBRA_ROUTE_ALL] = 4, // Shouldn't happen but for safety
2163 };
2164
2165 /* Look into the RN and queue it into one or more priority queues,
2166 * increasing the size for each data push done.
2167 */
2168 static void rib_meta_queue_add(struct meta_queue *mq, struct route_node *rn)
2169 {
2170 struct route_entry *re;
2171
2172 RNODE_FOREACH_RE (rn, re) {
2173 uint8_t qindex = meta_queue_map[re->type];
2174 struct zebra_vrf *zvrf;
2175
2176 /* Invariant: at this point we always have rn->info set. */
2177 if (CHECK_FLAG(rib_dest_from_rnode(rn)->flags,
2178 RIB_ROUTE_QUEUED(qindex))) {
2179 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2180 rnode_debug(
2181 rn, re->vrf_id,
2182 "rn %p is already queued in sub-queue %u",
2183 (void *)rn, qindex);
2184 continue;
2185 }
2186
2187 SET_FLAG(rib_dest_from_rnode(rn)->flags,
2188 RIB_ROUTE_QUEUED(qindex));
2189 listnode_add(mq->subq[qindex], rn);
2190 route_lock_node(rn);
2191 mq->size++;
2192
2193 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2194 rnode_debug(rn, re->vrf_id,
2195 "queued rn %p into sub-queue %u",
2196 (void *)rn, qindex);
2197
2198 zvrf = zebra_vrf_lookup_by_id(re->vrf_id);
2199 if (zvrf)
2200 zvrf->flags |= ZEBRA_VRF_RIB_SCHEDULED;
2201 }
2202 }
2203
2204 /* Add route_node to work queue and schedule processing */
2205 void rib_queue_add(struct route_node *rn)
2206 {
2207 assert(rn);
2208
2209 /* Pointless to queue a route_node with no RIB entries to add or remove
2210 */
2211 if (!rnode_to_ribs(rn)) {
2212 zlog_debug("%s: called for route_node (%p, %d) with no ribs",
2213 __func__, (void *)rn, rn->lock);
2214 zlog_backtrace(LOG_DEBUG);
2215 return;
2216 }
2217
2218 if (zebrad.ribq == NULL) {
2219 flog_err(EC_ZEBRA_WQ_NONEXISTENT,
2220 "%s: work_queue does not exist!", __func__);
2221 return;
2222 }
2223
2224 /*
2225 * The RIB queue should normally be either empty or holding the only
2226 * work_queue_item element. In the latter case this element would
2227 * hold a pointer to the meta queue structure, which must be used to
2228 * actually queue the route nodes to process. So create the MQ
2229 * holder, if necessary, then push the work into it in any case.
2230 * This semantics was introduced after 0.99.9 release.
2231 */
2232 if (work_queue_empty(zebrad.ribq))
2233 work_queue_add(zebrad.ribq, zebrad.mq);
2234
2235 rib_meta_queue_add(zebrad.mq, rn);
2236
2237 return;
2238 }
2239
2240 /* Create new meta queue.
2241 A destructor function doesn't seem to be necessary here.
2242 */
2243 static struct meta_queue *meta_queue_new(void)
2244 {
2245 struct meta_queue *new;
2246 unsigned i;
2247
2248 new = XCALLOC(MTYPE_WORK_QUEUE, sizeof(struct meta_queue));
2249
2250 for (i = 0; i < MQ_SIZE; i++) {
2251 new->subq[i] = list_new();
2252 assert(new->subq[i]);
2253 }
2254
2255 return new;
2256 }
2257
2258 void meta_queue_free(struct meta_queue *mq)
2259 {
2260 unsigned i;
2261
2262 for (i = 0; i < MQ_SIZE; i++)
2263 list_delete(&mq->subq[i]);
2264
2265 XFREE(MTYPE_WORK_QUEUE, mq);
2266 }
2267
2268 /* initialise zebra rib work queue */
2269 static void rib_queue_init(struct zebra_t *zebra)
2270 {
2271 assert(zebra);
2272
2273 if (!(zebra->ribq =
2274 work_queue_new(zebra->master, "route_node processing"))) {
2275 flog_err(EC_ZEBRA_WQ_NONEXISTENT,
2276 "%s: could not initialise work queue!", __func__);
2277 return;
2278 }
2279
2280 /* fill in the work queue spec */
2281 zebra->ribq->spec.workfunc = &meta_queue_process;
2282 zebra->ribq->spec.errorfunc = NULL;
2283 zebra->ribq->spec.completion_func = &meta_queue_process_complete;
2284 /* XXX: TODO: These should be runtime configurable via vty */
2285 zebra->ribq->spec.max_retries = 3;
2286 zebra->ribq->spec.hold = ZEBRA_RIB_PROCESS_HOLD_TIME;
2287
2288 if (!(zebra->mq = meta_queue_new())) {
2289 flog_err(EC_ZEBRA_WQ_NONEXISTENT,
2290 "%s: could not initialise meta queue!", __func__);
2291 return;
2292 }
2293 return;
2294 }
2295
2296 /* RIB updates are processed via a queue of pointers to route_nodes.
2297 *
2298 * The queue length is bounded by the maximal size of the routing table,
2299 * as a route_node will not be requeued, if already queued.
2300 *
2301 * REs are submitted via rib_addnode or rib_delnode which set minimal
2302 * state, or static_install_route (when an existing RE is updated)
2303 * and then submit route_node to queue for best-path selection later.
2304 * Order of add/delete state changes are preserved for any given RE.
2305 *
2306 * Deleted REs are reaped during best-path selection.
2307 *
2308 * rib_addnode
2309 * |-> rib_link or unset ROUTE_ENTRY_REMOVE |->Update kernel with
2310 * |-------->| | best RE, if required
2311 * | |
2312 * static_install->|->rib_addqueue...... -> rib_process
2313 * | |
2314 * |-------->| |-> rib_unlink
2315 * |-> set ROUTE_ENTRY_REMOVE |
2316 * rib_delnode (RE freed)
2317 *
2318 * The 'info' pointer of a route_node points to a rib_dest_t
2319 * ('dest'). Queueing state for a route_node is kept on the dest. The
2320 * dest is created on-demand by rib_link() and is kept around at least
2321 * as long as there are ribs hanging off it (@see rib_gc_dest()).
2322 *
2323 * Refcounting (aka "locking" throughout the GNU Zebra and Quagga code):
2324 *
2325 * - route_nodes: refcounted by:
2326 * - dest attached to route_node:
2327 * - managed by: rib_link/rib_gc_dest
2328 * - route_node processing queue
2329 * - managed by: rib_addqueue, rib_process.
2330 *
2331 */
2332
2333 /* Add RE to head of the route node. */
2334 static void rib_link(struct route_node *rn, struct route_entry *re, int process)
2335 {
2336 struct route_entry *head;
2337 rib_dest_t *dest;
2338 afi_t afi;
2339 const char *rmap_name;
2340
2341 assert(re && rn);
2342
2343 dest = rib_dest_from_rnode(rn);
2344 if (!dest) {
2345 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2346 rnode_debug(rn, re->vrf_id, "rn %p adding dest", rn);
2347
2348 dest = XCALLOC(MTYPE_RIB_DEST, sizeof(rib_dest_t));
2349 route_lock_node(rn); /* rn route table reference */
2350 rn->info = dest;
2351 dest->rnode = rn;
2352 }
2353
2354 head = dest->routes;
2355 if (head) {
2356 head->prev = re;
2357 }
2358 re->next = head;
2359 dest->routes = re;
2360
2361 afi = (rn->p.family == AF_INET)
2362 ? AFI_IP
2363 : (rn->p.family == AF_INET6) ? AFI_IP6 : AFI_MAX;
2364 if (is_zebra_import_table_enabled(afi, re->table)) {
2365 rmap_name = zebra_get_import_table_route_map(afi, re->table);
2366 zebra_add_import_table_entry(rn, re, rmap_name);
2367 } else if (process)
2368 rib_queue_add(rn);
2369 }
2370
2371 static void rib_addnode(struct route_node *rn,
2372 struct route_entry *re, int process)
2373 {
2374 /* RE node has been un-removed before route-node is processed.
2375 * route_node must hence already be on the queue for processing..
2376 */
2377 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)) {
2378 if (IS_ZEBRA_DEBUG_RIB)
2379 rnode_debug(rn, re->vrf_id, "rn %p, un-removed re %p",
2380 (void *)rn, (void *)re);
2381
2382 UNSET_FLAG(re->status, ROUTE_ENTRY_REMOVED);
2383 return;
2384 }
2385 rib_link(rn, re, process);
2386 }
2387
2388 /*
2389 * rib_unlink
2390 *
2391 * Detach a rib structure from a route_node.
2392 *
2393 * Note that a call to rib_unlink() should be followed by a call to
2394 * rib_gc_dest() at some point. This allows a rib_dest_t that is no
2395 * longer required to be deleted.
2396 */
2397 void rib_unlink(struct route_node *rn, struct route_entry *re)
2398 {
2399 rib_dest_t *dest;
2400
2401 assert(rn && re);
2402
2403 if (IS_ZEBRA_DEBUG_RIB)
2404 rnode_debug(rn, re->vrf_id, "rn %p, re %p", (void *)rn,
2405 (void *)re);
2406
2407 dest = rib_dest_from_rnode(rn);
2408
2409 if (re->next)
2410 re->next->prev = re->prev;
2411
2412 if (re->prev)
2413 re->prev->next = re->next;
2414 else {
2415 dest->routes = re->next;
2416 }
2417
2418 if (dest->selected_fib == re)
2419 dest->selected_fib = NULL;
2420
2421 nexthops_free(re->ng.nexthop);
2422 XFREE(MTYPE_RE, re);
2423 }
2424
2425 void rib_delnode(struct route_node *rn, struct route_entry *re)
2426 {
2427 afi_t afi;
2428
2429 if (IS_ZEBRA_DEBUG_RIB)
2430 rnode_debug(rn, re->vrf_id, "rn %p, re %p, removing",
2431 (void *)rn, (void *)re);
2432 SET_FLAG(re->status, ROUTE_ENTRY_REMOVED);
2433
2434 afi = (rn->p.family == AF_INET)
2435 ? AFI_IP
2436 : (rn->p.family == AF_INET6) ? AFI_IP6 : AFI_MAX;
2437 if (is_zebra_import_table_enabled(afi, re->table)) {
2438 zebra_del_import_table_entry(rn, re);
2439 /* Just clean up if non main table */
2440 if (IS_ZEBRA_DEBUG_RIB) {
2441 char buf[SRCDEST2STR_BUFFER];
2442 srcdest_rnode2str(rn, buf, sizeof(buf));
2443 zlog_debug(
2444 "%u:%s: Freeing route rn %p, re %p (type %d)",
2445 re->vrf_id, buf, rn, re, re->type);
2446 }
2447
2448 rib_unlink(rn, re);
2449 } else {
2450 rib_queue_add(rn);
2451 }
2452 }
2453
2454 /* This function dumps the contents of a given RE entry into
2455 * standard debug log. Calling function name and IP prefix in
2456 * question are passed as 1st and 2nd arguments.
2457 */
2458
2459 void _route_entry_dump(const char *func, union prefixconstptr pp,
2460 union prefixconstptr src_pp,
2461 const struct route_entry *re)
2462 {
2463 const struct prefix *src_p = src_pp.p;
2464 bool is_srcdst = src_p && src_p->prefixlen;
2465 char straddr[PREFIX_STRLEN];
2466 char srcaddr[PREFIX_STRLEN];
2467 struct nexthop *nexthop;
2468
2469 zlog_debug("%s: dumping RE entry %p for %s%s%s vrf %u", func,
2470 (const void *)re, prefix2str(pp, straddr, sizeof(straddr)),
2471 is_srcdst ? " from " : "",
2472 is_srcdst ? prefix2str(src_pp, srcaddr, sizeof(srcaddr))
2473 : "",
2474 re->vrf_id);
2475 zlog_debug("%s: uptime == %lu, type == %u, instance == %d, table == %d",
2476 func, (unsigned long)re->uptime, re->type, re->instance,
2477 re->table);
2478 zlog_debug(
2479 "%s: metric == %u, mtu == %u, distance == %u, flags == %u, status == %u",
2480 func, re->metric, re->mtu, re->distance, re->flags, re->status);
2481 zlog_debug("%s: nexthop_num == %u, nexthop_active_num == %u", func,
2482 re->nexthop_num, re->nexthop_active_num);
2483
2484 for (ALL_NEXTHOPS(re->ng, nexthop)) {
2485 struct interface *ifp;
2486 struct vrf *vrf = vrf_lookup_by_id(nexthop->vrf_id);
2487
2488 switch (nexthop->type) {
2489 case NEXTHOP_TYPE_BLACKHOLE:
2490 sprintf(straddr, "Blackhole");
2491 break;
2492 case NEXTHOP_TYPE_IFINDEX:
2493 ifp = if_lookup_by_index(nexthop->ifindex,
2494 nexthop->vrf_id);
2495 sprintf(straddr, "%s", ifp ? ifp->name : "Unknown");
2496 break;
2497 case NEXTHOP_TYPE_IPV4:
2498 /* fallthrough */
2499 case NEXTHOP_TYPE_IPV4_IFINDEX:
2500 inet_ntop(AF_INET, &nexthop->gate, straddr,
2501 INET6_ADDRSTRLEN);
2502 break;
2503 case NEXTHOP_TYPE_IPV6:
2504 case NEXTHOP_TYPE_IPV6_IFINDEX:
2505 inet_ntop(AF_INET6, &nexthop->gate, straddr,
2506 INET6_ADDRSTRLEN);
2507 break;
2508 }
2509 zlog_debug("%s: %s %s[%u] vrf %s(%u) with flags %s%s%s", func,
2510 (nexthop->rparent ? " NH" : "NH"), straddr,
2511 nexthop->ifindex, vrf ? vrf->name : "Unknown",
2512 nexthop->vrf_id,
2513 (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE)
2514 ? "ACTIVE "
2515 : ""),
2516 (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB)
2517 ? "FIB "
2518 : ""),
2519 (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE)
2520 ? "RECURSIVE"
2521 : ""));
2522 }
2523 zlog_debug("%s: dump complete", func);
2524 }
2525
2526 /* This is an exported helper to rtm_read() to dump the strange
2527 * RE entry found by rib_lookup_ipv4_route()
2528 */
2529
2530 void rib_lookup_and_dump(struct prefix_ipv4 *p, vrf_id_t vrf_id)
2531 {
2532 struct route_table *table;
2533 struct route_node *rn;
2534 struct route_entry *re;
2535 char prefix_buf[INET_ADDRSTRLEN];
2536
2537 /* Lookup table. */
2538 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id);
2539 if (!table) {
2540 flog_err(EC_ZEBRA_TABLE_LOOKUP_FAILED,
2541 "%s:%u zebra_vrf_table() returned NULL", __func__,
2542 vrf_id);
2543 return;
2544 }
2545
2546 /* Scan the RIB table for exactly matching RE entry. */
2547 rn = route_node_lookup(table, (struct prefix *)p);
2548
2549 /* No route for this prefix. */
2550 if (!rn) {
2551 zlog_debug("%s:%u lookup failed for %s", __func__, vrf_id,
2552 prefix2str((struct prefix *)p, prefix_buf,
2553 sizeof(prefix_buf)));
2554 return;
2555 }
2556
2557 /* Unlock node. */
2558 route_unlock_node(rn);
2559
2560 /* let's go */
2561 RNODE_FOREACH_RE (rn, re) {
2562 zlog_debug("%s:%u rn %p, re %p: %s, %s",
2563 __func__, vrf_id,
2564 (void *)rn, (void *)re,
2565 (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)
2566 ? "removed"
2567 : "NOT removed"),
2568 (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)
2569 ? "selected"
2570 : "NOT selected"));
2571 route_entry_dump(p, NULL, re);
2572 }
2573 }
2574
2575 /* Check if requested address assignment will fail due to another
2576 * route being installed by zebra in FIB already. Take necessary
2577 * actions, if needed: remove such a route from FIB and deSELECT
2578 * corresponding RE entry. Then put affected RN into RIBQ head.
2579 */
2580 void rib_lookup_and_pushup(struct prefix_ipv4 *p, vrf_id_t vrf_id)
2581 {
2582 struct route_table *table;
2583 struct route_node *rn;
2584 unsigned changed = 0;
2585 rib_dest_t *dest;
2586
2587 if (NULL == (table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id))) {
2588 flog_err(EC_ZEBRA_TABLE_LOOKUP_FAILED,
2589 "%s:%u zebra_vrf_table() returned NULL", __func__,
2590 vrf_id);
2591 return;
2592 }
2593
2594 /* No matches would be the simplest case. */
2595 if (NULL == (rn = route_node_lookup(table, (struct prefix *)p)))
2596 return;
2597
2598 /* Unlock node. */
2599 route_unlock_node(rn);
2600
2601 dest = rib_dest_from_rnode(rn);
2602 /* Check all RE entries. In case any changes have to be done, requeue
2603 * the RN into RIBQ head. If the routing message about the new connected
2604 * route (generated by the IP address we are going to assign very soon)
2605 * comes before the RIBQ is processed, the new RE entry will join
2606 * RIBQ record already on head. This is necessary for proper
2607 * revalidation
2608 * of the rest of the RE.
2609 */
2610 if (dest->selected_fib && !RIB_SYSTEM_ROUTE(dest->selected_fib)) {
2611 changed = 1;
2612 if (IS_ZEBRA_DEBUG_RIB) {
2613 char buf[PREFIX_STRLEN];
2614
2615 zlog_debug("%u:%s: freeing way for connected prefix",
2616 dest->selected_fib->vrf_id,
2617 prefix2str(&rn->p, buf, sizeof(buf)));
2618 route_entry_dump(&rn->p, NULL, dest->selected_fib);
2619 }
2620 rib_uninstall(rn, dest->selected_fib);
2621 }
2622 if (changed)
2623 rib_queue_add(rn);
2624 }
2625
2626 int rib_add_multipath(afi_t afi, safi_t safi, struct prefix *p,
2627 struct prefix_ipv6 *src_p, struct route_entry *re)
2628 {
2629 struct route_table *table;
2630 struct route_node *rn;
2631 struct route_entry *same = NULL;
2632 struct nexthop *nexthop;
2633 int ret = 0;
2634
2635 if (!re)
2636 return 0;
2637
2638 assert(!src_p || !src_p->prefixlen || afi == AFI_IP6);
2639
2640 /* Lookup table. */
2641 table = zebra_vrf_table_with_table_id(afi, safi, re->vrf_id, re->table);
2642 if (!table) {
2643 XFREE(MTYPE_RE, re);
2644 return 0;
2645 }
2646
2647 /* Make it sure prefixlen is applied to the prefix. */
2648 apply_mask(p);
2649 if (src_p)
2650 apply_mask_ipv6(src_p);
2651
2652 /* Set default distance by route type. */
2653 if (re->distance == 0) {
2654 re->distance = route_distance(re->type);
2655
2656 /* iBGP distance is 200. */
2657 if (re->type == ZEBRA_ROUTE_BGP
2658 && CHECK_FLAG(re->flags, ZEBRA_FLAG_IBGP))
2659 re->distance = 200;
2660 }
2661
2662 /* Lookup route node.*/
2663 rn = srcdest_rnode_get(table, p, src_p);
2664
2665 /*
2666 * If same type of route are installed, treat it as a implicit
2667 * withdraw.
2668 * If the user has specified the No route replace semantics
2669 * for the install don't do a route replace.
2670 */
2671 RNODE_FOREACH_RE (rn, same) {
2672 if (CHECK_FLAG(same->status, ROUTE_ENTRY_REMOVED))
2673 continue;
2674
2675 if (same->type != re->type)
2676 continue;
2677 if (same->instance != re->instance)
2678 continue;
2679 if (same->type == ZEBRA_ROUTE_KERNEL
2680 && same->metric != re->metric)
2681 continue;
2682
2683 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_RR_USE_DISTANCE) &&
2684 same->distance != re->distance)
2685 continue;
2686
2687 /*
2688 * We should allow duplicate connected routes
2689 * because of IPv6 link-local routes and unnumbered
2690 * interfaces on Linux.
2691 */
2692 if (same->type != ZEBRA_ROUTE_CONNECT)
2693 break;
2694 }
2695
2696 /* If this route is kernel route, set FIB flag to the route. */
2697 if (RIB_SYSTEM_ROUTE(re))
2698 for (nexthop = re->ng.nexthop; nexthop; nexthop = nexthop->next)
2699 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
2700
2701 /* Link new re to node.*/
2702 if (IS_ZEBRA_DEBUG_RIB) {
2703 rnode_debug(
2704 rn, re->vrf_id,
2705 "Inserting route rn %p, re %p (type %d) existing %p",
2706 (void *)rn, (void *)re, re->type, (void *)same);
2707
2708 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2709 route_entry_dump(p, src_p, re);
2710 }
2711 rib_addnode(rn, re, 1);
2712 ret = 1;
2713
2714 /* Free implicit route.*/
2715 if (same) {
2716 rib_delnode(rn, same);
2717 ret = -1;
2718 }
2719
2720 route_unlock_node(rn);
2721 return ret;
2722 }
2723
2724 void rib_delete(afi_t afi, safi_t safi, vrf_id_t vrf_id, int type,
2725 unsigned short instance, int flags, struct prefix *p,
2726 struct prefix_ipv6 *src_p, const struct nexthop *nh,
2727 uint32_t table_id, uint32_t metric, uint8_t distance,
2728 bool fromkernel)
2729 {
2730 struct route_table *table;
2731 struct route_node *rn;
2732 struct route_entry *re;
2733 struct route_entry *fib = NULL;
2734 struct route_entry *same = NULL;
2735 struct nexthop *rtnh;
2736 char buf2[INET6_ADDRSTRLEN];
2737 rib_dest_t *dest;
2738
2739 assert(!src_p || !src_p->prefixlen || afi == AFI_IP6);
2740
2741 /* Lookup table. */
2742 table = zebra_vrf_table_with_table_id(afi, safi, vrf_id, table_id);
2743 if (!table)
2744 return;
2745
2746 /* Apply mask. */
2747 apply_mask(p);
2748 if (src_p)
2749 apply_mask_ipv6(src_p);
2750
2751 /* Lookup route node. */
2752 rn = srcdest_rnode_lookup(table, p, src_p);
2753 if (!rn) {
2754 char dst_buf[PREFIX_STRLEN], src_buf[PREFIX_STRLEN];
2755
2756 prefix2str(p, dst_buf, sizeof(dst_buf));
2757 if (src_p && src_p->prefixlen)
2758 prefix2str(src_p, src_buf, sizeof(src_buf));
2759 else
2760 src_buf[0] = '\0';
2761
2762 if (IS_ZEBRA_DEBUG_RIB)
2763 zlog_debug("%u:%s%s%s doesn't exist in rib", vrf_id,
2764 dst_buf,
2765 (src_buf[0] != '\0') ? " from " : "",
2766 src_buf);
2767 return;
2768 }
2769
2770 dest = rib_dest_from_rnode(rn);
2771 fib = dest->selected_fib;
2772
2773 /* Lookup same type route. */
2774 RNODE_FOREACH_RE (rn, re) {
2775 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
2776 continue;
2777
2778 if (re->type != type)
2779 continue;
2780 if (re->instance != instance)
2781 continue;
2782 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_RR_USE_DISTANCE) &&
2783 distance != re->distance)
2784 continue;
2785
2786 if (re->type == ZEBRA_ROUTE_KERNEL && re->metric != metric)
2787 continue;
2788 if (re->type == ZEBRA_ROUTE_CONNECT && (rtnh = re->ng.nexthop)
2789 && rtnh->type == NEXTHOP_TYPE_IFINDEX && nh) {
2790 if (rtnh->ifindex != nh->ifindex)
2791 continue;
2792 same = re;
2793 break;
2794 }
2795 /* Make sure that the route found has the same gateway. */
2796 else {
2797 if (nh == NULL) {
2798 same = re;
2799 break;
2800 }
2801 for (ALL_NEXTHOPS(re->ng, rtnh))
2802 if (nexthop_same_no_recurse(rtnh, nh)) {
2803 same = re;
2804 break;
2805 }
2806 if (same)
2807 break;
2808 }
2809 }
2810 /* If same type of route can't be found and this message is from
2811 kernel. */
2812 if (!same) {
2813 /*
2814 * In the past(HA!) we could get here because
2815 * we were receiving a route delete from the
2816 * kernel and we're not marking the proto
2817 * as coming from it's appropriate originator.
2818 * Now that we are properly noticing the fact
2819 * that the kernel has deleted our route we
2820 * are not going to get called in this path
2821 * I am going to leave this here because
2822 * this might still work this way on non-linux
2823 * platforms as well as some weird state I have
2824 * not properly thought of yet.
2825 * If we can show that this code path is
2826 * dead then we can remove it.
2827 */
2828 if (fib && CHECK_FLAG(flags, ZEBRA_FLAG_SELFROUTE)) {
2829 if (IS_ZEBRA_DEBUG_RIB) {
2830 rnode_debug(
2831 rn, vrf_id,
2832 "rn %p, re %p (type %d) was deleted from kernel, adding",
2833 rn, fib, fib->type);
2834 }
2835 if (allow_delete) {
2836 /* Unset flags. */
2837 for (rtnh = fib->ng.nexthop; rtnh;
2838 rtnh = rtnh->next)
2839 UNSET_FLAG(rtnh->flags,
2840 NEXTHOP_FLAG_FIB);
2841
2842 /*
2843 * This is a non FRR route
2844 * as such we should mark
2845 * it as deleted
2846 */
2847 dest->selected_fib = NULL;
2848 } else {
2849 /* This means someone else, other than Zebra,
2850 * has deleted
2851 * a Zebra router from the kernel. We will add
2852 * it back */
2853 rib_install_kernel(rn, fib, NULL);
2854 }
2855 } else {
2856 if (IS_ZEBRA_DEBUG_RIB) {
2857 if (nh)
2858 rnode_debug(
2859 rn, vrf_id,
2860 "via %s ifindex %d type %d "
2861 "doesn't exist in rib",
2862 inet_ntop(afi2family(afi),
2863 &nh->gate, buf2,
2864 sizeof(buf2)),
2865 nh->ifindex, type);
2866 else
2867 rnode_debug(
2868 rn, vrf_id,
2869 "type %d doesn't exist in rib",
2870 type);
2871 }
2872 route_unlock_node(rn);
2873 return;
2874 }
2875 }
2876
2877 if (same) {
2878 if (fromkernel && CHECK_FLAG(flags, ZEBRA_FLAG_SELFROUTE)
2879 && !allow_delete) {
2880 rib_install_kernel(rn, same, NULL);
2881 route_unlock_node(rn);
2882
2883 return;
2884 }
2885
2886 if (CHECK_FLAG(flags, ZEBRA_FLAG_EVPN_ROUTE)) {
2887 struct nexthop *tmp_nh;
2888
2889 for (ALL_NEXTHOPS(re->ng, tmp_nh)) {
2890 struct ipaddr vtep_ip;
2891
2892 memset(&vtep_ip, 0, sizeof(struct ipaddr));
2893 if (afi == AFI_IP) {
2894 vtep_ip.ipa_type = IPADDR_V4;
2895 memcpy(&(vtep_ip.ipaddr_v4),
2896 &(tmp_nh->gate.ipv4),
2897 sizeof(struct in_addr));
2898 } else {
2899 vtep_ip.ipa_type = IPADDR_V6;
2900 memcpy(&(vtep_ip.ipaddr_v6),
2901 &(tmp_nh->gate.ipv6),
2902 sizeof(struct in6_addr));
2903 }
2904 zebra_vxlan_evpn_vrf_route_del(re->vrf_id,
2905 &vtep_ip, p);
2906 }
2907 }
2908 rib_delnode(rn, same);
2909 }
2910
2911 route_unlock_node(rn);
2912 return;
2913 }
2914
2915
2916 int rib_add(afi_t afi, safi_t safi, vrf_id_t vrf_id, int type,
2917 unsigned short instance, int flags, struct prefix *p,
2918 struct prefix_ipv6 *src_p, const struct nexthop *nh,
2919 uint32_t table_id, uint32_t metric, uint32_t mtu, uint8_t distance,
2920 route_tag_t tag)
2921 {
2922 struct route_entry *re;
2923 struct nexthop *nexthop;
2924
2925 /* Allocate new route_entry structure. */
2926 re = XCALLOC(MTYPE_RE, sizeof(struct route_entry));
2927 re->type = type;
2928 re->instance = instance;
2929 re->distance = distance;
2930 re->flags = flags;
2931 re->metric = metric;
2932 re->mtu = mtu;
2933 re->table = table_id;
2934 re->vrf_id = vrf_id;
2935 re->nexthop_num = 0;
2936 re->uptime = time(NULL);
2937 re->tag = tag;
2938
2939 /* Add nexthop. */
2940 nexthop = nexthop_new();
2941 *nexthop = *nh;
2942 route_entry_nexthop_add(re, nexthop);
2943
2944 return rib_add_multipath(afi, safi, p, src_p, re);
2945 }
2946
2947 /* Schedule routes of a particular table (address-family) based on event. */
2948 void rib_update_table(struct route_table *table, rib_update_event_t event)
2949 {
2950 struct route_node *rn;
2951 struct route_entry *re, *next;
2952
2953 /* Walk all routes and queue for processing, if appropriate for
2954 * the trigger event.
2955 */
2956 for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) {
2957 /*
2958 * If we are looking at a route node and the node
2959 * has already been queued we don't
2960 * need to queue it up again
2961 */
2962 if (rn->info && CHECK_FLAG(rib_dest_from_rnode(rn)->flags,
2963 RIB_ROUTE_ANY_QUEUED))
2964 continue;
2965 switch (event) {
2966 case RIB_UPDATE_IF_CHANGE:
2967 /* Examine all routes that won't get processed by the
2968 * protocol or
2969 * triggered by nexthop evaluation (NHT). This would be
2970 * system,
2971 * kernel and certain static routes. Note that NHT will
2972 * get
2973 * triggered upon an interface event as connected routes
2974 * always
2975 * get queued for processing.
2976 */
2977 RNODE_FOREACH_RE_SAFE (rn, re, next) {
2978 struct nexthop *nh;
2979
2980 if (re->type != ZEBRA_ROUTE_SYSTEM
2981 && re->type != ZEBRA_ROUTE_KERNEL
2982 && re->type != ZEBRA_ROUTE_CONNECT
2983 && re->type != ZEBRA_ROUTE_STATIC)
2984 continue;
2985
2986 if (re->type != ZEBRA_ROUTE_STATIC) {
2987 rib_queue_add(rn);
2988 continue;
2989 }
2990
2991 for (nh = re->ng.nexthop; nh; nh = nh->next)
2992 if (!(nh->type == NEXTHOP_TYPE_IPV4
2993 || nh->type == NEXTHOP_TYPE_IPV6))
2994 break;
2995
2996 /* If we only have nexthops to a
2997 * gateway, NHT will
2998 * take care.
2999 */
3000 if (nh)
3001 rib_queue_add(rn);
3002 }
3003 break;
3004
3005 case RIB_UPDATE_RMAP_CHANGE:
3006 case RIB_UPDATE_OTHER:
3007 /* Right now, examine all routes. Can restrict to a
3008 * protocol in
3009 * some cases (TODO).
3010 */
3011 if (rnode_to_ribs(rn))
3012 rib_queue_add(rn);
3013 break;
3014
3015 default:
3016 break;
3017 }
3018 }
3019 }
3020
3021 /* RIB update function. */
3022 void rib_update(vrf_id_t vrf_id, rib_update_event_t event)
3023 {
3024 struct route_table *table;
3025
3026 /* Process routes of interested address-families. */
3027 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id);
3028 if (table) {
3029 if (IS_ZEBRA_DEBUG_EVENT)
3030 zlog_debug("%s : AFI_IP event %d", __func__, event);
3031 rib_update_table(table, event);
3032 }
3033
3034 table = zebra_vrf_table(AFI_IP6, SAFI_UNICAST, vrf_id);
3035 if (table) {
3036 if (IS_ZEBRA_DEBUG_EVENT)
3037 zlog_debug("%s : AFI_IP6 event %d", __func__, event);
3038 rib_update_table(table, event);
3039 }
3040 }
3041
3042 /* Delete self installed routes after zebra is relaunched. */
3043 void rib_sweep_table(struct route_table *table)
3044 {
3045 struct route_node *rn;
3046 struct route_entry *re;
3047 struct route_entry *next;
3048 struct nexthop *nexthop;
3049
3050 if (!table)
3051 return;
3052
3053 for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) {
3054 RNODE_FOREACH_RE_SAFE (rn, re, next) {
3055 if (IS_ZEBRA_DEBUG_RIB)
3056 route_entry_dump(&rn->p, NULL, re);
3057
3058 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
3059 continue;
3060
3061 if (!CHECK_FLAG(re->flags, ZEBRA_FLAG_SELFROUTE))
3062 continue;
3063
3064 /*
3065 * So we are starting up and have received
3066 * routes from the kernel that we have installed
3067 * from a previous run of zebra but not cleaned
3068 * up ( say a kill -9 )
3069 * But since we haven't actually installed
3070 * them yet( we received them from the kernel )
3071 * we don't think they are active.
3072 * So let's pretend they are active to actually
3073 * remove them.
3074 * In all honesty I'm not sure if we should
3075 * mark them as active when we receive them
3076 * This is startup only so probably ok.
3077 *
3078 * If we ever decide to move rib_sweep_table
3079 * to a different spot (ie startup )
3080 * this decision needs to be revisited
3081 */
3082 for (ALL_NEXTHOPS(re->ng, nexthop))
3083 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
3084
3085 rib_uninstall_kernel(rn, re);
3086 rib_delnode(rn, re);
3087 }
3088 }
3089 }
3090
3091 /* Sweep all RIB tables. */
3092 void rib_sweep_route(void)
3093 {
3094 struct vrf *vrf;
3095 struct zebra_vrf *zvrf;
3096
3097 RB_FOREACH (vrf, vrf_id_head, &vrfs_by_id) {
3098 if ((zvrf = vrf->info) == NULL)
3099 continue;
3100
3101 rib_sweep_table(zvrf->table[AFI_IP][SAFI_UNICAST]);
3102 rib_sweep_table(zvrf->table[AFI_IP6][SAFI_UNICAST]);
3103 }
3104
3105 zebra_router_sweep_route();
3106 }
3107
3108 /* Remove specific by protocol routes from 'table'. */
3109 unsigned long rib_score_proto_table(uint8_t proto, unsigned short instance,
3110 struct route_table *table)
3111 {
3112 struct route_node *rn;
3113 struct route_entry *re;
3114 struct route_entry *next;
3115 unsigned long n = 0;
3116
3117 if (table)
3118 for (rn = route_top(table); rn; rn = srcdest_route_next(rn))
3119 RNODE_FOREACH_RE_SAFE (rn, re, next) {
3120 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
3121 continue;
3122 if (re->type == proto
3123 && re->instance == instance) {
3124 rib_delnode(rn, re);
3125 n++;
3126 }
3127 }
3128 return n;
3129 }
3130
3131 /* Remove specific by protocol routes. */
3132 unsigned long rib_score_proto(uint8_t proto, unsigned short instance)
3133 {
3134 struct vrf *vrf;
3135 struct zebra_vrf *zvrf;
3136 unsigned long cnt = 0;
3137
3138 RB_FOREACH (vrf, vrf_id_head, &vrfs_by_id)
3139 if ((zvrf = vrf->info) != NULL)
3140 cnt += rib_score_proto_table(
3141 proto, instance,
3142 zvrf->table[AFI_IP][SAFI_UNICAST])
3143 + rib_score_proto_table(
3144 proto, instance,
3145 zvrf->table[AFI_IP6][SAFI_UNICAST]);
3146
3147 cnt += zebra_router_score_proto(proto, instance);
3148
3149 return cnt;
3150 }
3151
3152 /* Close RIB and clean up kernel routes. */
3153 void rib_close_table(struct route_table *table)
3154 {
3155 struct route_node *rn;
3156 rib_table_info_t *info;
3157 rib_dest_t *dest;
3158
3159 if (!table)
3160 return;
3161
3162 info = route_table_get_info(table);
3163
3164 for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) {
3165 dest = rib_dest_from_rnode(rn);
3166
3167 if (dest && dest->selected_fib) {
3168 if (info->safi == SAFI_UNICAST)
3169 hook_call(rib_update, rn, NULL);
3170
3171 if (!RIB_SYSTEM_ROUTE(dest->selected_fib)) {
3172 rib_uninstall_kernel(rn, dest->selected_fib);
3173 dest->selected_fib = NULL;
3174 }
3175 }
3176 }
3177 }
3178
3179 /*
3180 *
3181 */
3182 static int rib_process_dplane_results(struct thread *thread)
3183 {
3184 struct zebra_dplane_ctx *ctx;
3185
3186 do {
3187 /* Take lock controlling queue of results */
3188 pthread_mutex_lock(&dplane_mutex);
3189 {
3190 /* Dequeue context block */
3191 ctx = dplane_ctx_dequeue(&rib_dplane_q);
3192 }
3193 pthread_mutex_unlock(&dplane_mutex);
3194
3195 if (ctx)
3196 rib_process_after(ctx);
3197 else
3198 break;
3199
3200 } while (1);
3201
3202 /* Check for nexthop tracking processing after finishing with results */
3203 do_nht_processing();
3204
3205 return 0;
3206 }
3207
3208 /*
3209 * Results are returned from the dataplane subsystem, in the context of
3210 * the dataplane pthread. We enqueue the results here for processing by
3211 * the main thread later.
3212 */
3213 static int rib_dplane_results(struct zebra_dplane_ctx *ctx)
3214 {
3215 /* Take lock controlling queue of results */
3216 pthread_mutex_lock(&dplane_mutex);
3217 {
3218 /* Enqueue context block */
3219 dplane_ctx_enqueue_tail(&rib_dplane_q, ctx);
3220 }
3221 pthread_mutex_unlock(&dplane_mutex);
3222
3223 /* Ensure event is signalled to zebra main thread */
3224 thread_add_event(zebrad.master, rib_process_dplane_results, NULL, 0,
3225 &t_dplane);
3226
3227 return 0;
3228 }
3229
3230 /* Routing information base initialize. */
3231 void rib_init(void)
3232 {
3233 rib_queue_init(&zebrad);
3234
3235 /* Init dataplane, and register for results */
3236 pthread_mutex_init(&dplane_mutex, NULL);
3237 TAILQ_INIT(&rib_dplane_q);
3238 zebra_dplane_init();
3239 dplane_results_register(rib_dplane_results);
3240 }
3241
3242 /*
3243 * vrf_id_get_next
3244 *
3245 * Get the first vrf id that is greater than the given vrf id if any.
3246 *
3247 * Returns TRUE if a vrf id was found, FALSE otherwise.
3248 */
3249 static inline int vrf_id_get_next(vrf_id_t vrf_id, vrf_id_t *next_id_p)
3250 {
3251 struct vrf *vrf;
3252
3253 vrf = vrf_lookup_by_id(vrf_id);
3254 if (vrf) {
3255 vrf = RB_NEXT(vrf_id_head, vrf);
3256 if (vrf) {
3257 *next_id_p = vrf->vrf_id;
3258 return 1;
3259 }
3260 }
3261
3262 return 0;
3263 }
3264
3265 /*
3266 * rib_tables_iter_next
3267 *
3268 * Returns the next table in the iteration.
3269 */
3270 struct route_table *rib_tables_iter_next(rib_tables_iter_t *iter)
3271 {
3272 struct route_table *table;
3273
3274 /*
3275 * Array that helps us go over all AFI/SAFI combinations via one
3276 * index.
3277 */
3278 static struct {
3279 afi_t afi;
3280 safi_t safi;
3281 } afi_safis[] = {
3282 {AFI_IP, SAFI_UNICAST}, {AFI_IP, SAFI_MULTICAST},
3283 {AFI_IP, SAFI_LABELED_UNICAST}, {AFI_IP6, SAFI_UNICAST},
3284 {AFI_IP6, SAFI_MULTICAST}, {AFI_IP6, SAFI_LABELED_UNICAST},
3285 };
3286
3287 table = NULL;
3288
3289 switch (iter->state) {
3290
3291 case RIB_TABLES_ITER_S_INIT:
3292 iter->vrf_id = VRF_DEFAULT;
3293 iter->afi_safi_ix = -1;
3294
3295 /* Fall through */
3296
3297 case RIB_TABLES_ITER_S_ITERATING:
3298 iter->afi_safi_ix++;
3299 while (1) {
3300
3301 while (iter->afi_safi_ix
3302 < (int)ZEBRA_NUM_OF(afi_safis)) {
3303 table = zebra_vrf_table(
3304 afi_safis[iter->afi_safi_ix].afi,
3305 afi_safis[iter->afi_safi_ix].safi,
3306 iter->vrf_id);
3307 if (table)
3308 break;
3309
3310 iter->afi_safi_ix++;
3311 }
3312
3313 /*
3314 * Found another table in this vrf.
3315 */
3316 if (table)
3317 break;
3318
3319 /*
3320 * Done with all tables in the current vrf, go to the
3321 * next
3322 * one.
3323 */
3324 if (!vrf_id_get_next(iter->vrf_id, &iter->vrf_id))
3325 break;
3326
3327 iter->afi_safi_ix = 0;
3328 }
3329
3330 break;
3331
3332 case RIB_TABLES_ITER_S_DONE:
3333 return NULL;
3334 }
3335
3336 if (table)
3337 iter->state = RIB_TABLES_ITER_S_ITERATING;
3338 else
3339 iter->state = RIB_TABLES_ITER_S_DONE;
3340
3341 return table;
3342 }