]> git.proxmox.com Git - mirror_frr.git/blob - zebra/zebra_snmp.c
isisd: implement the 'lsp-too-large' notification
[mirror_frr.git] / zebra / zebra_snmp.c
1 /* FIB SNMP.
2 * Copyright (C) 1999 Kunihiro Ishiguro
3 *
4 * This file is part of GNU Zebra.
5 *
6 * GNU Zebra is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2, or (at your option) any
9 * later version.
10 *
11 * GNU Zebra is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; see the file COPYING; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 /*
22 * Currently SNMP is only running properly for MIBs in the default VRF.
23 */
24
25 #include <zebra.h>
26
27 #include <net-snmp/net-snmp-config.h>
28 #include <net-snmp/net-snmp-includes.h>
29
30 #include "if.h"
31 #include "log.h"
32 #include "prefix.h"
33 #include "command.h"
34 #include "smux.h"
35 #include "table.h"
36 #include "vrf.h"
37 #include "hook.h"
38 #include "libfrr.h"
39 #include "version.h"
40
41 #include "zebra/rib.h"
42 #include "zebra/zserv.h"
43 #include "zebra/zebra_vrf.h"
44
45 #define IPFWMIB 1,3,6,1,2,1,4,24
46
47 /* ipForwardTable */
48 #define IPFORWARDDEST 1
49 #define IPFORWARDMASK 2
50 #define IPFORWARDPOLICY 3
51 #define IPFORWARDNEXTHOP 4
52 #define IPFORWARDIFINDEX 5
53 #define IPFORWARDTYPE 6
54 #define IPFORWARDPROTO 7
55 #define IPFORWARDAGE 8
56 #define IPFORWARDINFO 9
57 #define IPFORWARDNEXTHOPAS 10
58 #define IPFORWARDMETRIC1 11
59 #define IPFORWARDMETRIC2 12
60 #define IPFORWARDMETRIC3 13
61 #define IPFORWARDMETRIC4 14
62 #define IPFORWARDMETRIC5 15
63
64 /* ipCidrRouteTable */
65 #define IPCIDRROUTEDEST 1
66 #define IPCIDRROUTEMASK 2
67 #define IPCIDRROUTETOS 3
68 #define IPCIDRROUTENEXTHOP 4
69 #define IPCIDRROUTEIFINDEX 5
70 #define IPCIDRROUTETYPE 6
71 #define IPCIDRROUTEPROTO 7
72 #define IPCIDRROUTEAGE 8
73 #define IPCIDRROUTEINFO 9
74 #define IPCIDRROUTENEXTHOPAS 10
75 #define IPCIDRROUTEMETRIC1 11
76 #define IPCIDRROUTEMETRIC2 12
77 #define IPCIDRROUTEMETRIC3 13
78 #define IPCIDRROUTEMETRIC4 14
79 #define IPCIDRROUTEMETRIC5 15
80 #define IPCIDRROUTESTATUS 16
81
82 #define INTEGER32 ASN_INTEGER
83 #define GAUGE32 ASN_GAUGE
84 #define ENUMERATION ASN_INTEGER
85 #define ROWSTATUS ASN_INTEGER
86 #define IPADDRESS ASN_IPADDRESS
87 #define OBJECTIDENTIFIER ASN_OBJECT_ID
88
89 static oid ipfw_oid[] = {IPFWMIB};
90
91 /* Hook functions. */
92 static uint8_t *ipFwNumber(struct variable *, oid[], size_t *, int, size_t *,
93 WriteMethod **);
94 static uint8_t *ipFwTable(struct variable *, oid[], size_t *, int, size_t *,
95 WriteMethod **);
96 static uint8_t *ipCidrNumber(struct variable *, oid[], size_t *, int, size_t *,
97 WriteMethod **);
98 static uint8_t *ipCidrTable(struct variable *, oid[], size_t *, int, size_t *,
99 WriteMethod **);
100
101 static struct variable zebra_variables[] = {
102 {0, GAUGE32, RONLY, ipFwNumber, 1, {1}},
103 {IPFORWARDDEST, IPADDRESS, RONLY, ipFwTable, 3, {2, 1, 1}},
104 {IPFORWARDMASK, IPADDRESS, RONLY, ipFwTable, 3, {2, 1, 2}},
105 {IPFORWARDPOLICY, INTEGER32, RONLY, ipFwTable, 3, {2, 1, 3}},
106 {IPFORWARDNEXTHOP, IPADDRESS, RONLY, ipFwTable, 3, {2, 1, 4}},
107 {IPFORWARDIFINDEX, INTEGER32, RONLY, ipFwTable, 3, {2, 1, 5}},
108 {IPFORWARDTYPE, ENUMERATION, RONLY, ipFwTable, 3, {2, 1, 6}},
109 {IPFORWARDPROTO, ENUMERATION, RONLY, ipFwTable, 3, {2, 1, 7}},
110 {IPFORWARDAGE, INTEGER32, RONLY, ipFwTable, 3, {2, 1, 8}},
111 {IPFORWARDINFO, OBJECTIDENTIFIER, RONLY, ipFwTable, 3, {2, 1, 9}},
112 {IPFORWARDNEXTHOPAS, INTEGER32, RONLY, ipFwTable, 3, {2, 1, 10}},
113 {IPFORWARDMETRIC1, INTEGER32, RONLY, ipFwTable, 3, {2, 1, 11}},
114 {IPFORWARDMETRIC2, INTEGER32, RONLY, ipFwTable, 3, {2, 1, 12}},
115 {IPFORWARDMETRIC3, INTEGER32, RONLY, ipFwTable, 3, {2, 1, 13}},
116 {IPFORWARDMETRIC4, INTEGER32, RONLY, ipFwTable, 3, {2, 1, 14}},
117 {IPFORWARDMETRIC5, INTEGER32, RONLY, ipFwTable, 3, {2, 1, 15}},
118 {0, GAUGE32, RONLY, ipCidrNumber, 1, {3}},
119 {IPCIDRROUTEDEST, IPADDRESS, RONLY, ipCidrTable, 3, {4, 1, 1}},
120 {IPCIDRROUTEMASK, IPADDRESS, RONLY, ipCidrTable, 3, {4, 1, 2}},
121 {IPCIDRROUTETOS, INTEGER32, RONLY, ipCidrTable, 3, {4, 1, 3}},
122 {IPCIDRROUTENEXTHOP, IPADDRESS, RONLY, ipCidrTable, 3, {4, 1, 4}},
123 {IPCIDRROUTEIFINDEX, INTEGER32, RONLY, ipCidrTable, 3, {4, 1, 5}},
124 {IPCIDRROUTETYPE, ENUMERATION, RONLY, ipCidrTable, 3, {4, 1, 6}},
125 {IPCIDRROUTEPROTO, ENUMERATION, RONLY, ipCidrTable, 3, {4, 1, 7}},
126 {IPCIDRROUTEAGE, INTEGER32, RONLY, ipCidrTable, 3, {4, 1, 8}},
127 {IPCIDRROUTEINFO, OBJECTIDENTIFIER, RONLY, ipCidrTable, 3, {4, 1, 9}},
128 {IPCIDRROUTENEXTHOPAS, INTEGER32, RONLY, ipCidrTable, 3, {4, 1, 10}},
129 {IPCIDRROUTEMETRIC1, INTEGER32, RONLY, ipCidrTable, 3, {4, 1, 11}},
130 {IPCIDRROUTEMETRIC2, INTEGER32, RONLY, ipCidrTable, 3, {4, 1, 12}},
131 {IPCIDRROUTEMETRIC3, INTEGER32, RONLY, ipCidrTable, 3, {4, 1, 13}},
132 {IPCIDRROUTEMETRIC4, INTEGER32, RONLY, ipCidrTable, 3, {4, 1, 14}},
133 {IPCIDRROUTEMETRIC5, INTEGER32, RONLY, ipCidrTable, 3, {4, 1, 15}},
134 {IPCIDRROUTESTATUS, ROWSTATUS, RONLY, ipCidrTable, 3, {4, 1, 16}}};
135
136
137 static uint8_t *ipFwNumber(struct variable *v, oid objid[], size_t *objid_len,
138 int exact, size_t *val_len,
139 WriteMethod **write_method)
140 {
141 static int result;
142 struct route_table *table;
143 struct route_node *rn;
144 struct route_entry *re;
145
146 if (smux_header_generic(v, objid, objid_len, exact, val_len,
147 write_method)
148 == MATCH_FAILED)
149 return NULL;
150
151 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, VRF_DEFAULT);
152 if (!table)
153 return NULL;
154
155 /* Return number of routing entries. */
156 result = 0;
157 for (rn = route_top(table); rn; rn = route_next(rn))
158 RNODE_FOREACH_RE (rn, re) {
159 result++;
160 }
161
162 return (uint8_t *)&result;
163 }
164
165 static uint8_t *ipCidrNumber(struct variable *v, oid objid[], size_t *objid_len,
166 int exact, size_t *val_len,
167 WriteMethod **write_method)
168 {
169 static int result;
170 struct route_table *table;
171 struct route_node *rn;
172 struct route_entry *re;
173
174 if (smux_header_generic(v, objid, objid_len, exact, val_len,
175 write_method)
176 == MATCH_FAILED)
177 return NULL;
178
179 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, VRF_DEFAULT);
180 if (!table)
181 return 0;
182
183 /* Return number of routing entries. */
184 result = 0;
185 for (rn = route_top(table); rn; rn = route_next(rn))
186 RNODE_FOREACH_RE (rn, re) {
187 result++;
188 }
189
190 return (uint8_t *)&result;
191 }
192
193 static int in_addr_cmp(uint8_t *p1, uint8_t *p2)
194 {
195 int i;
196
197 for (i = 0; i < 4; i++) {
198 if (*p1 < *p2)
199 return -1;
200 if (*p1 > *p2)
201 return 1;
202 p1++;
203 p2++;
204 }
205 return 0;
206 }
207
208 static int in_addr_add(uint8_t *p, int num)
209 {
210 int i, ip0;
211
212 ip0 = *p;
213 p += 4;
214 for (i = 3; 0 <= i; i--) {
215 p--;
216 if (*p + num > 255) {
217 *p += num;
218 num = 1;
219 } else {
220 *p += num;
221 return 1;
222 }
223 }
224 if (ip0 > *p) {
225 /* ip + num > 0xffffffff */
226 return 0;
227 }
228
229 return 1;
230 }
231
232 static int proto_trans(int type)
233 {
234 switch (type) {
235 case ZEBRA_ROUTE_SYSTEM:
236 return 1; /* other */
237 case ZEBRA_ROUTE_KERNEL:
238 return 1; /* other */
239 case ZEBRA_ROUTE_CONNECT:
240 return 2; /* local interface */
241 case ZEBRA_ROUTE_STATIC:
242 return 3; /* static route */
243 case ZEBRA_ROUTE_RIP:
244 return 8; /* rip */
245 case ZEBRA_ROUTE_RIPNG:
246 return 1; /* shouldn't happen */
247 case ZEBRA_ROUTE_OSPF:
248 return 13; /* ospf */
249 case ZEBRA_ROUTE_OSPF6:
250 return 1; /* shouldn't happen */
251 case ZEBRA_ROUTE_BGP:
252 return 14; /* bgp */
253 default:
254 return 1; /* other */
255 }
256 }
257
258 static void check_replace(struct route_node *np2, struct route_entry *re2,
259 struct route_node **np, struct route_entry **re)
260 {
261 int proto, proto2;
262
263 if (!*np) {
264 *np = np2;
265 *re = re2;
266 return;
267 }
268
269 if (in_addr_cmp(&(*np)->p.u.prefix, &np2->p.u.prefix) < 0)
270 return;
271 if (in_addr_cmp(&(*np)->p.u.prefix, &np2->p.u.prefix) > 0) {
272 *np = np2;
273 *re = re2;
274 return;
275 }
276
277 proto = proto_trans((*re)->type);
278 proto2 = proto_trans(re2->type);
279
280 if (proto2 > proto)
281 return;
282 if (proto2 < proto) {
283 *np = np2;
284 *re = re2;
285 return;
286 }
287
288 if (in_addr_cmp((uint8_t *)&(*re)->ng.nexthop->gate.ipv4,
289 (uint8_t *)&re2->ng.nexthop->gate.ipv4)
290 <= 0)
291 return;
292
293 *np = np2;
294 *re = re2;
295 return;
296 }
297
298 static void get_fwtable_route_node(struct variable *v, oid objid[],
299 size_t *objid_len, int exact,
300 struct route_node **np,
301 struct route_entry **re)
302 {
303 struct in_addr dest;
304 struct route_table *table;
305 struct route_node *np2;
306 struct route_entry *re2;
307 int proto;
308 int policy;
309 struct in_addr nexthop;
310 uint8_t *pnt;
311 int i;
312
313 /* Init index variables */
314
315 pnt = (uint8_t *)&dest;
316 for (i = 0; i < 4; i++)
317 *pnt++ = 0;
318
319 pnt = (uint8_t *)&nexthop;
320 for (i = 0; i < 4; i++)
321 *pnt++ = 0;
322
323 proto = 0;
324 policy = 0;
325
326 /* Init return variables */
327
328 *np = NULL;
329 *re = NULL;
330
331 /* Short circuit exact matches of wrong length */
332
333 if (exact && (*objid_len != (unsigned)v->namelen + 10))
334 return;
335
336 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, VRF_DEFAULT);
337 if (!table)
338 return;
339
340 /* Get INDEX information out of OID.
341 * ipForwardDest, ipForwardProto, ipForwardPolicy, ipForwardNextHop
342 */
343
344 if (*objid_len > (unsigned)v->namelen)
345 oid2in_addr(objid + v->namelen,
346 MIN(4U, *objid_len - v->namelen), &dest);
347
348 if (*objid_len > (unsigned)v->namelen + 4)
349 proto = objid[v->namelen + 4];
350
351 if (*objid_len > (unsigned)v->namelen + 5)
352 policy = objid[v->namelen + 5];
353
354 if (*objid_len > (unsigned)v->namelen + 6)
355 oid2in_addr(objid + v->namelen + 6,
356 MIN(4U, *objid_len - v->namelen - 6), &nexthop);
357
358 /* Apply GETNEXT on not exact search */
359
360 if (!exact && (*objid_len >= (unsigned)v->namelen + 10)) {
361 if (!in_addr_add((uint8_t *)&nexthop, 1))
362 return;
363 }
364
365 /* For exact: search matching entry in rib table. */
366
367 if (exact) {
368 if (policy) /* Not supported (yet?) */
369 return;
370 for (*np = route_top(table); *np; *np = route_next(*np)) {
371 if (!in_addr_cmp(&(*np)->p.u.prefix,
372 (uint8_t *)&dest)) {
373 RNODE_FOREACH_RE (*np, *re) {
374 if (!in_addr_cmp((uint8_t *)&(*re)
375 ->ng.nexthop
376 ->gate.ipv4,
377 (uint8_t *)&nexthop))
378 if (proto
379 == proto_trans((*re)->type))
380 return;
381 }
382 }
383 }
384 return;
385 }
386
387 /* Search next best entry */
388
389 for (np2 = route_top(table); np2; np2 = route_next(np2)) {
390
391 /* Check destination first */
392 if (in_addr_cmp(&np2->p.u.prefix, (uint8_t *)&dest) > 0)
393 RNODE_FOREACH_RE (np2, re2) {
394 check_replace(np2, re2, np, re);
395 }
396
397 if (in_addr_cmp(&np2->p.u.prefix, (uint8_t *)&dest)
398 == 0) { /* have to look at each re individually */
399 RNODE_FOREACH_RE (np2, re2) {
400 int proto2, policy2;
401
402 proto2 = proto_trans(re2->type);
403 policy2 = 0;
404
405 if ((policy < policy2)
406 || ((policy == policy2) && (proto < proto2))
407 || ((policy == policy2) && (proto == proto2)
408 && (in_addr_cmp(
409 (uint8_t *)&re2->ng.nexthop
410 ->gate.ipv4,
411 (uint8_t *)&nexthop)
412 >= 0)))
413 check_replace(np2, re2, np, re);
414 }
415 }
416 }
417
418 if (!*re)
419 return;
420
421 policy = 0;
422 proto = proto_trans((*re)->type);
423
424 *objid_len = v->namelen + 10;
425 pnt = (uint8_t *)&(*np)->p.u.prefix;
426 for (i = 0; i < 4; i++)
427 objid[v->namelen + i] = *pnt++;
428
429 objid[v->namelen + 4] = proto;
430 objid[v->namelen + 5] = policy;
431
432 {
433 struct nexthop *nexthop;
434
435 nexthop = (*re)->ng.nexthop;
436 if (nexthop) {
437 pnt = (uint8_t *)&nexthop->gate.ipv4;
438 for (i = 0; i < 4; i++)
439 objid[i + v->namelen + 6] = *pnt++;
440 }
441 }
442
443 return;
444 }
445
446 static uint8_t *ipFwTable(struct variable *v, oid objid[], size_t *objid_len,
447 int exact, size_t *val_len,
448 WriteMethod **write_method)
449 {
450 struct route_node *np;
451 struct route_entry *re;
452 static int result;
453 static int resarr[2];
454 static struct in_addr netmask;
455 struct nexthop *nexthop;
456
457 if (smux_header_table(v, objid, objid_len, exact, val_len, write_method)
458 == MATCH_FAILED)
459 return NULL;
460
461 get_fwtable_route_node(v, objid, objid_len, exact, &np, &re);
462 if (!np)
463 return NULL;
464
465 nexthop = re->ng.nexthop;
466 if (!nexthop)
467 return NULL;
468
469 switch (v->magic) {
470 case IPFORWARDDEST:
471 *val_len = 4;
472 return &np->p.u.prefix;
473 break;
474 case IPFORWARDMASK:
475 masklen2ip(np->p.prefixlen, &netmask);
476 *val_len = 4;
477 return (uint8_t *)&netmask;
478 break;
479 case IPFORWARDPOLICY:
480 result = 0;
481 *val_len = sizeof(int);
482 return (uint8_t *)&result;
483 break;
484 case IPFORWARDNEXTHOP:
485 *val_len = 4;
486 return (uint8_t *)&nexthop->gate.ipv4;
487 break;
488 case IPFORWARDIFINDEX:
489 *val_len = sizeof(int);
490 return (uint8_t *)&nexthop->ifindex;
491 break;
492 case IPFORWARDTYPE:
493 if (nexthop->type == NEXTHOP_TYPE_IFINDEX)
494 result = 3;
495 else
496 result = 4;
497 *val_len = sizeof(int);
498 return (uint8_t *)&result;
499 break;
500 case IPFORWARDPROTO:
501 result = proto_trans(re->type);
502 *val_len = sizeof(int);
503 return (uint8_t *)&result;
504 break;
505 case IPFORWARDAGE:
506 result = 0;
507 *val_len = sizeof(int);
508 return (uint8_t *)&result;
509 break;
510 case IPFORWARDINFO:
511 resarr[0] = 0;
512 resarr[1] = 0;
513 *val_len = 2 * sizeof(int);
514 return (uint8_t *)resarr;
515 break;
516 case IPFORWARDNEXTHOPAS:
517 result = -1;
518 *val_len = sizeof(int);
519 return (uint8_t *)&result;
520 break;
521 case IPFORWARDMETRIC1:
522 result = 0;
523 *val_len = sizeof(int);
524 return (uint8_t *)&result;
525 break;
526 case IPFORWARDMETRIC2:
527 result = 0;
528 *val_len = sizeof(int);
529 return (uint8_t *)&result;
530 break;
531 case IPFORWARDMETRIC3:
532 result = 0;
533 *val_len = sizeof(int);
534 return (uint8_t *)&result;
535 break;
536 case IPFORWARDMETRIC4:
537 result = 0;
538 *val_len = sizeof(int);
539 return (uint8_t *)&result;
540 break;
541 case IPFORWARDMETRIC5:
542 result = 0;
543 *val_len = sizeof(int);
544 return (uint8_t *)&result;
545 break;
546 default:
547 return NULL;
548 break;
549 }
550 return NULL;
551 }
552
553 static uint8_t *ipCidrTable(struct variable *v, oid objid[], size_t *objid_len,
554 int exact, size_t *val_len,
555 WriteMethod **write_method)
556 {
557 if (smux_header_table(v, objid, objid_len, exact, val_len, write_method)
558 == MATCH_FAILED)
559 return NULL;
560
561 switch (v->magic) {
562 case IPCIDRROUTEDEST:
563 break;
564 default:
565 return NULL;
566 break;
567 }
568 return NULL;
569 }
570
571 static int zebra_snmp_init(struct thread_master *tm)
572 {
573 smux_init(tm);
574 REGISTER_MIB("mibII/ipforward", zebra_variables, variable, ipfw_oid);
575 return 0;
576 }
577
578 static int zebra_snmp_module_init(void)
579 {
580 hook_register(frr_late_init, zebra_snmp_init);
581 return 0;
582 }
583
584 FRR_MODULE_SETUP(.name = "zebra_snmp", .version = FRR_VERSION,
585 .description = "zebra AgentX SNMP module",
586 .init = zebra_snmp_module_init, )