]> git.proxmox.com Git - mirror_lxcfs.git/blob - bindings.c
fix proc_cpuinfo_read for s390x
[mirror_lxcfs.git] / bindings.c
1 /* lxcfs
2 *
3 * Copyright © 2014-2016 Canonical, Inc
4 * Author: Serge Hallyn <serge.hallyn@ubuntu.com>
5 *
6 * See COPYING file for details.
7 */
8
9 #define FUSE_USE_VERSION 26
10
11 #include <stdio.h>
12 #include <dirent.h>
13 #include <fcntl.h>
14 #include <fuse.h>
15 #include <unistd.h>
16 #include <errno.h>
17 #include <stdbool.h>
18 #include <time.h>
19 #include <string.h>
20 #include <stdlib.h>
21 #include <libgen.h>
22 #include <sched.h>
23 #include <pthread.h>
24 #include <linux/sched.h>
25 #include <sys/param.h>
26 #include <sys/socket.h>
27 #include <sys/mount.h>
28 #include <sys/epoll.h>
29 #include <wait.h>
30
31 #include "bindings.h"
32
33 #include "config.h" // for VERSION
34
35 enum {
36 LXC_TYPE_CGDIR,
37 LXC_TYPE_CGFILE,
38 LXC_TYPE_PROC_MEMINFO,
39 LXC_TYPE_PROC_CPUINFO,
40 LXC_TYPE_PROC_UPTIME,
41 LXC_TYPE_PROC_STAT,
42 LXC_TYPE_PROC_DISKSTATS,
43 LXC_TYPE_PROC_SWAPS,
44 };
45
46 struct file_info {
47 char *controller;
48 char *cgroup;
49 char *file;
50 int type;
51 char *buf; // unused as of yet
52 int buflen;
53 int size; //actual data size
54 int cached;
55 };
56
57 /* reserve buffer size, for cpuall in /proc/stat */
58 #define BUF_RESERVE_SIZE 256
59
60 /*
61 * A table caching which pid is init for a pid namespace.
62 * When looking up which pid is init for $qpid, we first
63 * 1. Stat /proc/$qpid/ns/pid.
64 * 2. Check whether the ino_t is in our store.
65 * a. if not, fork a child in qpid's ns to send us
66 * ucred.pid = 1, and read the initpid. Cache
67 * initpid and creation time for /proc/initpid
68 * in a new store entry.
69 * b. if so, verify that /proc/initpid still matches
70 * what we have saved. If not, clear the store
71 * entry and go back to a. If so, return the
72 * cached initpid.
73 */
74 struct pidns_init_store {
75 ino_t ino; // inode number for /proc/$pid/ns/pid
76 pid_t initpid; // the pid of nit in that ns
77 long int ctime; // the time at which /proc/$initpid was created
78 struct pidns_init_store *next;
79 long int lastcheck;
80 };
81
82 /* lol - look at how they are allocated in the kernel */
83 #define PIDNS_HASH_SIZE 4096
84 #define HASH(x) ((x) % PIDNS_HASH_SIZE)
85
86 static struct pidns_init_store *pidns_hash_table[PIDNS_HASH_SIZE];
87 static pthread_mutex_t pidns_store_mutex = PTHREAD_MUTEX_INITIALIZER;
88 static void lock_mutex(pthread_mutex_t *l)
89 {
90 int ret;
91
92 if ((ret = pthread_mutex_lock(l)) != 0) {
93 fprintf(stderr, "pthread_mutex_lock returned:%d %s\n", ret, strerror(ret));
94 exit(1);
95 }
96 }
97
98 static void unlock_mutex(pthread_mutex_t *l)
99 {
100 int ret;
101
102 if ((ret = pthread_mutex_unlock(l)) != 0) {
103 fprintf(stderr, "pthread_mutex_unlock returned:%d %s\n", ret, strerror(ret));
104 exit(1);
105 }
106 }
107
108 static void store_lock(void)
109 {
110 lock_mutex(&pidns_store_mutex);
111 }
112
113 static void store_unlock(void)
114 {
115 unlock_mutex(&pidns_store_mutex);
116 }
117
118 /* Must be called under store_lock */
119 static bool initpid_still_valid(struct pidns_init_store *e, struct stat *nsfdsb)
120 {
121 struct stat initsb;
122 char fnam[100];
123
124 snprintf(fnam, 100, "/proc/%d", e->initpid);
125 if (stat(fnam, &initsb) < 0)
126 return false;
127 #if DEBUG
128 fprintf(stderr, "comparing ctime %ld %ld for pid %d\n",
129 e->ctime, initsb.st_ctime, e->initpid);
130 #endif
131 if (e->ctime != initsb.st_ctime)
132 return false;
133 return true;
134 }
135
136 /* Must be called under store_lock */
137 static void remove_initpid(struct pidns_init_store *e)
138 {
139 struct pidns_init_store *tmp;
140 int h;
141
142 #if DEBUG
143 fprintf(stderr, "remove_initpid: removing entry for %d\n", e->initpid);
144 #endif
145 h = HASH(e->ino);
146 if (pidns_hash_table[h] == e) {
147 pidns_hash_table[h] = e->next;
148 free(e);
149 return;
150 }
151
152 tmp = pidns_hash_table[h];
153 while (tmp) {
154 if (tmp->next == e) {
155 tmp->next = e->next;
156 free(e);
157 return;
158 }
159 tmp = tmp->next;
160 }
161 }
162
163 #define PURGE_SECS 5
164 /* Must be called under store_lock */
165 static void prune_initpid_store(void)
166 {
167 static long int last_prune = 0;
168 struct pidns_init_store *e, *prev, *delme;
169 long int now, threshold;
170 int i;
171
172 if (!last_prune) {
173 last_prune = time(NULL);
174 return;
175 }
176 now = time(NULL);
177 if (now < last_prune + PURGE_SECS)
178 return;
179 #if DEBUG
180 fprintf(stderr, "pruning\n");
181 #endif
182 last_prune = now;
183 threshold = now - 2 * PURGE_SECS;
184
185 for (i = 0; i < PIDNS_HASH_SIZE; i++) {
186 for (prev = NULL, e = pidns_hash_table[i]; e; ) {
187 if (e->lastcheck < threshold) {
188 #if DEBUG
189 fprintf(stderr, "Removing cached entry for %d\n", e->initpid);
190 #endif
191 delme = e;
192 if (prev)
193 prev->next = e->next;
194 else
195 pidns_hash_table[i] = e->next;
196 e = e->next;
197 free(delme);
198 } else {
199 prev = e;
200 e = e->next;
201 }
202 }
203 }
204 }
205
206 /* Must be called under store_lock */
207 static void save_initpid(struct stat *sb, pid_t pid)
208 {
209 struct pidns_init_store *e;
210 char fpath[100];
211 struct stat procsb;
212 int h;
213
214 #if DEBUG
215 fprintf(stderr, "save_initpid: adding entry for %d\n", pid);
216 #endif
217 snprintf(fpath, 100, "/proc/%d", pid);
218 if (stat(fpath, &procsb) < 0)
219 return;
220 do {
221 e = malloc(sizeof(*e));
222 } while (!e);
223 e->ino = sb->st_ino;
224 e->initpid = pid;
225 e->ctime = procsb.st_ctime;
226 h = HASH(e->ino);
227 e->next = pidns_hash_table[h];
228 e->lastcheck = time(NULL);
229 pidns_hash_table[h] = e;
230 }
231
232 /*
233 * Given the stat(2) info for a nsfd pid inode, lookup the init_pid_store
234 * entry for the inode number and creation time. Verify that the init pid
235 * is still valid. If not, remove it. Return the entry if valid, NULL
236 * otherwise.
237 * Must be called under store_lock
238 */
239 static struct pidns_init_store *lookup_verify_initpid(struct stat *sb)
240 {
241 int h = HASH(sb->st_ino);
242 struct pidns_init_store *e = pidns_hash_table[h];
243
244 while (e) {
245 if (e->ino == sb->st_ino) {
246 if (initpid_still_valid(e, sb)) {
247 e->lastcheck = time(NULL);
248 return e;
249 }
250 remove_initpid(e);
251 return NULL;
252 }
253 e = e->next;
254 }
255
256 return NULL;
257 }
258
259 static int is_dir(const char *path)
260 {
261 struct stat statbuf;
262 int ret = stat(path, &statbuf);
263 if (ret == 0 && S_ISDIR(statbuf.st_mode))
264 return 1;
265 return 0;
266 }
267
268 static char *must_copy_string(const char *str)
269 {
270 char *dup = NULL;
271 if (!str)
272 return NULL;
273 do {
274 dup = strdup(str);
275 } while (!dup);
276
277 return dup;
278 }
279
280 static inline void drop_trailing_newlines(char *s)
281 {
282 int l;
283
284 for (l=strlen(s); l>0 && s[l-1] == '\n'; l--)
285 s[l-1] = '\0';
286 }
287
288 #define BATCH_SIZE 50
289 static void dorealloc(char **mem, size_t oldlen, size_t newlen)
290 {
291 int newbatches = (newlen / BATCH_SIZE) + 1;
292 int oldbatches = (oldlen / BATCH_SIZE) + 1;
293
294 if (!*mem || newbatches > oldbatches) {
295 char *tmp;
296 do {
297 tmp = realloc(*mem, newbatches * BATCH_SIZE);
298 } while (!tmp);
299 *mem = tmp;
300 }
301 }
302 static void append_line(char **contents, size_t *len, char *line, ssize_t linelen)
303 {
304 size_t newlen = *len + linelen;
305 dorealloc(contents, *len, newlen + 1);
306 memcpy(*contents + *len, line, linelen+1);
307 *len = newlen;
308 }
309
310 static char *slurp_file(const char *from)
311 {
312 char *line = NULL;
313 char *contents = NULL;
314 FILE *f = fopen(from, "r");
315 size_t len = 0, fulllen = 0;
316 ssize_t linelen;
317
318 if (!f)
319 return NULL;
320
321 while ((linelen = getline(&line, &len, f)) != -1) {
322 append_line(&contents, &fulllen, line, linelen);
323 }
324 fclose(f);
325
326 if (contents)
327 drop_trailing_newlines(contents);
328 free(line);
329 return contents;
330 }
331
332 static bool write_string(const char *fnam, const char *string)
333 {
334 FILE *f;
335 size_t len, ret;
336
337 if (!(f = fopen(fnam, "w")))
338 return false;
339 len = strlen(string);
340 ret = fwrite(string, 1, len, f);
341 if (ret != len) {
342 fprintf(stderr, "Error writing to file: %s\n", strerror(errno));
343 fclose(f);
344 return false;
345 }
346 if (fclose(f) < 0) {
347 fprintf(stderr, "Error writing to file: %s\n", strerror(errno));
348 return false;
349 }
350 return true;
351 }
352
353 /*
354 * hierarchies, i.e. 'cpu,cpuacct'
355 */
356 char **hierarchies;
357 int num_hierarchies;
358
359 struct cgfs_files {
360 char *name;
361 uint32_t uid, gid;
362 uint32_t mode;
363 };
364
365 #define ALLOC_NUM 20
366 static bool store_hierarchy(char *stridx, char *h)
367 {
368 if (num_hierarchies % ALLOC_NUM == 0) {
369 size_t n = (num_hierarchies / ALLOC_NUM) + 1;
370 n *= ALLOC_NUM;
371 char **tmp = realloc(hierarchies, n * sizeof(char *));
372 if (!tmp) {
373 fprintf(stderr, "Out of memory\n");
374 exit(1);
375 }
376 hierarchies = tmp;
377 }
378
379 hierarchies[num_hierarchies++] = must_copy_string(h);
380 return true;
381 }
382
383 static void print_subsystems(void)
384 {
385 int i;
386
387 fprintf(stderr, "hierarchies:");
388 for (i = 0; i < num_hierarchies; i++) {
389 if (hierarchies[i])
390 fprintf(stderr, " %d: %s\n", i, hierarchies[i]);
391 }
392 }
393
394 static bool in_comma_list(const char *needle, const char *haystack)
395 {
396 const char *s = haystack, *e;
397 size_t nlen = strlen(needle);
398
399 while (*s && (e = index(s, ','))) {
400 if (nlen != e - s) {
401 s = e + 1;
402 continue;
403 }
404 if (strncmp(needle, s, nlen) == 0)
405 return true;
406 s = e + 1;
407 }
408 if (strcmp(needle, s) == 0)
409 return true;
410 return false;
411 }
412
413 /* do we need to do any massaging here? I'm not sure... */
414 static char *find_mounted_controller(const char *controller)
415 {
416 int i;
417
418 for (i = 0; i < num_hierarchies; i++) {
419 if (!hierarchies[i])
420 continue;
421 if (strcmp(hierarchies[i], controller) == 0)
422 return hierarchies[i];
423 if (in_comma_list(controller, hierarchies[i]))
424 return hierarchies[i];
425 }
426
427 return NULL;
428 }
429
430 bool cgfs_set_value(const char *controller, const char *cgroup, const char *file,
431 const char *value)
432 {
433 size_t len;
434 char *fnam, *tmpc = find_mounted_controller(controller);
435
436 if (!tmpc)
437 return false;
438 /* basedir / tmpc / cgroup / file \0 */
439 len = strlen(basedir) + strlen(tmpc) + strlen(cgroup) + strlen(file) + 4;
440 fnam = alloca(len);
441 snprintf(fnam, len, "%s/%s/%s/%s", basedir, tmpc, cgroup, file);
442
443 return write_string(fnam, value);
444 }
445
446 // Chown all the files in the cgroup directory. We do this when we create
447 // a cgroup on behalf of a user.
448 static void chown_all_cgroup_files(const char *dirname, uid_t uid, gid_t gid)
449 {
450 struct dirent dirent, *direntp;
451 char path[MAXPATHLEN];
452 size_t len;
453 DIR *d;
454 int ret;
455
456 len = strlen(dirname);
457 if (len >= MAXPATHLEN) {
458 fprintf(stderr, "chown_all_cgroup_files: pathname too long: %s\n", dirname);
459 return;
460 }
461
462 d = opendir(dirname);
463 if (!d) {
464 fprintf(stderr, "chown_all_cgroup_files: failed to open %s\n", dirname);
465 return;
466 }
467
468 while (readdir_r(d, &dirent, &direntp) == 0 && direntp) {
469 if (!strcmp(direntp->d_name, ".") || !strcmp(direntp->d_name, ".."))
470 continue;
471 ret = snprintf(path, MAXPATHLEN, "%s/%s", dirname, direntp->d_name);
472 if (ret < 0 || ret >= MAXPATHLEN) {
473 fprintf(stderr, "chown_all_cgroup_files: pathname too long under %s\n", dirname);
474 continue;
475 }
476 if (chown(path, uid, gid) < 0)
477 fprintf(stderr, "Failed to chown file %s to %u:%u", path, uid, gid);
478 }
479 closedir(d);
480 }
481
482 int cgfs_create(const char *controller, const char *cg, uid_t uid, gid_t gid)
483 {
484 size_t len;
485 char *dirnam, *tmpc = find_mounted_controller(controller);
486
487 if (!tmpc)
488 return -EINVAL;
489 /* basedir / tmpc / cg \0 */
490 len = strlen(basedir) + strlen(tmpc) + strlen(cg) + 3;
491 dirnam = alloca(len);
492 snprintf(dirnam, len, "%s/%s/%s", basedir,tmpc, cg);
493
494 if (mkdir(dirnam, 0755) < 0)
495 return -errno;
496
497 if (uid == 0 && gid == 0)
498 return 0;
499
500 if (chown(dirnam, uid, gid) < 0)
501 return -errno;
502
503 chown_all_cgroup_files(dirnam, uid, gid);
504
505 return 0;
506 }
507
508 static bool recursive_rmdir(const char *dirname)
509 {
510 struct dirent dirent, *direntp;
511 DIR *dir;
512 bool ret = false;
513 char pathname[MAXPATHLEN];
514
515 dir = opendir(dirname);
516 if (!dir) {
517 #if DEBUG
518 fprintf(stderr, "%s: failed to open %s: %s\n", __func__, dirname, strerror(errno));
519 #endif
520 return false;
521 }
522
523 while (!readdir_r(dir, &dirent, &direntp)) {
524 struct stat mystat;
525 int rc;
526
527 if (!direntp)
528 break;
529
530 if (!strcmp(direntp->d_name, ".") ||
531 !strcmp(direntp->d_name, ".."))
532 continue;
533
534 rc = snprintf(pathname, MAXPATHLEN, "%s/%s", dirname, direntp->d_name);
535 if (rc < 0 || rc >= MAXPATHLEN) {
536 fprintf(stderr, "pathname too long\n");
537 continue;
538 }
539
540 ret = lstat(pathname, &mystat);
541 if (ret) {
542 #if DEBUG
543 fprintf(stderr, "%s: failed to stat %s: %s\n", __func__, pathname, strerror(errno));
544 #endif
545 continue;
546 }
547 if (S_ISDIR(mystat.st_mode)) {
548 if (!recursive_rmdir(pathname)) {
549 #if DEBUG
550 fprintf(stderr, "Error removing %s\n", pathname);
551 #endif
552 }
553 }
554 }
555
556 ret = true;
557 if (closedir(dir) < 0) {
558 fprintf(stderr, "%s: failed to close directory %s: %s\n", __func__, dirname, strerror(errno));
559 ret = false;
560 }
561
562 if (rmdir(dirname) < 0) {
563 #if DEBUG
564 fprintf(stderr, "%s: failed to delete %s: %s\n", __func__, dirname, strerror(errno));
565 #endif
566 ret = false;
567 }
568
569 return ret;
570 }
571
572 bool cgfs_remove(const char *controller, const char *cg)
573 {
574 size_t len;
575 char *dirnam, *tmpc = find_mounted_controller(controller);
576
577 if (!tmpc)
578 return false;
579 /* basedir / tmpc / cg \0 */
580 len = strlen(basedir) + strlen(tmpc) + strlen(cg) + 3;
581 dirnam = alloca(len);
582 snprintf(dirnam, len, "%s/%s/%s", basedir,tmpc, cg);
583 return recursive_rmdir(dirnam);
584 }
585
586 bool cgfs_chmod_file(const char *controller, const char *file, mode_t mode)
587 {
588 size_t len;
589 char *pathname, *tmpc = find_mounted_controller(controller);
590
591 if (!tmpc)
592 return false;
593 /* basedir / tmpc / file \0 */
594 len = strlen(basedir) + strlen(tmpc) + strlen(file) + 3;
595 pathname = alloca(len);
596 snprintf(pathname, len, "%s/%s/%s", basedir, tmpc, file);
597 if (chmod(pathname, mode) < 0)
598 return false;
599 return true;
600 }
601
602 static int chown_tasks_files(const char *dirname, uid_t uid, gid_t gid)
603 {
604 size_t len;
605 char *fname;
606
607 len = strlen(dirname) + strlen("/cgroup.procs") + 1;
608 fname = alloca(len);
609 snprintf(fname, len, "%s/tasks", dirname);
610 if (chown(fname, uid, gid) != 0)
611 return -errno;
612 snprintf(fname, len, "%s/cgroup.procs", dirname);
613 if (chown(fname, uid, gid) != 0)
614 return -errno;
615 return 0;
616 }
617
618 int cgfs_chown_file(const char *controller, const char *file, uid_t uid, gid_t gid)
619 {
620 size_t len;
621 char *pathname, *tmpc = find_mounted_controller(controller);
622
623 if (!tmpc)
624 return -EINVAL;
625 /* basedir / tmpc / file \0 */
626 len = strlen(basedir) + strlen(tmpc) + strlen(file) + 3;
627 pathname = alloca(len);
628 snprintf(pathname, len, "%s/%s/%s", basedir, tmpc, file);
629 if (chown(pathname, uid, gid) < 0)
630 return -errno;
631
632 if (is_dir(pathname))
633 // like cgmanager did, we want to chown the tasks file as well
634 return chown_tasks_files(pathname, uid, gid);
635
636 return 0;
637 }
638
639 FILE *open_pids_file(const char *controller, const char *cgroup)
640 {
641 size_t len;
642 char *pathname, *tmpc = find_mounted_controller(controller);
643
644 if (!tmpc)
645 return NULL;
646 /* basedir / tmpc / cgroup / "cgroup.procs" \0 */
647 len = strlen(basedir) + strlen(tmpc) + strlen(cgroup) + 4 + strlen("cgroup.procs");
648 pathname = alloca(len);
649 snprintf(pathname, len, "%s/%s/%s/cgroup.procs", basedir, tmpc, cgroup);
650 return fopen(pathname, "w");
651 }
652
653 static bool cgfs_iterate_cgroup(const char *controller, const char *cgroup, bool directories,
654 void ***list, size_t typesize,
655 void* (*iterator)(const char*, const char*, const char*))
656 {
657 size_t len;
658 char *dirname, *tmpc = find_mounted_controller(controller);
659 char pathname[MAXPATHLEN];
660 size_t sz = 0, asz = 0;
661 struct dirent dirent, *direntp;
662 DIR *dir;
663 int ret;
664
665 *list = NULL;
666 if (!tmpc)
667 return false;
668
669 /* basedir / tmpc / cgroup \0 */
670 len = strlen(basedir) + strlen(tmpc) + strlen(cgroup) + 3;
671 dirname = alloca(len);
672 snprintf(dirname, len, "%s/%s/%s", basedir, tmpc, cgroup);
673
674 dir = opendir(dirname);
675 if (!dir)
676 return false;
677
678 while (!readdir_r(dir, &dirent, &direntp)) {
679 struct stat mystat;
680 int rc;
681
682 if (!direntp)
683 break;
684
685 if (!strcmp(direntp->d_name, ".") ||
686 !strcmp(direntp->d_name, ".."))
687 continue;
688
689 rc = snprintf(pathname, MAXPATHLEN, "%s/%s", dirname, direntp->d_name);
690 if (rc < 0 || rc >= MAXPATHLEN) {
691 fprintf(stderr, "%s: pathname too long under %s\n", __func__, dirname);
692 continue;
693 }
694
695 ret = lstat(pathname, &mystat);
696 if (ret) {
697 fprintf(stderr, "%s: failed to stat %s: %s\n", __func__, pathname, strerror(errno));
698 continue;
699 }
700 if ((!directories && !S_ISREG(mystat.st_mode)) ||
701 (directories && !S_ISDIR(mystat.st_mode)))
702 continue;
703
704 if (sz+2 >= asz) {
705 void **tmp;
706 asz += BATCH_SIZE;
707 do {
708 tmp = realloc(*list, asz * typesize);
709 } while (!tmp);
710 *list = tmp;
711 }
712 (*list)[sz] = (*iterator)(controller, cgroup, direntp->d_name);
713 (*list)[sz+1] = NULL;
714 sz++;
715 }
716 if (closedir(dir) < 0) {
717 fprintf(stderr, "%s: failed closedir for %s: %s\n", __func__, dirname, strerror(errno));
718 return false;
719 }
720 return true;
721 }
722
723 static void *make_children_list_entry(const char *controller, const char *cgroup, const char *dir_entry)
724 {
725 char *dup;
726 do {
727 dup = strdup(dir_entry);
728 } while (!dup);
729 return dup;
730 }
731
732 bool cgfs_list_children(const char *controller, const char *cgroup, char ***list)
733 {
734 return cgfs_iterate_cgroup(controller, cgroup, true, (void***)list, sizeof(*list), &make_children_list_entry);
735 }
736
737 void free_key(struct cgfs_files *k)
738 {
739 if (!k)
740 return;
741 free(k->name);
742 free(k);
743 }
744
745 void free_keys(struct cgfs_files **keys)
746 {
747 int i;
748
749 if (!keys)
750 return;
751 for (i = 0; keys[i]; i++) {
752 free_key(keys[i]);
753 }
754 free(keys);
755 }
756
757 bool cgfs_get_value(const char *controller, const char *cgroup, const char *file, char **value)
758 {
759 size_t len;
760 char *fnam, *tmpc = find_mounted_controller(controller);
761
762 if (!tmpc)
763 return false;
764 /* basedir / tmpc / cgroup / file \0 */
765 len = strlen(basedir) + strlen(tmpc) + strlen(cgroup) + strlen(file) + 4;
766 fnam = alloca(len);
767 snprintf(fnam, len, "%s/%s/%s/%s", basedir, tmpc, cgroup, file);
768
769 *value = slurp_file(fnam);
770 return *value != NULL;
771 }
772
773 struct cgfs_files *cgfs_get_key(const char *controller, const char *cgroup, const char *file)
774 {
775 size_t len;
776 char *fnam, *tmpc = find_mounted_controller(controller);
777 struct stat sb;
778 struct cgfs_files *newkey;
779 int ret;
780
781 if (!tmpc)
782 return false;
783
784 if (file && *file == '/')
785 file++;
786
787 if (file && index(file, '/'))
788 return NULL;
789
790 /* basedir / tmpc / cgroup / file \0 */
791 len = strlen(basedir) + strlen(tmpc) + strlen(cgroup) + 3;
792 if (file)
793 len += strlen(file) + 1;
794 fnam = alloca(len);
795 snprintf(fnam, len, "%s/%s/%s%s%s", basedir, tmpc, cgroup,
796 file ? "/" : "", file ? file : "");
797
798 ret = stat(fnam, &sb);
799 if (ret < 0)
800 return NULL;
801
802 do {
803 newkey = malloc(sizeof(struct cgfs_files));
804 } while (!newkey);
805 if (file)
806 newkey->name = must_copy_string(file);
807 else if (rindex(cgroup, '/'))
808 newkey->name = must_copy_string(rindex(cgroup, '/'));
809 else
810 newkey->name = must_copy_string(cgroup);
811 newkey->uid = sb.st_uid;
812 newkey->gid = sb.st_gid;
813 newkey->mode = sb.st_mode;
814
815 return newkey;
816 }
817
818 static void *make_key_list_entry(const char *controller, const char *cgroup, const char *dir_entry)
819 {
820 struct cgfs_files *entry = cgfs_get_key(controller, cgroup, dir_entry);
821 if (!entry) {
822 fprintf(stderr, "%s: Error getting files under %s:%s\n",
823 __func__, controller, cgroup);
824 }
825 return entry;
826 }
827
828 bool cgfs_list_keys(const char *controller, const char *cgroup, struct cgfs_files ***keys)
829 {
830 return cgfs_iterate_cgroup(controller, cgroup, false, (void***)keys, sizeof(*keys), &make_key_list_entry);
831 }
832
833 bool is_child_cgroup(const char *controller, const char *cgroup, const char *f)
834 { size_t len;
835 char *fnam, *tmpc = find_mounted_controller(controller);
836 int ret;
837 struct stat sb;
838
839 if (!tmpc)
840 return false;
841 /* basedir / tmpc / cgroup / f \0 */
842 len = strlen(basedir) + strlen(tmpc) + strlen(cgroup) + strlen(f) + 4;
843 fnam = alloca(len);
844 snprintf(fnam, len, "%s/%s/%s/%s", basedir, tmpc, cgroup, f);
845
846 ret = stat(fnam, &sb);
847 if (ret < 0 || !S_ISDIR(sb.st_mode))
848 return false;
849 return true;
850 }
851
852 #define SEND_CREDS_OK 0
853 #define SEND_CREDS_NOTSK 1
854 #define SEND_CREDS_FAIL 2
855 static bool recv_creds(int sock, struct ucred *cred, char *v);
856 static int wait_for_pid(pid_t pid);
857 static int send_creds(int sock, struct ucred *cred, char v, bool pingfirst);
858 static int send_creds_clone_wrapper(void *arg);
859
860 /*
861 * clone a task which switches to @task's namespace and writes '1'.
862 * over a unix sock so we can read the task's reaper's pid in our
863 * namespace
864 *
865 * Note: glibc's fork() does not respect pidns, which can lead to failed
866 * assertions inside glibc (and thus failed forks) if the child's pid in
867 * the pidns and the parent pid outside are identical. Using clone prevents
868 * this issue.
869 */
870 static void write_task_init_pid_exit(int sock, pid_t target)
871 {
872 char fnam[100];
873 pid_t pid;
874 int fd, ret;
875 size_t stack_size = sysconf(_SC_PAGESIZE);
876 void *stack = alloca(stack_size);
877
878 ret = snprintf(fnam, sizeof(fnam), "/proc/%d/ns/pid", (int)target);
879 if (ret < 0 || ret >= sizeof(fnam))
880 _exit(1);
881
882 fd = open(fnam, O_RDONLY);
883 if (fd < 0) {
884 perror("write_task_init_pid_exit open of ns/pid");
885 _exit(1);
886 }
887 if (setns(fd, 0)) {
888 perror("write_task_init_pid_exit setns 1");
889 close(fd);
890 _exit(1);
891 }
892 pid = clone(send_creds_clone_wrapper, stack + stack_size, SIGCHLD, &sock);
893 if (pid < 0)
894 _exit(1);
895 if (pid != 0) {
896 if (!wait_for_pid(pid))
897 _exit(1);
898 _exit(0);
899 }
900 }
901
902 static int send_creds_clone_wrapper(void *arg) {
903 struct ucred cred;
904 char v;
905 int sock = *(int *)arg;
906
907 /* we are the child */
908 cred.uid = 0;
909 cred.gid = 0;
910 cred.pid = 1;
911 v = '1';
912 if (send_creds(sock, &cred, v, true) != SEND_CREDS_OK)
913 return 1;
914 return 0;
915 }
916
917 static pid_t get_init_pid_for_task(pid_t task)
918 {
919 int sock[2];
920 pid_t pid;
921 pid_t ret = -1;
922 char v = '0';
923 struct ucred cred;
924
925 if (socketpair(AF_UNIX, SOCK_DGRAM, 0, sock) < 0) {
926 perror("socketpair");
927 return -1;
928 }
929
930 pid = fork();
931 if (pid < 0)
932 goto out;
933 if (!pid) {
934 close(sock[1]);
935 write_task_init_pid_exit(sock[0], task);
936 _exit(0);
937 }
938
939 if (!recv_creds(sock[1], &cred, &v))
940 goto out;
941 ret = cred.pid;
942
943 out:
944 close(sock[0]);
945 close(sock[1]);
946 if (pid > 0)
947 wait_for_pid(pid);
948 return ret;
949 }
950
951 static pid_t lookup_initpid_in_store(pid_t qpid)
952 {
953 pid_t answer = 0;
954 struct stat sb;
955 struct pidns_init_store *e;
956 char fnam[100];
957
958 snprintf(fnam, 100, "/proc/%d/ns/pid", qpid);
959 store_lock();
960 if (stat(fnam, &sb) < 0)
961 goto out;
962 e = lookup_verify_initpid(&sb);
963 if (e) {
964 answer = e->initpid;
965 goto out;
966 }
967 answer = get_init_pid_for_task(qpid);
968 if (answer > 0)
969 save_initpid(&sb, answer);
970
971 out:
972 /* we prune at end in case we are returning
973 * the value we were about to return */
974 prune_initpid_store();
975 store_unlock();
976 return answer;
977 }
978
979 static int wait_for_pid(pid_t pid)
980 {
981 int status, ret;
982
983 if (pid <= 0)
984 return -1;
985
986 again:
987 ret = waitpid(pid, &status, 0);
988 if (ret == -1) {
989 if (errno == EINTR)
990 goto again;
991 return -1;
992 }
993 if (ret != pid)
994 goto again;
995 if (!WIFEXITED(status) || WEXITSTATUS(status) != 0)
996 return -1;
997 return 0;
998 }
999
1000
1001 /*
1002 * append pid to *src.
1003 * src: a pointer to a char* in which ot append the pid.
1004 * sz: the number of characters printed so far, minus trailing \0.
1005 * asz: the allocated size so far
1006 * pid: the pid to append
1007 */
1008 static void must_strcat_pid(char **src, size_t *sz, size_t *asz, pid_t pid)
1009 {
1010 char tmp[30];
1011
1012 int tmplen = sprintf(tmp, "%d\n", (int)pid);
1013
1014 if (!*src || tmplen + *sz + 1 >= *asz) {
1015 char *tmp;
1016 do {
1017 tmp = realloc(*src, *asz + BUF_RESERVE_SIZE);
1018 } while (!tmp);
1019 *src = tmp;
1020 *asz += BUF_RESERVE_SIZE;
1021 }
1022 memcpy((*src) +*sz , tmp, tmplen+1); /* include the \0 */
1023 *sz += tmplen;
1024 }
1025
1026 /*
1027 * Given a open file * to /proc/pid/{u,g}id_map, and an id
1028 * valid in the caller's namespace, return the id mapped into
1029 * pid's namespace.
1030 * Returns the mapped id, or -1 on error.
1031 */
1032 unsigned int
1033 convert_id_to_ns(FILE *idfile, unsigned int in_id)
1034 {
1035 unsigned int nsuid, // base id for a range in the idfile's namespace
1036 hostuid, // base id for a range in the caller's namespace
1037 count; // number of ids in this range
1038 char line[400];
1039 int ret;
1040
1041 fseek(idfile, 0L, SEEK_SET);
1042 while (fgets(line, 400, idfile)) {
1043 ret = sscanf(line, "%u %u %u\n", &nsuid, &hostuid, &count);
1044 if (ret != 3)
1045 continue;
1046 if (hostuid + count < hostuid || nsuid + count < nsuid) {
1047 /*
1048 * uids wrapped around - unexpected as this is a procfile,
1049 * so just bail.
1050 */
1051 fprintf(stderr, "pid wrapparound at entry %u %u %u in %s\n",
1052 nsuid, hostuid, count, line);
1053 return -1;
1054 }
1055 if (hostuid <= in_id && hostuid+count > in_id) {
1056 /*
1057 * now since hostuid <= in_id < hostuid+count, and
1058 * hostuid+count and nsuid+count do not wrap around,
1059 * we know that nsuid+(in_id-hostuid) which must be
1060 * less that nsuid+(count) must not wrap around
1061 */
1062 return (in_id - hostuid) + nsuid;
1063 }
1064 }
1065
1066 // no answer found
1067 return -1;
1068 }
1069
1070 /*
1071 * for is_privileged_over,
1072 * specify whether we require the calling uid to be root in his
1073 * namespace
1074 */
1075 #define NS_ROOT_REQD true
1076 #define NS_ROOT_OPT false
1077
1078 #define PROCLEN 100
1079
1080 static bool is_privileged_over(pid_t pid, uid_t uid, uid_t victim, bool req_ns_root)
1081 {
1082 char fpath[PROCLEN];
1083 int ret;
1084 bool answer = false;
1085 uid_t nsuid;
1086
1087 if (victim == -1 || uid == -1)
1088 return false;
1089
1090 /*
1091 * If the request is one not requiring root in the namespace,
1092 * then having the same uid suffices. (i.e. uid 1000 has write
1093 * access to files owned by uid 1000
1094 */
1095 if (!req_ns_root && uid == victim)
1096 return true;
1097
1098 ret = snprintf(fpath, PROCLEN, "/proc/%d/uid_map", pid);
1099 if (ret < 0 || ret >= PROCLEN)
1100 return false;
1101 FILE *f = fopen(fpath, "r");
1102 if (!f)
1103 return false;
1104
1105 /* if caller's not root in his namespace, reject */
1106 nsuid = convert_id_to_ns(f, uid);
1107 if (nsuid)
1108 goto out;
1109
1110 /*
1111 * If victim is not mapped into caller's ns, reject.
1112 * XXX I'm not sure this check is needed given that fuse
1113 * will be sending requests where the vfs has converted
1114 */
1115 nsuid = convert_id_to_ns(f, victim);
1116 if (nsuid == -1)
1117 goto out;
1118
1119 answer = true;
1120
1121 out:
1122 fclose(f);
1123 return answer;
1124 }
1125
1126 static bool perms_include(int fmode, mode_t req_mode)
1127 {
1128 mode_t r;
1129
1130 switch (req_mode & O_ACCMODE) {
1131 case O_RDONLY:
1132 r = S_IROTH;
1133 break;
1134 case O_WRONLY:
1135 r = S_IWOTH;
1136 break;
1137 case O_RDWR:
1138 r = S_IROTH | S_IWOTH;
1139 break;
1140 default:
1141 return false;
1142 }
1143 return ((fmode & r) == r);
1144 }
1145
1146
1147 /*
1148 * taskcg is a/b/c
1149 * querycg is /a/b/c/d/e
1150 * we return 'd'
1151 */
1152 static char *get_next_cgroup_dir(const char *taskcg, const char *querycg)
1153 {
1154 char *start, *end;
1155
1156 if (strlen(taskcg) <= strlen(querycg)) {
1157 fprintf(stderr, "%s: I was fed bad input\n", __func__);
1158 return NULL;
1159 }
1160
1161 if (strcmp(querycg, "/") == 0)
1162 start = strdup(taskcg + 1);
1163 else
1164 start = strdup(taskcg + strlen(querycg) + 1);
1165 if (!start)
1166 return NULL;
1167 end = strchr(start, '/');
1168 if (end)
1169 *end = '\0';
1170 return start;
1171 }
1172
1173 static void stripnewline(char *x)
1174 {
1175 size_t l = strlen(x);
1176 if (l && x[l-1] == '\n')
1177 x[l-1] = '\0';
1178 }
1179
1180 static char *get_pid_cgroup(pid_t pid, const char *contrl)
1181 {
1182 char fnam[PROCLEN];
1183 FILE *f;
1184 char *answer = NULL;
1185 char *line = NULL;
1186 size_t len = 0;
1187 int ret;
1188 const char *h = find_mounted_controller(contrl);
1189 if (!h)
1190 return NULL;
1191
1192 ret = snprintf(fnam, PROCLEN, "/proc/%d/cgroup", pid);
1193 if (ret < 0 || ret >= PROCLEN)
1194 return NULL;
1195 if (!(f = fopen(fnam, "r")))
1196 return NULL;
1197
1198 while (getline(&line, &len, f) != -1) {
1199 char *c1, *c2;
1200 if (!line[0])
1201 continue;
1202 c1 = strchr(line, ':');
1203 if (!c1)
1204 goto out;
1205 c1++;
1206 c2 = strchr(c1, ':');
1207 if (!c2)
1208 goto out;
1209 *c2 = '\0';
1210 if (strcmp(c1, h) != 0)
1211 continue;
1212 c2++;
1213 stripnewline(c2);
1214 do {
1215 answer = strdup(c2);
1216 } while (!answer);
1217 break;
1218 }
1219
1220 out:
1221 fclose(f);
1222 free(line);
1223 return answer;
1224 }
1225
1226 /*
1227 * check whether a fuse context may access a cgroup dir or file
1228 *
1229 * If file is not null, it is a cgroup file to check under cg.
1230 * If file is null, then we are checking perms on cg itself.
1231 *
1232 * For files we can check the mode of the list_keys result.
1233 * For cgroups, we must make assumptions based on the files under the
1234 * cgroup, because cgmanager doesn't tell us ownership/perms of cgroups
1235 * yet.
1236 */
1237 static bool fc_may_access(struct fuse_context *fc, const char *contrl, const char *cg, const char *file, mode_t mode)
1238 {
1239 struct cgfs_files *k = NULL;
1240 bool ret = false;
1241
1242 k = cgfs_get_key(contrl, cg, file);
1243 if (!k)
1244 return false;
1245
1246 if (is_privileged_over(fc->pid, fc->uid, k->uid, NS_ROOT_OPT)) {
1247 if (perms_include(k->mode >> 6, mode)) {
1248 ret = true;
1249 goto out;
1250 }
1251 }
1252 if (fc->gid == k->gid) {
1253 if (perms_include(k->mode >> 3, mode)) {
1254 ret = true;
1255 goto out;
1256 }
1257 }
1258 ret = perms_include(k->mode, mode);
1259
1260 out:
1261 free_key(k);
1262 return ret;
1263 }
1264
1265 #define INITSCOPE "/init.scope"
1266 static void prune_init_slice(char *cg)
1267 {
1268 char *point;
1269 size_t cg_len = strlen(cg), initscope_len = strlen(INITSCOPE);
1270
1271 if (cg_len < initscope_len)
1272 return;
1273
1274 point = cg + cg_len - initscope_len;
1275 if (strcmp(point, INITSCOPE) == 0) {
1276 if (point == cg)
1277 *(point+1) = '\0';
1278 else
1279 *point = '\0';
1280 }
1281 }
1282
1283 /*
1284 * If pid is in /a/b/c/d, he may only act on things under cg=/a/b/c/d.
1285 * If pid is in /a, he may act on /a/b, but not on /b.
1286 * if the answer is false and nextcg is not NULL, then *nextcg will point
1287 * to a string containing the next cgroup directory under cg, which must be
1288 * freed by the caller.
1289 */
1290 static bool caller_is_in_ancestor(pid_t pid, const char *contrl, const char *cg, char **nextcg)
1291 {
1292 bool answer = false;
1293 char *c2 = get_pid_cgroup(pid, contrl);
1294 char *linecmp;
1295
1296 if (!c2)
1297 return false;
1298 prune_init_slice(c2);
1299
1300 /*
1301 * callers pass in '/' for root cgroup, otherwise they pass
1302 * in a cgroup without leading '/'
1303 */
1304 linecmp = *cg == '/' ? c2 : c2+1;
1305 if (strncmp(linecmp, cg, strlen(linecmp)) != 0) {
1306 if (nextcg) {
1307 *nextcg = get_next_cgroup_dir(linecmp, cg);
1308 }
1309 goto out;
1310 }
1311 answer = true;
1312
1313 out:
1314 free(c2);
1315 return answer;
1316 }
1317
1318 /*
1319 * If pid is in /a/b/c, he may see that /a exists, but not /b or /a/c.
1320 */
1321 static bool caller_may_see_dir(pid_t pid, const char *contrl, const char *cg)
1322 {
1323 bool answer = false;
1324 char *c2, *task_cg;
1325 size_t target_len, task_len;
1326
1327 if (strcmp(cg, "/") == 0)
1328 return true;
1329
1330 c2 = get_pid_cgroup(pid, contrl);
1331 if (!c2)
1332 return false;
1333 prune_init_slice(c2);
1334
1335 task_cg = c2 + 1;
1336 target_len = strlen(cg);
1337 task_len = strlen(task_cg);
1338 if (task_len == 0) {
1339 /* Task is in the root cg, it can see everything. This case is
1340 * not handled by the strmcps below, since they test for the
1341 * last /, but that is the first / that we've chopped off
1342 * above.
1343 */
1344 answer = true;
1345 goto out;
1346 }
1347 if (strcmp(cg, task_cg) == 0) {
1348 answer = true;
1349 goto out;
1350 }
1351 if (target_len < task_len) {
1352 /* looking up a parent dir */
1353 if (strncmp(task_cg, cg, target_len) == 0 && task_cg[target_len] == '/')
1354 answer = true;
1355 goto out;
1356 }
1357 if (target_len > task_len) {
1358 /* looking up a child dir */
1359 if (strncmp(task_cg, cg, task_len) == 0 && cg[task_len] == '/')
1360 answer = true;
1361 goto out;
1362 }
1363
1364 out:
1365 free(c2);
1366 return answer;
1367 }
1368
1369 /*
1370 * given /cgroup/freezer/a/b, return "freezer".
1371 * the returned char* should NOT be freed.
1372 */
1373 static char *pick_controller_from_path(struct fuse_context *fc, const char *path)
1374 {
1375 const char *p1;
1376 char *contr, *slash;
1377
1378 if (strlen(path) < 9)
1379 return NULL;
1380 if (*(path+7) != '/')
1381 return NULL;
1382 p1 = path+8;
1383 contr = strdupa(p1);
1384 if (!contr)
1385 return NULL;
1386 slash = strstr(contr, "/");
1387 if (slash)
1388 *slash = '\0';
1389
1390 int i;
1391 for (i = 0; i < num_hierarchies; i++) {
1392 if (hierarchies[i] && strcmp(hierarchies[i], contr) == 0)
1393 return hierarchies[i];
1394 }
1395 return NULL;
1396 }
1397
1398 /*
1399 * Find the start of cgroup in /cgroup/controller/the/cgroup/path
1400 * Note that the returned value may include files (keynames) etc
1401 */
1402 static const char *find_cgroup_in_path(const char *path)
1403 {
1404 const char *p1;
1405
1406 if (strlen(path) < 9)
1407 return NULL;
1408 p1 = strstr(path+8, "/");
1409 if (!p1)
1410 return NULL;
1411 return p1+1;
1412 }
1413
1414 /*
1415 * split the last path element from the path in @cg.
1416 * @dir is newly allocated and should be freed, @last not
1417 */
1418 static void get_cgdir_and_path(const char *cg, char **dir, char **last)
1419 {
1420 char *p;
1421
1422 do {
1423 *dir = strdup(cg);
1424 } while (!*dir);
1425 *last = strrchr(cg, '/');
1426 if (!*last) {
1427 *last = NULL;
1428 return;
1429 }
1430 p = strrchr(*dir, '/');
1431 *p = '\0';
1432 }
1433
1434 /*
1435 * FUSE ops for /cgroup
1436 */
1437
1438 int cg_getattr(const char *path, struct stat *sb)
1439 {
1440 struct timespec now;
1441 struct fuse_context *fc = fuse_get_context();
1442 char * cgdir = NULL;
1443 char *last = NULL, *path1, *path2;
1444 struct cgfs_files *k = NULL;
1445 const char *cgroup;
1446 const char *controller = NULL;
1447 int ret = -ENOENT;
1448
1449
1450 if (!fc)
1451 return -EIO;
1452
1453 memset(sb, 0, sizeof(struct stat));
1454
1455 if (clock_gettime(CLOCK_REALTIME, &now) < 0)
1456 return -EINVAL;
1457
1458 sb->st_uid = sb->st_gid = 0;
1459 sb->st_atim = sb->st_mtim = sb->st_ctim = now;
1460 sb->st_size = 0;
1461
1462 if (strcmp(path, "/cgroup") == 0) {
1463 sb->st_mode = S_IFDIR | 00755;
1464 sb->st_nlink = 2;
1465 return 0;
1466 }
1467
1468 controller = pick_controller_from_path(fc, path);
1469 if (!controller)
1470 return -EIO;
1471 cgroup = find_cgroup_in_path(path);
1472 if (!cgroup) {
1473 /* this is just /cgroup/controller, return it as a dir */
1474 sb->st_mode = S_IFDIR | 00755;
1475 sb->st_nlink = 2;
1476 return 0;
1477 }
1478
1479 get_cgdir_and_path(cgroup, &cgdir, &last);
1480
1481 if (!last) {
1482 path1 = "/";
1483 path2 = cgdir;
1484 } else {
1485 path1 = cgdir;
1486 path2 = last;
1487 }
1488
1489 pid_t initpid = lookup_initpid_in_store(fc->pid);
1490 if (initpid <= 0)
1491 initpid = fc->pid;
1492 /* check that cgcopy is either a child cgroup of cgdir, or listed in its keys.
1493 * Then check that caller's cgroup is under path if last is a child
1494 * cgroup, or cgdir if last is a file */
1495
1496 if (is_child_cgroup(controller, path1, path2)) {
1497 if (!caller_may_see_dir(initpid, controller, cgroup)) {
1498 ret = -ENOENT;
1499 goto out;
1500 }
1501 if (!caller_is_in_ancestor(initpid, controller, cgroup, NULL)) {
1502 /* this is just /cgroup/controller, return it as a dir */
1503 sb->st_mode = S_IFDIR | 00555;
1504 sb->st_nlink = 2;
1505 ret = 0;
1506 goto out;
1507 }
1508 if (!fc_may_access(fc, controller, cgroup, NULL, O_RDONLY)) {
1509 ret = -EACCES;
1510 goto out;
1511 }
1512
1513 // get uid, gid, from '/tasks' file and make up a mode
1514 // That is a hack, until cgmanager gains a GetCgroupPerms fn.
1515 sb->st_mode = S_IFDIR | 00755;
1516 k = cgfs_get_key(controller, cgroup, NULL);
1517 if (!k) {
1518 sb->st_uid = sb->st_gid = 0;
1519 } else {
1520 sb->st_uid = k->uid;
1521 sb->st_gid = k->gid;
1522 }
1523 free_key(k);
1524 sb->st_nlink = 2;
1525 ret = 0;
1526 goto out;
1527 }
1528
1529 if ((k = cgfs_get_key(controller, path1, path2)) != NULL) {
1530 sb->st_mode = S_IFREG | k->mode;
1531 sb->st_nlink = 1;
1532 sb->st_uid = k->uid;
1533 sb->st_gid = k->gid;
1534 sb->st_size = 0;
1535 free_key(k);
1536 if (!caller_is_in_ancestor(initpid, controller, path1, NULL)) {
1537 ret = -ENOENT;
1538 goto out;
1539 }
1540 if (!fc_may_access(fc, controller, path1, path2, O_RDONLY)) {
1541 ret = -EACCES;
1542 goto out;
1543 }
1544
1545 ret = 0;
1546 }
1547
1548 out:
1549 free(cgdir);
1550 return ret;
1551 }
1552
1553 int cg_opendir(const char *path, struct fuse_file_info *fi)
1554 {
1555 struct fuse_context *fc = fuse_get_context();
1556 const char *cgroup;
1557 struct file_info *dir_info;
1558 char *controller = NULL;
1559
1560 if (!fc)
1561 return -EIO;
1562
1563 if (strcmp(path, "/cgroup") == 0) {
1564 cgroup = NULL;
1565 controller = NULL;
1566 } else {
1567 // return list of keys for the controller, and list of child cgroups
1568 controller = pick_controller_from_path(fc, path);
1569 if (!controller)
1570 return -EIO;
1571
1572 cgroup = find_cgroup_in_path(path);
1573 if (!cgroup) {
1574 /* this is just /cgroup/controller, return its contents */
1575 cgroup = "/";
1576 }
1577 }
1578
1579 pid_t initpid = lookup_initpid_in_store(fc->pid);
1580 if (initpid <= 0)
1581 initpid = fc->pid;
1582 if (cgroup) {
1583 if (!caller_may_see_dir(initpid, controller, cgroup))
1584 return -ENOENT;
1585 if (!fc_may_access(fc, controller, cgroup, NULL, O_RDONLY))
1586 return -EACCES;
1587 }
1588
1589 /* we'll free this at cg_releasedir */
1590 dir_info = malloc(sizeof(*dir_info));
1591 if (!dir_info)
1592 return -ENOMEM;
1593 dir_info->controller = must_copy_string(controller);
1594 dir_info->cgroup = must_copy_string(cgroup);
1595 dir_info->type = LXC_TYPE_CGDIR;
1596 dir_info->buf = NULL;
1597 dir_info->file = NULL;
1598 dir_info->buflen = 0;
1599
1600 fi->fh = (unsigned long)dir_info;
1601 return 0;
1602 }
1603
1604 int cg_readdir(const char *path, void *buf, fuse_fill_dir_t filler, off_t offset,
1605 struct fuse_file_info *fi)
1606 {
1607 struct file_info *d = (struct file_info *)fi->fh;
1608 struct cgfs_files **list = NULL;
1609 int i, ret;
1610 char *nextcg = NULL;
1611 struct fuse_context *fc = fuse_get_context();
1612 char **clist = NULL;
1613
1614 if (d->type != LXC_TYPE_CGDIR) {
1615 fprintf(stderr, "Internal error: file cache info used in readdir\n");
1616 return -EIO;
1617 }
1618 if (!d->cgroup && !d->controller) {
1619 // ls /var/lib/lxcfs/cgroup - just show list of controllers
1620 int i;
1621
1622 for (i = 0; i < num_hierarchies; i++) {
1623 if (hierarchies[i] && filler(buf, hierarchies[i], NULL, 0) != 0) {
1624 return -EIO;
1625 }
1626 }
1627 return 0;
1628 }
1629
1630 if (!cgfs_list_keys(d->controller, d->cgroup, &list)) {
1631 // not a valid cgroup
1632 ret = -EINVAL;
1633 goto out;
1634 }
1635
1636 pid_t initpid = lookup_initpid_in_store(fc->pid);
1637 if (initpid <= 0)
1638 initpid = fc->pid;
1639 if (!caller_is_in_ancestor(initpid, d->controller, d->cgroup, &nextcg)) {
1640 if (nextcg) {
1641 ret = filler(buf, nextcg, NULL, 0);
1642 free(nextcg);
1643 if (ret != 0) {
1644 ret = -EIO;
1645 goto out;
1646 }
1647 }
1648 ret = 0;
1649 goto out;
1650 }
1651
1652 for (i = 0; list[i]; i++) {
1653 if (filler(buf, list[i]->name, NULL, 0) != 0) {
1654 ret = -EIO;
1655 goto out;
1656 }
1657 }
1658
1659 // now get the list of child cgroups
1660
1661 if (!cgfs_list_children(d->controller, d->cgroup, &clist)) {
1662 ret = 0;
1663 goto out;
1664 }
1665 if (clist) {
1666 for (i = 0; clist[i]; i++) {
1667 if (filler(buf, clist[i], NULL, 0) != 0) {
1668 ret = -EIO;
1669 goto out;
1670 }
1671 }
1672 }
1673 ret = 0;
1674
1675 out:
1676 free_keys(list);
1677 if (clist) {
1678 for (i = 0; clist[i]; i++)
1679 free(clist[i]);
1680 free(clist);
1681 }
1682 return ret;
1683 }
1684
1685 static void do_release_file_info(struct fuse_file_info *fi)
1686 {
1687 struct file_info *f = (struct file_info *)fi->fh;
1688
1689 if (!f)
1690 return;
1691
1692 fi->fh = 0;
1693
1694 free(f->controller);
1695 f->controller = NULL;
1696 free(f->cgroup);
1697 f->cgroup = NULL;
1698 free(f->file);
1699 f->file = NULL;
1700 free(f->buf);
1701 f->buf = NULL;
1702 free(f);
1703 }
1704
1705 int cg_releasedir(const char *path, struct fuse_file_info *fi)
1706 {
1707 do_release_file_info(fi);
1708 return 0;
1709 }
1710
1711 int cg_open(const char *path, struct fuse_file_info *fi)
1712 {
1713 const char *cgroup;
1714 char *last = NULL, *path1, *path2, * cgdir = NULL, *controller;
1715 struct cgfs_files *k = NULL;
1716 struct file_info *file_info;
1717 struct fuse_context *fc = fuse_get_context();
1718 int ret;
1719
1720 if (!fc)
1721 return -EIO;
1722
1723 controller = pick_controller_from_path(fc, path);
1724 if (!controller)
1725 return -EIO;
1726 cgroup = find_cgroup_in_path(path);
1727 if (!cgroup)
1728 return -EINVAL;
1729
1730 get_cgdir_and_path(cgroup, &cgdir, &last);
1731 if (!last) {
1732 path1 = "/";
1733 path2 = cgdir;
1734 } else {
1735 path1 = cgdir;
1736 path2 = last;
1737 }
1738
1739 k = cgfs_get_key(controller, path1, path2);
1740 if (!k) {
1741 ret = -EINVAL;
1742 goto out;
1743 }
1744 free_key(k);
1745
1746 pid_t initpid = lookup_initpid_in_store(fc->pid);
1747 if (initpid <= 0)
1748 initpid = fc->pid;
1749 if (!caller_may_see_dir(initpid, controller, path1)) {
1750 ret = -ENOENT;
1751 goto out;
1752 }
1753 if (!fc_may_access(fc, controller, path1, path2, fi->flags)) {
1754 ret = -EACCES;
1755 goto out;
1756 }
1757
1758 /* we'll free this at cg_release */
1759 file_info = malloc(sizeof(*file_info));
1760 if (!file_info) {
1761 ret = -ENOMEM;
1762 goto out;
1763 }
1764 file_info->controller = must_copy_string(controller);
1765 file_info->cgroup = must_copy_string(path1);
1766 file_info->file = must_copy_string(path2);
1767 file_info->type = LXC_TYPE_CGFILE;
1768 file_info->buf = NULL;
1769 file_info->buflen = 0;
1770
1771 fi->fh = (unsigned long)file_info;
1772 ret = 0;
1773
1774 out:
1775 free(cgdir);
1776 return ret;
1777 }
1778
1779 int cg_access(const char *path, int mode)
1780 {
1781 const char *cgroup;
1782 char *last = NULL, *path1, *path2, * cgdir = NULL, *controller;
1783 struct cgfs_files *k = NULL;
1784 struct fuse_context *fc = fuse_get_context();
1785 int ret;
1786
1787 if (!fc)
1788 return -EIO;
1789
1790 controller = pick_controller_from_path(fc, path);
1791 if (!controller)
1792 return -EIO;
1793 cgroup = find_cgroup_in_path(path);
1794 if (!cgroup)
1795 return -EINVAL;
1796
1797 get_cgdir_and_path(cgroup, &cgdir, &last);
1798 if (!last) {
1799 path1 = "/";
1800 path2 = cgdir;
1801 } else {
1802 path1 = cgdir;
1803 path2 = last;
1804 }
1805
1806 k = cgfs_get_key(controller, path1, path2);
1807 if (!k) {
1808 ret = -EINVAL;
1809 goto out;
1810 }
1811 free_key(k);
1812
1813 pid_t initpid = lookup_initpid_in_store(fc->pid);
1814 if (initpid <= 0)
1815 initpid = fc->pid;
1816 if (!caller_may_see_dir(initpid, controller, path1)) {
1817 ret = -ENOENT;
1818 goto out;
1819 }
1820 if (!fc_may_access(fc, controller, path1, path2, mode)) {
1821 ret = -EACCES;
1822 goto out;
1823 }
1824
1825 ret = 0;
1826
1827 out:
1828 free(cgdir);
1829 return ret;
1830 }
1831
1832 int cg_release(const char *path, struct fuse_file_info *fi)
1833 {
1834 do_release_file_info(fi);
1835 return 0;
1836 }
1837
1838 #define POLLIN_SET ( EPOLLIN | EPOLLHUP | EPOLLRDHUP )
1839
1840 static bool wait_for_sock(int sock, int timeout)
1841 {
1842 struct epoll_event ev;
1843 int epfd, ret, now, starttime, deltatime, saved_errno;
1844
1845 if ((starttime = time(NULL)) < 0)
1846 return false;
1847
1848 if ((epfd = epoll_create(1)) < 0) {
1849 fprintf(stderr, "Failed to create epoll socket: %m\n");
1850 return false;
1851 }
1852
1853 ev.events = POLLIN_SET;
1854 ev.data.fd = sock;
1855 if (epoll_ctl(epfd, EPOLL_CTL_ADD, sock, &ev) < 0) {
1856 fprintf(stderr, "Failed adding socket to epoll: %m\n");
1857 close(epfd);
1858 return false;
1859 }
1860
1861 again:
1862 if ((now = time(NULL)) < 0) {
1863 close(epfd);
1864 return false;
1865 }
1866
1867 deltatime = (starttime + timeout) - now;
1868 if (deltatime < 0) { // timeout
1869 errno = 0;
1870 close(epfd);
1871 return false;
1872 }
1873 ret = epoll_wait(epfd, &ev, 1, 1000*deltatime + 1);
1874 if (ret < 0 && errno == EINTR)
1875 goto again;
1876 saved_errno = errno;
1877 close(epfd);
1878
1879 if (ret <= 0) {
1880 errno = saved_errno;
1881 return false;
1882 }
1883 return true;
1884 }
1885
1886 static int msgrecv(int sockfd, void *buf, size_t len)
1887 {
1888 if (!wait_for_sock(sockfd, 2))
1889 return -1;
1890 return recv(sockfd, buf, len, MSG_DONTWAIT);
1891 }
1892
1893 static int send_creds(int sock, struct ucred *cred, char v, bool pingfirst)
1894 {
1895 struct msghdr msg = { 0 };
1896 struct iovec iov;
1897 struct cmsghdr *cmsg;
1898 char cmsgbuf[CMSG_SPACE(sizeof(*cred))];
1899 char buf[1];
1900 buf[0] = 'p';
1901
1902 if (pingfirst) {
1903 if (msgrecv(sock, buf, 1) != 1) {
1904 fprintf(stderr, "%s: Error getting reply from server over socketpair\n",
1905 __func__);
1906 return SEND_CREDS_FAIL;
1907 }
1908 }
1909
1910 msg.msg_control = cmsgbuf;
1911 msg.msg_controllen = sizeof(cmsgbuf);
1912
1913 cmsg = CMSG_FIRSTHDR(&msg);
1914 cmsg->cmsg_len = CMSG_LEN(sizeof(struct ucred));
1915 cmsg->cmsg_level = SOL_SOCKET;
1916 cmsg->cmsg_type = SCM_CREDENTIALS;
1917 memcpy(CMSG_DATA(cmsg), cred, sizeof(*cred));
1918
1919 msg.msg_name = NULL;
1920 msg.msg_namelen = 0;
1921
1922 buf[0] = v;
1923 iov.iov_base = buf;
1924 iov.iov_len = sizeof(buf);
1925 msg.msg_iov = &iov;
1926 msg.msg_iovlen = 1;
1927
1928 if (sendmsg(sock, &msg, 0) < 0) {
1929 fprintf(stderr, "%s: failed at sendmsg: %s\n", __func__,
1930 strerror(errno));
1931 if (errno == 3)
1932 return SEND_CREDS_NOTSK;
1933 return SEND_CREDS_FAIL;
1934 }
1935
1936 return SEND_CREDS_OK;
1937 }
1938
1939 static bool recv_creds(int sock, struct ucred *cred, char *v)
1940 {
1941 struct msghdr msg = { 0 };
1942 struct iovec iov;
1943 struct cmsghdr *cmsg;
1944 char cmsgbuf[CMSG_SPACE(sizeof(*cred))];
1945 char buf[1];
1946 int ret;
1947 int optval = 1;
1948
1949 *v = '1';
1950
1951 cred->pid = -1;
1952 cred->uid = -1;
1953 cred->gid = -1;
1954
1955 if (setsockopt(sock, SOL_SOCKET, SO_PASSCRED, &optval, sizeof(optval)) == -1) {
1956 fprintf(stderr, "Failed to set passcred: %s\n", strerror(errno));
1957 return false;
1958 }
1959 buf[0] = '1';
1960 if (write(sock, buf, 1) != 1) {
1961 fprintf(stderr, "Failed to start write on scm fd: %s\n", strerror(errno));
1962 return false;
1963 }
1964
1965 msg.msg_name = NULL;
1966 msg.msg_namelen = 0;
1967 msg.msg_control = cmsgbuf;
1968 msg.msg_controllen = sizeof(cmsgbuf);
1969
1970 iov.iov_base = buf;
1971 iov.iov_len = sizeof(buf);
1972 msg.msg_iov = &iov;
1973 msg.msg_iovlen = 1;
1974
1975 if (!wait_for_sock(sock, 2)) {
1976 fprintf(stderr, "Timed out waiting for scm_cred: %s\n",
1977 strerror(errno));
1978 return false;
1979 }
1980 ret = recvmsg(sock, &msg, MSG_DONTWAIT);
1981 if (ret < 0) {
1982 fprintf(stderr, "Failed to receive scm_cred: %s\n",
1983 strerror(errno));
1984 return false;
1985 }
1986
1987 cmsg = CMSG_FIRSTHDR(&msg);
1988
1989 if (cmsg && cmsg->cmsg_len == CMSG_LEN(sizeof(struct ucred)) &&
1990 cmsg->cmsg_level == SOL_SOCKET &&
1991 cmsg->cmsg_type == SCM_CREDENTIALS) {
1992 memcpy(cred, CMSG_DATA(cmsg), sizeof(*cred));
1993 }
1994 *v = buf[0];
1995
1996 return true;
1997 }
1998
1999 struct pid_ns_clone_args {
2000 int *cpipe;
2001 int sock;
2002 pid_t tpid;
2003 int (*wrapped) (int, pid_t); // pid_from_ns or pid_to_ns
2004 };
2005
2006 /*
2007 * pid_ns_clone_wrapper - wraps pid_to_ns or pid_from_ns for usage
2008 * with clone(). This simply writes '1' as ACK back to the parent
2009 * before calling the actual wrapped function.
2010 */
2011 static int pid_ns_clone_wrapper(void *arg) {
2012 struct pid_ns_clone_args* args = (struct pid_ns_clone_args *) arg;
2013 char b = '1';
2014
2015 close(args->cpipe[0]);
2016 if (write(args->cpipe[1], &b, sizeof(char)) < 0) {
2017 fprintf(stderr, "%s (child): error on write: %s\n",
2018 __func__, strerror(errno));
2019 }
2020 close(args->cpipe[1]);
2021 return args->wrapped(args->sock, args->tpid);
2022 }
2023
2024 /*
2025 * pid_to_ns - reads pids from a ucred over a socket, then writes the
2026 * int value back over the socket. This shifts the pid from the
2027 * sender's pidns into tpid's pidns.
2028 */
2029 static int pid_to_ns(int sock, pid_t tpid)
2030 {
2031 char v = '0';
2032 struct ucred cred;
2033
2034 while (recv_creds(sock, &cred, &v)) {
2035 if (v == '1')
2036 return 0;
2037 if (write(sock, &cred.pid, sizeof(pid_t)) != sizeof(pid_t))
2038 return 1;
2039 }
2040 return 0;
2041 }
2042
2043
2044 /*
2045 * pid_to_ns_wrapper: when you setns into a pidns, you yourself remain
2046 * in your old pidns. Only children which you clone will be in the target
2047 * pidns. So the pid_to_ns_wrapper does the setns, then clones a child to
2048 * actually convert pids.
2049 *
2050 * Note: glibc's fork() does not respect pidns, which can lead to failed
2051 * assertions inside glibc (and thus failed forks) if the child's pid in
2052 * the pidns and the parent pid outside are identical. Using clone prevents
2053 * this issue.
2054 */
2055 static void pid_to_ns_wrapper(int sock, pid_t tpid)
2056 {
2057 int newnsfd = -1, ret, cpipe[2];
2058 char fnam[100];
2059 pid_t cpid;
2060 char v;
2061
2062 ret = snprintf(fnam, sizeof(fnam), "/proc/%d/ns/pid", tpid);
2063 if (ret < 0 || ret >= sizeof(fnam))
2064 _exit(1);
2065 newnsfd = open(fnam, O_RDONLY);
2066 if (newnsfd < 0)
2067 _exit(1);
2068 if (setns(newnsfd, 0) < 0)
2069 _exit(1);
2070 close(newnsfd);
2071
2072 if (pipe(cpipe) < 0)
2073 _exit(1);
2074
2075 struct pid_ns_clone_args args = {
2076 .cpipe = cpipe,
2077 .sock = sock,
2078 .tpid = tpid,
2079 .wrapped = &pid_to_ns
2080 };
2081 size_t stack_size = sysconf(_SC_PAGESIZE);
2082 void *stack = alloca(stack_size);
2083
2084 cpid = clone(pid_ns_clone_wrapper, stack + stack_size, SIGCHLD, &args);
2085 if (cpid < 0)
2086 _exit(1);
2087
2088 // give the child 1 second to be done forking and
2089 // write its ack
2090 if (!wait_for_sock(cpipe[0], 1))
2091 _exit(1);
2092 ret = read(cpipe[0], &v, 1);
2093 if (ret != sizeof(char) || v != '1')
2094 _exit(1);
2095
2096 if (!wait_for_pid(cpid))
2097 _exit(1);
2098 _exit(0);
2099 }
2100
2101 /*
2102 * To read cgroup files with a particular pid, we will setns into the child
2103 * pidns, open a pipe, fork a child - which will be the first to really be in
2104 * the child ns - which does the cgfs_get_value and writes the data to the pipe.
2105 */
2106 bool do_read_pids(pid_t tpid, const char *contrl, const char *cg, const char *file, char **d)
2107 {
2108 int sock[2] = {-1, -1};
2109 char *tmpdata = NULL;
2110 int ret;
2111 pid_t qpid, cpid = -1;
2112 bool answer = false;
2113 char v = '0';
2114 struct ucred cred;
2115 size_t sz = 0, asz = 0;
2116
2117 if (!cgfs_get_value(contrl, cg, file, &tmpdata))
2118 return false;
2119
2120 /*
2121 * Now we read the pids from returned data one by one, pass
2122 * them into a child in the target namespace, read back the
2123 * translated pids, and put them into our to-return data
2124 */
2125
2126 if (socketpair(AF_UNIX, SOCK_DGRAM, 0, sock) < 0) {
2127 perror("socketpair");
2128 free(tmpdata);
2129 return false;
2130 }
2131
2132 cpid = fork();
2133 if (cpid == -1)
2134 goto out;
2135
2136 if (!cpid) // child - exits when done
2137 pid_to_ns_wrapper(sock[1], tpid);
2138
2139 char *ptr = tmpdata;
2140 cred.uid = 0;
2141 cred.gid = 0;
2142 while (sscanf(ptr, "%d\n", &qpid) == 1) {
2143 cred.pid = qpid;
2144 ret = send_creds(sock[0], &cred, v, true);
2145
2146 if (ret == SEND_CREDS_NOTSK)
2147 goto next;
2148 if (ret == SEND_CREDS_FAIL)
2149 goto out;
2150
2151 // read converted results
2152 if (!wait_for_sock(sock[0], 2)) {
2153 fprintf(stderr, "%s: timed out waiting for pid from child: %s\n",
2154 __func__, strerror(errno));
2155 goto out;
2156 }
2157 if (read(sock[0], &qpid, sizeof(qpid)) != sizeof(qpid)) {
2158 fprintf(stderr, "%s: error reading pid from child: %s\n",
2159 __func__, strerror(errno));
2160 goto out;
2161 }
2162 must_strcat_pid(d, &sz, &asz, qpid);
2163 next:
2164 ptr = strchr(ptr, '\n');
2165 if (!ptr)
2166 break;
2167 ptr++;
2168 }
2169
2170 cred.pid = getpid();
2171 v = '1';
2172 if (send_creds(sock[0], &cred, v, true) != SEND_CREDS_OK) {
2173 // failed to ask child to exit
2174 fprintf(stderr, "%s: failed to ask child to exit: %s\n",
2175 __func__, strerror(errno));
2176 goto out;
2177 }
2178
2179 answer = true;
2180
2181 out:
2182 free(tmpdata);
2183 if (cpid != -1)
2184 wait_for_pid(cpid);
2185 if (sock[0] != -1) {
2186 close(sock[0]);
2187 close(sock[1]);
2188 }
2189 return answer;
2190 }
2191
2192 int cg_read(const char *path, char *buf, size_t size, off_t offset,
2193 struct fuse_file_info *fi)
2194 {
2195 struct fuse_context *fc = fuse_get_context();
2196 struct file_info *f = (struct file_info *)fi->fh;
2197 struct cgfs_files *k = NULL;
2198 char *data = NULL;
2199 int ret, s;
2200 bool r;
2201
2202 if (f->type != LXC_TYPE_CGFILE) {
2203 fprintf(stderr, "Internal error: directory cache info used in cg_read\n");
2204 return -EIO;
2205 }
2206
2207 if (offset)
2208 return 0;
2209
2210 if (!fc)
2211 return -EIO;
2212
2213 if (!f->controller)
2214 return -EINVAL;
2215
2216 if ((k = cgfs_get_key(f->controller, f->cgroup, f->file)) == NULL) {
2217 return -EINVAL;
2218 }
2219 free_key(k);
2220
2221
2222 if (!fc_may_access(fc, f->controller, f->cgroup, f->file, O_RDONLY)) {
2223 ret = -EACCES;
2224 goto out;
2225 }
2226
2227 if (strcmp(f->file, "tasks") == 0 ||
2228 strcmp(f->file, "/tasks") == 0 ||
2229 strcmp(f->file, "/cgroup.procs") == 0 ||
2230 strcmp(f->file, "cgroup.procs") == 0)
2231 // special case - we have to translate the pids
2232 r = do_read_pids(fc->pid, f->controller, f->cgroup, f->file, &data);
2233 else
2234 r = cgfs_get_value(f->controller, f->cgroup, f->file, &data);
2235
2236 if (!r) {
2237 ret = -EINVAL;
2238 goto out;
2239 }
2240
2241 if (!data) {
2242 ret = 0;
2243 goto out;
2244 }
2245 s = strlen(data);
2246 if (s > size)
2247 s = size;
2248 memcpy(buf, data, s);
2249 if (s > 0 && s < size && data[s-1] != '\n')
2250 buf[s++] = '\n';
2251
2252 ret = s;
2253
2254 out:
2255 free(data);
2256 return ret;
2257 }
2258
2259 static int pid_from_ns(int sock, pid_t tpid)
2260 {
2261 pid_t vpid;
2262 struct ucred cred;
2263 char v;
2264 int ret;
2265
2266 cred.uid = 0;
2267 cred.gid = 0;
2268 while (1) {
2269 if (!wait_for_sock(sock, 2)) {
2270 fprintf(stderr, "%s: timeout reading from parent\n", __func__);
2271 return 1;
2272 }
2273 if ((ret = read(sock, &vpid, sizeof(pid_t))) != sizeof(pid_t)) {
2274 fprintf(stderr, "%s: bad read from parent: %s\n",
2275 __func__, strerror(errno));
2276 return 1;
2277 }
2278 if (vpid == -1) // done
2279 break;
2280 v = '0';
2281 cred.pid = vpid;
2282 if (send_creds(sock, &cred, v, true) != SEND_CREDS_OK) {
2283 v = '1';
2284 cred.pid = getpid();
2285 if (send_creds(sock, &cred, v, false) != SEND_CREDS_OK)
2286 return 1;
2287 }
2288 }
2289 return 0;
2290 }
2291
2292 static void pid_from_ns_wrapper(int sock, pid_t tpid)
2293 {
2294 int newnsfd = -1, ret, cpipe[2];
2295 char fnam[100];
2296 pid_t cpid;
2297 char v;
2298
2299 ret = snprintf(fnam, sizeof(fnam), "/proc/%d/ns/pid", tpid);
2300 if (ret < 0 || ret >= sizeof(fnam))
2301 _exit(1);
2302 newnsfd = open(fnam, O_RDONLY);
2303 if (newnsfd < 0)
2304 _exit(1);
2305 if (setns(newnsfd, 0) < 0)
2306 _exit(1);
2307 close(newnsfd);
2308
2309 if (pipe(cpipe) < 0)
2310 _exit(1);
2311
2312 struct pid_ns_clone_args args = {
2313 .cpipe = cpipe,
2314 .sock = sock,
2315 .tpid = tpid,
2316 .wrapped = &pid_from_ns
2317 };
2318 size_t stack_size = sysconf(_SC_PAGESIZE);
2319 void *stack = alloca(stack_size);
2320
2321 cpid = clone(pid_ns_clone_wrapper, stack + stack_size, SIGCHLD, &args);
2322 if (cpid < 0)
2323 _exit(1);
2324
2325 // give the child 1 second to be done forking and
2326 // write its ack
2327 if (!wait_for_sock(cpipe[0], 1))
2328 _exit(1);
2329 ret = read(cpipe[0], &v, 1);
2330 if (ret != sizeof(char) || v != '1')
2331 _exit(1);
2332
2333 if (!wait_for_pid(cpid))
2334 _exit(1);
2335 _exit(0);
2336 }
2337
2338 /*
2339 * Given host @uid, return the uid to which it maps in
2340 * @pid's user namespace, or -1 if none.
2341 */
2342 bool hostuid_to_ns(uid_t uid, pid_t pid, uid_t *answer)
2343 {
2344 FILE *f;
2345 char line[400];
2346
2347 sprintf(line, "/proc/%d/uid_map", pid);
2348 if ((f = fopen(line, "r")) == NULL) {
2349 return false;
2350 }
2351
2352 *answer = convert_id_to_ns(f, uid);
2353 fclose(f);
2354
2355 if (*answer == -1)
2356 return false;
2357 return true;
2358 }
2359
2360 /*
2361 * get_pid_creds: get the real uid and gid of @pid from
2362 * /proc/$$/status
2363 * (XXX should we use euid here?)
2364 */
2365 void get_pid_creds(pid_t pid, uid_t *uid, gid_t *gid)
2366 {
2367 char line[400];
2368 uid_t u;
2369 gid_t g;
2370 FILE *f;
2371
2372 *uid = -1;
2373 *gid = -1;
2374 sprintf(line, "/proc/%d/status", pid);
2375 if ((f = fopen(line, "r")) == NULL) {
2376 fprintf(stderr, "Error opening %s: %s\n", line, strerror(errno));
2377 return;
2378 }
2379 while (fgets(line, 400, f)) {
2380 if (strncmp(line, "Uid:", 4) == 0) {
2381 if (sscanf(line+4, "%u", &u) != 1) {
2382 fprintf(stderr, "bad uid line for pid %u\n", pid);
2383 fclose(f);
2384 return;
2385 }
2386 *uid = u;
2387 } else if (strncmp(line, "Gid:", 4) == 0) {
2388 if (sscanf(line+4, "%u", &g) != 1) {
2389 fprintf(stderr, "bad gid line for pid %u\n", pid);
2390 fclose(f);
2391 return;
2392 }
2393 *gid = g;
2394 }
2395 }
2396 fclose(f);
2397 }
2398
2399 /*
2400 * May the requestor @r move victim @v to a new cgroup?
2401 * This is allowed if
2402 * . they are the same task
2403 * . they are ownedy by the same uid
2404 * . @r is root on the host, or
2405 * . @v's uid is mapped into @r's where @r is root.
2406 */
2407 bool may_move_pid(pid_t r, uid_t r_uid, pid_t v)
2408 {
2409 uid_t v_uid, tmpuid;
2410 gid_t v_gid;
2411
2412 if (r == v)
2413 return true;
2414 if (r_uid == 0)
2415 return true;
2416 get_pid_creds(v, &v_uid, &v_gid);
2417 if (r_uid == v_uid)
2418 return true;
2419 if (hostuid_to_ns(r_uid, r, &tmpuid) && tmpuid == 0
2420 && hostuid_to_ns(v_uid, r, &tmpuid))
2421 return true;
2422 return false;
2423 }
2424
2425 static bool do_write_pids(pid_t tpid, uid_t tuid, const char *contrl, const char *cg,
2426 const char *file, const char *buf)
2427 {
2428 int sock[2] = {-1, -1};
2429 pid_t qpid, cpid = -1;
2430 FILE *pids_file = NULL;
2431 bool answer = false, fail = false;
2432
2433 pids_file = open_pids_file(contrl, cg);
2434 if (!pids_file)
2435 return false;
2436
2437 /*
2438 * write the pids to a socket, have helper in writer's pidns
2439 * call movepid for us
2440 */
2441 if (socketpair(AF_UNIX, SOCK_DGRAM, 0, sock) < 0) {
2442 perror("socketpair");
2443 goto out;
2444 }
2445
2446 cpid = fork();
2447 if (cpid == -1)
2448 goto out;
2449
2450 if (!cpid) { // child
2451 fclose(pids_file);
2452 pid_from_ns_wrapper(sock[1], tpid);
2453 }
2454
2455 const char *ptr = buf;
2456 while (sscanf(ptr, "%d", &qpid) == 1) {
2457 struct ucred cred;
2458 char v;
2459
2460 if (write(sock[0], &qpid, sizeof(qpid)) != sizeof(qpid)) {
2461 fprintf(stderr, "%s: error writing pid to child: %s\n",
2462 __func__, strerror(errno));
2463 goto out;
2464 }
2465
2466 if (recv_creds(sock[0], &cred, &v)) {
2467 if (v == '0') {
2468 if (!may_move_pid(tpid, tuid, cred.pid)) {
2469 fail = true;
2470 break;
2471 }
2472 if (fprintf(pids_file, "%d", (int) cred.pid) < 0)
2473 fail = true;
2474 }
2475 }
2476
2477 ptr = strchr(ptr, '\n');
2478 if (!ptr)
2479 break;
2480 ptr++;
2481 }
2482
2483 /* All good, write the value */
2484 qpid = -1;
2485 if (write(sock[0], &qpid ,sizeof(qpid)) != sizeof(qpid))
2486 fprintf(stderr, "Warning: failed to ask child to exit\n");
2487
2488 if (!fail)
2489 answer = true;
2490
2491 out:
2492 if (cpid != -1)
2493 wait_for_pid(cpid);
2494 if (sock[0] != -1) {
2495 close(sock[0]);
2496 close(sock[1]);
2497 }
2498 if (pids_file) {
2499 if (fclose(pids_file) != 0)
2500 answer = false;
2501 }
2502 return answer;
2503 }
2504
2505 int cg_write(const char *path, const char *buf, size_t size, off_t offset,
2506 struct fuse_file_info *fi)
2507 {
2508 struct fuse_context *fc = fuse_get_context();
2509 char *localbuf = NULL;
2510 struct cgfs_files *k = NULL;
2511 struct file_info *f = (struct file_info *)fi->fh;
2512 bool r;
2513
2514 if (f->type != LXC_TYPE_CGFILE) {
2515 fprintf(stderr, "Internal error: directory cache info used in cg_write\n");
2516 return -EIO;
2517 }
2518
2519 if (offset)
2520 return 0;
2521
2522 if (!fc)
2523 return -EIO;
2524
2525 localbuf = alloca(size+1);
2526 localbuf[size] = '\0';
2527 memcpy(localbuf, buf, size);
2528
2529 if ((k = cgfs_get_key(f->controller, f->cgroup, f->file)) == NULL) {
2530 size = -EINVAL;
2531 goto out;
2532 }
2533
2534 if (!fc_may_access(fc, f->controller, f->cgroup, f->file, O_WRONLY)) {
2535 size = -EACCES;
2536 goto out;
2537 }
2538
2539 if (strcmp(f->file, "tasks") == 0 ||
2540 strcmp(f->file, "/tasks") == 0 ||
2541 strcmp(f->file, "/cgroup.procs") == 0 ||
2542 strcmp(f->file, "cgroup.procs") == 0)
2543 // special case - we have to translate the pids
2544 r = do_write_pids(fc->pid, fc->uid, f->controller, f->cgroup, f->file, localbuf);
2545 else
2546 r = cgfs_set_value(f->controller, f->cgroup, f->file, localbuf);
2547
2548 if (!r)
2549 size = -EINVAL;
2550
2551 out:
2552 free_key(k);
2553 return size;
2554 }
2555
2556 int cg_chown(const char *path, uid_t uid, gid_t gid)
2557 {
2558 struct fuse_context *fc = fuse_get_context();
2559 char *cgdir = NULL, *last = NULL, *path1, *path2, *controller;
2560 struct cgfs_files *k = NULL;
2561 const char *cgroup;
2562 int ret;
2563
2564 if (!fc)
2565 return -EIO;
2566
2567 if (strcmp(path, "/cgroup") == 0)
2568 return -EINVAL;
2569
2570 controller = pick_controller_from_path(fc, path);
2571 if (!controller)
2572 return -EINVAL;
2573 cgroup = find_cgroup_in_path(path);
2574 if (!cgroup)
2575 /* this is just /cgroup/controller */
2576 return -EINVAL;
2577
2578 get_cgdir_and_path(cgroup, &cgdir, &last);
2579
2580 if (!last) {
2581 path1 = "/";
2582 path2 = cgdir;
2583 } else {
2584 path1 = cgdir;
2585 path2 = last;
2586 }
2587
2588 if (is_child_cgroup(controller, path1, path2)) {
2589 // get uid, gid, from '/tasks' file and make up a mode
2590 // That is a hack, until cgmanager gains a GetCgroupPerms fn.
2591 k = cgfs_get_key(controller, cgroup, "tasks");
2592
2593 } else
2594 k = cgfs_get_key(controller, path1, path2);
2595
2596 if (!k) {
2597 ret = -EINVAL;
2598 goto out;
2599 }
2600
2601 /*
2602 * This being a fuse request, the uid and gid must be valid
2603 * in the caller's namespace. So we can just check to make
2604 * sure that the caller is root in his uid, and privileged
2605 * over the file's current owner.
2606 */
2607 if (!is_privileged_over(fc->pid, fc->uid, k->uid, NS_ROOT_REQD)) {
2608 ret = -EACCES;
2609 goto out;
2610 }
2611
2612 ret = cgfs_chown_file(controller, cgroup, uid, gid);
2613
2614 out:
2615 free_key(k);
2616 free(cgdir);
2617
2618 return ret;
2619 }
2620
2621 int cg_chmod(const char *path, mode_t mode)
2622 {
2623 struct fuse_context *fc = fuse_get_context();
2624 char * cgdir = NULL, *last = NULL, *path1, *path2, *controller;
2625 struct cgfs_files *k = NULL;
2626 const char *cgroup;
2627 int ret;
2628
2629 if (!fc)
2630 return -EIO;
2631
2632 if (strcmp(path, "/cgroup") == 0)
2633 return -EINVAL;
2634
2635 controller = pick_controller_from_path(fc, path);
2636 if (!controller)
2637 return -EINVAL;
2638 cgroup = find_cgroup_in_path(path);
2639 if (!cgroup)
2640 /* this is just /cgroup/controller */
2641 return -EINVAL;
2642
2643 get_cgdir_and_path(cgroup, &cgdir, &last);
2644
2645 if (!last) {
2646 path1 = "/";
2647 path2 = cgdir;
2648 } else {
2649 path1 = cgdir;
2650 path2 = last;
2651 }
2652
2653 if (is_child_cgroup(controller, path1, path2)) {
2654 // get uid, gid, from '/tasks' file and make up a mode
2655 // That is a hack, until cgmanager gains a GetCgroupPerms fn.
2656 k = cgfs_get_key(controller, cgroup, "tasks");
2657
2658 } else
2659 k = cgfs_get_key(controller, path1, path2);
2660
2661 if (!k) {
2662 ret = -EINVAL;
2663 goto out;
2664 }
2665
2666 /*
2667 * This being a fuse request, the uid and gid must be valid
2668 * in the caller's namespace. So we can just check to make
2669 * sure that the caller is root in his uid, and privileged
2670 * over the file's current owner.
2671 */
2672 if (!is_privileged_over(fc->pid, fc->uid, k->uid, NS_ROOT_OPT)) {
2673 ret = -EPERM;
2674 goto out;
2675 }
2676
2677 if (!cgfs_chmod_file(controller, cgroup, mode)) {
2678 ret = -EINVAL;
2679 goto out;
2680 }
2681
2682 ret = 0;
2683 out:
2684 free_key(k);
2685 free(cgdir);
2686 return ret;
2687 }
2688
2689 int cg_mkdir(const char *path, mode_t mode)
2690 {
2691 struct fuse_context *fc = fuse_get_context();
2692 char *last = NULL, *path1, *cgdir = NULL, *controller, *next = NULL;
2693 const char *cgroup;
2694 int ret;
2695
2696 if (!fc)
2697 return -EIO;
2698
2699
2700 controller = pick_controller_from_path(fc, path);
2701 if (!controller)
2702 return -EINVAL;
2703
2704 cgroup = find_cgroup_in_path(path);
2705 if (!cgroup)
2706 return -EINVAL;
2707
2708 get_cgdir_and_path(cgroup, &cgdir, &last);
2709 if (!last)
2710 path1 = "/";
2711 else
2712 path1 = cgdir;
2713
2714 pid_t initpid = lookup_initpid_in_store(fc->pid);
2715 if (initpid <= 0)
2716 initpid = fc->pid;
2717 if (!caller_is_in_ancestor(initpid, controller, path1, &next)) {
2718 if (!next)
2719 ret = -EINVAL;
2720 else if (last && strcmp(next, last) == 0)
2721 ret = -EEXIST;
2722 else
2723 ret = -ENOENT;
2724 goto out;
2725 }
2726
2727 if (!fc_may_access(fc, controller, path1, NULL, O_RDWR)) {
2728 ret = -EACCES;
2729 goto out;
2730 }
2731 if (!caller_is_in_ancestor(initpid, controller, path1, NULL)) {
2732 ret = -EACCES;
2733 goto out;
2734 }
2735
2736 ret = cgfs_create(controller, cgroup, fc->uid, fc->gid);
2737
2738 out:
2739 free(cgdir);
2740 free(next);
2741 return ret;
2742 }
2743
2744 int cg_rmdir(const char *path)
2745 {
2746 struct fuse_context *fc = fuse_get_context();
2747 char *last = NULL, *cgdir = NULL, *controller, *next = NULL;
2748 const char *cgroup;
2749 int ret;
2750
2751 if (!fc)
2752 return -EIO;
2753
2754 controller = pick_controller_from_path(fc, path);
2755 if (!controller)
2756 return -EINVAL;
2757
2758 cgroup = find_cgroup_in_path(path);
2759 if (!cgroup)
2760 return -EINVAL;
2761
2762 get_cgdir_and_path(cgroup, &cgdir, &last);
2763 if (!last) {
2764 ret = -EINVAL;
2765 goto out;
2766 }
2767
2768 pid_t initpid = lookup_initpid_in_store(fc->pid);
2769 if (initpid <= 0)
2770 initpid = fc->pid;
2771 if (!caller_is_in_ancestor(initpid, controller, cgroup, &next)) {
2772 if (!last || strcmp(next, last) == 0)
2773 ret = -EBUSY;
2774 else
2775 ret = -ENOENT;
2776 goto out;
2777 }
2778
2779 if (!fc_may_access(fc, controller, cgdir, NULL, O_WRONLY)) {
2780 ret = -EACCES;
2781 goto out;
2782 }
2783 if (!caller_is_in_ancestor(initpid, controller, cgroup, NULL)) {
2784 ret = -EACCES;
2785 goto out;
2786 }
2787
2788 if (!cgfs_remove(controller, cgroup)) {
2789 ret = -EINVAL;
2790 goto out;
2791 }
2792
2793 ret = 0;
2794
2795 out:
2796 free(cgdir);
2797 free(next);
2798 return ret;
2799 }
2800
2801 static bool startswith(const char *line, const char *pref)
2802 {
2803 if (strncmp(line, pref, strlen(pref)) == 0)
2804 return true;
2805 return false;
2806 }
2807
2808 static void get_mem_cached(char *memstat, unsigned long *v)
2809 {
2810 char *eol;
2811
2812 *v = 0;
2813 while (*memstat) {
2814 if (startswith(memstat, "total_cache")) {
2815 sscanf(memstat + 11, "%lu", v);
2816 *v /= 1024;
2817 return;
2818 }
2819 eol = strchr(memstat, '\n');
2820 if (!eol)
2821 return;
2822 memstat = eol+1;
2823 }
2824 }
2825
2826 static void get_blkio_io_value(char *str, unsigned major, unsigned minor, char *iotype, unsigned long *v)
2827 {
2828 char *eol;
2829 char key[32];
2830
2831 memset(key, 0, 32);
2832 snprintf(key, 32, "%u:%u %s", major, minor, iotype);
2833
2834 size_t len = strlen(key);
2835 *v = 0;
2836
2837 while (*str) {
2838 if (startswith(str, key)) {
2839 sscanf(str + len, "%lu", v);
2840 return;
2841 }
2842 eol = strchr(str, '\n');
2843 if (!eol)
2844 return;
2845 str = eol+1;
2846 }
2847 }
2848
2849 static int read_file(const char *path, char *buf, size_t size,
2850 struct file_info *d)
2851 {
2852 size_t linelen = 0, total_len = 0, rv = 0;
2853 char *line = NULL;
2854 char *cache = d->buf;
2855 size_t cache_size = d->buflen;
2856 FILE *f = fopen(path, "r");
2857 if (!f)
2858 return 0;
2859
2860 while (getline(&line, &linelen, f) != -1) {
2861 size_t l = snprintf(cache, cache_size, "%s", line);
2862 if (l < 0) {
2863 perror("Error writing to cache");
2864 rv = 0;
2865 goto err;
2866 }
2867 if (l >= cache_size) {
2868 fprintf(stderr, "Internal error: truncated write to cache\n");
2869 rv = 0;
2870 goto err;
2871 }
2872 cache += l;
2873 cache_size -= l;
2874 total_len += l;
2875 }
2876
2877 d->size = total_len;
2878 if (total_len > size ) total_len = size;
2879
2880 /* read from off 0 */
2881 memcpy(buf, d->buf, total_len);
2882 rv = total_len;
2883 err:
2884 fclose(f);
2885 free(line);
2886 return rv;
2887 }
2888
2889 /*
2890 * FUSE ops for /proc
2891 */
2892
2893 static unsigned long get_memlimit(const char *cgroup)
2894 {
2895 char *memlimit_str = NULL;
2896 unsigned long memlimit = -1;
2897
2898 if (cgfs_get_value("memory", cgroup, "memory.limit_in_bytes", &memlimit_str))
2899 memlimit = strtoul(memlimit_str, NULL, 10);
2900
2901 free(memlimit_str);
2902
2903 return memlimit;
2904 }
2905
2906 static unsigned long get_min_memlimit(const char *cgroup)
2907 {
2908 char *copy = strdupa(cgroup);
2909 unsigned long memlimit = 0, retlimit;
2910
2911 retlimit = get_memlimit(copy);
2912
2913 while (strcmp(copy, "/") != 0) {
2914 copy = dirname(copy);
2915 memlimit = get_memlimit(copy);
2916 if (memlimit != -1 && memlimit < retlimit)
2917 retlimit = memlimit;
2918 };
2919
2920 return retlimit;
2921 }
2922
2923 static int proc_meminfo_read(char *buf, size_t size, off_t offset,
2924 struct fuse_file_info *fi)
2925 {
2926 struct fuse_context *fc = fuse_get_context();
2927 struct file_info *d = (struct file_info *)fi->fh;
2928 char *cg;
2929 char *memusage_str = NULL, *memstat_str = NULL,
2930 *memswlimit_str = NULL, *memswusage_str = NULL,
2931 *memswlimit_default_str = NULL, *memswusage_default_str = NULL;
2932 unsigned long memlimit = 0, memusage = 0, memswlimit = 0, memswusage = 0,
2933 cached = 0, hosttotal = 0;
2934 char *line = NULL;
2935 size_t linelen = 0, total_len = 0, rv = 0;
2936 char *cache = d->buf;
2937 size_t cache_size = d->buflen;
2938 FILE *f = NULL;
2939
2940 if (offset){
2941 if (offset > d->size)
2942 return -EINVAL;
2943 if (!d->cached)
2944 return 0;
2945 int left = d->size - offset;
2946 total_len = left > size ? size: left;
2947 memcpy(buf, cache + offset, total_len);
2948 return total_len;
2949 }
2950
2951 pid_t initpid = lookup_initpid_in_store(fc->pid);
2952 if (initpid <= 0)
2953 initpid = fc->pid;
2954 cg = get_pid_cgroup(initpid, "memory");
2955 if (!cg)
2956 return read_file("/proc/meminfo", buf, size, d);
2957 prune_init_slice(cg);
2958
2959 memlimit = get_min_memlimit(cg);
2960 if (!cgfs_get_value("memory", cg, "memory.usage_in_bytes", &memusage_str))
2961 goto err;
2962 if (!cgfs_get_value("memory", cg, "memory.stat", &memstat_str))
2963 goto err;
2964
2965 // Following values are allowed to fail, because swapaccount might be turned
2966 // off for current kernel
2967 if(cgfs_get_value("memory", cg, "memory.memsw.limit_in_bytes", &memswlimit_str) &&
2968 cgfs_get_value("memory", cg, "memory.memsw.usage_in_bytes", &memswusage_str))
2969 {
2970 /* If swapaccounting is turned on, then default value is assumed to be that of cgroup / */
2971 if (!cgfs_get_value("memory", "/", "memory.memsw.limit_in_bytes", &memswlimit_default_str))
2972 goto err;
2973 if (!cgfs_get_value("memory", "/", "memory.memsw.usage_in_bytes", &memswusage_default_str))
2974 goto err;
2975
2976 memswlimit = strtoul(memswlimit_str, NULL, 10);
2977 memswusage = strtoul(memswusage_str, NULL, 10);
2978
2979 if (!strcmp(memswlimit_str, memswlimit_default_str))
2980 memswlimit = 0;
2981 if (!strcmp(memswusage_str, memswusage_default_str))
2982 memswusage = 0;
2983
2984 memswlimit = memswlimit / 1024;
2985 memswusage = memswusage / 1024;
2986 }
2987
2988 memusage = strtoul(memusage_str, NULL, 10);
2989 memlimit /= 1024;
2990 memusage /= 1024;
2991
2992 get_mem_cached(memstat_str, &cached);
2993
2994 f = fopen("/proc/meminfo", "r");
2995 if (!f)
2996 goto err;
2997
2998 while (getline(&line, &linelen, f) != -1) {
2999 size_t l;
3000 char *printme, lbuf[100];
3001
3002 memset(lbuf, 0, 100);
3003 if (startswith(line, "MemTotal:")) {
3004 sscanf(line+14, "%lu", &hosttotal);
3005 if (hosttotal < memlimit)
3006 memlimit = hosttotal;
3007 snprintf(lbuf, 100, "MemTotal: %8lu kB\n", memlimit);
3008 printme = lbuf;
3009 } else if (startswith(line, "MemFree:")) {
3010 snprintf(lbuf, 100, "MemFree: %8lu kB\n", memlimit - memusage);
3011 printme = lbuf;
3012 } else if (startswith(line, "MemAvailable:")) {
3013 snprintf(lbuf, 100, "MemAvailable: %8lu kB\n", memlimit - memusage);
3014 printme = lbuf;
3015 } else if (startswith(line, "SwapTotal:") && memswlimit > 0) {
3016 snprintf(lbuf, 100, "SwapTotal: %8lu kB\n", memswlimit - memlimit);
3017 printme = lbuf;
3018 } else if (startswith(line, "SwapFree:") && memswlimit > 0 && memswusage > 0) {
3019 snprintf(lbuf, 100, "SwapFree: %8lu kB\n",
3020 (memswlimit - memlimit) - (memswusage - memusage));
3021 printme = lbuf;
3022 } else if (startswith(line, "Slab:")) {
3023 snprintf(lbuf, 100, "Slab: %8lu kB\n", 0UL);
3024 printme = lbuf;
3025 } else if (startswith(line, "Buffers:")) {
3026 snprintf(lbuf, 100, "Buffers: %8lu kB\n", 0UL);
3027 printme = lbuf;
3028 } else if (startswith(line, "Cached:")) {
3029 snprintf(lbuf, 100, "Cached: %8lu kB\n", cached);
3030 printme = lbuf;
3031 } else if (startswith(line, "SwapCached:")) {
3032 snprintf(lbuf, 100, "SwapCached: %8lu kB\n", 0UL);
3033 printme = lbuf;
3034 } else
3035 printme = line;
3036
3037 l = snprintf(cache, cache_size, "%s", printme);
3038 if (l < 0) {
3039 perror("Error writing to cache");
3040 rv = 0;
3041 goto err;
3042
3043 }
3044 if (l >= cache_size) {
3045 fprintf(stderr, "Internal error: truncated write to cache\n");
3046 rv = 0;
3047 goto err;
3048 }
3049
3050 cache += l;
3051 cache_size -= l;
3052 total_len += l;
3053 }
3054
3055 d->cached = 1;
3056 d->size = total_len;
3057 if (total_len > size ) total_len = size;
3058 memcpy(buf, d->buf, total_len);
3059
3060 rv = total_len;
3061 err:
3062 if (f)
3063 fclose(f);
3064 free(line);
3065 free(cg);
3066 free(memusage_str);
3067 free(memswlimit_str);
3068 free(memswusage_str);
3069 free(memstat_str);
3070 free(memswlimit_default_str);
3071 free(memswusage_default_str);
3072 return rv;
3073 }
3074
3075 /*
3076 * Read the cpuset.cpus for cg
3077 * Return the answer in a newly allocated string which must be freed
3078 */
3079 static char *get_cpuset(const char *cg)
3080 {
3081 char *answer;
3082
3083 if (!cgfs_get_value("cpuset", cg, "cpuset.cpus", &answer))
3084 return NULL;
3085 return answer;
3086 }
3087
3088 bool cpu_in_cpuset(int cpu, const char *cpuset);
3089
3090 static bool cpuline_in_cpuset(const char *line, const char *cpuset)
3091 {
3092 int cpu;
3093
3094 if (sscanf(line, "processor : %d", &cpu) != 1)
3095 return false;
3096 return cpu_in_cpuset(cpu, cpuset);
3097 }
3098
3099 /*
3100 * check whether this is a '^processor" line in /proc/cpuinfo
3101 */
3102 static bool is_processor_line(const char *line)
3103 {
3104 int cpu;
3105
3106 if (sscanf(line, "processor : %d", &cpu) == 1)
3107 return true;
3108 return false;
3109 }
3110
3111 static int proc_cpuinfo_read(char *buf, size_t size, off_t offset,
3112 struct fuse_file_info *fi)
3113 {
3114 struct fuse_context *fc = fuse_get_context();
3115 struct file_info *d = (struct file_info *)fi->fh;
3116 char *cg;
3117 char *cpuset = NULL;
3118 char *line = NULL;
3119 size_t linelen = 0, total_len = 0, rv = 0;
3120 bool am_printing = false, firstline = true, is_s390x = false;
3121 int curcpu = -1, cpu;
3122 char *cache = d->buf;
3123 size_t cache_size = d->buflen;
3124 FILE *f = NULL;
3125
3126 if (offset){
3127 if (offset > d->size)
3128 return -EINVAL;
3129 if (!d->cached)
3130 return 0;
3131 int left = d->size - offset;
3132 total_len = left > size ? size: left;
3133 memcpy(buf, cache + offset, total_len);
3134 return total_len;
3135 }
3136
3137 pid_t initpid = lookup_initpid_in_store(fc->pid);
3138 if (initpid <= 0)
3139 initpid = fc->pid;
3140 cg = get_pid_cgroup(initpid, "cpuset");
3141 if (!cg)
3142 return read_file("proc/cpuinfo", buf, size, d);
3143 prune_init_slice(cg);
3144
3145 cpuset = get_cpuset(cg);
3146 if (!cpuset)
3147 goto err;
3148
3149 f = fopen("/proc/cpuinfo", "r");
3150 if (!f)
3151 goto err;
3152
3153 while (getline(&line, &linelen, f) != -1) {
3154 size_t l;
3155 if (firstline) {
3156 firstline = false;
3157 if (strstr(line, "IBM/S390") != NULL) {
3158 is_s390x = true;
3159 am_printing = true;
3160 }
3161 }
3162 if (is_processor_line(line)) {
3163 am_printing = cpuline_in_cpuset(line, cpuset);
3164 if (am_printing) {
3165 curcpu ++;
3166 l = snprintf(cache, cache_size, "processor : %d\n", curcpu);
3167 if (l < 0) {
3168 perror("Error writing to cache");
3169 rv = 0;
3170 goto err;
3171 }
3172 if (l >= cache_size) {
3173 fprintf(stderr, "Internal error: truncated write to cache\n");
3174 rv = 0;
3175 goto err;
3176 }
3177 cache += l;
3178 cache_size -= l;
3179 total_len += l;
3180 }
3181 continue;
3182 } else if (is_s390x && sscanf(line, "processor %d:", &cpu) == 1) {
3183 char *p;
3184 if (!cpu_in_cpuset(cpu, cpuset))
3185 continue;
3186 curcpu ++;
3187 p = strchr(line, ':');
3188 if (!p || !*p)
3189 goto err;
3190 p++;
3191 l = snprintf(cache, cache_size, "processor %d:%s", curcpu,
3192 );
3193 if (l < 0) {
3194 perror("Error writing to cache");
3195 rv = 0;
3196 goto err;
3197 }
3198 if (l >= cache_size) {
3199 fprintf(stderr, "Internal error: truncated write to cache\n");
3200 rv = 0;
3201 goto err;
3202 }
3203 cache += l;
3204 cache_size -= l;
3205 total_len += l;
3206 continue;
3207
3208 }
3209 if (am_printing) {
3210 l = snprintf(cache, cache_size, "%s", line);
3211 if (l < 0) {
3212 perror("Error writing to cache");
3213 rv = 0;
3214 goto err;
3215 }
3216 if (l >= cache_size) {
3217 fprintf(stderr, "Internal error: truncated write to cache\n");
3218 rv = 0;
3219 goto err;
3220 }
3221 cache += l;
3222 cache_size -= l;
3223 total_len += l;
3224 }
3225 }
3226
3227 d->cached = 1;
3228 d->size = total_len;
3229 if (total_len > size ) total_len = size;
3230
3231 /* read from off 0 */
3232 memcpy(buf, d->buf, total_len);
3233 rv = total_len;
3234 err:
3235 if (f)
3236 fclose(f);
3237 free(line);
3238 free(cpuset);
3239 free(cg);
3240 return rv;
3241 }
3242
3243 static int proc_stat_read(char *buf, size_t size, off_t offset,
3244 struct fuse_file_info *fi)
3245 {
3246 struct fuse_context *fc = fuse_get_context();
3247 struct file_info *d = (struct file_info *)fi->fh;
3248 char *cg;
3249 char *cpuset = NULL;
3250 char *line = NULL;
3251 size_t linelen = 0, total_len = 0, rv = 0;
3252 int curcpu = -1; /* cpu numbering starts at 0 */
3253 unsigned long user = 0, nice = 0, system = 0, idle = 0, iowait = 0, irq = 0, softirq = 0, steal = 0, guest = 0;
3254 unsigned long user_sum = 0, nice_sum = 0, system_sum = 0, idle_sum = 0, iowait_sum = 0,
3255 irq_sum = 0, softirq_sum = 0, steal_sum = 0, guest_sum = 0;
3256 #define CPUALL_MAX_SIZE BUF_RESERVE_SIZE
3257 char cpuall[CPUALL_MAX_SIZE];
3258 /* reserve for cpu all */
3259 char *cache = d->buf + CPUALL_MAX_SIZE;
3260 size_t cache_size = d->buflen - CPUALL_MAX_SIZE;
3261 FILE *f = NULL;
3262
3263 if (offset){
3264 if (offset > d->size)
3265 return -EINVAL;
3266 if (!d->cached)
3267 return 0;
3268 int left = d->size - offset;
3269 total_len = left > size ? size: left;
3270 memcpy(buf, d->buf + offset, total_len);
3271 return total_len;
3272 }
3273
3274 pid_t initpid = lookup_initpid_in_store(fc->pid);
3275 if (initpid <= 0)
3276 initpid = fc->pid;
3277 cg = get_pid_cgroup(initpid, "cpuset");
3278 if (!cg)
3279 return read_file("/proc/stat", buf, size, d);
3280 prune_init_slice(cg);
3281
3282 cpuset = get_cpuset(cg);
3283 if (!cpuset)
3284 goto err;
3285
3286 f = fopen("/proc/stat", "r");
3287 if (!f)
3288 goto err;
3289
3290 //skip first line
3291 if (getline(&line, &linelen, f) < 0) {
3292 fprintf(stderr, "proc_stat_read read first line failed\n");
3293 goto err;
3294 }
3295
3296 while (getline(&line, &linelen, f) != -1) {
3297 size_t l;
3298 int cpu;
3299 char cpu_char[10]; /* That's a lot of cores */
3300 char *c;
3301
3302 if (sscanf(line, "cpu%9[^ ]", cpu_char) != 1) {
3303 /* not a ^cpuN line containing a number N, just print it */
3304 l = snprintf(cache, cache_size, "%s", line);
3305 if (l < 0) {
3306 perror("Error writing to cache");
3307 rv = 0;
3308 goto err;
3309 }
3310 if (l >= cache_size) {
3311 fprintf(stderr, "Internal error: truncated write to cache\n");
3312 rv = 0;
3313 goto err;
3314 }
3315 cache += l;
3316 cache_size -= l;
3317 total_len += l;
3318 continue;
3319 }
3320
3321 if (sscanf(cpu_char, "%d", &cpu) != 1)
3322 continue;
3323 if (!cpu_in_cpuset(cpu, cpuset))
3324 continue;
3325 curcpu ++;
3326
3327 c = strchr(line, ' ');
3328 if (!c)
3329 continue;
3330 l = snprintf(cache, cache_size, "cpu%d%s", curcpu, c);
3331 if (l < 0) {
3332 perror("Error writing to cache");
3333 rv = 0;
3334 goto err;
3335
3336 }
3337 if (l >= cache_size) {
3338 fprintf(stderr, "Internal error: truncated write to cache\n");
3339 rv = 0;
3340 goto err;
3341 }
3342
3343 cache += l;
3344 cache_size -= l;
3345 total_len += l;
3346
3347 if (sscanf(line, "%*s %lu %lu %lu %lu %lu %lu %lu %lu %lu", &user, &nice, &system, &idle, &iowait, &irq,
3348 &softirq, &steal, &guest) != 9)
3349 continue;
3350 user_sum += user;
3351 nice_sum += nice;
3352 system_sum += system;
3353 idle_sum += idle;
3354 iowait_sum += iowait;
3355 irq_sum += irq;
3356 softirq_sum += softirq;
3357 steal_sum += steal;
3358 guest_sum += guest;
3359 }
3360
3361 cache = d->buf;
3362
3363 int cpuall_len = snprintf(cpuall, CPUALL_MAX_SIZE, "%s %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
3364 "cpu ", user_sum, nice_sum, system_sum, idle_sum, iowait_sum, irq_sum, softirq_sum, steal_sum, guest_sum);
3365 if (cpuall_len > 0 && cpuall_len < CPUALL_MAX_SIZE){
3366 memcpy(cache, cpuall, cpuall_len);
3367 cache += cpuall_len;
3368 } else{
3369 /* shouldn't happen */
3370 fprintf(stderr, "proc_stat_read copy cpuall failed, cpuall_len=%d\n", cpuall_len);
3371 cpuall_len = 0;
3372 }
3373
3374 memmove(cache, d->buf + CPUALL_MAX_SIZE, total_len);
3375 total_len += cpuall_len;
3376 d->cached = 1;
3377 d->size = total_len;
3378 if (total_len > size ) total_len = size;
3379
3380 memcpy(buf, d->buf, total_len);
3381 rv = total_len;
3382
3383 err:
3384 if (f)
3385 fclose(f);
3386 free(line);
3387 free(cpuset);
3388 free(cg);
3389 return rv;
3390 }
3391
3392 static long int getreaperage(pid_t pid)
3393 {
3394 char fnam[100];
3395 struct stat sb;
3396 int ret;
3397 pid_t qpid;
3398
3399 qpid = lookup_initpid_in_store(pid);
3400 if (qpid <= 0)
3401 return 0;
3402
3403 ret = snprintf(fnam, 100, "/proc/%d", qpid);
3404 if (ret < 0 || ret >= 100)
3405 return 0;
3406
3407 if (lstat(fnam, &sb) < 0)
3408 return 0;
3409
3410 return time(NULL) - sb.st_ctime;
3411 }
3412
3413 static unsigned long get_reaper_busy(pid_t task)
3414 {
3415 pid_t initpid = lookup_initpid_in_store(task);
3416 char *cgroup = NULL, *usage_str = NULL;
3417 unsigned long usage = 0;
3418
3419 if (initpid <= 0)
3420 return 0;
3421
3422 cgroup = get_pid_cgroup(initpid, "cpuacct");
3423 if (!cgroup)
3424 goto out;
3425 prune_init_slice(cgroup);
3426 if (!cgfs_get_value("cpuacct", cgroup, "cpuacct.usage", &usage_str))
3427 goto out;
3428 usage = strtoul(usage_str, NULL, 10);
3429 usage /= 1000000000;
3430
3431 out:
3432 free(cgroup);
3433 free(usage_str);
3434 return usage;
3435 }
3436
3437 #if RELOADTEST
3438 void iwashere(void)
3439 {
3440 char *name, *cwd = get_current_dir_name();
3441 size_t len;
3442 int fd;
3443
3444 if (!cwd)
3445 exit(1);
3446 len = strlen(cwd) + strlen("/iwashere") + 1;
3447 name = alloca(len);
3448 snprintf(name, len, "%s/iwashere", cwd);
3449 free(cwd);
3450 fd = creat(name, 0755);
3451 if (fd >= 0)
3452 close(fd);
3453 }
3454 #endif
3455
3456 /*
3457 * We read /proc/uptime and reuse its second field.
3458 * For the first field, we use the mtime for the reaper for
3459 * the calling pid as returned by getreaperage
3460 */
3461 static int proc_uptime_read(char *buf, size_t size, off_t offset,
3462 struct fuse_file_info *fi)
3463 {
3464 struct fuse_context *fc = fuse_get_context();
3465 struct file_info *d = (struct file_info *)fi->fh;
3466 long int reaperage = getreaperage(fc->pid);
3467 unsigned long int busytime = get_reaper_busy(fc->pid), idletime;
3468 char *cache = d->buf;
3469 size_t total_len = 0;
3470
3471 #if RELOADTEST
3472 iwashere();
3473 #endif
3474
3475 if (offset){
3476 if (offset > d->size)
3477 return -EINVAL;
3478 if (!d->cached)
3479 return 0;
3480 int left = d->size - offset;
3481 total_len = left > size ? size: left;
3482 memcpy(buf, cache + offset, total_len);
3483 return total_len;
3484 }
3485
3486 idletime = reaperage - busytime;
3487 if (idletime > reaperage)
3488 idletime = reaperage;
3489
3490 total_len = snprintf(d->buf, d->size, "%ld.0 %lu.0\n", reaperage, idletime);
3491 if (total_len < 0){
3492 perror("Error writing to cache");
3493 return 0;
3494 }
3495
3496 d->size = (int)total_len;
3497 d->cached = 1;
3498
3499 if (total_len > size) total_len = size;
3500
3501 memcpy(buf, d->buf, total_len);
3502 return total_len;
3503 }
3504
3505 static int proc_diskstats_read(char *buf, size_t size, off_t offset,
3506 struct fuse_file_info *fi)
3507 {
3508 char dev_name[72];
3509 struct fuse_context *fc = fuse_get_context();
3510 struct file_info *d = (struct file_info *)fi->fh;
3511 char *cg;
3512 char *io_serviced_str = NULL, *io_merged_str = NULL, *io_service_bytes_str = NULL,
3513 *io_wait_time_str = NULL, *io_service_time_str = NULL;
3514 unsigned long read = 0, write = 0;
3515 unsigned long read_merged = 0, write_merged = 0;
3516 unsigned long read_sectors = 0, write_sectors = 0;
3517 unsigned long read_ticks = 0, write_ticks = 0;
3518 unsigned long ios_pgr = 0, tot_ticks = 0, rq_ticks = 0;
3519 unsigned long rd_svctm = 0, wr_svctm = 0, rd_wait = 0, wr_wait = 0;
3520 char *cache = d->buf;
3521 size_t cache_size = d->buflen;
3522 char *line = NULL;
3523 size_t linelen = 0, total_len = 0, rv = 0;
3524 unsigned int major = 0, minor = 0;
3525 int i = 0;
3526 FILE *f = NULL;
3527
3528 if (offset){
3529 if (offset > d->size)
3530 return -EINVAL;
3531 if (!d->cached)
3532 return 0;
3533 int left = d->size - offset;
3534 total_len = left > size ? size: left;
3535 memcpy(buf, cache + offset, total_len);
3536 return total_len;
3537 }
3538
3539 pid_t initpid = lookup_initpid_in_store(fc->pid);
3540 if (initpid <= 0)
3541 initpid = fc->pid;
3542 cg = get_pid_cgroup(initpid, "blkio");
3543 if (!cg)
3544 return read_file("/proc/diskstats", buf, size, d);
3545 prune_init_slice(cg);
3546
3547 if (!cgfs_get_value("blkio", cg, "blkio.io_serviced", &io_serviced_str))
3548 goto err;
3549 if (!cgfs_get_value("blkio", cg, "blkio.io_merged", &io_merged_str))
3550 goto err;
3551 if (!cgfs_get_value("blkio", cg, "blkio.io_service_bytes", &io_service_bytes_str))
3552 goto err;
3553 if (!cgfs_get_value("blkio", cg, "blkio.io_wait_time", &io_wait_time_str))
3554 goto err;
3555 if (!cgfs_get_value("blkio", cg, "blkio.io_service_time", &io_service_time_str))
3556 goto err;
3557
3558
3559 f = fopen("/proc/diskstats", "r");
3560 if (!f)
3561 goto err;
3562
3563 while (getline(&line, &linelen, f) != -1) {
3564 size_t l;
3565 char *printme, lbuf[256];
3566
3567 i = sscanf(line, "%u %u %71s", &major, &minor, dev_name);
3568 if(i == 3){
3569 get_blkio_io_value(io_serviced_str, major, minor, "Read", &read);
3570 get_blkio_io_value(io_serviced_str, major, minor, "Write", &write);
3571 get_blkio_io_value(io_merged_str, major, minor, "Read", &read_merged);
3572 get_blkio_io_value(io_merged_str, major, minor, "Write", &write_merged);
3573 get_blkio_io_value(io_service_bytes_str, major, minor, "Read", &read_sectors);
3574 read_sectors = read_sectors/512;
3575 get_blkio_io_value(io_service_bytes_str, major, minor, "Write", &write_sectors);
3576 write_sectors = write_sectors/512;
3577
3578 get_blkio_io_value(io_service_time_str, major, minor, "Read", &rd_svctm);
3579 rd_svctm = rd_svctm/1000000;
3580 get_blkio_io_value(io_wait_time_str, major, minor, "Read", &rd_wait);
3581 rd_wait = rd_wait/1000000;
3582 read_ticks = rd_svctm + rd_wait;
3583
3584 get_blkio_io_value(io_service_time_str, major, minor, "Write", &wr_svctm);
3585 wr_svctm = wr_svctm/1000000;
3586 get_blkio_io_value(io_wait_time_str, major, minor, "Write", &wr_wait);
3587 wr_wait = wr_wait/1000000;
3588 write_ticks = wr_svctm + wr_wait;
3589
3590 get_blkio_io_value(io_service_time_str, major, minor, "Total", &tot_ticks);
3591 tot_ticks = tot_ticks/1000000;
3592 }else{
3593 continue;
3594 }
3595
3596 memset(lbuf, 0, 256);
3597 if (read || write || read_merged || write_merged || read_sectors || write_sectors || read_ticks || write_ticks) {
3598 snprintf(lbuf, 256, "%u %u %s %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
3599 major, minor, dev_name, read, read_merged, read_sectors, read_ticks,
3600 write, write_merged, write_sectors, write_ticks, ios_pgr, tot_ticks, rq_ticks);
3601 printme = lbuf;
3602 } else
3603 continue;
3604
3605 l = snprintf(cache, cache_size, "%s", printme);
3606 if (l < 0) {
3607 perror("Error writing to fuse buf");
3608 rv = 0;
3609 goto err;
3610 }
3611 if (l >= cache_size) {
3612 fprintf(stderr, "Internal error: truncated write to cache\n");
3613 rv = 0;
3614 goto err;
3615 }
3616 cache += l;
3617 cache_size -= l;
3618 total_len += l;
3619 }
3620
3621 d->cached = 1;
3622 d->size = total_len;
3623 if (total_len > size ) total_len = size;
3624 memcpy(buf, d->buf, total_len);
3625
3626 rv = total_len;
3627 err:
3628 free(cg);
3629 if (f)
3630 fclose(f);
3631 free(line);
3632 free(io_serviced_str);
3633 free(io_merged_str);
3634 free(io_service_bytes_str);
3635 free(io_wait_time_str);
3636 free(io_service_time_str);
3637 return rv;
3638 }
3639
3640 static int proc_swaps_read(char *buf, size_t size, off_t offset,
3641 struct fuse_file_info *fi)
3642 {
3643 struct fuse_context *fc = fuse_get_context();
3644 struct file_info *d = (struct file_info *)fi->fh;
3645 char *cg = NULL;
3646 char *memswlimit_str = NULL, *memlimit_str = NULL, *memusage_str = NULL, *memswusage_str = NULL,
3647 *memswlimit_default_str = NULL, *memswusage_default_str = NULL;
3648 unsigned long memswlimit = 0, memlimit = 0, memusage = 0, memswusage = 0, swap_total = 0, swap_free = 0;
3649 size_t total_len = 0, rv = 0;
3650 char *cache = d->buf;
3651
3652 if (offset) {
3653 if (offset > d->size)
3654 return -EINVAL;
3655 if (!d->cached)
3656 return 0;
3657 int left = d->size - offset;
3658 total_len = left > size ? size: left;
3659 memcpy(buf, cache + offset, total_len);
3660 return total_len;
3661 }
3662
3663 pid_t initpid = lookup_initpid_in_store(fc->pid);
3664 if (initpid <= 0)
3665 initpid = fc->pid;
3666 cg = get_pid_cgroup(initpid, "memory");
3667 if (!cg)
3668 return read_file("/proc/swaps", buf, size, d);
3669 prune_init_slice(cg);
3670
3671 if (!cgfs_get_value("memory", cg, "memory.limit_in_bytes", &memlimit_str))
3672 goto err;
3673
3674 if (!cgfs_get_value("memory", cg, "memory.usage_in_bytes", &memusage_str))
3675 goto err;
3676
3677 memlimit = strtoul(memlimit_str, NULL, 10);
3678 memusage = strtoul(memusage_str, NULL, 10);
3679
3680 if (cgfs_get_value("memory", cg, "memory.memsw.usage_in_bytes", &memswusage_str) &&
3681 cgfs_get_value("memory", cg, "memory.memsw.limit_in_bytes", &memswlimit_str)) {
3682
3683 /* If swap accounting is turned on, then default value is assumed to be that of cgroup / */
3684 if (!cgfs_get_value("memory", "/", "memory.memsw.limit_in_bytes", &memswlimit_default_str))
3685 goto err;
3686 if (!cgfs_get_value("memory", "/", "memory.memsw.usage_in_bytes", &memswusage_default_str))
3687 goto err;
3688
3689 memswlimit = strtoul(memswlimit_str, NULL, 10);
3690 memswusage = strtoul(memswusage_str, NULL, 10);
3691
3692 if (!strcmp(memswlimit_str, memswlimit_default_str))
3693 memswlimit = 0;
3694 if (!strcmp(memswusage_str, memswusage_default_str))
3695 memswusage = 0;
3696
3697 swap_total = (memswlimit - memlimit) / 1024;
3698 swap_free = (memswusage - memusage) / 1024;
3699 }
3700
3701 total_len = snprintf(d->buf, d->size, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
3702
3703 /* When no mem + swap limit is specified or swapaccount=0*/
3704 if (!memswlimit) {
3705 char *line = NULL;
3706 size_t linelen = 0;
3707 FILE *f = fopen("/proc/meminfo", "r");
3708
3709 if (!f)
3710 goto err;
3711
3712 while (getline(&line, &linelen, f) != -1) {
3713 if (startswith(line, "SwapTotal:")) {
3714 sscanf(line, "SwapTotal: %8lu kB", &swap_total);
3715 } else if (startswith(line, "SwapFree:")) {
3716 sscanf(line, "SwapFree: %8lu kB", &swap_free);
3717 }
3718 }
3719
3720 free(line);
3721 fclose(f);
3722 }
3723
3724 if (swap_total > 0) {
3725 total_len += snprintf(d->buf + total_len, d->size - total_len,
3726 "none%*svirtual\t\t%lu\t%lu\t0\n", 36, " ",
3727 swap_total, swap_free);
3728 }
3729
3730 if (total_len < 0) {
3731 perror("Error writing to cache");
3732 rv = 0;
3733 goto err;
3734 }
3735
3736 d->cached = 1;
3737 d->size = (int)total_len;
3738
3739 if (total_len > size) total_len = size;
3740 memcpy(buf, d->buf, total_len);
3741 rv = total_len;
3742
3743 err:
3744 free(cg);
3745 free(memswlimit_str);
3746 free(memlimit_str);
3747 free(memusage_str);
3748 free(memswusage_str);
3749 free(memswusage_default_str);
3750 free(memswlimit_default_str);
3751 return rv;
3752 }
3753
3754 static off_t get_procfile_size(const char *which)
3755 {
3756 FILE *f = fopen(which, "r");
3757 char *line = NULL;
3758 size_t len = 0;
3759 ssize_t sz, answer = 0;
3760 if (!f)
3761 return 0;
3762
3763 while ((sz = getline(&line, &len, f)) != -1)
3764 answer += sz;
3765 fclose (f);
3766 free(line);
3767
3768 return answer;
3769 }
3770
3771 int proc_getattr(const char *path, struct stat *sb)
3772 {
3773 struct timespec now;
3774
3775 memset(sb, 0, sizeof(struct stat));
3776 if (clock_gettime(CLOCK_REALTIME, &now) < 0)
3777 return -EINVAL;
3778 sb->st_uid = sb->st_gid = 0;
3779 sb->st_atim = sb->st_mtim = sb->st_ctim = now;
3780 if (strcmp(path, "/proc") == 0) {
3781 sb->st_mode = S_IFDIR | 00555;
3782 sb->st_nlink = 2;
3783 return 0;
3784 }
3785 if (strcmp(path, "/proc/meminfo") == 0 ||
3786 strcmp(path, "/proc/cpuinfo") == 0 ||
3787 strcmp(path, "/proc/uptime") == 0 ||
3788 strcmp(path, "/proc/stat") == 0 ||
3789 strcmp(path, "/proc/diskstats") == 0 ||
3790 strcmp(path, "/proc/swaps") == 0) {
3791 sb->st_size = 0;
3792 sb->st_mode = S_IFREG | 00444;
3793 sb->st_nlink = 1;
3794 return 0;
3795 }
3796
3797 return -ENOENT;
3798 }
3799
3800 int proc_readdir(const char *path, void *buf, fuse_fill_dir_t filler, off_t offset,
3801 struct fuse_file_info *fi)
3802 {
3803 if (filler(buf, "cpuinfo", NULL, 0) != 0 ||
3804 filler(buf, "meminfo", NULL, 0) != 0 ||
3805 filler(buf, "stat", NULL, 0) != 0 ||
3806 filler(buf, "uptime", NULL, 0) != 0 ||
3807 filler(buf, "diskstats", NULL, 0) != 0 ||
3808 filler(buf, "swaps", NULL, 0) != 0)
3809 return -EINVAL;
3810 return 0;
3811 }
3812
3813 int proc_open(const char *path, struct fuse_file_info *fi)
3814 {
3815 int type = -1;
3816 struct file_info *info;
3817
3818 if (strcmp(path, "/proc/meminfo") == 0)
3819 type = LXC_TYPE_PROC_MEMINFO;
3820 else if (strcmp(path, "/proc/cpuinfo") == 0)
3821 type = LXC_TYPE_PROC_CPUINFO;
3822 else if (strcmp(path, "/proc/uptime") == 0)
3823 type = LXC_TYPE_PROC_UPTIME;
3824 else if (strcmp(path, "/proc/stat") == 0)
3825 type = LXC_TYPE_PROC_STAT;
3826 else if (strcmp(path, "/proc/diskstats") == 0)
3827 type = LXC_TYPE_PROC_DISKSTATS;
3828 else if (strcmp(path, "/proc/swaps") == 0)
3829 type = LXC_TYPE_PROC_SWAPS;
3830 if (type == -1)
3831 return -ENOENT;
3832
3833 info = malloc(sizeof(*info));
3834 if (!info)
3835 return -ENOMEM;
3836
3837 memset(info, 0, sizeof(*info));
3838 info->type = type;
3839
3840 info->buflen = get_procfile_size(path) + BUF_RESERVE_SIZE;
3841 do {
3842 info->buf = malloc(info->buflen);
3843 } while (!info->buf);
3844 memset(info->buf, 0, info->buflen);
3845 /* set actual size to buffer size */
3846 info->size = info->buflen;
3847
3848 fi->fh = (unsigned long)info;
3849 return 0;
3850 }
3851
3852 int proc_access(const char *path, int mask)
3853 {
3854 /* these are all read-only */
3855 if ((mask & ~R_OK) != 0)
3856 return -EACCES;
3857 return 0;
3858 }
3859
3860 int proc_release(const char *path, struct fuse_file_info *fi)
3861 {
3862 do_release_file_info(fi);
3863 return 0;
3864 }
3865
3866 int proc_read(const char *path, char *buf, size_t size, off_t offset,
3867 struct fuse_file_info *fi)
3868 {
3869 struct file_info *f = (struct file_info *) fi->fh;
3870
3871 switch (f->type) {
3872 case LXC_TYPE_PROC_MEMINFO:
3873 return proc_meminfo_read(buf, size, offset, fi);
3874 case LXC_TYPE_PROC_CPUINFO:
3875 return proc_cpuinfo_read(buf, size, offset, fi);
3876 case LXC_TYPE_PROC_UPTIME:
3877 return proc_uptime_read(buf, size, offset, fi);
3878 case LXC_TYPE_PROC_STAT:
3879 return proc_stat_read(buf, size, offset, fi);
3880 case LXC_TYPE_PROC_DISKSTATS:
3881 return proc_diskstats_read(buf, size, offset, fi);
3882 case LXC_TYPE_PROC_SWAPS:
3883 return proc_swaps_read(buf, size, offset, fi);
3884 default:
3885 return -EINVAL;
3886 }
3887 }
3888
3889 static void __attribute__((constructor)) collect_subsystems(void)
3890 {
3891 FILE *f;
3892 char *line = NULL;
3893 size_t len = 0;
3894
3895 if ((f = fopen("/proc/self/cgroup", "r")) == NULL) {
3896 fprintf(stderr, "Error opening /proc/self/cgroup: %s\n", strerror(errno));
3897 return;
3898 }
3899 while (getline(&line, &len, f) != -1) {
3900 char *p, *p2;
3901
3902 p = strchr(line, ':');
3903 if (!p)
3904 goto out;
3905 *(p++) = '\0';
3906
3907 p2 = strrchr(p, ':');
3908 if (!p2)
3909 goto out;
3910 *p2 = '\0';
3911
3912 if (!store_hierarchy(line, p))
3913 goto out;
3914 }
3915
3916 print_subsystems();
3917
3918 out:
3919 free(line);
3920 fclose(f);
3921 }
3922
3923 static void __attribute__((destructor)) free_subsystems(void)
3924 {
3925 int i;
3926
3927 for (i = 0; i < num_hierarchies; i++)
3928 if (hierarchies[i])
3929 free(hierarchies[i]);
3930 free(hierarchies);
3931 }