]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
exec: Make stl_phys_notdirty input an AddressSpace
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004 26
055403b2 27#include "qemu-common.h"
6180a181 28#include "cpu.h"
b67d9a52 29#include "tcg.h"
b3c7724c 30#include "hw/hw.h"
cc9e98cb 31#include "hw/qdev.h"
1de7afc9 32#include "qemu/osdep.h"
9c17d615 33#include "sysemu/kvm.h"
2ff3de68 34#include "sysemu/sysemu.h"
0d09e41a 35#include "hw/xen/xen.h"
1de7afc9
PB
36#include "qemu/timer.h"
37#include "qemu/config-file.h"
022c62cb 38#include "exec/memory.h"
9c17d615 39#include "sysemu/dma.h"
022c62cb 40#include "exec/address-spaces.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
432d268c 43#else /* !CONFIG_USER_ONLY */
9c17d615 44#include "sysemu/xen-mapcache.h"
6506e4f9 45#include "trace.h"
53a5960a 46#endif
0d6d3c87 47#include "exec/cpu-all.h"
54936004 48
022c62cb 49#include "exec/cputlb.h"
5b6dd868 50#include "translate-all.h"
0cac1b66 51
022c62cb 52#include "exec/memory-internal.h"
220c3ebd 53#include "exec/ram_addr.h"
582b55a9 54#include "qemu/cache-utils.h"
67d95c15 55
b35ba30f
MT
56#include "qemu/range.h"
57
db7b5426 58//#define DEBUG_SUBPAGE
1196be37 59
e2eef170 60#if !defined(CONFIG_USER_ONLY)
981fdf23 61static bool in_migration;
94a6b54f 62
a3161038 63RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
64
65static MemoryRegion *system_memory;
309cb471 66static MemoryRegion *system_io;
62152b8a 67
f6790af6
AK
68AddressSpace address_space_io;
69AddressSpace address_space_memory;
2673a5da 70
0844e007 71MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 72static MemoryRegion io_mem_unassigned;
0e0df1e2 73
e2eef170 74#endif
9fa3e853 75
bdc44640 76struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
77/* current CPU in the current thread. It is only valid inside
78 cpu_exec() */
4917cf44 79DEFINE_TLS(CPUState *, current_cpu);
2e70f6ef 80/* 0 = Do not count executed instructions.
bf20dc07 81 1 = Precise instruction counting.
2e70f6ef 82 2 = Adaptive rate instruction counting. */
5708fc66 83int use_icount;
6a00d601 84
e2eef170 85#if !defined(CONFIG_USER_ONLY)
4346ae3e 86
1db8abb1
PB
87typedef struct PhysPageEntry PhysPageEntry;
88
89struct PhysPageEntry {
9736e55b 90 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 91 uint32_t skip : 6;
9736e55b 92 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 93 uint32_t ptr : 26;
1db8abb1
PB
94};
95
8b795765
MT
96#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
97
03f49957 98/* Size of the L2 (and L3, etc) page tables. */
57271d63 99#define ADDR_SPACE_BITS 64
03f49957 100
026736ce 101#define P_L2_BITS 9
03f49957
PB
102#define P_L2_SIZE (1 << P_L2_BITS)
103
104#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
105
106typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 107
53cb28cb
MA
108typedef struct PhysPageMap {
109 unsigned sections_nb;
110 unsigned sections_nb_alloc;
111 unsigned nodes_nb;
112 unsigned nodes_nb_alloc;
113 Node *nodes;
114 MemoryRegionSection *sections;
115} PhysPageMap;
116
1db8abb1
PB
117struct AddressSpaceDispatch {
118 /* This is a multi-level map on the physical address space.
119 * The bottom level has pointers to MemoryRegionSections.
120 */
121 PhysPageEntry phys_map;
53cb28cb 122 PhysPageMap map;
acc9d80b 123 AddressSpace *as;
1db8abb1
PB
124};
125
90260c6c
JK
126#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
127typedef struct subpage_t {
128 MemoryRegion iomem;
acc9d80b 129 AddressSpace *as;
90260c6c
JK
130 hwaddr base;
131 uint16_t sub_section[TARGET_PAGE_SIZE];
132} subpage_t;
133
b41aac4f
LPF
134#define PHYS_SECTION_UNASSIGNED 0
135#define PHYS_SECTION_NOTDIRTY 1
136#define PHYS_SECTION_ROM 2
137#define PHYS_SECTION_WATCH 3
5312bd8b 138
e2eef170 139static void io_mem_init(void);
62152b8a 140static void memory_map_init(void);
09daed84 141static void tcg_commit(MemoryListener *listener);
e2eef170 142
1ec9b909 143static MemoryRegion io_mem_watch;
6658ffb8 144#endif
fd6ce8f6 145
6d9a1304 146#if !defined(CONFIG_USER_ONLY)
d6f2ea22 147
53cb28cb 148static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 149{
53cb28cb
MA
150 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
151 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
152 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
153 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
d6f2ea22 154 }
f7bf5461
AK
155}
156
53cb28cb 157static uint32_t phys_map_node_alloc(PhysPageMap *map)
f7bf5461
AK
158{
159 unsigned i;
8b795765 160 uint32_t ret;
f7bf5461 161
53cb28cb 162 ret = map->nodes_nb++;
f7bf5461 163 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 164 assert(ret != map->nodes_nb_alloc);
03f49957 165 for (i = 0; i < P_L2_SIZE; ++i) {
53cb28cb
MA
166 map->nodes[ret][i].skip = 1;
167 map->nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
d6f2ea22 168 }
f7bf5461 169 return ret;
d6f2ea22
AK
170}
171
53cb28cb
MA
172static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
173 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 174 int level)
f7bf5461
AK
175{
176 PhysPageEntry *p;
177 int i;
03f49957 178 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 179
9736e55b 180 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
53cb28cb
MA
181 lp->ptr = phys_map_node_alloc(map);
182 p = map->nodes[lp->ptr];
f7bf5461 183 if (level == 0) {
03f49957 184 for (i = 0; i < P_L2_SIZE; i++) {
9736e55b 185 p[i].skip = 0;
b41aac4f 186 p[i].ptr = PHYS_SECTION_UNASSIGNED;
4346ae3e 187 }
67c4d23c 188 }
f7bf5461 189 } else {
53cb28cb 190 p = map->nodes[lp->ptr];
92e873b9 191 }
03f49957 192 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 193
03f49957 194 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 195 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 196 lp->skip = 0;
c19e8800 197 lp->ptr = leaf;
07f07b31
AK
198 *index += step;
199 *nb -= step;
2999097b 200 } else {
53cb28cb 201 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
202 }
203 ++lp;
f7bf5461
AK
204 }
205}
206
ac1970fb 207static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 208 hwaddr index, hwaddr nb,
2999097b 209 uint16_t leaf)
f7bf5461 210{
2999097b 211 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 212 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 213
53cb28cb 214 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
215}
216
b35ba30f
MT
217/* Compact a non leaf page entry. Simply detect that the entry has a single child,
218 * and update our entry so we can skip it and go directly to the destination.
219 */
220static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
221{
222 unsigned valid_ptr = P_L2_SIZE;
223 int valid = 0;
224 PhysPageEntry *p;
225 int i;
226
227 if (lp->ptr == PHYS_MAP_NODE_NIL) {
228 return;
229 }
230
231 p = nodes[lp->ptr];
232 for (i = 0; i < P_L2_SIZE; i++) {
233 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
234 continue;
235 }
236
237 valid_ptr = i;
238 valid++;
239 if (p[i].skip) {
240 phys_page_compact(&p[i], nodes, compacted);
241 }
242 }
243
244 /* We can only compress if there's only one child. */
245 if (valid != 1) {
246 return;
247 }
248
249 assert(valid_ptr < P_L2_SIZE);
250
251 /* Don't compress if it won't fit in the # of bits we have. */
252 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
253 return;
254 }
255
256 lp->ptr = p[valid_ptr].ptr;
257 if (!p[valid_ptr].skip) {
258 /* If our only child is a leaf, make this a leaf. */
259 /* By design, we should have made this node a leaf to begin with so we
260 * should never reach here.
261 * But since it's so simple to handle this, let's do it just in case we
262 * change this rule.
263 */
264 lp->skip = 0;
265 } else {
266 lp->skip += p[valid_ptr].skip;
267 }
268}
269
270static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
271{
272 DECLARE_BITMAP(compacted, nodes_nb);
273
274 if (d->phys_map.skip) {
53cb28cb 275 phys_page_compact(&d->phys_map, d->map.nodes, compacted);
b35ba30f
MT
276 }
277}
278
97115a8d 279static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
9affd6fc 280 Node *nodes, MemoryRegionSection *sections)
92e873b9 281{
31ab2b4a 282 PhysPageEntry *p;
97115a8d 283 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 284 int i;
f1f6e3b8 285
9736e55b 286 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 287 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 288 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 289 }
9affd6fc 290 p = nodes[lp.ptr];
03f49957 291 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 292 }
b35ba30f
MT
293
294 if (sections[lp.ptr].size.hi ||
295 range_covers_byte(sections[lp.ptr].offset_within_address_space,
296 sections[lp.ptr].size.lo, addr)) {
297 return &sections[lp.ptr];
298 } else {
299 return &sections[PHYS_SECTION_UNASSIGNED];
300 }
f3705d53
AK
301}
302
e5548617
BS
303bool memory_region_is_unassigned(MemoryRegion *mr)
304{
2a8e7499 305 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 306 && mr != &io_mem_watch;
fd6ce8f6 307}
149f54b5 308
c7086b4a 309static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
310 hwaddr addr,
311 bool resolve_subpage)
9f029603 312{
90260c6c
JK
313 MemoryRegionSection *section;
314 subpage_t *subpage;
315
53cb28cb 316 section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections);
90260c6c
JK
317 if (resolve_subpage && section->mr->subpage) {
318 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 319 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
320 }
321 return section;
9f029603
JK
322}
323
90260c6c 324static MemoryRegionSection *
c7086b4a 325address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 326 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
327{
328 MemoryRegionSection *section;
a87f3954 329 Int128 diff;
149f54b5 330
c7086b4a 331 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
332 /* Compute offset within MemoryRegionSection */
333 addr -= section->offset_within_address_space;
334
335 /* Compute offset within MemoryRegion */
336 *xlat = addr + section->offset_within_region;
337
338 diff = int128_sub(section->mr->size, int128_make64(addr));
3752a036 339 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
149f54b5
PB
340 return section;
341}
90260c6c 342
a87f3954
PB
343static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
344{
345 if (memory_region_is_ram(mr)) {
346 return !(is_write && mr->readonly);
347 }
348 if (memory_region_is_romd(mr)) {
349 return !is_write;
350 }
351
352 return false;
353}
354
5c8a00ce
PB
355MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
356 hwaddr *xlat, hwaddr *plen,
357 bool is_write)
90260c6c 358{
30951157
AK
359 IOMMUTLBEntry iotlb;
360 MemoryRegionSection *section;
361 MemoryRegion *mr;
362 hwaddr len = *plen;
363
364 for (;;) {
a87f3954 365 section = address_space_translate_internal(as->dispatch, addr, &addr, plen, true);
30951157
AK
366 mr = section->mr;
367
368 if (!mr->iommu_ops) {
369 break;
370 }
371
372 iotlb = mr->iommu_ops->translate(mr, addr);
373 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
374 | (addr & iotlb.addr_mask));
375 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
376 if (!(iotlb.perm & (1 << is_write))) {
377 mr = &io_mem_unassigned;
378 break;
379 }
380
381 as = iotlb.target_as;
382 }
383
a87f3954
PB
384 if (memory_access_is_direct(mr, is_write)) {
385 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
386 len = MIN(page, len);
387 }
388
30951157
AK
389 *plen = len;
390 *xlat = addr;
391 return mr;
90260c6c
JK
392}
393
394MemoryRegionSection *
395address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
396 hwaddr *plen)
397{
30951157 398 MemoryRegionSection *section;
c7086b4a 399 section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false);
30951157
AK
400
401 assert(!section->mr->iommu_ops);
402 return section;
90260c6c 403}
5b6dd868 404#endif
fd6ce8f6 405
5b6dd868 406void cpu_exec_init_all(void)
fdbb84d1 407{
5b6dd868 408#if !defined(CONFIG_USER_ONLY)
b2a8658e 409 qemu_mutex_init(&ram_list.mutex);
5b6dd868
BS
410 memory_map_init();
411 io_mem_init();
fdbb84d1 412#endif
5b6dd868 413}
fdbb84d1 414
b170fce3 415#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
416
417static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 418{
259186a7 419 CPUState *cpu = opaque;
a513fe19 420
5b6dd868
BS
421 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
422 version_id is increased. */
259186a7
AF
423 cpu->interrupt_request &= ~0x01;
424 tlb_flush(cpu->env_ptr, 1);
5b6dd868
BS
425
426 return 0;
a513fe19 427}
7501267e 428
1a1562f5 429const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
430 .name = "cpu_common",
431 .version_id = 1,
432 .minimum_version_id = 1,
433 .minimum_version_id_old = 1,
434 .post_load = cpu_common_post_load,
435 .fields = (VMStateField []) {
259186a7
AF
436 VMSTATE_UINT32(halted, CPUState),
437 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868
BS
438 VMSTATE_END_OF_LIST()
439 }
440};
1a1562f5 441
5b6dd868 442#endif
ea041c0e 443
38d8f5c8 444CPUState *qemu_get_cpu(int index)
ea041c0e 445{
bdc44640 446 CPUState *cpu;
ea041c0e 447
bdc44640 448 CPU_FOREACH(cpu) {
55e5c285 449 if (cpu->cpu_index == index) {
bdc44640 450 return cpu;
55e5c285 451 }
ea041c0e 452 }
5b6dd868 453
bdc44640 454 return NULL;
ea041c0e
FB
455}
456
09daed84
EI
457#if !defined(CONFIG_USER_ONLY)
458void tcg_cpu_address_space_init(CPUState *cpu, AddressSpace *as)
459{
460 /* We only support one address space per cpu at the moment. */
461 assert(cpu->as == as);
462
463 if (cpu->tcg_as_listener) {
464 memory_listener_unregister(cpu->tcg_as_listener);
465 } else {
466 cpu->tcg_as_listener = g_new0(MemoryListener, 1);
467 }
468 cpu->tcg_as_listener->commit = tcg_commit;
469 memory_listener_register(cpu->tcg_as_listener, as);
470}
471#endif
472
5b6dd868 473void cpu_exec_init(CPUArchState *env)
ea041c0e 474{
5b6dd868 475 CPUState *cpu = ENV_GET_CPU(env);
b170fce3 476 CPUClass *cc = CPU_GET_CLASS(cpu);
bdc44640 477 CPUState *some_cpu;
5b6dd868
BS
478 int cpu_index;
479
480#if defined(CONFIG_USER_ONLY)
481 cpu_list_lock();
482#endif
5b6dd868 483 cpu_index = 0;
bdc44640 484 CPU_FOREACH(some_cpu) {
5b6dd868
BS
485 cpu_index++;
486 }
55e5c285 487 cpu->cpu_index = cpu_index;
1b1ed8dc 488 cpu->numa_node = 0;
5b6dd868
BS
489 QTAILQ_INIT(&env->breakpoints);
490 QTAILQ_INIT(&env->watchpoints);
491#ifndef CONFIG_USER_ONLY
09daed84 492 cpu->as = &address_space_memory;
5b6dd868
BS
493 cpu->thread_id = qemu_get_thread_id();
494#endif
bdc44640 495 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
5b6dd868
BS
496#if defined(CONFIG_USER_ONLY)
497 cpu_list_unlock();
498#endif
e0d47944
AF
499 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
500 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
501 }
5b6dd868 502#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
5b6dd868
BS
503 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
504 cpu_save, cpu_load, env);
b170fce3 505 assert(cc->vmsd == NULL);
e0d47944 506 assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
5b6dd868 507#endif
b170fce3
AF
508 if (cc->vmsd != NULL) {
509 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
510 }
ea041c0e
FB
511}
512
1fddef4b 513#if defined(TARGET_HAS_ICE)
94df27fd 514#if defined(CONFIG_USER_ONLY)
00b941e5 515static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
94df27fd
PB
516{
517 tb_invalidate_phys_page_range(pc, pc + 1, 0);
518}
519#else
00b941e5 520static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 521{
e8262a1b
MF
522 hwaddr phys = cpu_get_phys_page_debug(cpu, pc);
523 if (phys != -1) {
09daed84 524 tb_invalidate_phys_addr(cpu->as,
29d8ec7b 525 phys | (pc & ~TARGET_PAGE_MASK));
e8262a1b 526 }
1e7855a5 527}
c27004ec 528#endif
94df27fd 529#endif /* TARGET_HAS_ICE */
d720b93d 530
c527ee8f 531#if defined(CONFIG_USER_ONLY)
9349b4f9 532void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
c527ee8f
PB
533
534{
535}
536
9349b4f9 537int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
c527ee8f
PB
538 int flags, CPUWatchpoint **watchpoint)
539{
540 return -ENOSYS;
541}
542#else
6658ffb8 543/* Add a watchpoint. */
9349b4f9 544int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
a1d1bb31 545 int flags, CPUWatchpoint **watchpoint)
6658ffb8 546{
b4051334 547 target_ulong len_mask = ~(len - 1);
c0ce998e 548 CPUWatchpoint *wp;
6658ffb8 549
b4051334 550 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
0dc23828
MF
551 if ((len & (len - 1)) || (addr & ~len_mask) ||
552 len == 0 || len > TARGET_PAGE_SIZE) {
b4051334
AL
553 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
554 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
555 return -EINVAL;
556 }
7267c094 557 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
558
559 wp->vaddr = addr;
b4051334 560 wp->len_mask = len_mask;
a1d1bb31
AL
561 wp->flags = flags;
562
2dc9f411 563 /* keep all GDB-injected watchpoints in front */
c0ce998e 564 if (flags & BP_GDB)
72cf2d4f 565 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 566 else
72cf2d4f 567 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 568
6658ffb8 569 tlb_flush_page(env, addr);
a1d1bb31
AL
570
571 if (watchpoint)
572 *watchpoint = wp;
573 return 0;
6658ffb8
PB
574}
575
a1d1bb31 576/* Remove a specific watchpoint. */
9349b4f9 577int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
a1d1bb31 578 int flags)
6658ffb8 579{
b4051334 580 target_ulong len_mask = ~(len - 1);
a1d1bb31 581 CPUWatchpoint *wp;
6658ffb8 582
72cf2d4f 583 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 584 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 585 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 586 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
587 return 0;
588 }
589 }
a1d1bb31 590 return -ENOENT;
6658ffb8
PB
591}
592
a1d1bb31 593/* Remove a specific watchpoint by reference. */
9349b4f9 594void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
a1d1bb31 595{
72cf2d4f 596 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 597
a1d1bb31
AL
598 tlb_flush_page(env, watchpoint->vaddr);
599
7267c094 600 g_free(watchpoint);
a1d1bb31
AL
601}
602
603/* Remove all matching watchpoints. */
9349b4f9 604void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
a1d1bb31 605{
c0ce998e 606 CPUWatchpoint *wp, *next;
a1d1bb31 607
72cf2d4f 608 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
609 if (wp->flags & mask)
610 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 611 }
7d03f82f 612}
c527ee8f 613#endif
7d03f82f 614
a1d1bb31 615/* Add a breakpoint. */
9349b4f9 616int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
a1d1bb31 617 CPUBreakpoint **breakpoint)
4c3a88a2 618{
1fddef4b 619#if defined(TARGET_HAS_ICE)
c0ce998e 620 CPUBreakpoint *bp;
3b46e624 621
7267c094 622 bp = g_malloc(sizeof(*bp));
4c3a88a2 623
a1d1bb31
AL
624 bp->pc = pc;
625 bp->flags = flags;
626
2dc9f411 627 /* keep all GDB-injected breakpoints in front */
00b941e5 628 if (flags & BP_GDB) {
72cf2d4f 629 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
00b941e5 630 } else {
72cf2d4f 631 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
00b941e5 632 }
3b46e624 633
00b941e5 634 breakpoint_invalidate(ENV_GET_CPU(env), pc);
a1d1bb31 635
00b941e5 636 if (breakpoint) {
a1d1bb31 637 *breakpoint = bp;
00b941e5 638 }
4c3a88a2
FB
639 return 0;
640#else
a1d1bb31 641 return -ENOSYS;
4c3a88a2
FB
642#endif
643}
644
a1d1bb31 645/* Remove a specific breakpoint. */
9349b4f9 646int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
a1d1bb31 647{
7d03f82f 648#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
649 CPUBreakpoint *bp;
650
72cf2d4f 651 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
652 if (bp->pc == pc && bp->flags == flags) {
653 cpu_breakpoint_remove_by_ref(env, bp);
654 return 0;
655 }
7d03f82f 656 }
a1d1bb31
AL
657 return -ENOENT;
658#else
659 return -ENOSYS;
7d03f82f
EI
660#endif
661}
662
a1d1bb31 663/* Remove a specific breakpoint by reference. */
9349b4f9 664void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
4c3a88a2 665{
1fddef4b 666#if defined(TARGET_HAS_ICE)
72cf2d4f 667 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 668
00b941e5 669 breakpoint_invalidate(ENV_GET_CPU(env), breakpoint->pc);
a1d1bb31 670
7267c094 671 g_free(breakpoint);
a1d1bb31
AL
672#endif
673}
674
675/* Remove all matching breakpoints. */
9349b4f9 676void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
a1d1bb31
AL
677{
678#if defined(TARGET_HAS_ICE)
c0ce998e 679 CPUBreakpoint *bp, *next;
a1d1bb31 680
72cf2d4f 681 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
682 if (bp->flags & mask)
683 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 684 }
4c3a88a2
FB
685#endif
686}
687
c33a346e
FB
688/* enable or disable single step mode. EXCP_DEBUG is returned by the
689 CPU loop after each instruction */
3825b28f 690void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 691{
1fddef4b 692#if defined(TARGET_HAS_ICE)
ed2803da
AF
693 if (cpu->singlestep_enabled != enabled) {
694 cpu->singlestep_enabled = enabled;
695 if (kvm_enabled()) {
38e478ec 696 kvm_update_guest_debug(cpu, 0);
ed2803da 697 } else {
ccbb4d44 698 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 699 /* XXX: only flush what is necessary */
38e478ec 700 CPUArchState *env = cpu->env_ptr;
e22a25c9
AL
701 tb_flush(env);
702 }
c33a346e
FB
703 }
704#endif
705}
706
9349b4f9 707void cpu_abort(CPUArchState *env, const char *fmt, ...)
7501267e 708{
878096ee 709 CPUState *cpu = ENV_GET_CPU(env);
7501267e 710 va_list ap;
493ae1f0 711 va_list ap2;
7501267e
FB
712
713 va_start(ap, fmt);
493ae1f0 714 va_copy(ap2, ap);
7501267e
FB
715 fprintf(stderr, "qemu: fatal: ");
716 vfprintf(stderr, fmt, ap);
717 fprintf(stderr, "\n");
878096ee 718 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
93fcfe39
AL
719 if (qemu_log_enabled()) {
720 qemu_log("qemu: fatal: ");
721 qemu_log_vprintf(fmt, ap2);
722 qemu_log("\n");
a0762859 723 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 724 qemu_log_flush();
93fcfe39 725 qemu_log_close();
924edcae 726 }
493ae1f0 727 va_end(ap2);
f9373291 728 va_end(ap);
fd052bf6
RV
729#if defined(CONFIG_USER_ONLY)
730 {
731 struct sigaction act;
732 sigfillset(&act.sa_mask);
733 act.sa_handler = SIG_DFL;
734 sigaction(SIGABRT, &act, NULL);
735 }
736#endif
7501267e
FB
737 abort();
738}
739
0124311e 740#if !defined(CONFIG_USER_ONLY)
041603fe
PB
741static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
742{
743 RAMBlock *block;
744
745 /* The list is protected by the iothread lock here. */
746 block = ram_list.mru_block;
747 if (block && addr - block->offset < block->length) {
748 goto found;
749 }
750 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
751 if (addr - block->offset < block->length) {
752 goto found;
753 }
754 }
755
756 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
757 abort();
758
759found:
760 ram_list.mru_block = block;
761 return block;
762}
763
a2f4d5be 764static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 765{
041603fe 766 ram_addr_t start1;
a2f4d5be
JQ
767 RAMBlock *block;
768 ram_addr_t end;
769
770 end = TARGET_PAGE_ALIGN(start + length);
771 start &= TARGET_PAGE_MASK;
d24981d3 772
041603fe
PB
773 block = qemu_get_ram_block(start);
774 assert(block == qemu_get_ram_block(end - 1));
775 start1 = (uintptr_t)block->host + (start - block->offset);
776 cpu_tlb_reset_dirty_all(start1, length);
d24981d3
JQ
777}
778
5579c7f3 779/* Note: start and end must be within the same ram block. */
a2f4d5be 780void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t length,
52159192 781 unsigned client)
1ccde1cb 782{
1ccde1cb
FB
783 if (length == 0)
784 return;
ace694cc 785 cpu_physical_memory_clear_dirty_range(start, length, client);
f23db169 786
d24981d3 787 if (tcg_enabled()) {
a2f4d5be 788 tlb_reset_dirty_range_all(start, length);
5579c7f3 789 }
1ccde1cb
FB
790}
791
981fdf23 792static void cpu_physical_memory_set_dirty_tracking(bool enable)
74576198
AL
793{
794 in_migration = enable;
74576198
AL
795}
796
a8170e5e 797hwaddr memory_region_section_get_iotlb(CPUArchState *env,
149f54b5
PB
798 MemoryRegionSection *section,
799 target_ulong vaddr,
800 hwaddr paddr, hwaddr xlat,
801 int prot,
802 target_ulong *address)
e5548617 803{
a8170e5e 804 hwaddr iotlb;
e5548617
BS
805 CPUWatchpoint *wp;
806
cc5bea60 807 if (memory_region_is_ram(section->mr)) {
e5548617
BS
808 /* Normal RAM. */
809 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
149f54b5 810 + xlat;
e5548617 811 if (!section->readonly) {
b41aac4f 812 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 813 } else {
b41aac4f 814 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
815 }
816 } else {
1b3fb98f 817 iotlb = section - section->address_space->dispatch->map.sections;
149f54b5 818 iotlb += xlat;
e5548617
BS
819 }
820
821 /* Make accesses to pages with watchpoints go via the
822 watchpoint trap routines. */
823 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
824 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
825 /* Avoid trapping reads of pages with a write breakpoint. */
826 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 827 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
828 *address |= TLB_MMIO;
829 break;
830 }
831 }
832 }
833
834 return iotlb;
835}
9fa3e853
FB
836#endif /* defined(CONFIG_USER_ONLY) */
837
e2eef170 838#if !defined(CONFIG_USER_ONLY)
8da3ff18 839
c227f099 840static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 841 uint16_t section);
acc9d80b 842static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 843
575ddeb4 844static void *(*phys_mem_alloc)(size_t size) = qemu_anon_ram_alloc;
91138037
MA
845
846/*
847 * Set a custom physical guest memory alloator.
848 * Accelerators with unusual needs may need this. Hopefully, we can
849 * get rid of it eventually.
850 */
575ddeb4 851void phys_mem_set_alloc(void *(*alloc)(size_t))
91138037
MA
852{
853 phys_mem_alloc = alloc;
854}
855
53cb28cb
MA
856static uint16_t phys_section_add(PhysPageMap *map,
857 MemoryRegionSection *section)
5312bd8b 858{
68f3f65b
PB
859 /* The physical section number is ORed with a page-aligned
860 * pointer to produce the iotlb entries. Thus it should
861 * never overflow into the page-aligned value.
862 */
53cb28cb 863 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 864
53cb28cb
MA
865 if (map->sections_nb == map->sections_nb_alloc) {
866 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
867 map->sections = g_renew(MemoryRegionSection, map->sections,
868 map->sections_nb_alloc);
5312bd8b 869 }
53cb28cb 870 map->sections[map->sections_nb] = *section;
dfde4e6e 871 memory_region_ref(section->mr);
53cb28cb 872 return map->sections_nb++;
5312bd8b
AK
873}
874
058bc4b5
PB
875static void phys_section_destroy(MemoryRegion *mr)
876{
dfde4e6e
PB
877 memory_region_unref(mr);
878
058bc4b5
PB
879 if (mr->subpage) {
880 subpage_t *subpage = container_of(mr, subpage_t, iomem);
881 memory_region_destroy(&subpage->iomem);
882 g_free(subpage);
883 }
884}
885
6092666e 886static void phys_sections_free(PhysPageMap *map)
5312bd8b 887{
9affd6fc
PB
888 while (map->sections_nb > 0) {
889 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
890 phys_section_destroy(section->mr);
891 }
9affd6fc
PB
892 g_free(map->sections);
893 g_free(map->nodes);
5312bd8b
AK
894}
895
ac1970fb 896static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
897{
898 subpage_t *subpage;
a8170e5e 899 hwaddr base = section->offset_within_address_space
0f0cb164 900 & TARGET_PAGE_MASK;
97115a8d 901 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
53cb28cb 902 d->map.nodes, d->map.sections);
0f0cb164
AK
903 MemoryRegionSection subsection = {
904 .offset_within_address_space = base,
052e87b0 905 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 906 };
a8170e5e 907 hwaddr start, end;
0f0cb164 908
f3705d53 909 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 910
f3705d53 911 if (!(existing->mr->subpage)) {
acc9d80b 912 subpage = subpage_init(d->as, base);
3be91e86 913 subsection.address_space = d->as;
0f0cb164 914 subsection.mr = &subpage->iomem;
ac1970fb 915 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 916 phys_section_add(&d->map, &subsection));
0f0cb164 917 } else {
f3705d53 918 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
919 }
920 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 921 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
922 subpage_register(subpage, start, end,
923 phys_section_add(&d->map, section));
0f0cb164
AK
924}
925
926
052e87b0
PB
927static void register_multipage(AddressSpaceDispatch *d,
928 MemoryRegionSection *section)
33417e70 929{
a8170e5e 930 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 931 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
932 uint64_t num_pages = int128_get64(int128_rshift(section->size,
933 TARGET_PAGE_BITS));
dd81124b 934
733d5ef5
PB
935 assert(num_pages);
936 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
937}
938
ac1970fb 939static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 940{
89ae337a 941 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
00752703 942 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 943 MemoryRegionSection now = *section, remain = *section;
052e87b0 944 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 945
733d5ef5
PB
946 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
947 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
948 - now.offset_within_address_space;
949
052e87b0 950 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 951 register_subpage(d, &now);
733d5ef5 952 } else {
052e87b0 953 now.size = int128_zero();
733d5ef5 954 }
052e87b0
PB
955 while (int128_ne(remain.size, now.size)) {
956 remain.size = int128_sub(remain.size, now.size);
957 remain.offset_within_address_space += int128_get64(now.size);
958 remain.offset_within_region += int128_get64(now.size);
69b67646 959 now = remain;
052e87b0 960 if (int128_lt(remain.size, page_size)) {
733d5ef5 961 register_subpage(d, &now);
88266249 962 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 963 now.size = page_size;
ac1970fb 964 register_subpage(d, &now);
69b67646 965 } else {
052e87b0 966 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 967 register_multipage(d, &now);
69b67646 968 }
0f0cb164
AK
969 }
970}
971
62a2744c
SY
972void qemu_flush_coalesced_mmio_buffer(void)
973{
974 if (kvm_enabled())
975 kvm_flush_coalesced_mmio_buffer();
976}
977
b2a8658e
UD
978void qemu_mutex_lock_ramlist(void)
979{
980 qemu_mutex_lock(&ram_list.mutex);
981}
982
983void qemu_mutex_unlock_ramlist(void)
984{
985 qemu_mutex_unlock(&ram_list.mutex);
986}
987
e1e84ba0 988#ifdef __linux__
c902760f
MT
989
990#include <sys/vfs.h>
991
992#define HUGETLBFS_MAGIC 0x958458f6
993
994static long gethugepagesize(const char *path)
995{
996 struct statfs fs;
997 int ret;
998
999 do {
9742bf26 1000 ret = statfs(path, &fs);
c902760f
MT
1001 } while (ret != 0 && errno == EINTR);
1002
1003 if (ret != 0) {
9742bf26
YT
1004 perror(path);
1005 return 0;
c902760f
MT
1006 }
1007
1008 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 1009 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
1010
1011 return fs.f_bsize;
1012}
1013
ef36fa14
MT
1014static sigjmp_buf sigjump;
1015
1016static void sigbus_handler(int signal)
1017{
1018 siglongjmp(sigjump, 1);
1019}
1020
04b16653
AW
1021static void *file_ram_alloc(RAMBlock *block,
1022 ram_addr_t memory,
1023 const char *path)
c902760f
MT
1024{
1025 char *filename;
8ca761f6
PF
1026 char *sanitized_name;
1027 char *c;
c902760f
MT
1028 void *area;
1029 int fd;
c902760f
MT
1030 unsigned long hpagesize;
1031
1032 hpagesize = gethugepagesize(path);
1033 if (!hpagesize) {
9742bf26 1034 return NULL;
c902760f
MT
1035 }
1036
1037 if (memory < hpagesize) {
1038 return NULL;
1039 }
1040
1041 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1042 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
1043 return NULL;
1044 }
1045
8ca761f6
PF
1046 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1047 sanitized_name = g_strdup(block->mr->name);
1048 for (c = sanitized_name; *c != '\0'; c++) {
1049 if (*c == '/')
1050 *c = '_';
1051 }
1052
1053 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1054 sanitized_name);
1055 g_free(sanitized_name);
c902760f
MT
1056
1057 fd = mkstemp(filename);
1058 if (fd < 0) {
9742bf26 1059 perror("unable to create backing store for hugepages");
e4ada482 1060 g_free(filename);
9742bf26 1061 return NULL;
c902760f
MT
1062 }
1063 unlink(filename);
e4ada482 1064 g_free(filename);
c902760f
MT
1065
1066 memory = (memory+hpagesize-1) & ~(hpagesize-1);
1067
1068 /*
1069 * ftruncate is not supported by hugetlbfs in older
1070 * hosts, so don't bother bailing out on errors.
1071 * If anything goes wrong with it under other filesystems,
1072 * mmap will fail.
1073 */
1074 if (ftruncate(fd, memory))
9742bf26 1075 perror("ftruncate");
c902760f 1076
c902760f 1077 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
c902760f 1078 if (area == MAP_FAILED) {
9742bf26
YT
1079 perror("file_ram_alloc: can't mmap RAM pages");
1080 close(fd);
1081 return (NULL);
c902760f 1082 }
ef36fa14
MT
1083
1084 if (mem_prealloc) {
1085 int ret, i;
1086 struct sigaction act, oldact;
1087 sigset_t set, oldset;
1088
1089 memset(&act, 0, sizeof(act));
1090 act.sa_handler = &sigbus_handler;
1091 act.sa_flags = 0;
1092
1093 ret = sigaction(SIGBUS, &act, &oldact);
1094 if (ret) {
1095 perror("file_ram_alloc: failed to install signal handler");
1096 exit(1);
1097 }
1098
1099 /* unblock SIGBUS */
1100 sigemptyset(&set);
1101 sigaddset(&set, SIGBUS);
1102 pthread_sigmask(SIG_UNBLOCK, &set, &oldset);
1103
1104 if (sigsetjmp(sigjump, 1)) {
1105 fprintf(stderr, "file_ram_alloc: failed to preallocate pages\n");
1106 exit(1);
1107 }
1108
1109 /* MAP_POPULATE silently ignores failures */
2ba82852 1110 for (i = 0; i < (memory/hpagesize); i++) {
ef36fa14
MT
1111 memset(area + (hpagesize*i), 0, 1);
1112 }
1113
1114 ret = sigaction(SIGBUS, &oldact, NULL);
1115 if (ret) {
1116 perror("file_ram_alloc: failed to reinstall signal handler");
1117 exit(1);
1118 }
1119
1120 pthread_sigmask(SIG_SETMASK, &oldset, NULL);
1121 }
1122
04b16653 1123 block->fd = fd;
c902760f
MT
1124 return area;
1125}
e1e84ba0
MA
1126#else
1127static void *file_ram_alloc(RAMBlock *block,
1128 ram_addr_t memory,
1129 const char *path)
1130{
1131 fprintf(stderr, "-mem-path not supported on this host\n");
1132 exit(1);
1133}
c902760f
MT
1134#endif
1135
d17b5288 1136static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1137{
1138 RAMBlock *block, *next_block;
3e837b2c 1139 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1140
49cd9ac6
SH
1141 assert(size != 0); /* it would hand out same offset multiple times */
1142
a3161038 1143 if (QTAILQ_EMPTY(&ram_list.blocks))
04b16653
AW
1144 return 0;
1145
a3161038 1146 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
f15fbc4b 1147 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653
AW
1148
1149 end = block->offset + block->length;
1150
a3161038 1151 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
04b16653
AW
1152 if (next_block->offset >= end) {
1153 next = MIN(next, next_block->offset);
1154 }
1155 }
1156 if (next - end >= size && next - end < mingap) {
3e837b2c 1157 offset = end;
04b16653
AW
1158 mingap = next - end;
1159 }
1160 }
3e837b2c
AW
1161
1162 if (offset == RAM_ADDR_MAX) {
1163 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1164 (uint64_t)size);
1165 abort();
1166 }
1167
04b16653
AW
1168 return offset;
1169}
1170
652d7ec2 1171ram_addr_t last_ram_offset(void)
d17b5288
AW
1172{
1173 RAMBlock *block;
1174 ram_addr_t last = 0;
1175
a3161038 1176 QTAILQ_FOREACH(block, &ram_list.blocks, next)
d17b5288
AW
1177 last = MAX(last, block->offset + block->length);
1178
1179 return last;
1180}
1181
ddb97f1d
JB
1182static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1183{
1184 int ret;
ddb97f1d
JB
1185
1186 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2ff3de68
MA
1187 if (!qemu_opt_get_bool(qemu_get_machine_opts(),
1188 "dump-guest-core", true)) {
ddb97f1d
JB
1189 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1190 if (ret) {
1191 perror("qemu_madvise");
1192 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1193 "but dump_guest_core=off specified\n");
1194 }
1195 }
1196}
1197
c5705a77 1198void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
84b89d78
CM
1199{
1200 RAMBlock *new_block, *block;
1201
c5705a77 1202 new_block = NULL;
a3161038 1203 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
c5705a77
AK
1204 if (block->offset == addr) {
1205 new_block = block;
1206 break;
1207 }
1208 }
1209 assert(new_block);
1210 assert(!new_block->idstr[0]);
84b89d78 1211
09e5ab63
AL
1212 if (dev) {
1213 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1214 if (id) {
1215 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1216 g_free(id);
84b89d78
CM
1217 }
1218 }
1219 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1220
b2a8658e
UD
1221 /* This assumes the iothread lock is taken here too. */
1222 qemu_mutex_lock_ramlist();
a3161038 1223 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
c5705a77 1224 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1225 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1226 new_block->idstr);
1227 abort();
1228 }
1229 }
b2a8658e 1230 qemu_mutex_unlock_ramlist();
c5705a77
AK
1231}
1232
8490fc78
LC
1233static int memory_try_enable_merging(void *addr, size_t len)
1234{
2ff3de68 1235 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
8490fc78
LC
1236 /* disabled by the user */
1237 return 0;
1238 }
1239
1240 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1241}
1242
c5705a77
AK
1243ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1244 MemoryRegion *mr)
1245{
abb26d63 1246 RAMBlock *block, *new_block;
2152f5ca
JQ
1247 ram_addr_t old_ram_size, new_ram_size;
1248
1249 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
c5705a77
AK
1250
1251 size = TARGET_PAGE_ALIGN(size);
1252 new_block = g_malloc0(sizeof(*new_block));
3435f395 1253 new_block->fd = -1;
84b89d78 1254
b2a8658e
UD
1255 /* This assumes the iothread lock is taken here too. */
1256 qemu_mutex_lock_ramlist();
7c637366 1257 new_block->mr = mr;
432d268c 1258 new_block->offset = find_ram_offset(size);
6977dfe6
YT
1259 if (host) {
1260 new_block->host = host;
cd19cfa2 1261 new_block->flags |= RAM_PREALLOC_MASK;
dfeaf2ab
MA
1262 } else if (xen_enabled()) {
1263 if (mem_path) {
1264 fprintf(stderr, "-mem-path not supported with Xen\n");
1265 exit(1);
1266 }
1267 xen_ram_alloc(new_block->offset, size, mr);
6977dfe6
YT
1268 } else {
1269 if (mem_path) {
e1e84ba0
MA
1270 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1271 /*
1272 * file_ram_alloc() needs to allocate just like
1273 * phys_mem_alloc, but we haven't bothered to provide
1274 * a hook there.
1275 */
1276 fprintf(stderr,
1277 "-mem-path not supported with this accelerator\n");
1278 exit(1);
1279 }
6977dfe6 1280 new_block->host = file_ram_alloc(new_block, size, mem_path);
0628c182
MA
1281 }
1282 if (!new_block->host) {
91138037 1283 new_block->host = phys_mem_alloc(size);
39228250
MA
1284 if (!new_block->host) {
1285 fprintf(stderr, "Cannot set up guest memory '%s': %s\n",
1286 new_block->mr->name, strerror(errno));
1287 exit(1);
1288 }
8490fc78 1289 memory_try_enable_merging(new_block->host, size);
6977dfe6 1290 }
c902760f 1291 }
94a6b54f
PB
1292 new_block->length = size;
1293
abb26d63
PB
1294 /* Keep the list sorted from biggest to smallest block. */
1295 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1296 if (block->length < new_block->length) {
1297 break;
1298 }
1299 }
1300 if (block) {
1301 QTAILQ_INSERT_BEFORE(block, new_block, next);
1302 } else {
1303 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1304 }
0d6d3c87 1305 ram_list.mru_block = NULL;
94a6b54f 1306
f798b07f 1307 ram_list.version++;
b2a8658e 1308 qemu_mutex_unlock_ramlist();
f798b07f 1309
2152f5ca
JQ
1310 new_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1311
1312 if (new_ram_size > old_ram_size) {
1ab4c8ce
JQ
1313 int i;
1314 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1315 ram_list.dirty_memory[i] =
1316 bitmap_zero_extend(ram_list.dirty_memory[i],
1317 old_ram_size, new_ram_size);
1318 }
2152f5ca 1319 }
75218e7f 1320 cpu_physical_memory_set_dirty_range(new_block->offset, size);
94a6b54f 1321
ddb97f1d 1322 qemu_ram_setup_dump(new_block->host, size);
ad0b5321 1323 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
3e469dbf 1324 qemu_madvise(new_block->host, size, QEMU_MADV_DONTFORK);
ddb97f1d 1325
6f0437e8
JK
1326 if (kvm_enabled())
1327 kvm_setup_guest_memory(new_block->host, size);
1328
94a6b54f
PB
1329 return new_block->offset;
1330}
e9a1ab19 1331
c5705a77 1332ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
6977dfe6 1333{
c5705a77 1334 return qemu_ram_alloc_from_ptr(size, NULL, mr);
6977dfe6
YT
1335}
1336
1f2e98b6
AW
1337void qemu_ram_free_from_ptr(ram_addr_t addr)
1338{
1339 RAMBlock *block;
1340
b2a8658e
UD
1341 /* This assumes the iothread lock is taken here too. */
1342 qemu_mutex_lock_ramlist();
a3161038 1343 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1f2e98b6 1344 if (addr == block->offset) {
a3161038 1345 QTAILQ_REMOVE(&ram_list.blocks, block, next);
0d6d3c87 1346 ram_list.mru_block = NULL;
f798b07f 1347 ram_list.version++;
7267c094 1348 g_free(block);
b2a8658e 1349 break;
1f2e98b6
AW
1350 }
1351 }
b2a8658e 1352 qemu_mutex_unlock_ramlist();
1f2e98b6
AW
1353}
1354
c227f099 1355void qemu_ram_free(ram_addr_t addr)
e9a1ab19 1356{
04b16653
AW
1357 RAMBlock *block;
1358
b2a8658e
UD
1359 /* This assumes the iothread lock is taken here too. */
1360 qemu_mutex_lock_ramlist();
a3161038 1361 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
04b16653 1362 if (addr == block->offset) {
a3161038 1363 QTAILQ_REMOVE(&ram_list.blocks, block, next);
0d6d3c87 1364 ram_list.mru_block = NULL;
f798b07f 1365 ram_list.version++;
cd19cfa2
HY
1366 if (block->flags & RAM_PREALLOC_MASK) {
1367 ;
dfeaf2ab
MA
1368 } else if (xen_enabled()) {
1369 xen_invalidate_map_cache_entry(block->host);
089f3f76 1370#ifndef _WIN32
3435f395
MA
1371 } else if (block->fd >= 0) {
1372 munmap(block->host, block->length);
1373 close(block->fd);
089f3f76 1374#endif
04b16653 1375 } else {
dfeaf2ab 1376 qemu_anon_ram_free(block->host, block->length);
04b16653 1377 }
7267c094 1378 g_free(block);
b2a8658e 1379 break;
04b16653
AW
1380 }
1381 }
b2a8658e 1382 qemu_mutex_unlock_ramlist();
04b16653 1383
e9a1ab19
FB
1384}
1385
cd19cfa2
HY
1386#ifndef _WIN32
1387void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1388{
1389 RAMBlock *block;
1390 ram_addr_t offset;
1391 int flags;
1392 void *area, *vaddr;
1393
a3161038 1394 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
cd19cfa2
HY
1395 offset = addr - block->offset;
1396 if (offset < block->length) {
1397 vaddr = block->host + offset;
1398 if (block->flags & RAM_PREALLOC_MASK) {
1399 ;
dfeaf2ab
MA
1400 } else if (xen_enabled()) {
1401 abort();
cd19cfa2
HY
1402 } else {
1403 flags = MAP_FIXED;
1404 munmap(vaddr, length);
3435f395 1405 if (block->fd >= 0) {
cd19cfa2 1406#ifdef MAP_POPULATE
3435f395
MA
1407 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1408 MAP_PRIVATE;
fd28aa13 1409#else
3435f395 1410 flags |= MAP_PRIVATE;
cd19cfa2 1411#endif
3435f395
MA
1412 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1413 flags, block->fd, offset);
cd19cfa2 1414 } else {
2eb9fbaa
MA
1415 /*
1416 * Remap needs to match alloc. Accelerators that
1417 * set phys_mem_alloc never remap. If they did,
1418 * we'd need a remap hook here.
1419 */
1420 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1421
cd19cfa2
HY
1422 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1423 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1424 flags, -1, 0);
cd19cfa2
HY
1425 }
1426 if (area != vaddr) {
f15fbc4b
AP
1427 fprintf(stderr, "Could not remap addr: "
1428 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
1429 length, addr);
1430 exit(1);
1431 }
8490fc78 1432 memory_try_enable_merging(vaddr, length);
ddb97f1d 1433 qemu_ram_setup_dump(vaddr, length);
cd19cfa2
HY
1434 }
1435 return;
1436 }
1437 }
1438}
1439#endif /* !_WIN32 */
1440
1b5ec234
PB
1441/* Return a host pointer to ram allocated with qemu_ram_alloc.
1442 With the exception of the softmmu code in this file, this should
1443 only be used for local memory (e.g. video ram) that the device owns,
1444 and knows it isn't going to access beyond the end of the block.
1445
1446 It should not be used for general purpose DMA.
1447 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1448 */
1449void *qemu_get_ram_ptr(ram_addr_t addr)
1450{
1451 RAMBlock *block = qemu_get_ram_block(addr);
1452
0d6d3c87
PB
1453 if (xen_enabled()) {
1454 /* We need to check if the requested address is in the RAM
1455 * because we don't want to map the entire memory in QEMU.
1456 * In that case just map until the end of the page.
1457 */
1458 if (block->offset == 0) {
1459 return xen_map_cache(addr, 0, 0);
1460 } else if (block->host == NULL) {
1461 block->host =
1462 xen_map_cache(block->offset, block->length, 1);
1463 }
1464 }
1465 return block->host + (addr - block->offset);
dc828ca1
PB
1466}
1467
38bee5dc
SS
1468/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1469 * but takes a size argument */
cb85f7ab 1470static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
38bee5dc 1471{
8ab934f9
SS
1472 if (*size == 0) {
1473 return NULL;
1474 }
868bb33f 1475 if (xen_enabled()) {
e41d7c69 1476 return xen_map_cache(addr, *size, 1);
868bb33f 1477 } else {
38bee5dc
SS
1478 RAMBlock *block;
1479
a3161038 1480 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
38bee5dc
SS
1481 if (addr - block->offset < block->length) {
1482 if (addr - block->offset + *size > block->length)
1483 *size = block->length - addr + block->offset;
1484 return block->host + (addr - block->offset);
1485 }
1486 }
1487
1488 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1489 abort();
38bee5dc
SS
1490 }
1491}
1492
7443b437
PB
1493/* Some of the softmmu routines need to translate from a host pointer
1494 (typically a TLB entry) back to a ram offset. */
1b5ec234 1495MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 1496{
94a6b54f
PB
1497 RAMBlock *block;
1498 uint8_t *host = ptr;
1499
868bb33f 1500 if (xen_enabled()) {
e41d7c69 1501 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1b5ec234 1502 return qemu_get_ram_block(*ram_addr)->mr;
712c2b41
SS
1503 }
1504
23887b79
PB
1505 block = ram_list.mru_block;
1506 if (block && block->host && host - block->host < block->length) {
1507 goto found;
1508 }
1509
a3161038 1510 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
432d268c
JN
1511 /* This case append when the block is not mapped. */
1512 if (block->host == NULL) {
1513 continue;
1514 }
f471a17e 1515 if (host - block->host < block->length) {
23887b79 1516 goto found;
f471a17e 1517 }
94a6b54f 1518 }
432d268c 1519
1b5ec234 1520 return NULL;
23887b79
PB
1521
1522found:
1523 *ram_addr = block->offset + (host - block->host);
1b5ec234 1524 return block->mr;
e890261f 1525}
f471a17e 1526
a8170e5e 1527static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 1528 uint64_t val, unsigned size)
9fa3e853 1529{
52159192 1530 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
0e0df1e2 1531 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 1532 }
0e0df1e2
AK
1533 switch (size) {
1534 case 1:
1535 stb_p(qemu_get_ram_ptr(ram_addr), val);
1536 break;
1537 case 2:
1538 stw_p(qemu_get_ram_ptr(ram_addr), val);
1539 break;
1540 case 4:
1541 stl_p(qemu_get_ram_ptr(ram_addr), val);
1542 break;
1543 default:
1544 abort();
3a7d929e 1545 }
52159192
JQ
1546 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_MIGRATION);
1547 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_VGA);
f23db169
FB
1548 /* we remove the notdirty callback only if the code has been
1549 flushed */
a2cd8c85 1550 if (!cpu_physical_memory_is_clean(ram_addr)) {
4917cf44
AF
1551 CPUArchState *env = current_cpu->env_ptr;
1552 tlb_set_dirty(env, env->mem_io_vaddr);
1553 }
9fa3e853
FB
1554}
1555
b018ddf6
PB
1556static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1557 unsigned size, bool is_write)
1558{
1559 return is_write;
1560}
1561
0e0df1e2 1562static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 1563 .write = notdirty_mem_write,
b018ddf6 1564 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 1565 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
1566};
1567
0f459d16 1568/* Generate a debug exception if a watchpoint has been hit. */
b4051334 1569static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16 1570{
4917cf44 1571 CPUArchState *env = current_cpu->env_ptr;
06d55cc1 1572 target_ulong pc, cs_base;
0f459d16 1573 target_ulong vaddr;
a1d1bb31 1574 CPUWatchpoint *wp;
06d55cc1 1575 int cpu_flags;
0f459d16 1576
06d55cc1
AL
1577 if (env->watchpoint_hit) {
1578 /* We re-entered the check after replacing the TB. Now raise
1579 * the debug interrupt so that is will trigger after the
1580 * current instruction. */
c3affe56 1581 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
06d55cc1
AL
1582 return;
1583 }
2e70f6ef 1584 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 1585 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
1586 if ((vaddr == (wp->vaddr & len_mask) ||
1587 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
1588 wp->flags |= BP_WATCHPOINT_HIT;
1589 if (!env->watchpoint_hit) {
1590 env->watchpoint_hit = wp;
5a316526 1591 tb_check_watchpoint(env);
6e140f28
AL
1592 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1593 env->exception_index = EXCP_DEBUG;
488d6577 1594 cpu_loop_exit(env);
6e140f28
AL
1595 } else {
1596 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1597 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
488d6577 1598 cpu_resume_from_signal(env, NULL);
6e140f28 1599 }
06d55cc1 1600 }
6e140f28
AL
1601 } else {
1602 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
1603 }
1604 }
1605}
1606
6658ffb8
PB
1607/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1608 so these check for a hit then pass through to the normal out-of-line
1609 phys routines. */
a8170e5e 1610static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1ec9b909 1611 unsigned size)
6658ffb8 1612{
1ec9b909
AK
1613 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1614 switch (size) {
2c17449b 1615 case 1: return ldub_phys(&address_space_memory, addr);
41701aa4 1616 case 2: return lduw_phys(&address_space_memory, addr);
fdfba1a2 1617 case 4: return ldl_phys(&address_space_memory, addr);
1ec9b909
AK
1618 default: abort();
1619 }
6658ffb8
PB
1620}
1621
a8170e5e 1622static void watch_mem_write(void *opaque, hwaddr addr,
1ec9b909 1623 uint64_t val, unsigned size)
6658ffb8 1624{
1ec9b909
AK
1625 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1626 switch (size) {
67364150
MF
1627 case 1:
1628 stb_phys(addr, val);
1629 break;
1630 case 2:
1631 stw_phys(addr, val);
1632 break;
1633 case 4:
ab1da857 1634 stl_phys(&address_space_memory, addr, val);
67364150 1635 break;
1ec9b909
AK
1636 default: abort();
1637 }
6658ffb8
PB
1638}
1639
1ec9b909
AK
1640static const MemoryRegionOps watch_mem_ops = {
1641 .read = watch_mem_read,
1642 .write = watch_mem_write,
1643 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 1644};
6658ffb8 1645
a8170e5e 1646static uint64_t subpage_read(void *opaque, hwaddr addr,
70c68e44 1647 unsigned len)
db7b5426 1648{
acc9d80b
JK
1649 subpage_t *subpage = opaque;
1650 uint8_t buf[4];
791af8c8 1651
db7b5426 1652#if defined(DEBUG_SUBPAGE)
016e9d62 1653 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 1654 subpage, len, addr);
db7b5426 1655#endif
acc9d80b
JK
1656 address_space_read(subpage->as, addr + subpage->base, buf, len);
1657 switch (len) {
1658 case 1:
1659 return ldub_p(buf);
1660 case 2:
1661 return lduw_p(buf);
1662 case 4:
1663 return ldl_p(buf);
1664 default:
1665 abort();
1666 }
db7b5426
BS
1667}
1668
a8170e5e 1669static void subpage_write(void *opaque, hwaddr addr,
70c68e44 1670 uint64_t value, unsigned len)
db7b5426 1671{
acc9d80b
JK
1672 subpage_t *subpage = opaque;
1673 uint8_t buf[4];
1674
db7b5426 1675#if defined(DEBUG_SUBPAGE)
016e9d62 1676 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
1677 " value %"PRIx64"\n",
1678 __func__, subpage, len, addr, value);
db7b5426 1679#endif
acc9d80b
JK
1680 switch (len) {
1681 case 1:
1682 stb_p(buf, value);
1683 break;
1684 case 2:
1685 stw_p(buf, value);
1686 break;
1687 case 4:
1688 stl_p(buf, value);
1689 break;
1690 default:
1691 abort();
1692 }
1693 address_space_write(subpage->as, addr + subpage->base, buf, len);
db7b5426
BS
1694}
1695
c353e4cc 1696static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 1697 unsigned len, bool is_write)
c353e4cc 1698{
acc9d80b 1699 subpage_t *subpage = opaque;
c353e4cc 1700#if defined(DEBUG_SUBPAGE)
016e9d62 1701 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 1702 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
1703#endif
1704
acc9d80b 1705 return address_space_access_valid(subpage->as, addr + subpage->base,
016e9d62 1706 len, is_write);
c353e4cc
PB
1707}
1708
70c68e44
AK
1709static const MemoryRegionOps subpage_ops = {
1710 .read = subpage_read,
1711 .write = subpage_write,
c353e4cc 1712 .valid.accepts = subpage_accepts,
70c68e44 1713 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
1714};
1715
c227f099 1716static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1717 uint16_t section)
db7b5426
BS
1718{
1719 int idx, eidx;
1720
1721 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1722 return -1;
1723 idx = SUBPAGE_IDX(start);
1724 eidx = SUBPAGE_IDX(end);
1725#if defined(DEBUG_SUBPAGE)
016e9d62
AK
1726 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
1727 __func__, mmio, start, end, idx, eidx, section);
db7b5426 1728#endif
db7b5426 1729 for (; idx <= eidx; idx++) {
5312bd8b 1730 mmio->sub_section[idx] = section;
db7b5426
BS
1731 }
1732
1733 return 0;
1734}
1735
acc9d80b 1736static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 1737{
c227f099 1738 subpage_t *mmio;
db7b5426 1739
7267c094 1740 mmio = g_malloc0(sizeof(subpage_t));
1eec614b 1741
acc9d80b 1742 mmio->as = as;
1eec614b 1743 mmio->base = base;
2c9b15ca 1744 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
70c68e44 1745 "subpage", TARGET_PAGE_SIZE);
b3b00c78 1746 mmio->iomem.subpage = true;
db7b5426 1747#if defined(DEBUG_SUBPAGE)
016e9d62
AK
1748 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
1749 mmio, base, TARGET_PAGE_SIZE);
db7b5426 1750#endif
b41aac4f 1751 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
1752
1753 return mmio;
1754}
1755
53cb28cb 1756static uint16_t dummy_section(PhysPageMap *map, MemoryRegion *mr)
5312bd8b
AK
1757{
1758 MemoryRegionSection section = {
3be91e86 1759 .address_space = &address_space_memory,
5312bd8b
AK
1760 .mr = mr,
1761 .offset_within_address_space = 0,
1762 .offset_within_region = 0,
052e87b0 1763 .size = int128_2_64(),
5312bd8b
AK
1764 };
1765
53cb28cb 1766 return phys_section_add(map, &section);
5312bd8b
AK
1767}
1768
77717094 1769MemoryRegion *iotlb_to_region(AddressSpace *as, hwaddr index)
aa102231 1770{
77717094 1771 return as->dispatch->map.sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
1772}
1773
e9179ce1
AK
1774static void io_mem_init(void)
1775{
2c9b15ca
PB
1776 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1777 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
0e0df1e2 1778 "unassigned", UINT64_MAX);
2c9b15ca 1779 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
0e0df1e2 1780 "notdirty", UINT64_MAX);
2c9b15ca 1781 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1ec9b909 1782 "watch", UINT64_MAX);
e9179ce1
AK
1783}
1784
ac1970fb 1785static void mem_begin(MemoryListener *listener)
00752703
PB
1786{
1787 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
53cb28cb
MA
1788 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
1789 uint16_t n;
1790
1791 n = dummy_section(&d->map, &io_mem_unassigned);
1792 assert(n == PHYS_SECTION_UNASSIGNED);
1793 n = dummy_section(&d->map, &io_mem_notdirty);
1794 assert(n == PHYS_SECTION_NOTDIRTY);
1795 n = dummy_section(&d->map, &io_mem_rom);
1796 assert(n == PHYS_SECTION_ROM);
1797 n = dummy_section(&d->map, &io_mem_watch);
1798 assert(n == PHYS_SECTION_WATCH);
00752703 1799
9736e55b 1800 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
00752703
PB
1801 d->as = as;
1802 as->next_dispatch = d;
1803}
1804
1805static void mem_commit(MemoryListener *listener)
ac1970fb 1806{
89ae337a 1807 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
0475d94f
PB
1808 AddressSpaceDispatch *cur = as->dispatch;
1809 AddressSpaceDispatch *next = as->next_dispatch;
1810
53cb28cb 1811 phys_page_compact_all(next, next->map.nodes_nb);
b35ba30f 1812
0475d94f 1813 as->dispatch = next;
b41aac4f 1814
53cb28cb
MA
1815 if (cur) {
1816 phys_sections_free(&cur->map);
1817 g_free(cur);
1818 }
9affd6fc
PB
1819}
1820
1d71148e 1821static void tcg_commit(MemoryListener *listener)
50c1e149 1822{
182735ef 1823 CPUState *cpu;
117712c3
AK
1824
1825 /* since each CPU stores ram addresses in its TLB cache, we must
1826 reset the modified entries */
1827 /* XXX: slow ! */
bdc44640 1828 CPU_FOREACH(cpu) {
182735ef
AF
1829 CPUArchState *env = cpu->env_ptr;
1830
33bde2e1
EI
1831 /* FIXME: Disentangle the cpu.h circular files deps so we can
1832 directly get the right CPU from listener. */
1833 if (cpu->tcg_as_listener != listener) {
1834 continue;
1835 }
117712c3
AK
1836 tlb_flush(env, 1);
1837 }
50c1e149
AK
1838}
1839
93632747
AK
1840static void core_log_global_start(MemoryListener *listener)
1841{
981fdf23 1842 cpu_physical_memory_set_dirty_tracking(true);
93632747
AK
1843}
1844
1845static void core_log_global_stop(MemoryListener *listener)
1846{
981fdf23 1847 cpu_physical_memory_set_dirty_tracking(false);
93632747
AK
1848}
1849
93632747 1850static MemoryListener core_memory_listener = {
93632747
AK
1851 .log_global_start = core_log_global_start,
1852 .log_global_stop = core_log_global_stop,
ac1970fb 1853 .priority = 1,
93632747
AK
1854};
1855
ac1970fb
AK
1856void address_space_init_dispatch(AddressSpace *as)
1857{
00752703 1858 as->dispatch = NULL;
89ae337a 1859 as->dispatch_listener = (MemoryListener) {
ac1970fb 1860 .begin = mem_begin,
00752703 1861 .commit = mem_commit,
ac1970fb
AK
1862 .region_add = mem_add,
1863 .region_nop = mem_add,
1864 .priority = 0,
1865 };
89ae337a 1866 memory_listener_register(&as->dispatch_listener, as);
ac1970fb
AK
1867}
1868
83f3c251
AK
1869void address_space_destroy_dispatch(AddressSpace *as)
1870{
1871 AddressSpaceDispatch *d = as->dispatch;
1872
89ae337a 1873 memory_listener_unregister(&as->dispatch_listener);
83f3c251
AK
1874 g_free(d);
1875 as->dispatch = NULL;
1876}
1877
62152b8a
AK
1878static void memory_map_init(void)
1879{
7267c094 1880 system_memory = g_malloc(sizeof(*system_memory));
03f49957 1881
57271d63 1882 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 1883 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 1884
7267c094 1885 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
1886 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
1887 65536);
7dca8043 1888 address_space_init(&address_space_io, system_io, "I/O");
93632747 1889
f6790af6 1890 memory_listener_register(&core_memory_listener, &address_space_memory);
62152b8a
AK
1891}
1892
1893MemoryRegion *get_system_memory(void)
1894{
1895 return system_memory;
1896}
1897
309cb471
AK
1898MemoryRegion *get_system_io(void)
1899{
1900 return system_io;
1901}
1902
e2eef170
PB
1903#endif /* !defined(CONFIG_USER_ONLY) */
1904
13eb76e0
FB
1905/* physical memory access (slow version, mainly for debug) */
1906#if defined(CONFIG_USER_ONLY)
f17ec444 1907int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 1908 uint8_t *buf, int len, int is_write)
13eb76e0
FB
1909{
1910 int l, flags;
1911 target_ulong page;
53a5960a 1912 void * p;
13eb76e0
FB
1913
1914 while (len > 0) {
1915 page = addr & TARGET_PAGE_MASK;
1916 l = (page + TARGET_PAGE_SIZE) - addr;
1917 if (l > len)
1918 l = len;
1919 flags = page_get_flags(page);
1920 if (!(flags & PAGE_VALID))
a68fe89c 1921 return -1;
13eb76e0
FB
1922 if (is_write) {
1923 if (!(flags & PAGE_WRITE))
a68fe89c 1924 return -1;
579a97f7 1925 /* XXX: this code should not depend on lock_user */
72fb7daa 1926 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 1927 return -1;
72fb7daa
AJ
1928 memcpy(p, buf, l);
1929 unlock_user(p, addr, l);
13eb76e0
FB
1930 } else {
1931 if (!(flags & PAGE_READ))
a68fe89c 1932 return -1;
579a97f7 1933 /* XXX: this code should not depend on lock_user */
72fb7daa 1934 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 1935 return -1;
72fb7daa 1936 memcpy(buf, p, l);
5b257578 1937 unlock_user(p, addr, 0);
13eb76e0
FB
1938 }
1939 len -= l;
1940 buf += l;
1941 addr += l;
1942 }
a68fe89c 1943 return 0;
13eb76e0 1944}
8df1cd07 1945
13eb76e0 1946#else
51d7a9eb 1947
a8170e5e
AK
1948static void invalidate_and_set_dirty(hwaddr addr,
1949 hwaddr length)
51d7a9eb 1950{
a2cd8c85 1951 if (cpu_physical_memory_is_clean(addr)) {
51d7a9eb
AP
1952 /* invalidate code */
1953 tb_invalidate_phys_page_range(addr, addr + length, 0);
1954 /* set dirty bit */
52159192
JQ
1955 cpu_physical_memory_set_dirty_flag(addr, DIRTY_MEMORY_VGA);
1956 cpu_physical_memory_set_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
51d7a9eb 1957 }
e226939d 1958 xen_modified_memory(addr, length);
51d7a9eb
AP
1959}
1960
23326164 1961static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 1962{
e1622f4b 1963 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
1964
1965 /* Regions are assumed to support 1-4 byte accesses unless
1966 otherwise specified. */
23326164
RH
1967 if (access_size_max == 0) {
1968 access_size_max = 4;
1969 }
1970
1971 /* Bound the maximum access by the alignment of the address. */
1972 if (!mr->ops->impl.unaligned) {
1973 unsigned align_size_max = addr & -addr;
1974 if (align_size_max != 0 && align_size_max < access_size_max) {
1975 access_size_max = align_size_max;
1976 }
82f2563f 1977 }
23326164
RH
1978
1979 /* Don't attempt accesses larger than the maximum. */
1980 if (l > access_size_max) {
1981 l = access_size_max;
82f2563f 1982 }
098178f2
PB
1983 if (l & (l - 1)) {
1984 l = 1 << (qemu_fls(l) - 1);
1985 }
23326164
RH
1986
1987 return l;
82f2563f
PB
1988}
1989
fd8aaa76 1990bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
ac1970fb 1991 int len, bool is_write)
13eb76e0 1992{
149f54b5 1993 hwaddr l;
13eb76e0 1994 uint8_t *ptr;
791af8c8 1995 uint64_t val;
149f54b5 1996 hwaddr addr1;
5c8a00ce 1997 MemoryRegion *mr;
fd8aaa76 1998 bool error = false;
3b46e624 1999
13eb76e0 2000 while (len > 0) {
149f54b5 2001 l = len;
5c8a00ce 2002 mr = address_space_translate(as, addr, &addr1, &l, is_write);
3b46e624 2003
13eb76e0 2004 if (is_write) {
5c8a00ce
PB
2005 if (!memory_access_is_direct(mr, is_write)) {
2006 l = memory_access_size(mr, l, addr1);
4917cf44 2007 /* XXX: could force current_cpu to NULL to avoid
6a00d601 2008 potential bugs */
23326164
RH
2009 switch (l) {
2010 case 8:
2011 /* 64 bit write access */
2012 val = ldq_p(buf);
2013 error |= io_mem_write(mr, addr1, val, 8);
2014 break;
2015 case 4:
1c213d19 2016 /* 32 bit write access */
c27004ec 2017 val = ldl_p(buf);
5c8a00ce 2018 error |= io_mem_write(mr, addr1, val, 4);
23326164
RH
2019 break;
2020 case 2:
1c213d19 2021 /* 16 bit write access */
c27004ec 2022 val = lduw_p(buf);
5c8a00ce 2023 error |= io_mem_write(mr, addr1, val, 2);
23326164
RH
2024 break;
2025 case 1:
1c213d19 2026 /* 8 bit write access */
c27004ec 2027 val = ldub_p(buf);
5c8a00ce 2028 error |= io_mem_write(mr, addr1, val, 1);
23326164
RH
2029 break;
2030 default:
2031 abort();
13eb76e0 2032 }
2bbfa05d 2033 } else {
5c8a00ce 2034 addr1 += memory_region_get_ram_addr(mr);
13eb76e0 2035 /* RAM case */
5579c7f3 2036 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 2037 memcpy(ptr, buf, l);
51d7a9eb 2038 invalidate_and_set_dirty(addr1, l);
13eb76e0
FB
2039 }
2040 } else {
5c8a00ce 2041 if (!memory_access_is_direct(mr, is_write)) {
13eb76e0 2042 /* I/O case */
5c8a00ce 2043 l = memory_access_size(mr, l, addr1);
23326164
RH
2044 switch (l) {
2045 case 8:
2046 /* 64 bit read access */
2047 error |= io_mem_read(mr, addr1, &val, 8);
2048 stq_p(buf, val);
2049 break;
2050 case 4:
13eb76e0 2051 /* 32 bit read access */
5c8a00ce 2052 error |= io_mem_read(mr, addr1, &val, 4);
c27004ec 2053 stl_p(buf, val);
23326164
RH
2054 break;
2055 case 2:
13eb76e0 2056 /* 16 bit read access */
5c8a00ce 2057 error |= io_mem_read(mr, addr1, &val, 2);
c27004ec 2058 stw_p(buf, val);
23326164
RH
2059 break;
2060 case 1:
1c213d19 2061 /* 8 bit read access */
5c8a00ce 2062 error |= io_mem_read(mr, addr1, &val, 1);
c27004ec 2063 stb_p(buf, val);
23326164
RH
2064 break;
2065 default:
2066 abort();
13eb76e0
FB
2067 }
2068 } else {
2069 /* RAM case */
5c8a00ce 2070 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
f3705d53 2071 memcpy(buf, ptr, l);
13eb76e0
FB
2072 }
2073 }
2074 len -= l;
2075 buf += l;
2076 addr += l;
2077 }
fd8aaa76
PB
2078
2079 return error;
13eb76e0 2080}
8df1cd07 2081
fd8aaa76 2082bool address_space_write(AddressSpace *as, hwaddr addr,
ac1970fb
AK
2083 const uint8_t *buf, int len)
2084{
fd8aaa76 2085 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
ac1970fb
AK
2086}
2087
fd8aaa76 2088bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
ac1970fb 2089{
fd8aaa76 2090 return address_space_rw(as, addr, buf, len, false);
ac1970fb
AK
2091}
2092
2093
a8170e5e 2094void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
2095 int len, int is_write)
2096{
fd8aaa76 2097 address_space_rw(&address_space_memory, addr, buf, len, is_write);
ac1970fb
AK
2098}
2099
582b55a9
AG
2100enum write_rom_type {
2101 WRITE_DATA,
2102 FLUSH_CACHE,
2103};
2104
2105static inline void cpu_physical_memory_write_rom_internal(
2106 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 2107{
149f54b5 2108 hwaddr l;
d0ecd2aa 2109 uint8_t *ptr;
149f54b5 2110 hwaddr addr1;
5c8a00ce 2111 MemoryRegion *mr;
3b46e624 2112
d0ecd2aa 2113 while (len > 0) {
149f54b5 2114 l = len;
5c8a00ce
PB
2115 mr = address_space_translate(&address_space_memory,
2116 addr, &addr1, &l, true);
3b46e624 2117
5c8a00ce
PB
2118 if (!(memory_region_is_ram(mr) ||
2119 memory_region_is_romd(mr))) {
d0ecd2aa
FB
2120 /* do nothing */
2121 } else {
5c8a00ce 2122 addr1 += memory_region_get_ram_addr(mr);
d0ecd2aa 2123 /* ROM/RAM case */
5579c7f3 2124 ptr = qemu_get_ram_ptr(addr1);
582b55a9
AG
2125 switch (type) {
2126 case WRITE_DATA:
2127 memcpy(ptr, buf, l);
2128 invalidate_and_set_dirty(addr1, l);
2129 break;
2130 case FLUSH_CACHE:
2131 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2132 break;
2133 }
d0ecd2aa
FB
2134 }
2135 len -= l;
2136 buf += l;
2137 addr += l;
2138 }
2139}
2140
582b55a9
AG
2141/* used for ROM loading : can write in RAM and ROM */
2142void cpu_physical_memory_write_rom(hwaddr addr,
2143 const uint8_t *buf, int len)
2144{
2145 cpu_physical_memory_write_rom_internal(addr, buf, len, WRITE_DATA);
2146}
2147
2148void cpu_flush_icache_range(hwaddr start, int len)
2149{
2150 /*
2151 * This function should do the same thing as an icache flush that was
2152 * triggered from within the guest. For TCG we are always cache coherent,
2153 * so there is no need to flush anything. For KVM / Xen we need to flush
2154 * the host's instruction cache at least.
2155 */
2156 if (tcg_enabled()) {
2157 return;
2158 }
2159
2160 cpu_physical_memory_write_rom_internal(start, NULL, len, FLUSH_CACHE);
2161}
2162
6d16c2f8 2163typedef struct {
d3e71559 2164 MemoryRegion *mr;
6d16c2f8 2165 void *buffer;
a8170e5e
AK
2166 hwaddr addr;
2167 hwaddr len;
6d16c2f8
AL
2168} BounceBuffer;
2169
2170static BounceBuffer bounce;
2171
ba223c29
AL
2172typedef struct MapClient {
2173 void *opaque;
2174 void (*callback)(void *opaque);
72cf2d4f 2175 QLIST_ENTRY(MapClient) link;
ba223c29
AL
2176} MapClient;
2177
72cf2d4f
BS
2178static QLIST_HEAD(map_client_list, MapClient) map_client_list
2179 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
2180
2181void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2182{
7267c094 2183 MapClient *client = g_malloc(sizeof(*client));
ba223c29
AL
2184
2185 client->opaque = opaque;
2186 client->callback = callback;
72cf2d4f 2187 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
2188 return client;
2189}
2190
8b9c99d9 2191static void cpu_unregister_map_client(void *_client)
ba223c29
AL
2192{
2193 MapClient *client = (MapClient *)_client;
2194
72cf2d4f 2195 QLIST_REMOVE(client, link);
7267c094 2196 g_free(client);
ba223c29
AL
2197}
2198
2199static void cpu_notify_map_clients(void)
2200{
2201 MapClient *client;
2202
72cf2d4f
BS
2203 while (!QLIST_EMPTY(&map_client_list)) {
2204 client = QLIST_FIRST(&map_client_list);
ba223c29 2205 client->callback(client->opaque);
34d5e948 2206 cpu_unregister_map_client(client);
ba223c29
AL
2207 }
2208}
2209
51644ab7
PB
2210bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2211{
5c8a00ce 2212 MemoryRegion *mr;
51644ab7
PB
2213 hwaddr l, xlat;
2214
2215 while (len > 0) {
2216 l = len;
5c8a00ce
PB
2217 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2218 if (!memory_access_is_direct(mr, is_write)) {
2219 l = memory_access_size(mr, l, addr);
2220 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
51644ab7
PB
2221 return false;
2222 }
2223 }
2224
2225 len -= l;
2226 addr += l;
2227 }
2228 return true;
2229}
2230
6d16c2f8
AL
2231/* Map a physical memory region into a host virtual address.
2232 * May map a subset of the requested range, given by and returned in *plen.
2233 * May return NULL if resources needed to perform the mapping are exhausted.
2234 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
2235 * Use cpu_register_map_client() to know when retrying the map operation is
2236 * likely to succeed.
6d16c2f8 2237 */
ac1970fb 2238void *address_space_map(AddressSpace *as,
a8170e5e
AK
2239 hwaddr addr,
2240 hwaddr *plen,
ac1970fb 2241 bool is_write)
6d16c2f8 2242{
a8170e5e 2243 hwaddr len = *plen;
e3127ae0
PB
2244 hwaddr done = 0;
2245 hwaddr l, xlat, base;
2246 MemoryRegion *mr, *this_mr;
2247 ram_addr_t raddr;
6d16c2f8 2248
e3127ae0
PB
2249 if (len == 0) {
2250 return NULL;
2251 }
38bee5dc 2252
e3127ae0
PB
2253 l = len;
2254 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2255 if (!memory_access_is_direct(mr, is_write)) {
2256 if (bounce.buffer) {
2257 return NULL;
6d16c2f8 2258 }
e85d9db5
KW
2259 /* Avoid unbounded allocations */
2260 l = MIN(l, TARGET_PAGE_SIZE);
2261 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
2262 bounce.addr = addr;
2263 bounce.len = l;
d3e71559
PB
2264
2265 memory_region_ref(mr);
2266 bounce.mr = mr;
e3127ae0
PB
2267 if (!is_write) {
2268 address_space_read(as, addr, bounce.buffer, l);
8ab934f9 2269 }
6d16c2f8 2270
e3127ae0
PB
2271 *plen = l;
2272 return bounce.buffer;
2273 }
2274
2275 base = xlat;
2276 raddr = memory_region_get_ram_addr(mr);
2277
2278 for (;;) {
6d16c2f8
AL
2279 len -= l;
2280 addr += l;
e3127ae0
PB
2281 done += l;
2282 if (len == 0) {
2283 break;
2284 }
2285
2286 l = len;
2287 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2288 if (this_mr != mr || xlat != base + done) {
2289 break;
2290 }
6d16c2f8 2291 }
e3127ae0 2292
d3e71559 2293 memory_region_ref(mr);
e3127ae0
PB
2294 *plen = done;
2295 return qemu_ram_ptr_length(raddr + base, plen);
6d16c2f8
AL
2296}
2297
ac1970fb 2298/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
2299 * Will also mark the memory as dirty if is_write == 1. access_len gives
2300 * the amount of memory that was actually read or written by the caller.
2301 */
a8170e5e
AK
2302void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2303 int is_write, hwaddr access_len)
6d16c2f8
AL
2304{
2305 if (buffer != bounce.buffer) {
d3e71559
PB
2306 MemoryRegion *mr;
2307 ram_addr_t addr1;
2308
2309 mr = qemu_ram_addr_from_host(buffer, &addr1);
2310 assert(mr != NULL);
6d16c2f8 2311 if (is_write) {
6d16c2f8
AL
2312 while (access_len) {
2313 unsigned l;
2314 l = TARGET_PAGE_SIZE;
2315 if (l > access_len)
2316 l = access_len;
51d7a9eb 2317 invalidate_and_set_dirty(addr1, l);
6d16c2f8
AL
2318 addr1 += l;
2319 access_len -= l;
2320 }
2321 }
868bb33f 2322 if (xen_enabled()) {
e41d7c69 2323 xen_invalidate_map_cache_entry(buffer);
050a0ddf 2324 }
d3e71559 2325 memory_region_unref(mr);
6d16c2f8
AL
2326 return;
2327 }
2328 if (is_write) {
ac1970fb 2329 address_space_write(as, bounce.addr, bounce.buffer, access_len);
6d16c2f8 2330 }
f8a83245 2331 qemu_vfree(bounce.buffer);
6d16c2f8 2332 bounce.buffer = NULL;
d3e71559 2333 memory_region_unref(bounce.mr);
ba223c29 2334 cpu_notify_map_clients();
6d16c2f8 2335}
d0ecd2aa 2336
a8170e5e
AK
2337void *cpu_physical_memory_map(hwaddr addr,
2338 hwaddr *plen,
ac1970fb
AK
2339 int is_write)
2340{
2341 return address_space_map(&address_space_memory, addr, plen, is_write);
2342}
2343
a8170e5e
AK
2344void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2345 int is_write, hwaddr access_len)
ac1970fb
AK
2346{
2347 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2348}
2349
8df1cd07 2350/* warning: addr must be aligned */
fdfba1a2 2351static inline uint32_t ldl_phys_internal(AddressSpace *as, hwaddr addr,
1e78bcc1 2352 enum device_endian endian)
8df1cd07 2353{
8df1cd07 2354 uint8_t *ptr;
791af8c8 2355 uint64_t val;
5c8a00ce 2356 MemoryRegion *mr;
149f54b5
PB
2357 hwaddr l = 4;
2358 hwaddr addr1;
8df1cd07 2359
fdfba1a2 2360 mr = address_space_translate(as, addr, &addr1, &l, false);
5c8a00ce 2361 if (l < 4 || !memory_access_is_direct(mr, false)) {
8df1cd07 2362 /* I/O case */
5c8a00ce 2363 io_mem_read(mr, addr1, &val, 4);
1e78bcc1
AG
2364#if defined(TARGET_WORDS_BIGENDIAN)
2365 if (endian == DEVICE_LITTLE_ENDIAN) {
2366 val = bswap32(val);
2367 }
2368#else
2369 if (endian == DEVICE_BIG_ENDIAN) {
2370 val = bswap32(val);
2371 }
2372#endif
8df1cd07
FB
2373 } else {
2374 /* RAM case */
5c8a00ce 2375 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2376 & TARGET_PAGE_MASK)
149f54b5 2377 + addr1);
1e78bcc1
AG
2378 switch (endian) {
2379 case DEVICE_LITTLE_ENDIAN:
2380 val = ldl_le_p(ptr);
2381 break;
2382 case DEVICE_BIG_ENDIAN:
2383 val = ldl_be_p(ptr);
2384 break;
2385 default:
2386 val = ldl_p(ptr);
2387 break;
2388 }
8df1cd07
FB
2389 }
2390 return val;
2391}
2392
fdfba1a2 2393uint32_t ldl_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2394{
fdfba1a2 2395 return ldl_phys_internal(as, addr, DEVICE_NATIVE_ENDIAN);
1e78bcc1
AG
2396}
2397
fdfba1a2 2398uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2399{
fdfba1a2 2400 return ldl_phys_internal(as, addr, DEVICE_LITTLE_ENDIAN);
1e78bcc1
AG
2401}
2402
fdfba1a2 2403uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2404{
fdfba1a2 2405 return ldl_phys_internal(as, addr, DEVICE_BIG_ENDIAN);
1e78bcc1
AG
2406}
2407
84b7b8e7 2408/* warning: addr must be aligned */
2c17449b 2409static inline uint64_t ldq_phys_internal(AddressSpace *as, hwaddr addr,
1e78bcc1 2410 enum device_endian endian)
84b7b8e7 2411{
84b7b8e7
FB
2412 uint8_t *ptr;
2413 uint64_t val;
5c8a00ce 2414 MemoryRegion *mr;
149f54b5
PB
2415 hwaddr l = 8;
2416 hwaddr addr1;
84b7b8e7 2417
2c17449b 2418 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
2419 false);
2420 if (l < 8 || !memory_access_is_direct(mr, false)) {
84b7b8e7 2421 /* I/O case */
5c8a00ce 2422 io_mem_read(mr, addr1, &val, 8);
968a5627
PB
2423#if defined(TARGET_WORDS_BIGENDIAN)
2424 if (endian == DEVICE_LITTLE_ENDIAN) {
2425 val = bswap64(val);
2426 }
2427#else
2428 if (endian == DEVICE_BIG_ENDIAN) {
2429 val = bswap64(val);
2430 }
84b7b8e7
FB
2431#endif
2432 } else {
2433 /* RAM case */
5c8a00ce 2434 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2435 & TARGET_PAGE_MASK)
149f54b5 2436 + addr1);
1e78bcc1
AG
2437 switch (endian) {
2438 case DEVICE_LITTLE_ENDIAN:
2439 val = ldq_le_p(ptr);
2440 break;
2441 case DEVICE_BIG_ENDIAN:
2442 val = ldq_be_p(ptr);
2443 break;
2444 default:
2445 val = ldq_p(ptr);
2446 break;
2447 }
84b7b8e7
FB
2448 }
2449 return val;
2450}
2451
2c17449b 2452uint64_t ldq_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2453{
2c17449b 2454 return ldq_phys_internal(as, addr, DEVICE_NATIVE_ENDIAN);
1e78bcc1
AG
2455}
2456
2c17449b 2457uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2458{
2c17449b 2459 return ldq_phys_internal(as, addr, DEVICE_LITTLE_ENDIAN);
1e78bcc1
AG
2460}
2461
2c17449b 2462uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2463{
2c17449b 2464 return ldq_phys_internal(as, addr, DEVICE_BIG_ENDIAN);
1e78bcc1
AG
2465}
2466
aab33094 2467/* XXX: optimize */
2c17449b 2468uint32_t ldub_phys(AddressSpace *as, hwaddr addr)
aab33094
FB
2469{
2470 uint8_t val;
2c17449b 2471 address_space_rw(as, addr, &val, 1, 0);
aab33094
FB
2472 return val;
2473}
2474
733f0b02 2475/* warning: addr must be aligned */
41701aa4 2476static inline uint32_t lduw_phys_internal(AddressSpace *as, hwaddr addr,
1e78bcc1 2477 enum device_endian endian)
aab33094 2478{
733f0b02
MT
2479 uint8_t *ptr;
2480 uint64_t val;
5c8a00ce 2481 MemoryRegion *mr;
149f54b5
PB
2482 hwaddr l = 2;
2483 hwaddr addr1;
733f0b02 2484
41701aa4 2485 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
2486 false);
2487 if (l < 2 || !memory_access_is_direct(mr, false)) {
733f0b02 2488 /* I/O case */
5c8a00ce 2489 io_mem_read(mr, addr1, &val, 2);
1e78bcc1
AG
2490#if defined(TARGET_WORDS_BIGENDIAN)
2491 if (endian == DEVICE_LITTLE_ENDIAN) {
2492 val = bswap16(val);
2493 }
2494#else
2495 if (endian == DEVICE_BIG_ENDIAN) {
2496 val = bswap16(val);
2497 }
2498#endif
733f0b02
MT
2499 } else {
2500 /* RAM case */
5c8a00ce 2501 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2502 & TARGET_PAGE_MASK)
149f54b5 2503 + addr1);
1e78bcc1
AG
2504 switch (endian) {
2505 case DEVICE_LITTLE_ENDIAN:
2506 val = lduw_le_p(ptr);
2507 break;
2508 case DEVICE_BIG_ENDIAN:
2509 val = lduw_be_p(ptr);
2510 break;
2511 default:
2512 val = lduw_p(ptr);
2513 break;
2514 }
733f0b02
MT
2515 }
2516 return val;
aab33094
FB
2517}
2518
41701aa4 2519uint32_t lduw_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2520{
41701aa4 2521 return lduw_phys_internal(as, addr, DEVICE_NATIVE_ENDIAN);
1e78bcc1
AG
2522}
2523
41701aa4 2524uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2525{
41701aa4 2526 return lduw_phys_internal(as, addr, DEVICE_LITTLE_ENDIAN);
1e78bcc1
AG
2527}
2528
41701aa4 2529uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2530{
41701aa4 2531 return lduw_phys_internal(as, addr, DEVICE_BIG_ENDIAN);
1e78bcc1
AG
2532}
2533
8df1cd07
FB
2534/* warning: addr must be aligned. The ram page is not masked as dirty
2535 and the code inside is not invalidated. It is useful if the dirty
2536 bits are used to track modified PTEs */
2198a121 2537void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
8df1cd07 2538{
8df1cd07 2539 uint8_t *ptr;
5c8a00ce 2540 MemoryRegion *mr;
149f54b5
PB
2541 hwaddr l = 4;
2542 hwaddr addr1;
8df1cd07 2543
2198a121 2544 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
2545 true);
2546 if (l < 4 || !memory_access_is_direct(mr, true)) {
2547 io_mem_write(mr, addr1, val, 4);
8df1cd07 2548 } else {
5c8a00ce 2549 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 2550 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 2551 stl_p(ptr, val);
74576198
AL
2552
2553 if (unlikely(in_migration)) {
a2cd8c85 2554 if (cpu_physical_memory_is_clean(addr1)) {
74576198
AL
2555 /* invalidate code */
2556 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2557 /* set dirty bit */
52159192
JQ
2558 cpu_physical_memory_set_dirty_flag(addr1,
2559 DIRTY_MEMORY_MIGRATION);
2560 cpu_physical_memory_set_dirty_flag(addr1, DIRTY_MEMORY_VGA);
74576198
AL
2561 }
2562 }
8df1cd07
FB
2563 }
2564}
2565
2566/* warning: addr must be aligned */
ab1da857
EI
2567static inline void stl_phys_internal(AddressSpace *as,
2568 hwaddr addr, uint32_t val,
1e78bcc1 2569 enum device_endian endian)
8df1cd07 2570{
8df1cd07 2571 uint8_t *ptr;
5c8a00ce 2572 MemoryRegion *mr;
149f54b5
PB
2573 hwaddr l = 4;
2574 hwaddr addr1;
8df1cd07 2575
ab1da857 2576 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
2577 true);
2578 if (l < 4 || !memory_access_is_direct(mr, true)) {
1e78bcc1
AG
2579#if defined(TARGET_WORDS_BIGENDIAN)
2580 if (endian == DEVICE_LITTLE_ENDIAN) {
2581 val = bswap32(val);
2582 }
2583#else
2584 if (endian == DEVICE_BIG_ENDIAN) {
2585 val = bswap32(val);
2586 }
2587#endif
5c8a00ce 2588 io_mem_write(mr, addr1, val, 4);
8df1cd07 2589 } else {
8df1cd07 2590 /* RAM case */
5c8a00ce 2591 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 2592 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
2593 switch (endian) {
2594 case DEVICE_LITTLE_ENDIAN:
2595 stl_le_p(ptr, val);
2596 break;
2597 case DEVICE_BIG_ENDIAN:
2598 stl_be_p(ptr, val);
2599 break;
2600 default:
2601 stl_p(ptr, val);
2602 break;
2603 }
51d7a9eb 2604 invalidate_and_set_dirty(addr1, 4);
8df1cd07
FB
2605 }
2606}
2607
ab1da857 2608void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 2609{
ab1da857 2610 stl_phys_internal(as, addr, val, DEVICE_NATIVE_ENDIAN);
1e78bcc1
AG
2611}
2612
ab1da857 2613void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 2614{
ab1da857 2615 stl_phys_internal(as, addr, val, DEVICE_LITTLE_ENDIAN);
1e78bcc1
AG
2616}
2617
ab1da857 2618void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 2619{
ab1da857 2620 stl_phys_internal(as, addr, val, DEVICE_BIG_ENDIAN);
1e78bcc1
AG
2621}
2622
aab33094 2623/* XXX: optimize */
a8170e5e 2624void stb_phys(hwaddr addr, uint32_t val)
aab33094
FB
2625{
2626 uint8_t v = val;
2627 cpu_physical_memory_write(addr, &v, 1);
2628}
2629
733f0b02 2630/* warning: addr must be aligned */
a8170e5e 2631static inline void stw_phys_internal(hwaddr addr, uint32_t val,
1e78bcc1 2632 enum device_endian endian)
aab33094 2633{
733f0b02 2634 uint8_t *ptr;
5c8a00ce 2635 MemoryRegion *mr;
149f54b5
PB
2636 hwaddr l = 2;
2637 hwaddr addr1;
733f0b02 2638
5c8a00ce
PB
2639 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2640 true);
2641 if (l < 2 || !memory_access_is_direct(mr, true)) {
1e78bcc1
AG
2642#if defined(TARGET_WORDS_BIGENDIAN)
2643 if (endian == DEVICE_LITTLE_ENDIAN) {
2644 val = bswap16(val);
2645 }
2646#else
2647 if (endian == DEVICE_BIG_ENDIAN) {
2648 val = bswap16(val);
2649 }
2650#endif
5c8a00ce 2651 io_mem_write(mr, addr1, val, 2);
733f0b02 2652 } else {
733f0b02 2653 /* RAM case */
5c8a00ce 2654 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
733f0b02 2655 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
2656 switch (endian) {
2657 case DEVICE_LITTLE_ENDIAN:
2658 stw_le_p(ptr, val);
2659 break;
2660 case DEVICE_BIG_ENDIAN:
2661 stw_be_p(ptr, val);
2662 break;
2663 default:
2664 stw_p(ptr, val);
2665 break;
2666 }
51d7a9eb 2667 invalidate_and_set_dirty(addr1, 2);
733f0b02 2668 }
aab33094
FB
2669}
2670
a8170e5e 2671void stw_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2672{
2673 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2674}
2675
a8170e5e 2676void stw_le_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2677{
2678 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2679}
2680
a8170e5e 2681void stw_be_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2682{
2683 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2684}
2685
aab33094 2686/* XXX: optimize */
f606604f 2687void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val)
aab33094
FB
2688{
2689 val = tswap64(val);
f606604f 2690 address_space_rw(as, addr, (void *) &val, 8, 1);
aab33094
FB
2691}
2692
f606604f 2693void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val)
1e78bcc1
AG
2694{
2695 val = cpu_to_le64(val);
f606604f 2696 address_space_rw(as, addr, (void *) &val, 8, 1);
1e78bcc1
AG
2697}
2698
f606604f 2699void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val)
1e78bcc1
AG
2700{
2701 val = cpu_to_be64(val);
f606604f 2702 address_space_rw(as, addr, (void *) &val, 8, 1);
1e78bcc1
AG
2703}
2704
5e2972fd 2705/* virtual memory access for debug (includes writing to ROM) */
f17ec444 2706int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 2707 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2708{
2709 int l;
a8170e5e 2710 hwaddr phys_addr;
9b3c35e0 2711 target_ulong page;
13eb76e0
FB
2712
2713 while (len > 0) {
2714 page = addr & TARGET_PAGE_MASK;
f17ec444 2715 phys_addr = cpu_get_phys_page_debug(cpu, page);
13eb76e0
FB
2716 /* if no physical page mapped, return an error */
2717 if (phys_addr == -1)
2718 return -1;
2719 l = (page + TARGET_PAGE_SIZE) - addr;
2720 if (l > len)
2721 l = len;
5e2972fd 2722 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
2723 if (is_write)
2724 cpu_physical_memory_write_rom(phys_addr, buf, l);
2725 else
5e2972fd 2726 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
2727 len -= l;
2728 buf += l;
2729 addr += l;
2730 }
2731 return 0;
2732}
a68fe89c 2733#endif
13eb76e0 2734
8e4a424b
BS
2735#if !defined(CONFIG_USER_ONLY)
2736
2737/*
2738 * A helper function for the _utterly broken_ virtio device model to find out if
2739 * it's running on a big endian machine. Don't do this at home kids!
2740 */
2741bool virtio_is_big_endian(void);
2742bool virtio_is_big_endian(void)
2743{
2744#if defined(TARGET_WORDS_BIGENDIAN)
2745 return true;
2746#else
2747 return false;
2748#endif
2749}
2750
2751#endif
2752
76f35538 2753#ifndef CONFIG_USER_ONLY
a8170e5e 2754bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 2755{
5c8a00ce 2756 MemoryRegion*mr;
149f54b5 2757 hwaddr l = 1;
76f35538 2758
5c8a00ce
PB
2759 mr = address_space_translate(&address_space_memory,
2760 phys_addr, &phys_addr, &l, false);
76f35538 2761
5c8a00ce
PB
2762 return !(memory_region_is_ram(mr) ||
2763 memory_region_is_romd(mr));
76f35538 2764}
bd2fa51f
MH
2765
2766void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2767{
2768 RAMBlock *block;
2769
2770 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2771 func(block->host, block->offset, block->length, opaque);
2772 }
2773}
ec3f8c99 2774#endif