]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
Use libgcc __clear_cache to clean icache, when available.
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
67b915a5 20#include "config.h"
d5a8f07c 21#ifdef _WIN32
4fddf62a 22#define WIN32_LEAN_AND_MEAN
d5a8f07c
FB
23#include <windows.h>
24#else
a98d49b1 25#include <sys/types.h>
d5a8f07c
FB
26#include <sys/mman.h>
27#endif
54936004
FB
28#include <stdlib.h>
29#include <stdio.h>
30#include <stdarg.h>
31#include <string.h>
32#include <errno.h>
33#include <unistd.h>
34#include <inttypes.h>
35
6180a181
FB
36#include "cpu.h"
37#include "exec-all.h"
ca10f867 38#include "qemu-common.h"
b67d9a52 39#include "tcg.h"
b3c7724c 40#include "hw/hw.h"
74576198 41#include "osdep.h"
7ba1e619 42#include "kvm.h"
53a5960a
PB
43#if defined(CONFIG_USER_ONLY)
44#include <qemu.h>
45#endif
54936004 46
fd6ce8f6 47//#define DEBUG_TB_INVALIDATE
66e85a21 48//#define DEBUG_FLUSH
9fa3e853 49//#define DEBUG_TLB
67d3b957 50//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
51
52/* make various TB consistency checks */
5fafdf24
TS
53//#define DEBUG_TB_CHECK
54//#define DEBUG_TLB_CHECK
fd6ce8f6 55
1196be37 56//#define DEBUG_IOPORT
db7b5426 57//#define DEBUG_SUBPAGE
1196be37 58
99773bd4
PB
59#if !defined(CONFIG_USER_ONLY)
60/* TB consistency checks only implemented for usermode emulation. */
61#undef DEBUG_TB_CHECK
62#endif
63
9fa3e853
FB
64#define SMC_BITMAP_USE_THRESHOLD 10
65
66#define MMAP_AREA_START 0x00000000
67#define MMAP_AREA_END 0xa8000000
fd6ce8f6 68
108c49b8
FB
69#if defined(TARGET_SPARC64)
70#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
71#elif defined(TARGET_SPARC)
72#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
73#elif defined(TARGET_ALPHA)
74#define TARGET_PHYS_ADDR_SPACE_BITS 42
75#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
76#elif defined(TARGET_PPC64)
77#define TARGET_PHYS_ADDR_SPACE_BITS 42
00f82b8a
AJ
78#elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
79#define TARGET_PHYS_ADDR_SPACE_BITS 42
80#elif defined(TARGET_I386) && !defined(USE_KQEMU)
81#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8
FB
82#else
83/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
84#define TARGET_PHYS_ADDR_SPACE_BITS 32
85#endif
86
bdaf78e0 87static TranslationBlock *tbs;
26a5f13b 88int code_gen_max_blocks;
9fa3e853 89TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 90static int nb_tbs;
eb51d102
FB
91/* any access to the tbs or the page table must use this lock */
92spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 93
141ac468
BS
94#if defined(__arm__) || defined(__sparc_v9__)
95/* The prologue must be reachable with a direct jump. ARM and Sparc64
96 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
97 section close to code segment. */
98#define code_gen_section \
99 __attribute__((__section__(".gen_code"))) \
100 __attribute__((aligned (32)))
101#else
102#define code_gen_section \
103 __attribute__((aligned (32)))
104#endif
105
106uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
107static uint8_t *code_gen_buffer;
108static unsigned long code_gen_buffer_size;
26a5f13b 109/* threshold to flush the translated code buffer */
bdaf78e0 110static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
111uint8_t *code_gen_ptr;
112
e2eef170 113#if !defined(CONFIG_USER_ONLY)
00f82b8a 114ram_addr_t phys_ram_size;
9fa3e853
FB
115int phys_ram_fd;
116uint8_t *phys_ram_base;
1ccde1cb 117uint8_t *phys_ram_dirty;
74576198 118static int in_migration;
e9a1ab19 119static ram_addr_t phys_ram_alloc_offset = 0;
e2eef170 120#endif
9fa3e853 121
6a00d601
FB
122CPUState *first_cpu;
123/* current CPU in the current thread. It is only valid inside
124 cpu_exec() */
5fafdf24 125CPUState *cpu_single_env;
2e70f6ef 126/* 0 = Do not count executed instructions.
bf20dc07 127 1 = Precise instruction counting.
2e70f6ef
PB
128 2 = Adaptive rate instruction counting. */
129int use_icount = 0;
130/* Current instruction counter. While executing translated code this may
131 include some instructions that have not yet been executed. */
132int64_t qemu_icount;
6a00d601 133
54936004 134typedef struct PageDesc {
92e873b9 135 /* list of TBs intersecting this ram page */
fd6ce8f6 136 TranslationBlock *first_tb;
9fa3e853
FB
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count;
140 uint8_t *code_bitmap;
141#if defined(CONFIG_USER_ONLY)
142 unsigned long flags;
143#endif
54936004
FB
144} PageDesc;
145
92e873b9 146typedef struct PhysPageDesc {
0f459d16 147 /* offset in host memory of the page + io_index in the low bits */
00f82b8a 148 ram_addr_t phys_offset;
92e873b9
FB
149} PhysPageDesc;
150
54936004 151#define L2_BITS 10
bedb69ea
JM
152#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
153/* XXX: this is a temporary hack for alpha target.
154 * In the future, this is to be replaced by a multi-level table
155 * to actually be able to handle the complete 64 bits address space.
156 */
157#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
158#else
03875444 159#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 160#endif
54936004
FB
161
162#define L1_SIZE (1 << L1_BITS)
163#define L2_SIZE (1 << L2_BITS)
164
83fb7adf
FB
165unsigned long qemu_real_host_page_size;
166unsigned long qemu_host_page_bits;
167unsigned long qemu_host_page_size;
168unsigned long qemu_host_page_mask;
54936004 169
92e873b9 170/* XXX: for system emulation, it could just be an array */
54936004 171static PageDesc *l1_map[L1_SIZE];
bdaf78e0 172static PhysPageDesc **l1_phys_map;
54936004 173
e2eef170
PB
174#if !defined(CONFIG_USER_ONLY)
175static void io_mem_init(void);
176
33417e70 177/* io memory support */
33417e70
FB
178CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
179CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 180void *io_mem_opaque[IO_MEM_NB_ENTRIES];
33417e70 181static int io_mem_nb;
6658ffb8
PB
182static int io_mem_watch;
183#endif
33417e70 184
34865134 185/* log support */
d9b630fd 186static const char *logfilename = "/tmp/qemu.log";
34865134
FB
187FILE *logfile;
188int loglevel;
e735b91c 189static int log_append = 0;
34865134 190
e3db7226
FB
191/* statistics */
192static int tlb_flush_count;
193static int tb_flush_count;
194static int tb_phys_invalidate_count;
195
db7b5426
BS
196#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
197typedef struct subpage_t {
198 target_phys_addr_t base;
3ee89922
BS
199 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
200 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
201 void *opaque[TARGET_PAGE_SIZE][2][4];
db7b5426
BS
202} subpage_t;
203
7cb69cae
FB
204#ifdef _WIN32
205static void map_exec(void *addr, long size)
206{
207 DWORD old_protect;
208 VirtualProtect(addr, size,
209 PAGE_EXECUTE_READWRITE, &old_protect);
210
211}
212#else
213static void map_exec(void *addr, long size)
214{
4369415f 215 unsigned long start, end, page_size;
7cb69cae 216
4369415f 217 page_size = getpagesize();
7cb69cae 218 start = (unsigned long)addr;
4369415f 219 start &= ~(page_size - 1);
7cb69cae
FB
220
221 end = (unsigned long)addr + size;
4369415f
FB
222 end += page_size - 1;
223 end &= ~(page_size - 1);
7cb69cae
FB
224
225 mprotect((void *)start, end - start,
226 PROT_READ | PROT_WRITE | PROT_EXEC);
227}
228#endif
229
b346ff46 230static void page_init(void)
54936004 231{
83fb7adf 232 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 233 TARGET_PAGE_SIZE */
c2b48b69
AL
234#ifdef _WIN32
235 {
236 SYSTEM_INFO system_info;
237
238 GetSystemInfo(&system_info);
239 qemu_real_host_page_size = system_info.dwPageSize;
240 }
241#else
242 qemu_real_host_page_size = getpagesize();
243#endif
83fb7adf
FB
244 if (qemu_host_page_size == 0)
245 qemu_host_page_size = qemu_real_host_page_size;
246 if (qemu_host_page_size < TARGET_PAGE_SIZE)
247 qemu_host_page_size = TARGET_PAGE_SIZE;
248 qemu_host_page_bits = 0;
249 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
250 qemu_host_page_bits++;
251 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
252 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
253 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
50a9569b
AZ
254
255#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
256 {
257 long long startaddr, endaddr;
258 FILE *f;
259 int n;
260
c8a706fe 261 mmap_lock();
0776590d 262 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
263 f = fopen("/proc/self/maps", "r");
264 if (f) {
265 do {
266 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
267 if (n == 2) {
e0b8d65a
BS
268 startaddr = MIN(startaddr,
269 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
270 endaddr = MIN(endaddr,
271 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 272 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
273 TARGET_PAGE_ALIGN(endaddr),
274 PAGE_RESERVED);
275 }
276 } while (!feof(f));
277 fclose(f);
278 }
c8a706fe 279 mmap_unlock();
50a9569b
AZ
280 }
281#endif
54936004
FB
282}
283
434929bf 284static inline PageDesc **page_l1_map(target_ulong index)
54936004 285{
17e2377a
PB
286#if TARGET_LONG_BITS > 32
287 /* Host memory outside guest VM. For 32-bit targets we have already
288 excluded high addresses. */
d8173e0f 289 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
17e2377a
PB
290 return NULL;
291#endif
434929bf
AL
292 return &l1_map[index >> L2_BITS];
293}
294
295static inline PageDesc *page_find_alloc(target_ulong index)
296{
297 PageDesc **lp, *p;
298 lp = page_l1_map(index);
299 if (!lp)
300 return NULL;
301
54936004
FB
302 p = *lp;
303 if (!p) {
304 /* allocate if not found */
17e2377a
PB
305#if defined(CONFIG_USER_ONLY)
306 unsigned long addr;
307 size_t len = sizeof(PageDesc) * L2_SIZE;
308 /* Don't use qemu_malloc because it may recurse. */
309 p = mmap(0, len, PROT_READ | PROT_WRITE,
310 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 311 *lp = p;
17e2377a
PB
312 addr = h2g(p);
313 if (addr == (target_ulong)addr) {
314 page_set_flags(addr & TARGET_PAGE_MASK,
315 TARGET_PAGE_ALIGN(addr + len),
316 PAGE_RESERVED);
317 }
318#else
319 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
320 *lp = p;
321#endif
54936004
FB
322 }
323 return p + (index & (L2_SIZE - 1));
324}
325
00f82b8a 326static inline PageDesc *page_find(target_ulong index)
54936004 327{
434929bf
AL
328 PageDesc **lp, *p;
329 lp = page_l1_map(index);
330 if (!lp)
331 return NULL;
54936004 332
434929bf 333 p = *lp;
54936004
FB
334 if (!p)
335 return 0;
fd6ce8f6
FB
336 return p + (index & (L2_SIZE - 1));
337}
338
108c49b8 339static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 340{
108c49b8 341 void **lp, **p;
e3f4e2a4 342 PhysPageDesc *pd;
92e873b9 343
108c49b8
FB
344 p = (void **)l1_phys_map;
345#if TARGET_PHYS_ADDR_SPACE_BITS > 32
346
347#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
348#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
349#endif
350 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
351 p = *lp;
352 if (!p) {
353 /* allocate if not found */
108c49b8
FB
354 if (!alloc)
355 return NULL;
356 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
357 memset(p, 0, sizeof(void *) * L1_SIZE);
358 *lp = p;
359 }
360#endif
361 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
362 pd = *lp;
363 if (!pd) {
364 int i;
108c49b8
FB
365 /* allocate if not found */
366 if (!alloc)
367 return NULL;
e3f4e2a4
PB
368 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
369 *lp = pd;
370 for (i = 0; i < L2_SIZE; i++)
371 pd[i].phys_offset = IO_MEM_UNASSIGNED;
92e873b9 372 }
e3f4e2a4 373 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
374}
375
108c49b8 376static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 377{
108c49b8 378 return phys_page_find_alloc(index, 0);
92e873b9
FB
379}
380
9fa3e853 381#if !defined(CONFIG_USER_ONLY)
6a00d601 382static void tlb_protect_code(ram_addr_t ram_addr);
5fafdf24 383static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 384 target_ulong vaddr);
c8a706fe
PB
385#define mmap_lock() do { } while(0)
386#define mmap_unlock() do { } while(0)
9fa3e853 387#endif
fd6ce8f6 388
4369415f
FB
389#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
390
391#if defined(CONFIG_USER_ONLY)
392/* Currently it is not recommanded to allocate big chunks of data in
393 user mode. It will change when a dedicated libc will be used */
394#define USE_STATIC_CODE_GEN_BUFFER
395#endif
396
397#ifdef USE_STATIC_CODE_GEN_BUFFER
398static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
399#endif
400
8fcd3692 401static void code_gen_alloc(unsigned long tb_size)
26a5f13b 402{
4369415f
FB
403#ifdef USE_STATIC_CODE_GEN_BUFFER
404 code_gen_buffer = static_code_gen_buffer;
405 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
406 map_exec(code_gen_buffer, code_gen_buffer_size);
407#else
26a5f13b
FB
408 code_gen_buffer_size = tb_size;
409 if (code_gen_buffer_size == 0) {
4369415f
FB
410#if defined(CONFIG_USER_ONLY)
411 /* in user mode, phys_ram_size is not meaningful */
412 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
413#else
26a5f13b 414 /* XXX: needs ajustments */
174a9a1f 415 code_gen_buffer_size = (unsigned long)(phys_ram_size / 4);
4369415f 416#endif
26a5f13b
FB
417 }
418 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
419 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
420 /* The code gen buffer location may have constraints depending on
421 the host cpu and OS */
422#if defined(__linux__)
423 {
424 int flags;
141ac468
BS
425 void *start = NULL;
426
26a5f13b
FB
427 flags = MAP_PRIVATE | MAP_ANONYMOUS;
428#if defined(__x86_64__)
429 flags |= MAP_32BIT;
430 /* Cannot map more than that */
431 if (code_gen_buffer_size > (800 * 1024 * 1024))
432 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
433#elif defined(__sparc_v9__)
434 // Map the buffer below 2G, so we can use direct calls and branches
435 flags |= MAP_FIXED;
436 start = (void *) 0x60000000UL;
437 if (code_gen_buffer_size > (512 * 1024 * 1024))
438 code_gen_buffer_size = (512 * 1024 * 1024);
26a5f13b 439#endif
141ac468
BS
440 code_gen_buffer = mmap(start, code_gen_buffer_size,
441 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
442 flags, -1, 0);
443 if (code_gen_buffer == MAP_FAILED) {
444 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
445 exit(1);
446 }
447 }
06e67a82
AL
448#elif defined(__FreeBSD__)
449 {
450 int flags;
451 void *addr = NULL;
452 flags = MAP_PRIVATE | MAP_ANONYMOUS;
453#if defined(__x86_64__)
454 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
455 * 0x40000000 is free */
456 flags |= MAP_FIXED;
457 addr = (void *)0x40000000;
458 /* Cannot map more than that */
459 if (code_gen_buffer_size > (800 * 1024 * 1024))
460 code_gen_buffer_size = (800 * 1024 * 1024);
461#endif
462 code_gen_buffer = mmap(addr, code_gen_buffer_size,
463 PROT_WRITE | PROT_READ | PROT_EXEC,
464 flags, -1, 0);
465 if (code_gen_buffer == MAP_FAILED) {
466 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
467 exit(1);
468 }
469 }
26a5f13b
FB
470#else
471 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
472 if (!code_gen_buffer) {
473 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
474 exit(1);
475 }
476 map_exec(code_gen_buffer, code_gen_buffer_size);
477#endif
4369415f 478#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
479 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
480 code_gen_buffer_max_size = code_gen_buffer_size -
481 code_gen_max_block_size();
482 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
483 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
484}
485
486/* Must be called before using the QEMU cpus. 'tb_size' is the size
487 (in bytes) allocated to the translation buffer. Zero means default
488 size. */
489void cpu_exec_init_all(unsigned long tb_size)
490{
26a5f13b
FB
491 cpu_gen_init();
492 code_gen_alloc(tb_size);
493 code_gen_ptr = code_gen_buffer;
4369415f 494 page_init();
e2eef170 495#if !defined(CONFIG_USER_ONLY)
26a5f13b 496 io_mem_init();
e2eef170 497#endif
26a5f13b
FB
498}
499
9656f324
PB
500#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
501
502#define CPU_COMMON_SAVE_VERSION 1
503
504static void cpu_common_save(QEMUFile *f, void *opaque)
505{
506 CPUState *env = opaque;
507
508 qemu_put_be32s(f, &env->halted);
509 qemu_put_be32s(f, &env->interrupt_request);
510}
511
512static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
513{
514 CPUState *env = opaque;
515
516 if (version_id != CPU_COMMON_SAVE_VERSION)
517 return -EINVAL;
518
519 qemu_get_be32s(f, &env->halted);
75f482ae 520 qemu_get_be32s(f, &env->interrupt_request);
9656f324
PB
521 tlb_flush(env, 1);
522
523 return 0;
524}
525#endif
526
6a00d601 527void cpu_exec_init(CPUState *env)
fd6ce8f6 528{
6a00d601
FB
529 CPUState **penv;
530 int cpu_index;
531
6a00d601
FB
532 env->next_cpu = NULL;
533 penv = &first_cpu;
534 cpu_index = 0;
535 while (*penv != NULL) {
536 penv = (CPUState **)&(*penv)->next_cpu;
537 cpu_index++;
538 }
539 env->cpu_index = cpu_index;
c0ce998e
AL
540 TAILQ_INIT(&env->breakpoints);
541 TAILQ_INIT(&env->watchpoints);
6a00d601 542 *penv = env;
b3c7724c 543#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
9656f324
PB
544 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
545 cpu_common_save, cpu_common_load, env);
b3c7724c
PB
546 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
547 cpu_save, cpu_load, env);
548#endif
fd6ce8f6
FB
549}
550
9fa3e853
FB
551static inline void invalidate_page_bitmap(PageDesc *p)
552{
553 if (p->code_bitmap) {
59817ccb 554 qemu_free(p->code_bitmap);
9fa3e853
FB
555 p->code_bitmap = NULL;
556 }
557 p->code_write_count = 0;
558}
559
fd6ce8f6
FB
560/* set to NULL all the 'first_tb' fields in all PageDescs */
561static void page_flush_tb(void)
562{
563 int i, j;
564 PageDesc *p;
565
566 for(i = 0; i < L1_SIZE; i++) {
567 p = l1_map[i];
568 if (p) {
9fa3e853
FB
569 for(j = 0; j < L2_SIZE; j++) {
570 p->first_tb = NULL;
571 invalidate_page_bitmap(p);
572 p++;
573 }
fd6ce8f6
FB
574 }
575 }
576}
577
578/* flush all the translation blocks */
d4e8164f 579/* XXX: tb_flush is currently not thread safe */
6a00d601 580void tb_flush(CPUState *env1)
fd6ce8f6 581{
6a00d601 582 CPUState *env;
0124311e 583#if defined(DEBUG_FLUSH)
ab3d1727
BS
584 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
585 (unsigned long)(code_gen_ptr - code_gen_buffer),
586 nb_tbs, nb_tbs > 0 ?
587 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 588#endif
26a5f13b 589 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
590 cpu_abort(env1, "Internal error: code buffer overflow\n");
591
fd6ce8f6 592 nb_tbs = 0;
3b46e624 593
6a00d601
FB
594 for(env = first_cpu; env != NULL; env = env->next_cpu) {
595 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
596 }
9fa3e853 597
8a8a608f 598 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 599 page_flush_tb();
9fa3e853 600
fd6ce8f6 601 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
602 /* XXX: flush processor icache at this point if cache flush is
603 expensive */
e3db7226 604 tb_flush_count++;
fd6ce8f6
FB
605}
606
607#ifdef DEBUG_TB_CHECK
608
bc98a7ef 609static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
610{
611 TranslationBlock *tb;
612 int i;
613 address &= TARGET_PAGE_MASK;
99773bd4
PB
614 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
615 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
616 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
617 address >= tb->pc + tb->size)) {
618 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
99773bd4 619 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
620 }
621 }
622 }
623}
624
625/* verify that all the pages have correct rights for code */
626static void tb_page_check(void)
627{
628 TranslationBlock *tb;
629 int i, flags1, flags2;
3b46e624 630
99773bd4
PB
631 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
632 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
633 flags1 = page_get_flags(tb->pc);
634 flags2 = page_get_flags(tb->pc + tb->size - 1);
635 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
636 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 637 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
638 }
639 }
640 }
641}
642
bdaf78e0 643static void tb_jmp_check(TranslationBlock *tb)
d4e8164f
FB
644{
645 TranslationBlock *tb1;
646 unsigned int n1;
647
648 /* suppress any remaining jumps to this TB */
649 tb1 = tb->jmp_first;
650 for(;;) {
651 n1 = (long)tb1 & 3;
652 tb1 = (TranslationBlock *)((long)tb1 & ~3);
653 if (n1 == 2)
654 break;
655 tb1 = tb1->jmp_next[n1];
656 }
657 /* check end of list */
658 if (tb1 != tb) {
659 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
660 }
661}
662
fd6ce8f6
FB
663#endif
664
665/* invalidate one TB */
666static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
667 int next_offset)
668{
669 TranslationBlock *tb1;
670 for(;;) {
671 tb1 = *ptb;
672 if (tb1 == tb) {
673 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
674 break;
675 }
676 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
677 }
678}
679
9fa3e853
FB
680static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
681{
682 TranslationBlock *tb1;
683 unsigned int n1;
684
685 for(;;) {
686 tb1 = *ptb;
687 n1 = (long)tb1 & 3;
688 tb1 = (TranslationBlock *)((long)tb1 & ~3);
689 if (tb1 == tb) {
690 *ptb = tb1->page_next[n1];
691 break;
692 }
693 ptb = &tb1->page_next[n1];
694 }
695}
696
d4e8164f
FB
697static inline void tb_jmp_remove(TranslationBlock *tb, int n)
698{
699 TranslationBlock *tb1, **ptb;
700 unsigned int n1;
701
702 ptb = &tb->jmp_next[n];
703 tb1 = *ptb;
704 if (tb1) {
705 /* find tb(n) in circular list */
706 for(;;) {
707 tb1 = *ptb;
708 n1 = (long)tb1 & 3;
709 tb1 = (TranslationBlock *)((long)tb1 & ~3);
710 if (n1 == n && tb1 == tb)
711 break;
712 if (n1 == 2) {
713 ptb = &tb1->jmp_first;
714 } else {
715 ptb = &tb1->jmp_next[n1];
716 }
717 }
718 /* now we can suppress tb(n) from the list */
719 *ptb = tb->jmp_next[n];
720
721 tb->jmp_next[n] = NULL;
722 }
723}
724
725/* reset the jump entry 'n' of a TB so that it is not chained to
726 another TB */
727static inline void tb_reset_jump(TranslationBlock *tb, int n)
728{
729 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
730}
731
2e70f6ef 732void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 733{
6a00d601 734 CPUState *env;
8a40a180 735 PageDesc *p;
d4e8164f 736 unsigned int h, n1;
00f82b8a 737 target_phys_addr_t phys_pc;
8a40a180 738 TranslationBlock *tb1, *tb2;
3b46e624 739
8a40a180
FB
740 /* remove the TB from the hash list */
741 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
742 h = tb_phys_hash_func(phys_pc);
5fafdf24 743 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
744 offsetof(TranslationBlock, phys_hash_next));
745
746 /* remove the TB from the page list */
747 if (tb->page_addr[0] != page_addr) {
748 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
749 tb_page_remove(&p->first_tb, tb);
750 invalidate_page_bitmap(p);
751 }
752 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
753 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
754 tb_page_remove(&p->first_tb, tb);
755 invalidate_page_bitmap(p);
756 }
757
36bdbe54 758 tb_invalidated_flag = 1;
59817ccb 759
fd6ce8f6 760 /* remove the TB from the hash list */
8a40a180 761 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
762 for(env = first_cpu; env != NULL; env = env->next_cpu) {
763 if (env->tb_jmp_cache[h] == tb)
764 env->tb_jmp_cache[h] = NULL;
765 }
d4e8164f
FB
766
767 /* suppress this TB from the two jump lists */
768 tb_jmp_remove(tb, 0);
769 tb_jmp_remove(tb, 1);
770
771 /* suppress any remaining jumps to this TB */
772 tb1 = tb->jmp_first;
773 for(;;) {
774 n1 = (long)tb1 & 3;
775 if (n1 == 2)
776 break;
777 tb1 = (TranslationBlock *)((long)tb1 & ~3);
778 tb2 = tb1->jmp_next[n1];
779 tb_reset_jump(tb1, n1);
780 tb1->jmp_next[n1] = NULL;
781 tb1 = tb2;
782 }
783 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 784
e3db7226 785 tb_phys_invalidate_count++;
9fa3e853
FB
786}
787
788static inline void set_bits(uint8_t *tab, int start, int len)
789{
790 int end, mask, end1;
791
792 end = start + len;
793 tab += start >> 3;
794 mask = 0xff << (start & 7);
795 if ((start & ~7) == (end & ~7)) {
796 if (start < end) {
797 mask &= ~(0xff << (end & 7));
798 *tab |= mask;
799 }
800 } else {
801 *tab++ |= mask;
802 start = (start + 8) & ~7;
803 end1 = end & ~7;
804 while (start < end1) {
805 *tab++ = 0xff;
806 start += 8;
807 }
808 if (start < end) {
809 mask = ~(0xff << (end & 7));
810 *tab |= mask;
811 }
812 }
813}
814
815static void build_page_bitmap(PageDesc *p)
816{
817 int n, tb_start, tb_end;
818 TranslationBlock *tb;
3b46e624 819
b2a7081a 820 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
821 if (!p->code_bitmap)
822 return;
9fa3e853
FB
823
824 tb = p->first_tb;
825 while (tb != NULL) {
826 n = (long)tb & 3;
827 tb = (TranslationBlock *)((long)tb & ~3);
828 /* NOTE: this is subtle as a TB may span two physical pages */
829 if (n == 0) {
830 /* NOTE: tb_end may be after the end of the page, but
831 it is not a problem */
832 tb_start = tb->pc & ~TARGET_PAGE_MASK;
833 tb_end = tb_start + tb->size;
834 if (tb_end > TARGET_PAGE_SIZE)
835 tb_end = TARGET_PAGE_SIZE;
836 } else {
837 tb_start = 0;
838 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
839 }
840 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
841 tb = tb->page_next[n];
842 }
843}
844
2e70f6ef
PB
845TranslationBlock *tb_gen_code(CPUState *env,
846 target_ulong pc, target_ulong cs_base,
847 int flags, int cflags)
d720b93d
FB
848{
849 TranslationBlock *tb;
850 uint8_t *tc_ptr;
851 target_ulong phys_pc, phys_page2, virt_page2;
852 int code_gen_size;
853
c27004ec
FB
854 phys_pc = get_phys_addr_code(env, pc);
855 tb = tb_alloc(pc);
d720b93d
FB
856 if (!tb) {
857 /* flush must be done */
858 tb_flush(env);
859 /* cannot fail at this point */
c27004ec 860 tb = tb_alloc(pc);
2e70f6ef
PB
861 /* Don't forget to invalidate previous TB info. */
862 tb_invalidated_flag = 1;
d720b93d
FB
863 }
864 tc_ptr = code_gen_ptr;
865 tb->tc_ptr = tc_ptr;
866 tb->cs_base = cs_base;
867 tb->flags = flags;
868 tb->cflags = cflags;
d07bde88 869 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 870 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 871
d720b93d 872 /* check next page if needed */
c27004ec 873 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 874 phys_page2 = -1;
c27004ec 875 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
876 phys_page2 = get_phys_addr_code(env, virt_page2);
877 }
878 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 879 return tb;
d720b93d 880}
3b46e624 881
9fa3e853
FB
882/* invalidate all TBs which intersect with the target physical page
883 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
884 the same physical page. 'is_cpu_write_access' should be true if called
885 from a real cpu write access: the virtual CPU will exit the current
886 TB if code is modified inside this TB. */
00f82b8a 887void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
888 int is_cpu_write_access)
889{
6b917547 890 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 891 CPUState *env = cpu_single_env;
9fa3e853 892 target_ulong tb_start, tb_end;
6b917547
AL
893 PageDesc *p;
894 int n;
895#ifdef TARGET_HAS_PRECISE_SMC
896 int current_tb_not_found = is_cpu_write_access;
897 TranslationBlock *current_tb = NULL;
898 int current_tb_modified = 0;
899 target_ulong current_pc = 0;
900 target_ulong current_cs_base = 0;
901 int current_flags = 0;
902#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
903
904 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 905 if (!p)
9fa3e853 906 return;
5fafdf24 907 if (!p->code_bitmap &&
d720b93d
FB
908 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
909 is_cpu_write_access) {
9fa3e853
FB
910 /* build code bitmap */
911 build_page_bitmap(p);
912 }
913
914 /* we remove all the TBs in the range [start, end[ */
915 /* XXX: see if in some cases it could be faster to invalidate all the code */
916 tb = p->first_tb;
917 while (tb != NULL) {
918 n = (long)tb & 3;
919 tb = (TranslationBlock *)((long)tb & ~3);
920 tb_next = tb->page_next[n];
921 /* NOTE: this is subtle as a TB may span two physical pages */
922 if (n == 0) {
923 /* NOTE: tb_end may be after the end of the page, but
924 it is not a problem */
925 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
926 tb_end = tb_start + tb->size;
927 } else {
928 tb_start = tb->page_addr[1];
929 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
930 }
931 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
932#ifdef TARGET_HAS_PRECISE_SMC
933 if (current_tb_not_found) {
934 current_tb_not_found = 0;
935 current_tb = NULL;
2e70f6ef 936 if (env->mem_io_pc) {
d720b93d 937 /* now we have a real cpu fault */
2e70f6ef 938 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
939 }
940 }
941 if (current_tb == tb &&
2e70f6ef 942 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
943 /* If we are modifying the current TB, we must stop
944 its execution. We could be more precise by checking
945 that the modification is after the current PC, but it
946 would require a specialized function to partially
947 restore the CPU state */
3b46e624 948
d720b93d 949 current_tb_modified = 1;
5fafdf24 950 cpu_restore_state(current_tb, env,
2e70f6ef 951 env->mem_io_pc, NULL);
6b917547
AL
952 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
953 &current_flags);
d720b93d
FB
954 }
955#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
956 /* we need to do that to handle the case where a signal
957 occurs while doing tb_phys_invalidate() */
958 saved_tb = NULL;
959 if (env) {
960 saved_tb = env->current_tb;
961 env->current_tb = NULL;
962 }
9fa3e853 963 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
964 if (env) {
965 env->current_tb = saved_tb;
966 if (env->interrupt_request && env->current_tb)
967 cpu_interrupt(env, env->interrupt_request);
968 }
9fa3e853
FB
969 }
970 tb = tb_next;
971 }
972#if !defined(CONFIG_USER_ONLY)
973 /* if no code remaining, no need to continue to use slow writes */
974 if (!p->first_tb) {
975 invalidate_page_bitmap(p);
d720b93d 976 if (is_cpu_write_access) {
2e70f6ef 977 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
978 }
979 }
980#endif
981#ifdef TARGET_HAS_PRECISE_SMC
982 if (current_tb_modified) {
983 /* we generate a block containing just the instruction
984 modifying the memory. It will ensure that it cannot modify
985 itself */
ea1c1802 986 env->current_tb = NULL;
2e70f6ef 987 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 988 cpu_resume_from_signal(env, NULL);
9fa3e853 989 }
fd6ce8f6 990#endif
9fa3e853 991}
fd6ce8f6 992
9fa3e853 993/* len must be <= 8 and start must be a multiple of len */
00f82b8a 994static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
995{
996 PageDesc *p;
997 int offset, b;
59817ccb 998#if 0
a4193c8a
FB
999 if (1) {
1000 if (loglevel) {
5fafdf24 1001 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
2e70f6ef 1002 cpu_single_env->mem_io_vaddr, len,
5fafdf24 1003 cpu_single_env->eip,
a4193c8a
FB
1004 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1005 }
59817ccb
FB
1006 }
1007#endif
9fa3e853 1008 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1009 if (!p)
9fa3e853
FB
1010 return;
1011 if (p->code_bitmap) {
1012 offset = start & ~TARGET_PAGE_MASK;
1013 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1014 if (b & ((1 << len) - 1))
1015 goto do_invalidate;
1016 } else {
1017 do_invalidate:
d720b93d 1018 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1019 }
1020}
1021
9fa3e853 1022#if !defined(CONFIG_SOFTMMU)
00f82b8a 1023static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1024 unsigned long pc, void *puc)
9fa3e853 1025{
6b917547 1026 TranslationBlock *tb;
9fa3e853 1027 PageDesc *p;
6b917547 1028 int n;
d720b93d 1029#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1030 TranslationBlock *current_tb = NULL;
d720b93d 1031 CPUState *env = cpu_single_env;
6b917547
AL
1032 int current_tb_modified = 0;
1033 target_ulong current_pc = 0;
1034 target_ulong current_cs_base = 0;
1035 int current_flags = 0;
d720b93d 1036#endif
9fa3e853
FB
1037
1038 addr &= TARGET_PAGE_MASK;
1039 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1040 if (!p)
9fa3e853
FB
1041 return;
1042 tb = p->first_tb;
d720b93d
FB
1043#ifdef TARGET_HAS_PRECISE_SMC
1044 if (tb && pc != 0) {
1045 current_tb = tb_find_pc(pc);
1046 }
1047#endif
9fa3e853
FB
1048 while (tb != NULL) {
1049 n = (long)tb & 3;
1050 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1051#ifdef TARGET_HAS_PRECISE_SMC
1052 if (current_tb == tb &&
2e70f6ef 1053 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1054 /* If we are modifying the current TB, we must stop
1055 its execution. We could be more precise by checking
1056 that the modification is after the current PC, but it
1057 would require a specialized function to partially
1058 restore the CPU state */
3b46e624 1059
d720b93d
FB
1060 current_tb_modified = 1;
1061 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1062 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1063 &current_flags);
d720b93d
FB
1064 }
1065#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1066 tb_phys_invalidate(tb, addr);
1067 tb = tb->page_next[n];
1068 }
fd6ce8f6 1069 p->first_tb = NULL;
d720b93d
FB
1070#ifdef TARGET_HAS_PRECISE_SMC
1071 if (current_tb_modified) {
1072 /* we generate a block containing just the instruction
1073 modifying the memory. It will ensure that it cannot modify
1074 itself */
ea1c1802 1075 env->current_tb = NULL;
2e70f6ef 1076 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1077 cpu_resume_from_signal(env, puc);
1078 }
1079#endif
fd6ce8f6 1080}
9fa3e853 1081#endif
fd6ce8f6
FB
1082
1083/* add the tb in the target page and protect it if necessary */
5fafdf24 1084static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1085 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1086{
1087 PageDesc *p;
9fa3e853
FB
1088 TranslationBlock *last_first_tb;
1089
1090 tb->page_addr[n] = page_addr;
3a7d929e 1091 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1092 tb->page_next[n] = p->first_tb;
1093 last_first_tb = p->first_tb;
1094 p->first_tb = (TranslationBlock *)((long)tb | n);
1095 invalidate_page_bitmap(p);
fd6ce8f6 1096
107db443 1097#if defined(TARGET_HAS_SMC) || 1
d720b93d 1098
9fa3e853 1099#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1100 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1101 target_ulong addr;
1102 PageDesc *p2;
9fa3e853
FB
1103 int prot;
1104
fd6ce8f6
FB
1105 /* force the host page as non writable (writes will have a
1106 page fault + mprotect overhead) */
53a5960a 1107 page_addr &= qemu_host_page_mask;
fd6ce8f6 1108 prot = 0;
53a5960a
PB
1109 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1110 addr += TARGET_PAGE_SIZE) {
1111
1112 p2 = page_find (addr >> TARGET_PAGE_BITS);
1113 if (!p2)
1114 continue;
1115 prot |= p2->flags;
1116 p2->flags &= ~PAGE_WRITE;
1117 page_get_flags(addr);
1118 }
5fafdf24 1119 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1120 (prot & PAGE_BITS) & ~PAGE_WRITE);
1121#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1122 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1123 page_addr);
fd6ce8f6 1124#endif
fd6ce8f6 1125 }
9fa3e853
FB
1126#else
1127 /* if some code is already present, then the pages are already
1128 protected. So we handle the case where only the first TB is
1129 allocated in a physical page */
1130 if (!last_first_tb) {
6a00d601 1131 tlb_protect_code(page_addr);
9fa3e853
FB
1132 }
1133#endif
d720b93d
FB
1134
1135#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1136}
1137
1138/* Allocate a new translation block. Flush the translation buffer if
1139 too many translation blocks or too much generated code. */
c27004ec 1140TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1141{
1142 TranslationBlock *tb;
fd6ce8f6 1143
26a5f13b
FB
1144 if (nb_tbs >= code_gen_max_blocks ||
1145 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1146 return NULL;
fd6ce8f6
FB
1147 tb = &tbs[nb_tbs++];
1148 tb->pc = pc;
b448f2f3 1149 tb->cflags = 0;
d4e8164f
FB
1150 return tb;
1151}
1152
2e70f6ef
PB
1153void tb_free(TranslationBlock *tb)
1154{
bf20dc07 1155 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1156 Ignore the hard cases and just back up if this TB happens to
1157 be the last one generated. */
1158 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1159 code_gen_ptr = tb->tc_ptr;
1160 nb_tbs--;
1161 }
1162}
1163
9fa3e853
FB
1164/* add a new TB and link it to the physical page tables. phys_page2 is
1165 (-1) to indicate that only one page contains the TB. */
5fafdf24 1166void tb_link_phys(TranslationBlock *tb,
9fa3e853 1167 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1168{
9fa3e853
FB
1169 unsigned int h;
1170 TranslationBlock **ptb;
1171
c8a706fe
PB
1172 /* Grab the mmap lock to stop another thread invalidating this TB
1173 before we are done. */
1174 mmap_lock();
9fa3e853
FB
1175 /* add in the physical hash table */
1176 h = tb_phys_hash_func(phys_pc);
1177 ptb = &tb_phys_hash[h];
1178 tb->phys_hash_next = *ptb;
1179 *ptb = tb;
fd6ce8f6
FB
1180
1181 /* add in the page list */
9fa3e853
FB
1182 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1183 if (phys_page2 != -1)
1184 tb_alloc_page(tb, 1, phys_page2);
1185 else
1186 tb->page_addr[1] = -1;
9fa3e853 1187
d4e8164f
FB
1188 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1189 tb->jmp_next[0] = NULL;
1190 tb->jmp_next[1] = NULL;
1191
1192 /* init original jump addresses */
1193 if (tb->tb_next_offset[0] != 0xffff)
1194 tb_reset_jump(tb, 0);
1195 if (tb->tb_next_offset[1] != 0xffff)
1196 tb_reset_jump(tb, 1);
8a40a180
FB
1197
1198#ifdef DEBUG_TB_CHECK
1199 tb_page_check();
1200#endif
c8a706fe 1201 mmap_unlock();
fd6ce8f6
FB
1202}
1203
9fa3e853
FB
1204/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1205 tb[1].tc_ptr. Return NULL if not found */
1206TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1207{
9fa3e853
FB
1208 int m_min, m_max, m;
1209 unsigned long v;
1210 TranslationBlock *tb;
a513fe19
FB
1211
1212 if (nb_tbs <= 0)
1213 return NULL;
1214 if (tc_ptr < (unsigned long)code_gen_buffer ||
1215 tc_ptr >= (unsigned long)code_gen_ptr)
1216 return NULL;
1217 /* binary search (cf Knuth) */
1218 m_min = 0;
1219 m_max = nb_tbs - 1;
1220 while (m_min <= m_max) {
1221 m = (m_min + m_max) >> 1;
1222 tb = &tbs[m];
1223 v = (unsigned long)tb->tc_ptr;
1224 if (v == tc_ptr)
1225 return tb;
1226 else if (tc_ptr < v) {
1227 m_max = m - 1;
1228 } else {
1229 m_min = m + 1;
1230 }
5fafdf24 1231 }
a513fe19
FB
1232 return &tbs[m_max];
1233}
7501267e 1234
ea041c0e
FB
1235static void tb_reset_jump_recursive(TranslationBlock *tb);
1236
1237static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1238{
1239 TranslationBlock *tb1, *tb_next, **ptb;
1240 unsigned int n1;
1241
1242 tb1 = tb->jmp_next[n];
1243 if (tb1 != NULL) {
1244 /* find head of list */
1245 for(;;) {
1246 n1 = (long)tb1 & 3;
1247 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1248 if (n1 == 2)
1249 break;
1250 tb1 = tb1->jmp_next[n1];
1251 }
1252 /* we are now sure now that tb jumps to tb1 */
1253 tb_next = tb1;
1254
1255 /* remove tb from the jmp_first list */
1256 ptb = &tb_next->jmp_first;
1257 for(;;) {
1258 tb1 = *ptb;
1259 n1 = (long)tb1 & 3;
1260 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1261 if (n1 == n && tb1 == tb)
1262 break;
1263 ptb = &tb1->jmp_next[n1];
1264 }
1265 *ptb = tb->jmp_next[n];
1266 tb->jmp_next[n] = NULL;
3b46e624 1267
ea041c0e
FB
1268 /* suppress the jump to next tb in generated code */
1269 tb_reset_jump(tb, n);
1270
0124311e 1271 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1272 tb_reset_jump_recursive(tb_next);
1273 }
1274}
1275
1276static void tb_reset_jump_recursive(TranslationBlock *tb)
1277{
1278 tb_reset_jump_recursive2(tb, 0);
1279 tb_reset_jump_recursive2(tb, 1);
1280}
1281
1fddef4b 1282#if defined(TARGET_HAS_ICE)
d720b93d
FB
1283static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1284{
9b3c35e0
JM
1285 target_phys_addr_t addr;
1286 target_ulong pd;
c2f07f81
PB
1287 ram_addr_t ram_addr;
1288 PhysPageDesc *p;
d720b93d 1289
c2f07f81
PB
1290 addr = cpu_get_phys_page_debug(env, pc);
1291 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1292 if (!p) {
1293 pd = IO_MEM_UNASSIGNED;
1294 } else {
1295 pd = p->phys_offset;
1296 }
1297 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1298 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1299}
c27004ec 1300#endif
d720b93d 1301
6658ffb8 1302/* Add a watchpoint. */
a1d1bb31
AL
1303int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1304 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1305{
b4051334 1306 target_ulong len_mask = ~(len - 1);
c0ce998e 1307 CPUWatchpoint *wp;
6658ffb8 1308
b4051334
AL
1309 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1310 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1311 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1312 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1313 return -EINVAL;
1314 }
a1d1bb31
AL
1315 wp = qemu_malloc(sizeof(*wp));
1316 if (!wp)
426cd5d6 1317 return -ENOMEM;
a1d1bb31
AL
1318
1319 wp->vaddr = addr;
b4051334 1320 wp->len_mask = len_mask;
a1d1bb31
AL
1321 wp->flags = flags;
1322
2dc9f411 1323 /* keep all GDB-injected watchpoints in front */
c0ce998e
AL
1324 if (flags & BP_GDB)
1325 TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1326 else
1327 TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1328
6658ffb8 1329 tlb_flush_page(env, addr);
a1d1bb31
AL
1330
1331 if (watchpoint)
1332 *watchpoint = wp;
1333 return 0;
6658ffb8
PB
1334}
1335
a1d1bb31
AL
1336/* Remove a specific watchpoint. */
1337int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1338 int flags)
6658ffb8 1339{
b4051334 1340 target_ulong len_mask = ~(len - 1);
a1d1bb31 1341 CPUWatchpoint *wp;
6658ffb8 1342
c0ce998e 1343 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1344 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1345 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1346 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1347 return 0;
1348 }
1349 }
a1d1bb31 1350 return -ENOENT;
6658ffb8
PB
1351}
1352
a1d1bb31
AL
1353/* Remove a specific watchpoint by reference. */
1354void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1355{
c0ce998e 1356 TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1357
a1d1bb31
AL
1358 tlb_flush_page(env, watchpoint->vaddr);
1359
1360 qemu_free(watchpoint);
1361}
1362
1363/* Remove all matching watchpoints. */
1364void cpu_watchpoint_remove_all(CPUState *env, int mask)
1365{
c0ce998e 1366 CPUWatchpoint *wp, *next;
a1d1bb31 1367
c0ce998e 1368 TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1369 if (wp->flags & mask)
1370 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1371 }
7d03f82f
EI
1372}
1373
a1d1bb31
AL
1374/* Add a breakpoint. */
1375int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1376 CPUBreakpoint **breakpoint)
4c3a88a2 1377{
1fddef4b 1378#if defined(TARGET_HAS_ICE)
c0ce998e 1379 CPUBreakpoint *bp;
3b46e624 1380
a1d1bb31
AL
1381 bp = qemu_malloc(sizeof(*bp));
1382 if (!bp)
426cd5d6 1383 return -ENOMEM;
4c3a88a2 1384
a1d1bb31
AL
1385 bp->pc = pc;
1386 bp->flags = flags;
1387
2dc9f411 1388 /* keep all GDB-injected breakpoints in front */
c0ce998e
AL
1389 if (flags & BP_GDB)
1390 TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1391 else
1392 TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1393
d720b93d 1394 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1395
1396 if (breakpoint)
1397 *breakpoint = bp;
4c3a88a2
FB
1398 return 0;
1399#else
a1d1bb31 1400 return -ENOSYS;
4c3a88a2
FB
1401#endif
1402}
1403
a1d1bb31
AL
1404/* Remove a specific breakpoint. */
1405int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1406{
7d03f82f 1407#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1408 CPUBreakpoint *bp;
1409
c0ce998e 1410 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1411 if (bp->pc == pc && bp->flags == flags) {
1412 cpu_breakpoint_remove_by_ref(env, bp);
1413 return 0;
1414 }
7d03f82f 1415 }
a1d1bb31
AL
1416 return -ENOENT;
1417#else
1418 return -ENOSYS;
7d03f82f
EI
1419#endif
1420}
1421
a1d1bb31
AL
1422/* Remove a specific breakpoint by reference. */
1423void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1424{
1fddef4b 1425#if defined(TARGET_HAS_ICE)
c0ce998e 1426 TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1427
a1d1bb31
AL
1428 breakpoint_invalidate(env, breakpoint->pc);
1429
1430 qemu_free(breakpoint);
1431#endif
1432}
1433
1434/* Remove all matching breakpoints. */
1435void cpu_breakpoint_remove_all(CPUState *env, int mask)
1436{
1437#if defined(TARGET_HAS_ICE)
c0ce998e 1438 CPUBreakpoint *bp, *next;
a1d1bb31 1439
c0ce998e 1440 TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1441 if (bp->flags & mask)
1442 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1443 }
4c3a88a2
FB
1444#endif
1445}
1446
c33a346e
FB
1447/* enable or disable single step mode. EXCP_DEBUG is returned by the
1448 CPU loop after each instruction */
1449void cpu_single_step(CPUState *env, int enabled)
1450{
1fddef4b 1451#if defined(TARGET_HAS_ICE)
c33a346e
FB
1452 if (env->singlestep_enabled != enabled) {
1453 env->singlestep_enabled = enabled;
1454 /* must flush all the translated code to avoid inconsistancies */
9fa3e853 1455 /* XXX: only flush what is necessary */
0124311e 1456 tb_flush(env);
c33a346e
FB
1457 }
1458#endif
1459}
1460
34865134
FB
1461/* enable or disable low levels log */
1462void cpu_set_log(int log_flags)
1463{
1464 loglevel = log_flags;
1465 if (loglevel && !logfile) {
11fcfab4 1466 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1467 if (!logfile) {
1468 perror(logfilename);
1469 _exit(1);
1470 }
9fa3e853
FB
1471#if !defined(CONFIG_SOFTMMU)
1472 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1473 {
b55266b5 1474 static char logfile_buf[4096];
9fa3e853
FB
1475 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1476 }
1477#else
34865134 1478 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1479#endif
e735b91c
PB
1480 log_append = 1;
1481 }
1482 if (!loglevel && logfile) {
1483 fclose(logfile);
1484 logfile = NULL;
34865134
FB
1485 }
1486}
1487
1488void cpu_set_log_filename(const char *filename)
1489{
1490 logfilename = strdup(filename);
e735b91c
PB
1491 if (logfile) {
1492 fclose(logfile);
1493 logfile = NULL;
1494 }
1495 cpu_set_log(loglevel);
34865134 1496}
c33a346e 1497
0124311e 1498/* mask must never be zero, except for A20 change call */
68a79315 1499void cpu_interrupt(CPUState *env, int mask)
ea041c0e 1500{
d5975363 1501#if !defined(USE_NPTL)
ea041c0e 1502 TranslationBlock *tb;
15a51156 1503 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
d5975363 1504#endif
2e70f6ef 1505 int old_mask;
59817ccb 1506
2e70f6ef 1507 old_mask = env->interrupt_request;
d5975363 1508 /* FIXME: This is probably not threadsafe. A different thread could
bf20dc07 1509 be in the middle of a read-modify-write operation. */
68a79315 1510 env->interrupt_request |= mask;
d5975363
PB
1511#if defined(USE_NPTL)
1512 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1513 problem and hope the cpu will stop of its own accord. For userspace
1514 emulation this often isn't actually as bad as it sounds. Often
1515 signals are used primarily to interrupt blocking syscalls. */
1516#else
2e70f6ef 1517 if (use_icount) {
266910c4 1518 env->icount_decr.u16.high = 0xffff;
2e70f6ef
PB
1519#ifndef CONFIG_USER_ONLY
1520 /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means
1521 an async event happened and we need to process it. */
1522 if (!can_do_io(env)
1523 && (mask & ~(old_mask | CPU_INTERRUPT_EXIT)) != 0) {
1524 cpu_abort(env, "Raised interrupt while not in I/O function");
1525 }
1526#endif
1527 } else {
1528 tb = env->current_tb;
1529 /* if the cpu is currently executing code, we must unlink it and
1530 all the potentially executing TB */
1531 if (tb && !testandset(&interrupt_lock)) {
1532 env->current_tb = NULL;
1533 tb_reset_jump_recursive(tb);
1534 resetlock(&interrupt_lock);
1535 }
ea041c0e 1536 }
d5975363 1537#endif
ea041c0e
FB
1538}
1539
b54ad049
FB
1540void cpu_reset_interrupt(CPUState *env, int mask)
1541{
1542 env->interrupt_request &= ~mask;
1543}
1544
c7cd6a37 1545const CPULogItem cpu_log_items[] = {
5fafdf24 1546 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1547 "show generated host assembly code for each compiled TB" },
1548 { CPU_LOG_TB_IN_ASM, "in_asm",
1549 "show target assembly code for each compiled TB" },
5fafdf24 1550 { CPU_LOG_TB_OP, "op",
57fec1fe 1551 "show micro ops for each compiled TB" },
f193c797 1552 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1553 "show micro ops "
1554#ifdef TARGET_I386
1555 "before eflags optimization and "
f193c797 1556#endif
e01a1157 1557 "after liveness analysis" },
f193c797
FB
1558 { CPU_LOG_INT, "int",
1559 "show interrupts/exceptions in short format" },
1560 { CPU_LOG_EXEC, "exec",
1561 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1562 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1563 "show CPU state before block translation" },
f193c797
FB
1564#ifdef TARGET_I386
1565 { CPU_LOG_PCALL, "pcall",
1566 "show protected mode far calls/returns/exceptions" },
1567#endif
8e3a9fd2 1568#ifdef DEBUG_IOPORT
fd872598
FB
1569 { CPU_LOG_IOPORT, "ioport",
1570 "show all i/o ports accesses" },
8e3a9fd2 1571#endif
f193c797
FB
1572 { 0, NULL, NULL },
1573};
1574
1575static int cmp1(const char *s1, int n, const char *s2)
1576{
1577 if (strlen(s2) != n)
1578 return 0;
1579 return memcmp(s1, s2, n) == 0;
1580}
3b46e624 1581
f193c797
FB
1582/* takes a comma separated list of log masks. Return 0 if error. */
1583int cpu_str_to_log_mask(const char *str)
1584{
c7cd6a37 1585 const CPULogItem *item;
f193c797
FB
1586 int mask;
1587 const char *p, *p1;
1588
1589 p = str;
1590 mask = 0;
1591 for(;;) {
1592 p1 = strchr(p, ',');
1593 if (!p1)
1594 p1 = p + strlen(p);
8e3a9fd2
FB
1595 if(cmp1(p,p1-p,"all")) {
1596 for(item = cpu_log_items; item->mask != 0; item++) {
1597 mask |= item->mask;
1598 }
1599 } else {
f193c797
FB
1600 for(item = cpu_log_items; item->mask != 0; item++) {
1601 if (cmp1(p, p1 - p, item->name))
1602 goto found;
1603 }
1604 return 0;
8e3a9fd2 1605 }
f193c797
FB
1606 found:
1607 mask |= item->mask;
1608 if (*p1 != ',')
1609 break;
1610 p = p1 + 1;
1611 }
1612 return mask;
1613}
ea041c0e 1614
7501267e
FB
1615void cpu_abort(CPUState *env, const char *fmt, ...)
1616{
1617 va_list ap;
493ae1f0 1618 va_list ap2;
7501267e
FB
1619
1620 va_start(ap, fmt);
493ae1f0 1621 va_copy(ap2, ap);
7501267e
FB
1622 fprintf(stderr, "qemu: fatal: ");
1623 vfprintf(stderr, fmt, ap);
1624 fprintf(stderr, "\n");
1625#ifdef TARGET_I386
7fe48483
FB
1626 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1627#else
1628 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1629#endif
924edcae 1630 if (logfile) {
f9373291 1631 fprintf(logfile, "qemu: fatal: ");
493ae1f0 1632 vfprintf(logfile, fmt, ap2);
f9373291
JM
1633 fprintf(logfile, "\n");
1634#ifdef TARGET_I386
1635 cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1636#else
1637 cpu_dump_state(env, logfile, fprintf, 0);
1638#endif
924edcae
AZ
1639 fflush(logfile);
1640 fclose(logfile);
1641 }
493ae1f0 1642 va_end(ap2);
f9373291 1643 va_end(ap);
7501267e
FB
1644 abort();
1645}
1646
c5be9f08
TS
1647CPUState *cpu_copy(CPUState *env)
1648{
01ba9816 1649 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1650 /* preserve chaining and index */
1651 CPUState *next_cpu = new_env->next_cpu;
1652 int cpu_index = new_env->cpu_index;
1653 memcpy(new_env, env, sizeof(CPUState));
1654 new_env->next_cpu = next_cpu;
1655 new_env->cpu_index = cpu_index;
1656 return new_env;
1657}
1658
0124311e
FB
1659#if !defined(CONFIG_USER_ONLY)
1660
5c751e99
EI
1661static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1662{
1663 unsigned int i;
1664
1665 /* Discard jump cache entries for any tb which might potentially
1666 overlap the flushed page. */
1667 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1668 memset (&env->tb_jmp_cache[i], 0,
1669 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1670
1671 i = tb_jmp_cache_hash_page(addr);
1672 memset (&env->tb_jmp_cache[i], 0,
1673 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1674}
1675
ee8b7021
FB
1676/* NOTE: if flush_global is true, also flush global entries (not
1677 implemented yet) */
1678void tlb_flush(CPUState *env, int flush_global)
33417e70 1679{
33417e70 1680 int i;
0124311e 1681
9fa3e853
FB
1682#if defined(DEBUG_TLB)
1683 printf("tlb_flush:\n");
1684#endif
0124311e
FB
1685 /* must reset current TB so that interrupts cannot modify the
1686 links while we are modifying them */
1687 env->current_tb = NULL;
1688
33417e70 1689 for(i = 0; i < CPU_TLB_SIZE; i++) {
84b7b8e7
FB
1690 env->tlb_table[0][i].addr_read = -1;
1691 env->tlb_table[0][i].addr_write = -1;
1692 env->tlb_table[0][i].addr_code = -1;
1693 env->tlb_table[1][i].addr_read = -1;
1694 env->tlb_table[1][i].addr_write = -1;
1695 env->tlb_table[1][i].addr_code = -1;
6fa4cea9
JM
1696#if (NB_MMU_MODES >= 3)
1697 env->tlb_table[2][i].addr_read = -1;
1698 env->tlb_table[2][i].addr_write = -1;
1699 env->tlb_table[2][i].addr_code = -1;
1700#if (NB_MMU_MODES == 4)
1701 env->tlb_table[3][i].addr_read = -1;
1702 env->tlb_table[3][i].addr_write = -1;
1703 env->tlb_table[3][i].addr_code = -1;
1704#endif
1705#endif
33417e70 1706 }
9fa3e853 1707
8a40a180 1708 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1709
0a962c02
FB
1710#ifdef USE_KQEMU
1711 if (env->kqemu_enabled) {
1712 kqemu_flush(env, flush_global);
1713 }
9fa3e853 1714#endif
e3db7226 1715 tlb_flush_count++;
33417e70
FB
1716}
1717
274da6b2 1718static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1719{
5fafdf24 1720 if (addr == (tlb_entry->addr_read &
84b7b8e7 1721 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1722 addr == (tlb_entry->addr_write &
84b7b8e7 1723 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1724 addr == (tlb_entry->addr_code &
84b7b8e7
FB
1725 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1726 tlb_entry->addr_read = -1;
1727 tlb_entry->addr_write = -1;
1728 tlb_entry->addr_code = -1;
1729 }
61382a50
FB
1730}
1731
2e12669a 1732void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1733{
8a40a180 1734 int i;
0124311e 1735
9fa3e853 1736#if defined(DEBUG_TLB)
108c49b8 1737 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1738#endif
0124311e
FB
1739 /* must reset current TB so that interrupts cannot modify the
1740 links while we are modifying them */
1741 env->current_tb = NULL;
61382a50
FB
1742
1743 addr &= TARGET_PAGE_MASK;
1744 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
84b7b8e7
FB
1745 tlb_flush_entry(&env->tlb_table[0][i], addr);
1746 tlb_flush_entry(&env->tlb_table[1][i], addr);
6fa4cea9
JM
1747#if (NB_MMU_MODES >= 3)
1748 tlb_flush_entry(&env->tlb_table[2][i], addr);
1749#if (NB_MMU_MODES == 4)
1750 tlb_flush_entry(&env->tlb_table[3][i], addr);
1751#endif
1752#endif
0124311e 1753
5c751e99 1754 tlb_flush_jmp_cache(env, addr);
9fa3e853 1755
0a962c02
FB
1756#ifdef USE_KQEMU
1757 if (env->kqemu_enabled) {
1758 kqemu_flush_page(env, addr);
1759 }
1760#endif
9fa3e853
FB
1761}
1762
9fa3e853
FB
1763/* update the TLBs so that writes to code in the virtual page 'addr'
1764 can be detected */
6a00d601 1765static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1766{
5fafdf24 1767 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1768 ram_addr + TARGET_PAGE_SIZE,
1769 CODE_DIRTY_FLAG);
9fa3e853
FB
1770}
1771
9fa3e853 1772/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1773 tested for self modifying code */
5fafdf24 1774static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1775 target_ulong vaddr)
9fa3e853 1776{
3a7d929e 1777 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1778}
1779
5fafdf24 1780static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1781 unsigned long start, unsigned long length)
1782{
1783 unsigned long addr;
84b7b8e7
FB
1784 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1785 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1786 if ((addr - start) < length) {
0f459d16 1787 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1788 }
1789 }
1790}
1791
3a7d929e 1792void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1793 int dirty_flags)
1ccde1cb
FB
1794{
1795 CPUState *env;
4f2ac237 1796 unsigned long length, start1;
0a962c02
FB
1797 int i, mask, len;
1798 uint8_t *p;
1ccde1cb
FB
1799
1800 start &= TARGET_PAGE_MASK;
1801 end = TARGET_PAGE_ALIGN(end);
1802
1803 length = end - start;
1804 if (length == 0)
1805 return;
0a962c02 1806 len = length >> TARGET_PAGE_BITS;
3a7d929e 1807#ifdef USE_KQEMU
6a00d601
FB
1808 /* XXX: should not depend on cpu context */
1809 env = first_cpu;
3a7d929e 1810 if (env->kqemu_enabled) {
f23db169
FB
1811 ram_addr_t addr;
1812 addr = start;
1813 for(i = 0; i < len; i++) {
1814 kqemu_set_notdirty(env, addr);
1815 addr += TARGET_PAGE_SIZE;
1816 }
3a7d929e
FB
1817 }
1818#endif
f23db169
FB
1819 mask = ~dirty_flags;
1820 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1821 for(i = 0; i < len; i++)
1822 p[i] &= mask;
1823
1ccde1cb
FB
1824 /* we modify the TLB cache so that the dirty bit will be set again
1825 when accessing the range */
59817ccb 1826 start1 = start + (unsigned long)phys_ram_base;
6a00d601
FB
1827 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1828 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1829 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
6a00d601 1830 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1831 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
6fa4cea9
JM
1832#if (NB_MMU_MODES >= 3)
1833 for(i = 0; i < CPU_TLB_SIZE; i++)
1834 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1835#if (NB_MMU_MODES == 4)
1836 for(i = 0; i < CPU_TLB_SIZE; i++)
1837 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1838#endif
1839#endif
6a00d601 1840 }
1ccde1cb
FB
1841}
1842
74576198
AL
1843int cpu_physical_memory_set_dirty_tracking(int enable)
1844{
1845 in_migration = enable;
1846 return 0;
1847}
1848
1849int cpu_physical_memory_get_dirty_tracking(void)
1850{
1851 return in_migration;
1852}
1853
2bec46dc
AL
1854void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr)
1855{
1856 if (kvm_enabled())
1857 kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1858}
1859
3a7d929e
FB
1860static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1861{
1862 ram_addr_t ram_addr;
1863
84b7b8e7 1864 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5fafdf24 1865 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
3a7d929e
FB
1866 tlb_entry->addend - (unsigned long)phys_ram_base;
1867 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 1868 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
1869 }
1870 }
1871}
1872
1873/* update the TLB according to the current state of the dirty bits */
1874void cpu_tlb_update_dirty(CPUState *env)
1875{
1876 int i;
1877 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1878 tlb_update_dirty(&env->tlb_table[0][i]);
3a7d929e 1879 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1880 tlb_update_dirty(&env->tlb_table[1][i]);
6fa4cea9
JM
1881#if (NB_MMU_MODES >= 3)
1882 for(i = 0; i < CPU_TLB_SIZE; i++)
1883 tlb_update_dirty(&env->tlb_table[2][i]);
1884#if (NB_MMU_MODES == 4)
1885 for(i = 0; i < CPU_TLB_SIZE; i++)
1886 tlb_update_dirty(&env->tlb_table[3][i]);
1887#endif
1888#endif
3a7d929e
FB
1889}
1890
0f459d16 1891static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 1892{
0f459d16
PB
1893 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1894 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
1895}
1896
0f459d16
PB
1897/* update the TLB corresponding to virtual page vaddr
1898 so that it is no longer dirty */
1899static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 1900{
1ccde1cb
FB
1901 int i;
1902
0f459d16 1903 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 1904 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
0f459d16
PB
1905 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
1906 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
6fa4cea9 1907#if (NB_MMU_MODES >= 3)
0f459d16 1908 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
6fa4cea9 1909#if (NB_MMU_MODES == 4)
0f459d16 1910 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
6fa4cea9
JM
1911#endif
1912#endif
9fa3e853
FB
1913}
1914
59817ccb
FB
1915/* add a new TLB entry. At most one entry for a given virtual address
1916 is permitted. Return 0 if OK or 2 if the page could not be mapped
1917 (can only happen in non SOFTMMU mode for I/O pages or pages
1918 conflicting with the host address space). */
5fafdf24
TS
1919int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1920 target_phys_addr_t paddr, int prot,
6ebbf390 1921 int mmu_idx, int is_softmmu)
9fa3e853 1922{
92e873b9 1923 PhysPageDesc *p;
4f2ac237 1924 unsigned long pd;
9fa3e853 1925 unsigned int index;
4f2ac237 1926 target_ulong address;
0f459d16 1927 target_ulong code_address;
108c49b8 1928 target_phys_addr_t addend;
9fa3e853 1929 int ret;
84b7b8e7 1930 CPUTLBEntry *te;
a1d1bb31 1931 CPUWatchpoint *wp;
0f459d16 1932 target_phys_addr_t iotlb;
9fa3e853 1933
92e873b9 1934 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
1935 if (!p) {
1936 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
1937 } else {
1938 pd = p->phys_offset;
9fa3e853
FB
1939 }
1940#if defined(DEBUG_TLB)
6ebbf390
JM
1941 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1942 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
1943#endif
1944
1945 ret = 0;
0f459d16
PB
1946 address = vaddr;
1947 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1948 /* IO memory case (romd handled later) */
1949 address |= TLB_MMIO;
1950 }
1951 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1952 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1953 /* Normal RAM. */
1954 iotlb = pd & TARGET_PAGE_MASK;
1955 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1956 iotlb |= IO_MEM_NOTDIRTY;
1957 else
1958 iotlb |= IO_MEM_ROM;
1959 } else {
1960 /* IO handlers are currently passed a phsical address.
1961 It would be nice to pass an offset from the base address
1962 of that region. This would avoid having to special case RAM,
1963 and avoid full address decoding in every device.
1964 We can't use the high bits of pd for this because
1965 IO_MEM_ROMD uses these as a ram address. */
1966 iotlb = (pd & ~TARGET_PAGE_MASK) + paddr;
1967 }
1968
1969 code_address = address;
1970 /* Make accesses to pages with watchpoints go via the
1971 watchpoint trap routines. */
c0ce998e 1972 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 1973 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
1974 iotlb = io_mem_watch + paddr;
1975 /* TODO: The memory case can be optimized by not trapping
1976 reads of pages with a write breakpoint. */
1977 address |= TLB_MMIO;
6658ffb8 1978 }
0f459d16 1979 }
d79acba4 1980
0f459d16
PB
1981 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1982 env->iotlb[mmu_idx][index] = iotlb - vaddr;
1983 te = &env->tlb_table[mmu_idx][index];
1984 te->addend = addend - vaddr;
1985 if (prot & PAGE_READ) {
1986 te->addr_read = address;
1987 } else {
1988 te->addr_read = -1;
1989 }
5c751e99 1990
0f459d16
PB
1991 if (prot & PAGE_EXEC) {
1992 te->addr_code = code_address;
1993 } else {
1994 te->addr_code = -1;
1995 }
1996 if (prot & PAGE_WRITE) {
1997 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1998 (pd & IO_MEM_ROMD)) {
1999 /* Write access calls the I/O callback. */
2000 te->addr_write = address | TLB_MMIO;
2001 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2002 !cpu_physical_memory_is_dirty(pd)) {
2003 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2004 } else {
0f459d16 2005 te->addr_write = address;
9fa3e853 2006 }
0f459d16
PB
2007 } else {
2008 te->addr_write = -1;
9fa3e853 2009 }
9fa3e853
FB
2010 return ret;
2011}
2012
0124311e
FB
2013#else
2014
ee8b7021 2015void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2016{
2017}
2018
2e12669a 2019void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2020{
2021}
2022
5fafdf24
TS
2023int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2024 target_phys_addr_t paddr, int prot,
6ebbf390 2025 int mmu_idx, int is_softmmu)
9fa3e853
FB
2026{
2027 return 0;
2028}
0124311e 2029
9fa3e853
FB
2030/* dump memory mappings */
2031void page_dump(FILE *f)
33417e70 2032{
9fa3e853
FB
2033 unsigned long start, end;
2034 int i, j, prot, prot1;
2035 PageDesc *p;
33417e70 2036
9fa3e853
FB
2037 fprintf(f, "%-8s %-8s %-8s %s\n",
2038 "start", "end", "size", "prot");
2039 start = -1;
2040 end = -1;
2041 prot = 0;
2042 for(i = 0; i <= L1_SIZE; i++) {
2043 if (i < L1_SIZE)
2044 p = l1_map[i];
2045 else
2046 p = NULL;
2047 for(j = 0;j < L2_SIZE; j++) {
2048 if (!p)
2049 prot1 = 0;
2050 else
2051 prot1 = p[j].flags;
2052 if (prot1 != prot) {
2053 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2054 if (start != -1) {
2055 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
5fafdf24 2056 start, end, end - start,
9fa3e853
FB
2057 prot & PAGE_READ ? 'r' : '-',
2058 prot & PAGE_WRITE ? 'w' : '-',
2059 prot & PAGE_EXEC ? 'x' : '-');
2060 }
2061 if (prot1 != 0)
2062 start = end;
2063 else
2064 start = -1;
2065 prot = prot1;
2066 }
2067 if (!p)
2068 break;
2069 }
33417e70 2070 }
33417e70
FB
2071}
2072
53a5960a 2073int page_get_flags(target_ulong address)
33417e70 2074{
9fa3e853
FB
2075 PageDesc *p;
2076
2077 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2078 if (!p)
9fa3e853
FB
2079 return 0;
2080 return p->flags;
2081}
2082
2083/* modify the flags of a page and invalidate the code if
2084 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2085 depending on PAGE_WRITE */
53a5960a 2086void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2087{
2088 PageDesc *p;
53a5960a 2089 target_ulong addr;
9fa3e853 2090
c8a706fe 2091 /* mmap_lock should already be held. */
9fa3e853
FB
2092 start = start & TARGET_PAGE_MASK;
2093 end = TARGET_PAGE_ALIGN(end);
2094 if (flags & PAGE_WRITE)
2095 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2096 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2097 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2098 /* We may be called for host regions that are outside guest
2099 address space. */
2100 if (!p)
2101 return;
9fa3e853
FB
2102 /* if the write protection is set, then we invalidate the code
2103 inside */
5fafdf24 2104 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2105 (flags & PAGE_WRITE) &&
2106 p->first_tb) {
d720b93d 2107 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2108 }
2109 p->flags = flags;
2110 }
33417e70
FB
2111}
2112
3d97b40b
TS
2113int page_check_range(target_ulong start, target_ulong len, int flags)
2114{
2115 PageDesc *p;
2116 target_ulong end;
2117 target_ulong addr;
2118
55f280c9
AZ
2119 if (start + len < start)
2120 /* we've wrapped around */
2121 return -1;
2122
3d97b40b
TS
2123 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2124 start = start & TARGET_PAGE_MASK;
2125
3d97b40b
TS
2126 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2127 p = page_find(addr >> TARGET_PAGE_BITS);
2128 if( !p )
2129 return -1;
2130 if( !(p->flags & PAGE_VALID) )
2131 return -1;
2132
dae3270c 2133 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2134 return -1;
dae3270c
FB
2135 if (flags & PAGE_WRITE) {
2136 if (!(p->flags & PAGE_WRITE_ORG))
2137 return -1;
2138 /* unprotect the page if it was put read-only because it
2139 contains translated code */
2140 if (!(p->flags & PAGE_WRITE)) {
2141 if (!page_unprotect(addr, 0, NULL))
2142 return -1;
2143 }
2144 return 0;
2145 }
3d97b40b
TS
2146 }
2147 return 0;
2148}
2149
9fa3e853
FB
2150/* called from signal handler: invalidate the code and unprotect the
2151 page. Return TRUE if the fault was succesfully handled. */
53a5960a 2152int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2153{
2154 unsigned int page_index, prot, pindex;
2155 PageDesc *p, *p1;
53a5960a 2156 target_ulong host_start, host_end, addr;
9fa3e853 2157
c8a706fe
PB
2158 /* Technically this isn't safe inside a signal handler. However we
2159 know this only ever happens in a synchronous SEGV handler, so in
2160 practice it seems to be ok. */
2161 mmap_lock();
2162
83fb7adf 2163 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2164 page_index = host_start >> TARGET_PAGE_BITS;
2165 p1 = page_find(page_index);
c8a706fe
PB
2166 if (!p1) {
2167 mmap_unlock();
9fa3e853 2168 return 0;
c8a706fe 2169 }
83fb7adf 2170 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2171 p = p1;
2172 prot = 0;
2173 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2174 prot |= p->flags;
2175 p++;
2176 }
2177 /* if the page was really writable, then we change its
2178 protection back to writable */
2179 if (prot & PAGE_WRITE_ORG) {
2180 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2181 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2182 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2183 (prot & PAGE_BITS) | PAGE_WRITE);
2184 p1[pindex].flags |= PAGE_WRITE;
2185 /* and since the content will be modified, we must invalidate
2186 the corresponding translated code. */
d720b93d 2187 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2188#ifdef DEBUG_TB_CHECK
2189 tb_invalidate_check(address);
2190#endif
c8a706fe 2191 mmap_unlock();
9fa3e853
FB
2192 return 1;
2193 }
2194 }
c8a706fe 2195 mmap_unlock();
9fa3e853
FB
2196 return 0;
2197}
2198
6a00d601
FB
2199static inline void tlb_set_dirty(CPUState *env,
2200 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2201{
2202}
9fa3e853
FB
2203#endif /* defined(CONFIG_USER_ONLY) */
2204
e2eef170 2205#if !defined(CONFIG_USER_ONLY)
db7b5426 2206static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
00f82b8a
AJ
2207 ram_addr_t memory);
2208static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2209 ram_addr_t orig_memory);
db7b5426
BS
2210#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2211 need_subpage) \
2212 do { \
2213 if (addr > start_addr) \
2214 start_addr2 = 0; \
2215 else { \
2216 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2217 if (start_addr2 > 0) \
2218 need_subpage = 1; \
2219 } \
2220 \
49e9fba2 2221 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2222 end_addr2 = TARGET_PAGE_SIZE - 1; \
2223 else { \
2224 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2225 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2226 need_subpage = 1; \
2227 } \
2228 } while (0)
2229
33417e70
FB
2230/* register physical memory. 'size' must be a multiple of the target
2231 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2232 io memory page */
5fafdf24 2233void cpu_register_physical_memory(target_phys_addr_t start_addr,
00f82b8a
AJ
2234 ram_addr_t size,
2235 ram_addr_t phys_offset)
33417e70 2236{
108c49b8 2237 target_phys_addr_t addr, end_addr;
92e873b9 2238 PhysPageDesc *p;
9d42037b 2239 CPUState *env;
00f82b8a 2240 ram_addr_t orig_size = size;
db7b5426 2241 void *subpage;
33417e70 2242
da260249
FB
2243#ifdef USE_KQEMU
2244 /* XXX: should not depend on cpu context */
2245 env = first_cpu;
2246 if (env->kqemu_enabled) {
2247 kqemu_set_phys_mem(start_addr, size, phys_offset);
2248 }
2249#endif
7ba1e619
AL
2250 if (kvm_enabled())
2251 kvm_set_phys_mem(start_addr, size, phys_offset);
2252
5fd386f6 2253 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
49e9fba2
BS
2254 end_addr = start_addr + (target_phys_addr_t)size;
2255 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2256 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2257 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
00f82b8a 2258 ram_addr_t orig_memory = p->phys_offset;
db7b5426
BS
2259 target_phys_addr_t start_addr2, end_addr2;
2260 int need_subpage = 0;
2261
2262 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2263 need_subpage);
4254fab8 2264 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2265 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2266 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2267 &p->phys_offset, orig_memory);
2268 } else {
2269 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2270 >> IO_MEM_SHIFT];
2271 }
2272 subpage_register(subpage, start_addr2, end_addr2, phys_offset);
2273 } else {
2274 p->phys_offset = phys_offset;
2275 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2276 (phys_offset & IO_MEM_ROMD))
2277 phys_offset += TARGET_PAGE_SIZE;
2278 }
2279 } else {
2280 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2281 p->phys_offset = phys_offset;
2282 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2283 (phys_offset & IO_MEM_ROMD))
2284 phys_offset += TARGET_PAGE_SIZE;
2285 else {
2286 target_phys_addr_t start_addr2, end_addr2;
2287 int need_subpage = 0;
2288
2289 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2290 end_addr2, need_subpage);
2291
4254fab8 2292 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2293 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2294 &p->phys_offset, IO_MEM_UNASSIGNED);
2295 subpage_register(subpage, start_addr2, end_addr2,
2296 phys_offset);
2297 }
2298 }
2299 }
33417e70 2300 }
3b46e624 2301
9d42037b
FB
2302 /* since each CPU stores ram addresses in its TLB cache, we must
2303 reset the modified entries */
2304 /* XXX: slow ! */
2305 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2306 tlb_flush(env, 1);
2307 }
33417e70
FB
2308}
2309
ba863458 2310/* XXX: temporary until new memory mapping API */
00f82b8a 2311ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2312{
2313 PhysPageDesc *p;
2314
2315 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2316 if (!p)
2317 return IO_MEM_UNASSIGNED;
2318 return p->phys_offset;
2319}
2320
e9a1ab19 2321/* XXX: better than nothing */
00f82b8a 2322ram_addr_t qemu_ram_alloc(ram_addr_t size)
e9a1ab19
FB
2323{
2324 ram_addr_t addr;
7fb4fdcf 2325 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
012a7045 2326 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
ed441467 2327 (uint64_t)size, (uint64_t)phys_ram_size);
e9a1ab19
FB
2328 abort();
2329 }
2330 addr = phys_ram_alloc_offset;
2331 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2332 return addr;
2333}
2334
2335void qemu_ram_free(ram_addr_t addr)
2336{
2337}
2338
a4193c8a 2339static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2340{
67d3b957 2341#ifdef DEBUG_UNASSIGNED
ab3d1727 2342 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2343#endif
e18231a3
BS
2344#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2345 do_unassigned_access(addr, 0, 0, 0, 1);
2346#endif
2347 return 0;
2348}
2349
2350static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2351{
2352#ifdef DEBUG_UNASSIGNED
2353 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2354#endif
2355#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2356 do_unassigned_access(addr, 0, 0, 0, 2);
2357#endif
2358 return 0;
2359}
2360
2361static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2362{
2363#ifdef DEBUG_UNASSIGNED
2364 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2365#endif
2366#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2367 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2368#endif
33417e70
FB
2369 return 0;
2370}
2371
a4193c8a 2372static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2373{
67d3b957 2374#ifdef DEBUG_UNASSIGNED
ab3d1727 2375 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2376#endif
e18231a3
BS
2377#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2378 do_unassigned_access(addr, 1, 0, 0, 1);
2379#endif
2380}
2381
2382static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2383{
2384#ifdef DEBUG_UNASSIGNED
2385 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2386#endif
2387#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2388 do_unassigned_access(addr, 1, 0, 0, 2);
2389#endif
2390}
2391
2392static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2393{
2394#ifdef DEBUG_UNASSIGNED
2395 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2396#endif
2397#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2398 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2399#endif
33417e70
FB
2400}
2401
2402static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2403 unassigned_mem_readb,
e18231a3
BS
2404 unassigned_mem_readw,
2405 unassigned_mem_readl,
33417e70
FB
2406};
2407
2408static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2409 unassigned_mem_writeb,
e18231a3
BS
2410 unassigned_mem_writew,
2411 unassigned_mem_writel,
33417e70
FB
2412};
2413
0f459d16
PB
2414static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2415 uint32_t val)
9fa3e853 2416{
3a7d929e 2417 int dirty_flags;
3a7d929e
FB
2418 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2419 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2420#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2421 tb_invalidate_phys_page_fast(ram_addr, 1);
2422 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2423#endif
3a7d929e 2424 }
0f459d16 2425 stb_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2426#ifdef USE_KQEMU
2427 if (cpu_single_env->kqemu_enabled &&
2428 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2429 kqemu_modify_page(cpu_single_env, ram_addr);
2430#endif
f23db169
FB
2431 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2432 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2433 /* we remove the notdirty callback only if the code has been
2434 flushed */
2435 if (dirty_flags == 0xff)
2e70f6ef 2436 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2437}
2438
0f459d16
PB
2439static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2440 uint32_t val)
9fa3e853 2441{
3a7d929e 2442 int dirty_flags;
3a7d929e
FB
2443 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2444 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2445#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2446 tb_invalidate_phys_page_fast(ram_addr, 2);
2447 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2448#endif
3a7d929e 2449 }
0f459d16 2450 stw_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2451#ifdef USE_KQEMU
2452 if (cpu_single_env->kqemu_enabled &&
2453 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2454 kqemu_modify_page(cpu_single_env, ram_addr);
2455#endif
f23db169
FB
2456 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2457 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2458 /* we remove the notdirty callback only if the code has been
2459 flushed */
2460 if (dirty_flags == 0xff)
2e70f6ef 2461 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2462}
2463
0f459d16
PB
2464static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2465 uint32_t val)
9fa3e853 2466{
3a7d929e 2467 int dirty_flags;
3a7d929e
FB
2468 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2469 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2470#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2471 tb_invalidate_phys_page_fast(ram_addr, 4);
2472 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2473#endif
3a7d929e 2474 }
0f459d16 2475 stl_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2476#ifdef USE_KQEMU
2477 if (cpu_single_env->kqemu_enabled &&
2478 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2479 kqemu_modify_page(cpu_single_env, ram_addr);
2480#endif
f23db169
FB
2481 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2482 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2483 /* we remove the notdirty callback only if the code has been
2484 flushed */
2485 if (dirty_flags == 0xff)
2e70f6ef 2486 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2487}
2488
3a7d929e 2489static CPUReadMemoryFunc *error_mem_read[3] = {
9fa3e853
FB
2490 NULL, /* never used */
2491 NULL, /* never used */
2492 NULL, /* never used */
2493};
2494
1ccde1cb
FB
2495static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2496 notdirty_mem_writeb,
2497 notdirty_mem_writew,
2498 notdirty_mem_writel,
2499};
2500
0f459d16 2501/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2502static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
2503{
2504 CPUState *env = cpu_single_env;
06d55cc1
AL
2505 target_ulong pc, cs_base;
2506 TranslationBlock *tb;
0f459d16 2507 target_ulong vaddr;
a1d1bb31 2508 CPUWatchpoint *wp;
06d55cc1 2509 int cpu_flags;
0f459d16 2510
06d55cc1
AL
2511 if (env->watchpoint_hit) {
2512 /* We re-entered the check after replacing the TB. Now raise
2513 * the debug interrupt so that is will trigger after the
2514 * current instruction. */
2515 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2516 return;
2517 }
2e70f6ef 2518 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
c0ce998e 2519 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
2520 if ((vaddr == (wp->vaddr & len_mask) ||
2521 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2522 wp->flags |= BP_WATCHPOINT_HIT;
2523 if (!env->watchpoint_hit) {
2524 env->watchpoint_hit = wp;
2525 tb = tb_find_pc(env->mem_io_pc);
2526 if (!tb) {
2527 cpu_abort(env, "check_watchpoint: could not find TB for "
2528 "pc=%p", (void *)env->mem_io_pc);
2529 }
2530 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2531 tb_phys_invalidate(tb, -1);
2532 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2533 env->exception_index = EXCP_DEBUG;
2534 } else {
2535 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2536 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2537 }
2538 cpu_resume_from_signal(env, NULL);
06d55cc1 2539 }
6e140f28
AL
2540 } else {
2541 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2542 }
2543 }
2544}
2545
6658ffb8
PB
2546/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2547 so these check for a hit then pass through to the normal out-of-line
2548 phys routines. */
2549static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2550{
b4051334 2551 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
2552 return ldub_phys(addr);
2553}
2554
2555static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2556{
b4051334 2557 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
2558 return lduw_phys(addr);
2559}
2560
2561static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2562{
b4051334 2563 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
2564 return ldl_phys(addr);
2565}
2566
6658ffb8
PB
2567static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2568 uint32_t val)
2569{
b4051334 2570 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
2571 stb_phys(addr, val);
2572}
2573
2574static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2575 uint32_t val)
2576{
b4051334 2577 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
2578 stw_phys(addr, val);
2579}
2580
2581static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2582 uint32_t val)
2583{
b4051334 2584 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
2585 stl_phys(addr, val);
2586}
2587
2588static CPUReadMemoryFunc *watch_mem_read[3] = {
2589 watch_mem_readb,
2590 watch_mem_readw,
2591 watch_mem_readl,
2592};
2593
2594static CPUWriteMemoryFunc *watch_mem_write[3] = {
2595 watch_mem_writeb,
2596 watch_mem_writew,
2597 watch_mem_writel,
2598};
6658ffb8 2599
db7b5426
BS
2600static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2601 unsigned int len)
2602{
db7b5426
BS
2603 uint32_t ret;
2604 unsigned int idx;
2605
2606 idx = SUBPAGE_IDX(addr - mmio->base);
2607#if defined(DEBUG_SUBPAGE)
2608 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2609 mmio, len, addr, idx);
2610#endif
3ee89922 2611 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], addr);
db7b5426
BS
2612
2613 return ret;
2614}
2615
2616static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2617 uint32_t value, unsigned int len)
2618{
db7b5426
BS
2619 unsigned int idx;
2620
2621 idx = SUBPAGE_IDX(addr - mmio->base);
2622#if defined(DEBUG_SUBPAGE)
2623 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2624 mmio, len, addr, idx, value);
2625#endif
3ee89922 2626 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], addr, value);
db7b5426
BS
2627}
2628
2629static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2630{
2631#if defined(DEBUG_SUBPAGE)
2632 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2633#endif
2634
2635 return subpage_readlen(opaque, addr, 0);
2636}
2637
2638static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2639 uint32_t value)
2640{
2641#if defined(DEBUG_SUBPAGE)
2642 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2643#endif
2644 subpage_writelen(opaque, addr, value, 0);
2645}
2646
2647static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2648{
2649#if defined(DEBUG_SUBPAGE)
2650 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2651#endif
2652
2653 return subpage_readlen(opaque, addr, 1);
2654}
2655
2656static void subpage_writew (void *opaque, target_phys_addr_t addr,
2657 uint32_t value)
2658{
2659#if defined(DEBUG_SUBPAGE)
2660 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2661#endif
2662 subpage_writelen(opaque, addr, value, 1);
2663}
2664
2665static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2666{
2667#if defined(DEBUG_SUBPAGE)
2668 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2669#endif
2670
2671 return subpage_readlen(opaque, addr, 2);
2672}
2673
2674static void subpage_writel (void *opaque,
2675 target_phys_addr_t addr, uint32_t value)
2676{
2677#if defined(DEBUG_SUBPAGE)
2678 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2679#endif
2680 subpage_writelen(opaque, addr, value, 2);
2681}
2682
2683static CPUReadMemoryFunc *subpage_read[] = {
2684 &subpage_readb,
2685 &subpage_readw,
2686 &subpage_readl,
2687};
2688
2689static CPUWriteMemoryFunc *subpage_write[] = {
2690 &subpage_writeb,
2691 &subpage_writew,
2692 &subpage_writel,
2693};
2694
2695static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
00f82b8a 2696 ram_addr_t memory)
db7b5426
BS
2697{
2698 int idx, eidx;
4254fab8 2699 unsigned int i;
db7b5426
BS
2700
2701 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2702 return -1;
2703 idx = SUBPAGE_IDX(start);
2704 eidx = SUBPAGE_IDX(end);
2705#if defined(DEBUG_SUBPAGE)
2706 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2707 mmio, start, end, idx, eidx, memory);
2708#endif
2709 memory >>= IO_MEM_SHIFT;
2710 for (; idx <= eidx; idx++) {
4254fab8 2711 for (i = 0; i < 4; i++) {
3ee89922
BS
2712 if (io_mem_read[memory][i]) {
2713 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2714 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2715 }
2716 if (io_mem_write[memory][i]) {
2717 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2718 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2719 }
4254fab8 2720 }
db7b5426
BS
2721 }
2722
2723 return 0;
2724}
2725
00f82b8a
AJ
2726static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2727 ram_addr_t orig_memory)
db7b5426
BS
2728{
2729 subpage_t *mmio;
2730 int subpage_memory;
2731
2732 mmio = qemu_mallocz(sizeof(subpage_t));
2733 if (mmio != NULL) {
2734 mmio->base = base;
2735 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2736#if defined(DEBUG_SUBPAGE)
2737 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2738 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2739#endif
2740 *phys = subpage_memory | IO_MEM_SUBPAGE;
2741 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory);
2742 }
2743
2744 return mmio;
2745}
2746
33417e70
FB
2747static void io_mem_init(void)
2748{
3a7d929e 2749 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
a4193c8a 2750 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
3a7d929e 2751 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
1ccde1cb
FB
2752 io_mem_nb = 5;
2753
0f459d16 2754 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
6658ffb8 2755 watch_mem_write, NULL);
1ccde1cb 2756 /* alloc dirty bits array */
0a962c02 2757 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
3a7d929e 2758 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
33417e70
FB
2759}
2760
2761/* mem_read and mem_write are arrays of functions containing the
2762 function to access byte (index 0), word (index 1) and dword (index
3ee89922
BS
2763 2). Functions can be omitted with a NULL function pointer. The
2764 registered functions may be modified dynamically later.
2765 If io_index is non zero, the corresponding io zone is
4254fab8
BS
2766 modified. If it is zero, a new io zone is allocated. The return
2767 value can be used with cpu_register_physical_memory(). (-1) is
2768 returned if error. */
33417e70
FB
2769int cpu_register_io_memory(int io_index,
2770 CPUReadMemoryFunc **mem_read,
a4193c8a
FB
2771 CPUWriteMemoryFunc **mem_write,
2772 void *opaque)
33417e70 2773{
4254fab8 2774 int i, subwidth = 0;
33417e70
FB
2775
2776 if (io_index <= 0) {
b5ff1b31 2777 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
33417e70
FB
2778 return -1;
2779 io_index = io_mem_nb++;
2780 } else {
2781 if (io_index >= IO_MEM_NB_ENTRIES)
2782 return -1;
2783 }
b5ff1b31 2784
33417e70 2785 for(i = 0;i < 3; i++) {
4254fab8
BS
2786 if (!mem_read[i] || !mem_write[i])
2787 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
2788 io_mem_read[io_index][i] = mem_read[i];
2789 io_mem_write[io_index][i] = mem_write[i];
2790 }
a4193c8a 2791 io_mem_opaque[io_index] = opaque;
4254fab8 2792 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 2793}
61382a50 2794
8926b517
FB
2795CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2796{
2797 return io_mem_write[io_index >> IO_MEM_SHIFT];
2798}
2799
2800CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2801{
2802 return io_mem_read[io_index >> IO_MEM_SHIFT];
2803}
2804
e2eef170
PB
2805#endif /* !defined(CONFIG_USER_ONLY) */
2806
13eb76e0
FB
2807/* physical memory access (slow version, mainly for debug) */
2808#if defined(CONFIG_USER_ONLY)
5fafdf24 2809void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2810 int len, int is_write)
2811{
2812 int l, flags;
2813 target_ulong page;
53a5960a 2814 void * p;
13eb76e0
FB
2815
2816 while (len > 0) {
2817 page = addr & TARGET_PAGE_MASK;
2818 l = (page + TARGET_PAGE_SIZE) - addr;
2819 if (l > len)
2820 l = len;
2821 flags = page_get_flags(page);
2822 if (!(flags & PAGE_VALID))
2823 return;
2824 if (is_write) {
2825 if (!(flags & PAGE_WRITE))
2826 return;
579a97f7 2827 /* XXX: this code should not depend on lock_user */
72fb7daa 2828 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
579a97f7
FB
2829 /* FIXME - should this return an error rather than just fail? */
2830 return;
72fb7daa
AJ
2831 memcpy(p, buf, l);
2832 unlock_user(p, addr, l);
13eb76e0
FB
2833 } else {
2834 if (!(flags & PAGE_READ))
2835 return;
579a97f7 2836 /* XXX: this code should not depend on lock_user */
72fb7daa 2837 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
579a97f7
FB
2838 /* FIXME - should this return an error rather than just fail? */
2839 return;
72fb7daa 2840 memcpy(buf, p, l);
5b257578 2841 unlock_user(p, addr, 0);
13eb76e0
FB
2842 }
2843 len -= l;
2844 buf += l;
2845 addr += l;
2846 }
2847}
8df1cd07 2848
13eb76e0 2849#else
5fafdf24 2850void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2851 int len, int is_write)
2852{
2853 int l, io_index;
2854 uint8_t *ptr;
2855 uint32_t val;
2e12669a
FB
2856 target_phys_addr_t page;
2857 unsigned long pd;
92e873b9 2858 PhysPageDesc *p;
3b46e624 2859
13eb76e0
FB
2860 while (len > 0) {
2861 page = addr & TARGET_PAGE_MASK;
2862 l = (page + TARGET_PAGE_SIZE) - addr;
2863 if (l > len)
2864 l = len;
92e873b9 2865 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
2866 if (!p) {
2867 pd = IO_MEM_UNASSIGNED;
2868 } else {
2869 pd = p->phys_offset;
2870 }
3b46e624 2871
13eb76e0 2872 if (is_write) {
3a7d929e 2873 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
13eb76e0 2874 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
6a00d601
FB
2875 /* XXX: could force cpu_single_env to NULL to avoid
2876 potential bugs */
13eb76e0 2877 if (l >= 4 && ((addr & 3) == 0)) {
1c213d19 2878 /* 32 bit write access */
c27004ec 2879 val = ldl_p(buf);
a4193c8a 2880 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2881 l = 4;
2882 } else if (l >= 2 && ((addr & 1) == 0)) {
1c213d19 2883 /* 16 bit write access */
c27004ec 2884 val = lduw_p(buf);
a4193c8a 2885 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2886 l = 2;
2887 } else {
1c213d19 2888 /* 8 bit write access */
c27004ec 2889 val = ldub_p(buf);
a4193c8a 2890 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2891 l = 1;
2892 }
2893 } else {
b448f2f3
FB
2894 unsigned long addr1;
2895 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 2896 /* RAM case */
b448f2f3 2897 ptr = phys_ram_base + addr1;
13eb76e0 2898 memcpy(ptr, buf, l);
3a7d929e
FB
2899 if (!cpu_physical_memory_is_dirty(addr1)) {
2900 /* invalidate code */
2901 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2902 /* set dirty bit */
5fafdf24 2903 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 2904 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 2905 }
13eb76e0
FB
2906 }
2907 } else {
5fafdf24 2908 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 2909 !(pd & IO_MEM_ROMD)) {
13eb76e0
FB
2910 /* I/O case */
2911 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2912 if (l >= 4 && ((addr & 3) == 0)) {
2913 /* 32 bit read access */
a4193c8a 2914 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
c27004ec 2915 stl_p(buf, val);
13eb76e0
FB
2916 l = 4;
2917 } else if (l >= 2 && ((addr & 1) == 0)) {
2918 /* 16 bit read access */
a4193c8a 2919 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
c27004ec 2920 stw_p(buf, val);
13eb76e0
FB
2921 l = 2;
2922 } else {
1c213d19 2923 /* 8 bit read access */
a4193c8a 2924 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
c27004ec 2925 stb_p(buf, val);
13eb76e0
FB
2926 l = 1;
2927 }
2928 } else {
2929 /* RAM case */
5fafdf24 2930 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
13eb76e0
FB
2931 (addr & ~TARGET_PAGE_MASK);
2932 memcpy(buf, ptr, l);
2933 }
2934 }
2935 len -= l;
2936 buf += l;
2937 addr += l;
2938 }
2939}
8df1cd07 2940
d0ecd2aa 2941/* used for ROM loading : can write in RAM and ROM */
5fafdf24 2942void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
2943 const uint8_t *buf, int len)
2944{
2945 int l;
2946 uint8_t *ptr;
2947 target_phys_addr_t page;
2948 unsigned long pd;
2949 PhysPageDesc *p;
3b46e624 2950
d0ecd2aa
FB
2951 while (len > 0) {
2952 page = addr & TARGET_PAGE_MASK;
2953 l = (page + TARGET_PAGE_SIZE) - addr;
2954 if (l > len)
2955 l = len;
2956 p = phys_page_find(page >> TARGET_PAGE_BITS);
2957 if (!p) {
2958 pd = IO_MEM_UNASSIGNED;
2959 } else {
2960 pd = p->phys_offset;
2961 }
3b46e624 2962
d0ecd2aa 2963 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
2964 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
2965 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
2966 /* do nothing */
2967 } else {
2968 unsigned long addr1;
2969 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2970 /* ROM/RAM case */
2971 ptr = phys_ram_base + addr1;
2972 memcpy(ptr, buf, l);
2973 }
2974 len -= l;
2975 buf += l;
2976 addr += l;
2977 }
2978}
2979
2980
8df1cd07
FB
2981/* warning: addr must be aligned */
2982uint32_t ldl_phys(target_phys_addr_t addr)
2983{
2984 int io_index;
2985 uint8_t *ptr;
2986 uint32_t val;
2987 unsigned long pd;
2988 PhysPageDesc *p;
2989
2990 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2991 if (!p) {
2992 pd = IO_MEM_UNASSIGNED;
2993 } else {
2994 pd = p->phys_offset;
2995 }
3b46e624 2996
5fafdf24 2997 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 2998 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
2999 /* I/O case */
3000 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3001 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3002 } else {
3003 /* RAM case */
5fafdf24 3004 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3005 (addr & ~TARGET_PAGE_MASK);
3006 val = ldl_p(ptr);
3007 }
3008 return val;
3009}
3010
84b7b8e7
FB
3011/* warning: addr must be aligned */
3012uint64_t ldq_phys(target_phys_addr_t addr)
3013{
3014 int io_index;
3015 uint8_t *ptr;
3016 uint64_t val;
3017 unsigned long pd;
3018 PhysPageDesc *p;
3019
3020 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3021 if (!p) {
3022 pd = IO_MEM_UNASSIGNED;
3023 } else {
3024 pd = p->phys_offset;
3025 }
3b46e624 3026
2a4188a3
FB
3027 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3028 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3029 /* I/O case */
3030 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3031#ifdef TARGET_WORDS_BIGENDIAN
3032 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3033 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3034#else
3035 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3036 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3037#endif
3038 } else {
3039 /* RAM case */
5fafdf24 3040 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3041 (addr & ~TARGET_PAGE_MASK);
3042 val = ldq_p(ptr);
3043 }
3044 return val;
3045}
3046
aab33094
FB
3047/* XXX: optimize */
3048uint32_t ldub_phys(target_phys_addr_t addr)
3049{
3050 uint8_t val;
3051 cpu_physical_memory_read(addr, &val, 1);
3052 return val;
3053}
3054
3055/* XXX: optimize */
3056uint32_t lduw_phys(target_phys_addr_t addr)
3057{
3058 uint16_t val;
3059 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3060 return tswap16(val);
3061}
3062
8df1cd07
FB
3063/* warning: addr must be aligned. The ram page is not masked as dirty
3064 and the code inside is not invalidated. It is useful if the dirty
3065 bits are used to track modified PTEs */
3066void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3067{
3068 int io_index;
3069 uint8_t *ptr;
3070 unsigned long pd;
3071 PhysPageDesc *p;
3072
3073 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3074 if (!p) {
3075 pd = IO_MEM_UNASSIGNED;
3076 } else {
3077 pd = p->phys_offset;
3078 }
3b46e624 3079
3a7d929e 3080 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07
FB
3081 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3082 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3083 } else {
74576198
AL
3084 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3085 ptr = phys_ram_base + addr1;
8df1cd07 3086 stl_p(ptr, val);
74576198
AL
3087
3088 if (unlikely(in_migration)) {
3089 if (!cpu_physical_memory_is_dirty(addr1)) {
3090 /* invalidate code */
3091 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3092 /* set dirty bit */
3093 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3094 (0xff & ~CODE_DIRTY_FLAG);
3095 }
3096 }
8df1cd07
FB
3097 }
3098}
3099
bc98a7ef
JM
3100void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3101{
3102 int io_index;
3103 uint8_t *ptr;
3104 unsigned long pd;
3105 PhysPageDesc *p;
3106
3107 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3108 if (!p) {
3109 pd = IO_MEM_UNASSIGNED;
3110 } else {
3111 pd = p->phys_offset;
3112 }
3b46e624 3113
bc98a7ef
JM
3114 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3115 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3116#ifdef TARGET_WORDS_BIGENDIAN
3117 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3118 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3119#else
3120 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3121 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3122#endif
3123 } else {
5fafdf24 3124 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3125 (addr & ~TARGET_PAGE_MASK);
3126 stq_p(ptr, val);
3127 }
3128}
3129
8df1cd07 3130/* warning: addr must be aligned */
8df1cd07
FB
3131void stl_phys(target_phys_addr_t addr, uint32_t val)
3132{
3133 int io_index;
3134 uint8_t *ptr;
3135 unsigned long pd;
3136 PhysPageDesc *p;
3137
3138 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3139 if (!p) {
3140 pd = IO_MEM_UNASSIGNED;
3141 } else {
3142 pd = p->phys_offset;
3143 }
3b46e624 3144
3a7d929e 3145 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07
FB
3146 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3147 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3148 } else {
3149 unsigned long addr1;
3150 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3151 /* RAM case */
3152 ptr = phys_ram_base + addr1;
3153 stl_p(ptr, val);
3a7d929e
FB
3154 if (!cpu_physical_memory_is_dirty(addr1)) {
3155 /* invalidate code */
3156 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3157 /* set dirty bit */
f23db169
FB
3158 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3159 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3160 }
8df1cd07
FB
3161 }
3162}
3163
aab33094
FB
3164/* XXX: optimize */
3165void stb_phys(target_phys_addr_t addr, uint32_t val)
3166{
3167 uint8_t v = val;
3168 cpu_physical_memory_write(addr, &v, 1);
3169}
3170
3171/* XXX: optimize */
3172void stw_phys(target_phys_addr_t addr, uint32_t val)
3173{
3174 uint16_t v = tswap16(val);
3175 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3176}
3177
3178/* XXX: optimize */
3179void stq_phys(target_phys_addr_t addr, uint64_t val)
3180{
3181 val = tswap64(val);
3182 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3183}
3184
13eb76e0
FB
3185#endif
3186
3187/* virtual memory access for debug */
5fafdf24 3188int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3189 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3190{
3191 int l;
9b3c35e0
JM
3192 target_phys_addr_t phys_addr;
3193 target_ulong page;
13eb76e0
FB
3194
3195 while (len > 0) {
3196 page = addr & TARGET_PAGE_MASK;
3197 phys_addr = cpu_get_phys_page_debug(env, page);
3198 /* if no physical page mapped, return an error */
3199 if (phys_addr == -1)
3200 return -1;
3201 l = (page + TARGET_PAGE_SIZE) - addr;
3202 if (l > len)
3203 l = len;
5fafdf24 3204 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
b448f2f3 3205 buf, l, is_write);
13eb76e0
FB
3206 len -= l;
3207 buf += l;
3208 addr += l;
3209 }
3210 return 0;
3211}
3212
2e70f6ef
PB
3213/* in deterministic execution mode, instructions doing device I/Os
3214 must be at the end of the TB */
3215void cpu_io_recompile(CPUState *env, void *retaddr)
3216{
3217 TranslationBlock *tb;
3218 uint32_t n, cflags;
3219 target_ulong pc, cs_base;
3220 uint64_t flags;
3221
3222 tb = tb_find_pc((unsigned long)retaddr);
3223 if (!tb) {
3224 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3225 retaddr);
3226 }
3227 n = env->icount_decr.u16.low + tb->icount;
3228 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3229 /* Calculate how many instructions had been executed before the fault
bf20dc07 3230 occurred. */
2e70f6ef
PB
3231 n = n - env->icount_decr.u16.low;
3232 /* Generate a new TB ending on the I/O insn. */
3233 n++;
3234 /* On MIPS and SH, delay slot instructions can only be restarted if
3235 they were already the first instruction in the TB. If this is not
bf20dc07 3236 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3237 branch. */
3238#if defined(TARGET_MIPS)
3239 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3240 env->active_tc.PC -= 4;
3241 env->icount_decr.u16.low++;
3242 env->hflags &= ~MIPS_HFLAG_BMASK;
3243 }
3244#elif defined(TARGET_SH4)
3245 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3246 && n > 1) {
3247 env->pc -= 2;
3248 env->icount_decr.u16.low++;
3249 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3250 }
3251#endif
3252 /* This should never happen. */
3253 if (n > CF_COUNT_MASK)
3254 cpu_abort(env, "TB too big during recompile");
3255
3256 cflags = n | CF_LAST_IO;
3257 pc = tb->pc;
3258 cs_base = tb->cs_base;
3259 flags = tb->flags;
3260 tb_phys_invalidate(tb, -1);
3261 /* FIXME: In theory this could raise an exception. In practice
3262 we have already translated the block once so it's probably ok. */
3263 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3264 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3265 the first in the TB) then we end up generating a whole new TB and
3266 repeating the fault, which is horribly inefficient.
3267 Better would be to execute just this insn uncached, or generate a
3268 second new TB. */
3269 cpu_resume_from_signal(env, NULL);
3270}
3271
e3db7226
FB
3272void dump_exec_info(FILE *f,
3273 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3274{
3275 int i, target_code_size, max_target_code_size;
3276 int direct_jmp_count, direct_jmp2_count, cross_page;
3277 TranslationBlock *tb;
3b46e624 3278
e3db7226
FB
3279 target_code_size = 0;
3280 max_target_code_size = 0;
3281 cross_page = 0;
3282 direct_jmp_count = 0;
3283 direct_jmp2_count = 0;
3284 for(i = 0; i < nb_tbs; i++) {
3285 tb = &tbs[i];
3286 target_code_size += tb->size;
3287 if (tb->size > max_target_code_size)
3288 max_target_code_size = tb->size;
3289 if (tb->page_addr[1] != -1)
3290 cross_page++;
3291 if (tb->tb_next_offset[0] != 0xffff) {
3292 direct_jmp_count++;
3293 if (tb->tb_next_offset[1] != 0xffff) {
3294 direct_jmp2_count++;
3295 }
3296 }
3297 }
3298 /* XXX: avoid using doubles ? */
57fec1fe 3299 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3300 cpu_fprintf(f, "gen code size %ld/%ld\n",
3301 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3302 cpu_fprintf(f, "TB count %d/%d\n",
3303 nb_tbs, code_gen_max_blocks);
5fafdf24 3304 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3305 nb_tbs ? target_code_size / nb_tbs : 0,
3306 max_target_code_size);
5fafdf24 3307 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3308 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3309 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3310 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3311 cross_page,
e3db7226
FB
3312 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3313 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3314 direct_jmp_count,
e3db7226
FB
3315 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3316 direct_jmp2_count,
3317 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3318 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3319 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3320 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3321 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3322 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3323}
3324
5fafdf24 3325#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3326
3327#define MMUSUFFIX _cmmu
3328#define GETPC() NULL
3329#define env cpu_single_env
b769d8fe 3330#define SOFTMMU_CODE_ACCESS
61382a50
FB
3331
3332#define SHIFT 0
3333#include "softmmu_template.h"
3334
3335#define SHIFT 1
3336#include "softmmu_template.h"
3337
3338#define SHIFT 2
3339#include "softmmu_template.h"
3340
3341#define SHIFT 3
3342#include "softmmu_template.h"
3343
3344#undef env
3345
3346#endif